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Abstract

Bayesian optimization (BO) is a powerful ap-
proach to sample-efficient optimization of black-
box objective functions. However, the application
of BO to areas such as recommendation systems
often requires taking the interpretability and sim-
plicity of the configurations into consideration,
a setting that has not been previously studied in
the BO literature. To make BO useful for this
setting, we present several regularization-based
approaches that allow us to discover sparse and
more interpretable configurations. We propose
a novel differentiable relaxation based on homo-
topy continuation that makes it possible to target
sparsity by working directly with L0 regulariza-
tion. We identify failure modes for regularized
BO and develop a hyperparameter-free method,
sparsity exploring Bayesian optimization (SEBO)
that seeks to simultaneously maximize a target
objective and sparsity. SEBO and methods based
on fixed regularization are evaluated on synthetic
and real-world problems, and we show that we
are able to efficiently optimize for sparsity.

1 INTRODUCTION

Bayesian optimization (BO) is a technique for efficient
global optimization that is used for parameter optimization
across a wide range of applications, including robotics (Li-
zotte et al., 2007; Calandra et al., 2015), machine learning
pipelines (Hutter et al., 2011; Snoek et al., 2012; Turner
et al., 2021), internet systems (Letham et al., 2019; Feng
et al., 2020), and chemistry (Gómez-Bombarelli et al., 2018;
Felton et al., 2021). In many applications, including those
just mentioned, it is preferable for the optimized parameters
to be sparse. In this paper, we define sparsity in Bayesian
optimization to be the property where the majority of op-
timized parameters are close to the target parameters that
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one wishes to regularize towards. For example, the target
parameters may be a zero-vector, where setting parameters
to zero encourages removal of redundant system configura-
tions. Alternatively, the target parameters may be the default
system parameters (status quo), where sparsity favors the
fewest modifications for consistency and robustness. One
reason to prefer sparsity is that it increases interpretability,
a consideration that has recently attracted a great deal of
attention in machine learning (Doshi-Velez and Kim, 2017;
Rudin et al., 2022). Interpretability is necessary for humans
to be able to understand and evaluate the outputs of com-
plex systems—the types of systems to which BO is often
applied. In policy optimization, sparsity of the control pol-
icy provides a natural way for human decision-makers to
gain insight into the behavior of the system, and identify
potential issues (Ustun and Rudin, 2016; Hu et al., 2019).

Besides interpretability, sparsity can also be beneficial by
producing systems that are easier to deploy and main-
tain, reducing the “tech debt” of machine learning sys-
tems (Sculley et al., 2015). As an example, recommender
systems are essential to many internet companies, includ-
ing e-commerce platforms, streaming services, and social
media sites (Bobadilla et al., 2013). A typical recommenda-
tion process involves two stages, the retrieval and ranking
stages (Covington et al., 2016). The parameters in the re-
trieval stage determine the amount of content to be fetched
from various sets of candidate pools (sources) representing
different user interest taxonomies (Wilhelm et al., 2018).
Setting parameters to zero means deactivating these sources.
Sparse optimization can find solutions in which low quality
sources are entirely turned off, thus simplifying the system
and enabling faster development. Similarly in chemistry,
a sparse solution may require fewer reagents and steps to
synthesize a compound, which reduces experimentation
overhead and accelerates the discovery of new compounds.

Sparsity in machine learning is often achieved via regulariza-
tion, such as L1 regularization used by the lasso (Tibshirani,
1996), the group norm penalty used by the group lasso (Yuan
and Lin, 2006), and L0 regularization which directly targets
setting elements to zero (Zhang, 2008). The purpose of regu-
larization in machine learning is typically to limit overfitting
and thus improve test accuracy by reducing generalization
error (Evgeniou et al., 2002). In our setting, sparsity is a
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Figure 1: Objective and sparsity trade-offs for
a real-world Internet experiment using SEBO.
Points indicate recommender system configura-
tions, where the x-axis corresponds to the num-
ber of active recommendation sources used, i.e.
non-sparse parameters. Grey points indicate sub-
optimal designs, while red points represent designs
along the Pareto frontier found by SEBO. Decision-
makers balance both system simplicity and perfor-
mance when deciding which configuration to use.

separate goal; interpretable sparse configurations will gener-
ally not improve the optimization objective, and in fact, may
come at some cost to other metrics. This can be seen in the
sparsity-objective Pareto frontier shown in Fig. 1 from a real-
world recommender system sourcing experiment conducted
at a large Internet firm. The Pareto frontier comprises all of
the configurations that produce optimal trade-offs between
sparsity and the optimization objective. In many real-world
systems, decision makers are willing to trade some amount
of objective in order to achieve a higher level of sparsity,
because of the interpretability and simplicity benefits that
come with sparsity. Thus, unlike a typical BO problem, the
“optimal" point per the decision maker will not necessarily
be the one with best objective, but could be some other
point on the sparsity-objective Pareto frontier that has more
sparsity.

A central aspect of this work is to efficiently learn these
trade-offs and offer practitioners a way to balance sparsity
and other metrics. Sparsity in BO is an important topic
that has not yet been addressed in the literature. Past work
has used regularization in acquisition function optimization
or modeling, but not for the purpose of sparsity in design
parameters (see Section 2 for a review). Our work provides
a thorough and broad treatment of sparsity in BO that fills
in this gap. The main contributions of this paper are:

1. We study different approaches for incorporating sparse
regularization into BO, and provide negative theoretical
results showing that previously studied forms of regular-
ization can fail to optimize for certain levels of sparsity,
regardless of the regularization coefficient.

2. We draw connections between multi-objective BO and

acquisition function regularization, and show how multi-
objective BO can be used for automatic selection of the
regularization coefficient. We refer to this as the SEBO
(“Sparsity Exploring Bayesian Optimization”) method.

3. We develop a novel relaxation strategy for optimizing
directly for L0 sparsity, and show that it significantly
outperforms the typical L1 penalty in our context.

4. We show that combining acquisition function regulariza-
tion with sparse Gaussian process priors enables sparse
optimization in high-dimensional spaces.

5. We provide the first results on achieving sparsity via BO,
in a range of synthetic functions and on three real-world
tasks (in systems configuration and AutoML), showing
that SEBO is the best approach for sparse BO. We show
the breadth of our method by using it to achieve different
forms of sparsity such as feature-level and group sparsity.

6. We provide a new high-dimensional benchmark problem
designed to emulate trade-offs found in real-world rec-
ommender systems, and show how such systems benefit
from increased sparsity.

Section 2 describes the necessary background and related
work. Section 3 describes two natural approaches for in-
corporating sparse regularization into acquisition function
optimization, both of which can fail to optimize for some
levels of sparsity. Section 4 discusses a relationship between
sparse BO and multi-objective BO, and describes how we
can use methods from multi-objective BO to simultaneously
optimize for all levels of sparsity. We describe how we opti-
mize with L0 regularization in Section 5. We demonstrate
the usefulness of our methods by applying them to a set of
synthetic and real-world benchmarks in Section 6. Finally,
we discuss the results in Section 7.

2 BACKGROUND AND RELATED WORK

Bayesian Optimization: Shahriari et al. (2015) provide
a thorough review of BO. In short, the goal is to maximize
a black-box function f : RD

! R over a compact set
B ⇢ RD, for simplicity taken as [0, 1]D. We assume that f
is continuous and bounded on this domain. At each iteration
of optimization, f is modeled with a Gaussian process (GP)
given the function evaluations observed so far, producing
the normally distributed posterior f(x) ⇠ N (µ(x),�2(x)).
The location of the next function evaluation is selected
by maximizing an acquisition function ↵(x) := Ef [u(x)]
where u is a utility function that defines the acquisition
function. Typical acquisition functions include expected
improvement (EI, Jones et al., 1998) and upper confidence
bound (UCB, Srinivas et al., 2010). EI is given by

↵EI(x) = Ef [(f(x)� f(x⇤))+] , (1)

where x⇤ is the best point observed so far, and the acquisi-
tion function has a well-known analytic form when f is a
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GP. UCB is similarly computed directly from the marginal
posterior,

↵UCB(x) = µ(x) +
p
��(x), (2)

where � is a hyperparameter that controls the exploration-
exploitation trade-off. More recently, information-theoretic
acquisition functions have been developed (Hernández-
Lobato et al., 2014; Wang and Jegelka, 2017).

Regularization in BO: Regularization has been applied
to acquisition function optimization, though not for the pur-
pose of sparsity. Shahriari et al. (2016) used regularization
for unbounded BO, in which there are no bounds on the
search space. They applied a form of L2 regularization to
the EI target value that penalized sampling points far from
the initial center of the search space. González et al. (2016)
used regularization for batch BO, where the penalty dis-
couraged points from being chosen close to points that had
already been selected for the batch. The penalty term was
multiplied with the original acquisition function value.

BO with Sparse Models: Eriksson and Jankowiak (2021)
introduced the sparse axis-aligned subspaces (SAAS) func-
tion prior in which a structured sparse prior is induced over
the inverse-squared kernel lengthscales {⇢i}

d
i=1 to enable

BO in high dimensions. The SAAS prior has the form
⌧ ⇠ HC(↵), ⇢i ⇠ HC(⌧) where HC is the half-Cauchy dis-
tribution which concentrates at zero. The goal of the SAAS
prior is to turn off unimportant parameters by shrinking ⇢i

to zero, which avoids overfitting in high-dimensional spaces,
thus enabling sample-efficient high-dimensional BO. The
global shrinkage parameter ⌧ controls the overall sparsity:
with more data, ⌧ can be pushed to larger values, adapting
the level of sparsity to the data as needed.

While sparsity in the GP model is different from the sparsity
we seek here, we will show that combining the SAAS model
with acquisition regularization is highly effective for sparse
high-dimensional BO. By enforcing regularization in the ac-
quisition function, the parameters identified as unimportant
will be set to their baseline values, generating simpler and
more interpretable policies. Other work has studied feature
sparsity in GP regression but without considering sparsity
in optimization (Oh et al., 2019; Park et al., 2021).

Multi-Objective BO: Multi-objective BO is used when
there are several (often competing) objectives f1, . . . , fm

and we wish to recover the Pareto frontier of non-dominated
configurations. A classic method is ParEGO, which ap-
plies the standard single-objective EI acquisition function
to a random scalarization of the objectives (Knowles, 2006).
Many types of scalarizations have been developed for trans-
forming multi-objective optimization (MOO) problems into
single-objective problems (Ehrgott, 2005). Recent work on
multi-objective BO has focused on developing acquisition
functions that explicitly target increasing the hypervolume

of the known Pareto frontier. Acquisition functions in this
class, such as Expected Hypervolume Improvement (EHVI),
are considered state-of-the-art for multi-objective BO (Yang
et al., 2019; Daulton et al., 2020, 2021).

3 ACQUISITION FUNCTION
REGULARIZATION

3.1 External Regularization

We use a regularization term ⇠(x) to model sparsity, which
may be an L0 quasinorm to target feature-level sparsity,
⇠(x) = kx�xs

k0, or can be adjusted for different forms of
sparsity such as group sparsity. Here xs represents the target
point that the decision maker wishes to drive the solution
towards, e.g., a zero-vector or the current default parameters
(status quo). For our analysis of regularization, we will
assume that xs is the unique global minimum of ⇠(x).

A straightforward approach for adding regularization is to
simply add a regularization penalty directly to the acqui-
sition function. This parallels regularized regression tech-
niques like ridge regression and the lasso. Given a penalty
term ⇠(x), we then maximize

↵ER(x;�) = ↵(x)� �⇠(x) (3)

to select the next point for evaluation. We refer to this
approach as external regularization (ER). EI with external
regularization is:

↵EI-ER(x;�) = Ef [(f(x)� f(x⇤))+]� �⇠(x). (4)

The regularization coefficient � must be set, just as with clas-
sic regularized regression. This formulation separates the
explore/exploit value of a point, in ↵, from its sparsity value,
in ⇠. This can perform poorly, because there is necessarily
interaction between these two notions of value. We provide
a negative result showing that external regularization cannot
capture certain levels of sparsity.

Proposition 1. Suppose ↵(x) = 0 for every x where

⇠(x)  ✓. Then, for any value of � > 0, every maximizer of

↵ER(x;�) will satisfy ⇠(x) > ✓, or will equal xs
.

This result is shown in Appendix C, which also describes
how this setting is easily encountered in practice when there
is a trade-off between objective and sparsity, as in Fig. 1.
Empirically, Proposition 1 means that once a good non-
sparse point has been found, sparse points will not be se-
lected by the regularized acquisition function, regardless of
how � is tuned. Increasing � will change the maximum of
the regularized acquisition function from a non-sparse point
directly to the trivial solution of xs, skipping all levels of
sparsity in between. The acquisition function has no way of
selecting sparse points that improve over other points with
a similar level of sparsity.
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3.2 Internal Regularization

An alternative approach for adding regularization to the
acquisition optimization is to add it directly to the objective
function. In this approach, instead of using the posterior
of f to compute the acquisition function, we compute the
acquisition for the posterior of a regularized function:

g(x;�) = f(x)� �⇠(x). (5)

We refer to this as internal regularization (IR). The goal of
the acquisition function is then to maximize g, which can be
made to have a sparse maximizer by appropriately setting �.
With internal regularization, EI becomes

↵EI-IR(x;�) = Ef [(g(x)� g(x⇤))+]

= Ef [(f(x)� f(x⇤)� �(⇠(x)� ⇠(x⇤)))+]
(6)

where x⇤ is now the incumbent-best of g, not of f . The
difference between external and internal regularization de-
pends on the acquisition function. It is easy to see that for
the UCB acquisition of (2), they are identical. For EI they
are not, as seen by comparing (4) and (6). For EI, internal
regularization avoids some of the issues of external regular-
ization by incorporating sparsity directly into the assessment
of improvement. In (6), improvement is measured both in
terms of increase of objective and increase in sparsity, and
it is measured with respect to an incumbent best that has
incorporated the sparsity penalty. However, internal regular-
ization can also be incapable of recovering points at every
level of sparsity, as we will show now. For this result, we
are interested in the optimal objective value as a function of
sparsity level:

h(✓) = max
x2B

f(x) subject to ⇠(x) = ✓. (7)

A trade-off between sparsity and objective would result
in h(✓) increasing with ✓, though it need not be strictly
increasing. We now give the negative result for internal
regularization, see Appendix C for details.
Proposition 2. For any ✓ in the interior of an interval

where h is strictly convex, there is no maximizer of (5) with

⇠(x) = ✓, for any � > 0.

This result shows that internal regularization can only hope
to recover optimal points at all sparsity levels if h is concave
on its entire domain. This is a strong condition, one unlikely
to hold for the types of functions typically of interest in
BO, even with simple regularizers. Note that this result is
independent of the choice of � and the acquisition function
used. If the desired level of sparsity happens to lie within a
region where h is strictly convex, internal regularization can
be expected to fail to find the optimum. Fig. 6 in Appendix
C shows an illustration of this result, in a problem where h

has a region of strict convexity.

We will see in the empirical results that internal regulariza-
tion performs better than external regularization, though,

consistent with Proposition 2, can fail to cover the entire
objective vs. sparsity trade-off and so neither is the recom-
mended approach for sparse BO. In this paper we focus on
EI, but both forms of regularization can be applied to any
acquisition function, including entropy search methods. In
entropy search, the acquisition function evaluates points ac-
cording to their information gain with respect to the current
belief about the location or function value of the optimum.
The information gain will thus depend on the level of spar-
sity in a similar way as with EI, and so external and internal
regularization have similar considerations.

4 MULTI-OBJECTIVE OPTIMIZATION

There are two fundamental challenges with both of the reg-
ularization approaches developed in Section 3. The first is
that they both have a regularization coefficient � that must be
set. In a regression setting, the regularization coefficient is
usually set to maximize cross-validation accuracy through
hyperparameter optimization, often using grid search or
BO (Snoek et al., 2012). In sparse BO, if there is a known
desired level of sparsity, � can be swept in each iteration of
optimization to find a value that produces candidates with
the desired level of sparsity. This significantly increases the
overhead of BO by requiring hyperparameter optimization
as part of every acquisition optimization. Furthermore, in
real applications the desired level of sparsity is typically not
known a priori.

When there is a trade-off between interpretability and sys-
tem performance, the desired level of interpretability will
depend on what that trade-off looks like. In practice, we
thus wish to identify the best-achievable objective at any
particular level of sparsity. The second challenge is that,
per the results of Propositions 1 and 2, we may not be able
to identify the entire objective vs. sparsity trade-off, no
matter how � is swept. Depending on the problem, it may
be that the sparsity levels of interest cannot be explored
via either regularization strategy. Both of these challenges
can be addressed by viewing sparse BO from the lens of
multi-objective BO.

4.1 Sparse BO as Multi-Objective BO

In this section we introduce the Sparsity Exploring Bayesian
Optimization method (SEBO), which takes a multi-objective
approach to sparse BO. Rather than considering ⇠ as a
penalty applied to the objective, we consider f and �⇠
to each be objectives that we wish to maximize.

First, we note the following connection between internal
regularization and multi-objective BO.

Remark 1. Internal regularization can be viewed as a lin-

ear scalarization of the two objectives f and �⇠, with �

the weight. Linear scalarizations are commonly used in

MOO (Marler and Arora, 2010)—see Appendix D for more
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discussion of the connection between internal regularization

and the ParEGO method for multi-objective BO.

Casting sparse BO as MOO of the objective and sparsity
has several advantages. It provides a solution for setting the
regularization coefficient �, since we can use methods from
multi-objective BO to optimally balance improvements in f

and ⇠ with the goal of exploring the Pareto frontier. We can
use powerful approaches such as EHVI to select points that
maximize performance for all levels of sparsity, or equiv-
alently, maximize sparsity for all levels of performance,
explicitly optimizing for the entire regularization path. The
goal of multi-objective BO is to identify the optimum for
every level of sparsity, which enables decision makers to
make an informed trade-off between interpretability and
other considerations of system performance. State-of-the-
art MOO methods also avoid the issues of Propositions 1
and 2 and are able to explore the entire Pareto front.

In our experiments, we use the EHVI acquisition function.
Here, the hypervolume improvement is defined with respect
to a worst-case reference point r = [rf , r⇠], which can be
set to estimates for the minimum and maximum values of
f and ⇠ respectively. Given a set of observations Xobs =
{x1

, . . . ,xn
}, the Pareto hypervolume of is defined as

V (Xobs) = �M

 
n[

i=1

�
[rf , r⇠]⇥ [f(xi), ⇠(xi)]

�
!
,

where �M denotes the Lebesgue measure. The expected
hypervolume improvement is computed as

↵SEBO(x) = Ef

⇥
V (Xobs

[ {x})� V (Xobs)
⇤
. (8)

This acquisition function is hyperparameter-free, and, as
we will see, is highly effective for sparse BO. In the ex-
periments, we standardize the objectives when calculating
the hypervolume. It is also possible to weight objectives
differently to encourage greater exploration of sparse or
high-performing solutions. We refer to the resulting method
as SEBO, and explore its performance in combination with
the L0 sparse regularization, described next. The SEBO-L0

algorithm is shown in Appendix E.2.

5 ACQUISITION FUNCTIONS WITH L0

SPARSITY

Our primary focus is L0 sparsity, which comes with the
challenge that the L0 quasi-norm is discontinuous, mak-
ing the resulting acquisition function challenging to opti-
mize. We will follow the idea of homotopy continuation,
which has been successfully applied to, for instance, solving
non-linear systems of equations and numerical bifurcation
analysis (Allgower and Georg, 2012).

The main idea is to define a homotopy H(x, a), where
H(x, astart) corresponds to a problem that is easy to solve

and H(x, aend) corresponds to the target problem. In partic-
ular, for a > 0 we define H(x, a) = Ef [u([f(x),'a(x)])]

where 'a(x) := D �
PD

i=1 exp
�
�0.5 (xi/a)2

�
⇡ kxk0

and x 2 RD. Under the assumption that the utility
function u(x) defined in Sec. 2 is continuous, we have
lima!0+ H(x, a) = Ef [u([f(x), kxk0])], which corre-
sponds to the original acquisition function with the L0 quasi-
norm.

While it may be tempting to set a to a small value, e.g.,
a = 10�3, and optimize the acquisition function directly,
this will not work well as the gradient of the homotopy is
(numerically) zero almost everywhere in the domain. On
the other hand, setting a to a large value, e.g., a = 1 will
make it much easier to optimize the acquisition function, but
also result in a poor approximation of the true acquisition
function that will likely not yield sparse solutions. In order
to optimize the acquisition function, we will start at some
value astart large enough to make the acquisition function
easy to optimize and slowly decrease a towards aend = 0.
Each time we change a we re-optimize the acquisition func-
tion starting from the best solution found for the previous
value of a.1 This idea is illustrated in Fig. 2 where we plot
snapshots of H(x, a) for a few values of a as well as show
the resulting continuous homotopy path.

Figure 2: Consider the 1D problem of using SEBO to opti-
mize f(x) = �x2 with an L0 penalty ⇠(x) = kx � 0.5k0.
Assume Xobs = {0, 0.25, 0.75, 1.0} have already been eval-
uated and we want to optimize SEBO to generate the next
candidate. The global optimum of the acquisition function
is given by the sparse point x = 0.5. We show that optimiz-
ing the acquisition function along the continuous homotopy
path starting at astart = 10�0.5 allows us to eventually un-
cover find the true optimum of x = 0.5.

1This may appear similar to the idea of learning rate annealing.
However, rather than decreasing a hyperparameter of the optimizer,
we solve a sequence of optimization problems that approaches the
true problem.
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6 EXPERIMENTS

We evaluate EI-IR, EI-ER and SEBO on two synthetic and
three real-world problems with a focus on high-dimensional
problems. Note that SEBO can be used for low-dimensional
problems as well. Additional details are included in Ap-
pendix F. SEBO also naturally extends to multi-objective
BO problems, and our code release supports that. We focus
on single-objective problems to visualize and understand
2D Pareto frontiers, which are difficult to visualize in higher
dimensions. We show the results using L0 regularization for
most problems except for the last problem, where the group
lasso is used to demonstrate that the methods can be applied
to recover different forms of sparsity, such as group sparsity.
In addition, we provide an ablation study that demonstrates
the importance of using L0 regularization by comparing it
to L1 regularization. We show in an ablation study that the
homotopy continuation approach from Section 5 is crucial
for effective L0 regularization.

Experimental setup: Our experiments all have high-
dimensional parameter spaces, so we use the SAAS model
when optimizing with ER, IR, and SEBO. We compare
performance to quasi-random search (Sobol), BO with a
standard ARD Matérn-5/2 kernel and the EI acquisition
function (GPEI), and SAASBO. For the SAAS model, we
use the same hyperparameters as suggested by Eriksson and
Jankowiak (2021) and use the No-U-Turn (NUTS) sampler
for model inference. The acquisition function is computed
by averaging over the MCMC samples. We always scale the
domain to be the unit hypercube [0, 1]D and standardize the
objective to have mean 0 and variance 1 before fitting the
GP model.

For the homotopy continuation approach described in Sec. 5,
we discretize the range of a to use 30 values starting
from astart = 10�0.5, see Appendix F for more details.
Fig. 11 shows that SEBO is not sensitive to the choice
of astart. We use a deterministic model for sparsity when
using it as an objective. The figures show the mean re-
sults across replications (10 replications for the adaptive
bitrate simulation (ABR) problem and 20 for all other ex-
periments), and the error bars correspond to 2 standard
errors. All experiments were run on a Tesla V100 SXM2
GPU (16GB RAM). Code for replicating the methods and
benchmark experiments in this work is available at https:
//github.com/facebookresearch/SparseBO.

Evaluation plots: We evaluate optimization performance
in terms of the trade-off between the objective and sparsity.
To compare the trade-offs, we show the resulting Pareto fron-
tier by treating sparsity as a separate objective, e.g., Fig. 3
(Right) and Fig. 4. In particular, for each level of sparsity
(active dimensions), we plot the best value found using at

most that number of non-sparse components. We also show
hypervolume traces in the Appendix F.2. In cases where

a method is unable to find at least one configuration for a
given level of sparsity we assign replications an imputed
function value corresponding to the worst label shown on
the y-axis. For the synthetic problems where the true active
dimensions and optima are known, we plot simple regret for
a fixed level of sparsity, e.g., in Fig. 3 (Left, Middle).
Synthetic functions: We first consider two synthetic prob-
lems where the level of sparsity is known. We use the Branin
and Hartmann6 functions embedded into a 50D space where
0 is considered sparse, i.e. xs = 0. We used 50 trials (evalua-
tions) with 8 quasi-random initial points for Branin and 100
trials with 20 quasi-random initial points for Hartmann6.
The results are shown in Fig. 3. The two leftmost plots
show the optimization results by evaluating the objective
only on observed points whose number of active (i.e., non-
zero) parameters was less than or equal to the true effective
dimension (2 for Branin and 6 for Hartmann6).

We observe that SEBO-L0 performed the best, followed by
IR with � = 0.001. This suggests IR may perform compet-
itively if the regularization coefficient is chosen optimally.
On the other hand, ER performed worse than SEBO and IR.
Finally, methods with non-regularized acquisition functions
(Sobol, GPEI, and SAASBO) failed to identify sparse con-
figurations since they do not explicitly optimize for sparsity
of the solutions. Fig. 3 (Right) visualizes the trade-off be-
tween the objective and sparsity and SEBO-L0 yielded the
best sparsity trade-offs.

Ranking sourcing system simulation: The sourcing com-
ponent of a recommendation system is responsible for re-
trieving a collection of items that are sent to the ranking
algorithm for scoring. Items are retrieved from multiple
sources, for instance that may represent different aspects of
the user interest taxonomy (Wilhelm et al., 2018). Query-
ing for more items can potentially improve the quality of
the recommendation system, but comes at the cost of in-
creasing the infrastructure load. In addition, each source
may require individual maintenance; thus, deprecating poor
sources could reduce technical debt and maintenance costs
of an entire recommendation system (Sculley et al., 2015).
Our goal is thus to identify a retrieval policy that uses a min-
imal number of sources while still maximizing the ranking
quality score, measured by a function of content relevance
and infrastructure load.

We developed a simulation of a recommender sourcing sys-
tem that simulates the quality and infrastructure load of
recommendations produced by a particular sourcing policy.
The sourcing system is modeled as a topic model, where
each source has a different distribution over topics, and top-
ics have different levels of relevance to the user. When two
sources are (topically) similar, they may obtain duplicate
items, which will not improve recommendation quality.

We consider a 25D retrieval policy in which each parameter
specifies the number of items retrieved from a particular

https://github.com/facebookresearch/SparseBO
https://github.com/facebookresearch/SparseBO
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Figure 3: (Left) Simple regret for Branin embedded into a 50D space, considering only observations with at most 2 active
(non-sparse) parameters. SEBO-L0 performed the best followed by IR with � = 0.001. (Middle) SEBO-L0 and IR with
� = 0.001 performed the best for the Hartmann6 function embedded into a 50D space when considering only observations
with at most 6 active parameters. (Right) The objective-sparsity trade-off after all 100 iterations on the Hartmann6 problem.
Shown is the Pareto frontier between sparsity and simple regret after the evaluation budget has been exhausted. SEBO-L0 is
able to explore the trade-offs and is able to discover sparse configurations with fewer than 6 active parameters that are not
found by the other methods.

source. Our desired sparsity is to set parameters to 0 (xs

= 0), i.e., turning off the source. See Sec. F.1 for more
details. We used 8 initial points and ran 100 trials for all the
methods. Fig. 4 (Left) shows that SEBO-L0 performed the
best in optimizing the ranking quality score under different
sparsity levels. Sobol and GPEI could not find sparse poli-
cies and obtained worse quality scores even with 25 active
parameters. IR and SAASBO performed similarly, and ER
with the larger regularization parameter � = 0.01 achieved
higher quality score with less than 10 active dimensions.

SVM Machine learning hyperparameter tuning: We
consider the problem of doing joint feature selection and
hyperparameter tuning for a support vector machine (SVM).
We tuned the C, ", and � hyperparameters of the SVM,
jointly with separate scale factors in the continuous range
[0, 1] for each feature. We used 100 features from the CT
slice UCI dataset Dua and Graff (2017) and the goal was to
minimize the RMSE on the test set. This produces a 103D
optimization problem where we shrink each feature towards
a scale factor of 0, i.e. xs

i = 0, as it effectively removes
the feature from the dataset. We took C 2 [0.01, 1.0], " 2
[0.01, 1.0], and � 2 [0.001, 0.1], where the center of each
interval was considered sparse as this is the default value
in Sklearn (i.e. xs

i = Mid(Hyperparameter Interval)). We
optimized C, ", and � on a log-scale, and initialized all
methods with 20 points and ran 100 evaluations. Fig. 4
(Middle) shows that SEBO-L0 was best able to explore the
trade-offs between sparsity and (negative) RMSE.

Adaptive bitrate simulation: Video streaming and real-
time conferencing systems use adaptive bitrate (ABR) algo-
rithms to balance video quality and uninterrupted playback.
The goal is to maximize the quality of experience (QoE).

The optimal policy for a particular ABR controller may
depend on the network, for instance a stream with large
fluctuations in bandwidth will benefit from different ABR
parameters than a stream with stable bandwidth. This moti-
vates the use of a contextual policy where ABR parameters
are personalized by context variables such as country or
network type (Feng et al., 2020). Various other systems
and infrastructure applications commonly rely on tunable
parameters which can benefit from contextualization.

We suppose that the system has already been optimized with
a global non-contextual policy, ⇡global, that is used for all
contexts. Our goal here is to use sparse BO to find the con-
textualized residuals �⇡i for each individual context i, i.e.,
⇡i = ⇡global +�⇡i, with the target sparse point xs set to be
⇡global. By regularizing the contextualized residuals �⇡i’s
using the group lasso (GL) norm (Yuan and Lin, 2006),
we hope to find policies that require minimum alteration
to the global policy ⇡global, in which the minimum number
of contexts have parameters that deviate from the global
optimum. This adds both simplicity and interpretability to
the contextual policy, since we can interpret the policy by
looking at the contextual residuals �⇡i.

Fig. 4 (Right) shows the results of applying our methods
to the contextual ABR optimization problem from Feng
et al. (2020). For this problem, we have 12 contexts and 4
parameters for each context resulting in a 48D optimization
problem. We used 75 trials with 8 quasi-random initial
points for all the methods. The group lasso penalty is defined
by assigning parameters for each individual context to be
within the same group. We observe that IR with a fixed
� was able to explore trade-offs at certain sparsity levels
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Figure 4: Objective-sparsity trade-offs after 100 (75 for ABR) trials for the three real-world problems. (Left) Sourcing

problem: SEBO-L0 regularization effectively explored all sparsity trade-offs. (Middle) SVM problem: ER with � = 0.01
and IR with � = 0.01 were able to explore parts of the Pareto frontier, however were dominated by SEBO-L0. (Right) ABR

problem: Similar behavior as in the SVM problem was seen here with a group lasso penalty.

and that stronger regularization (larger �) resulted in finding
configurations that were more sparse. SEBO-GL, on the
other hand, automatically and efficiently explored the trade-
off between sparsity and reward at all sparsity levels. All
other baselines (Sobol, GPEI, SAASBO) failed to find any
sparse configurations that achieve non-zero reward.

Ablation study and Interpretation: We show by means
of an ablation study the importance of using the homotopy
continuation approach from Section 5 to target L0 sparsity.
We focus on SEBO as it consistently outperformed IR and
ER, and refer to Fig. 12 in Appendix F.6 for additional re-
sults on the importance of using the SAAS model. The
results from the ablation study can be seen in Fig. 5. Using
a fixed value of a for the L0 approximation performs poorly,
particularly when a is small, which is due to the acquisition
function being zero almost everywhere and thus difficult
to optimize. On the other hand, a = 1 results in a failure
to discover sparse configurations and the resulting method
performs similar to SAASBO (see Fig. 3). In addition, we
show that for all approaches (ER, IR, and SEBO), working
directly with L0 regularization works significantly better
than the frequently used L1 regularization. Finally, we show
in Fig. 5 (Right) how frequently each parameter is turned on
(non-zero) in the final Pareto frontier for each replication of
SEBO-L0, which indicates the method correctly identifies
the important parameters. See Appendix F.8 for more inter-
pretations of SEBO-L0 configurations in other benchmarks.

7 DISCUSSION

BO is a powerful tool for sample-efficient optimization of
real-world systems. Recent developments in BO have made
it possible to optimize hundreds of parameters, providing

solutions to complex optimization problems in science and
engineering. Yet practitioners and decision-makers often
favor simplicity in the solutions, e.g., in the design space, for
the sake of interpretability, managing risk, or for reducing
technical debt. This poses a new challenge: how should
we discover well-performing and parsimonious designs in a
sample-efficient manner?

We show that sparsity-inducing models are not sufficient for
producing sparse designs, and examine several schemes for
penalizing design parameters within the acquisition function
itself. We utilize theoretical insights from multi-objective
optimization to identify limitations of common penalization
approaches and propose SEBO, which optimizes for both
sparsity and performance. In doing so, we are able to learn
the entire set of optimal trade-offs between objective and
sparsity, allowing decision makers to select the amount of
objective they are willing to sacrifice for increased inter-
pretability and simplicity.

Our formulation is compatible with a variety of regulariz-
ers, including L0, L1, and the group lasso penalties. To
enable the optimization of the discontinuous L0 penalty, we
develop a novel acquisition function optimization method
based on homotopy continuation that enables gradient-based
optimization. We find that SEBO with L0 penalization
consistently outperforms all other methods in identifying
optimal designs, while also eliminating the need to tune
regularization hyperparameters.

Our work has a few limitations that suggest areas for future
work. First, SEBO can be useful for identifying the entire
Pareto frontier of sparse solutions, but in some contexts
decision-makers may have a desired sparsity level in mind.
Further work is required to develop adaptive algorithms that
can efficiently target specific sparsity levels. Second, if the
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Figure 5: Ablation study on the Hartmann6 function embedded in a 50D space. (Left) SEBO-L0 works much better
than SEBO-L1 as it directly targets L0 sparsity. Using a fixed value of a performs poorly, confirming the importance of
our homotopy continuation approach. (Middle) Working directly with L0 regularization works drastically better than L1

regularization for both IR and ER. (Right) The 6 important parameters are more frequently included in Pareto optimal
configurations for the embedded Hartmann6 problem.

goal is to reduce regret while achieving sparsity, there may
be opportunities for theoretical work on selecting model
and acquisition function regularization parameters simulta-
neously, see, e.g., Bastani and Bayati (2020).
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Sparse Bayesian optimization: Supplementary Material

A POTENTIAL SOCIETAL IMPACTS

BO is often used to optimize complicated black-box functions such as training deep neural networks, tuning recommendation
systems, designing molecules, or synthesizing compounds in chemistry. Our method enables finding sparse solutions while
optimizing the objective of interest. In many situations, a sparse solution can help reduce tech debt as well as making it
easier to interpret. Our SEBO method is able to automatically explore the trade-offs between the objective(s) and sparsity
which will allow the decision-maker to choose a solution of their liking. Lastly, as the black-box functions are often
expensive to evaluate, the sample-efficiency of our method may reduce the environmental impact compared to using a less
sample-efficient method.

B CODE IMPLEMENTATIONS

The GPEI, SAASBO and EHVI used in SEBO were implemented using BoTorch, a framework for BO in PyTorch Balandat
et al. (2020) and are available in Ax https://github.com/facebook/Ax. The code is licensed under the MIT
License. The SVM hyperparameter tuning experiment uses the SVM implementation in Sklearn and the CT slice dataset
in the UCI machine learning repository Dua and Graff (2017). The Adaptive bitrate simulation experiment is available at
https://github.com/facebookresearch/ContextualBO, licensed under the MIT License.

C THEORETICAL RESULTS

Here we provide the proofs of Propositions 1 and 2, as well as an illustration of the result of Proposition 2.

Proof of Proposition 1. Suppose x†
2 argmax↵ER(x;�) and ⇠(x†)  ✓. Then, ↵(x†) = 0, so ↵ER(x†;�) = ��⇠(x†).

By x† being a maximizer of ↵ER we must have

��⇠(x†) = ↵ER(x
†;�) � ↵ER(x

s;�) = ��⇠(xs).

Thus ⇠(x†)  ⇠(xs). Because xs is a strict global minimum, we have then that x† = xs.

This setting where the acquisition value is 0 for all sparse points is easily encountered in practice when there is a trade-off
between the objective function and sparsity, as in Fig. 1, and we have sampled a point close to the (non-sparse) optimum.
Consider the EI acquisition function with external regularization. Once the GP is confident that sparse points have worse
objective value than non-sparse points, sparse points will have acquisition value approximately 0, as their improvement is
being evaluated with respect to a non-sparse incumbent best x⇤.

We assume ⇠ is continuous and bounded, which implies h is continuous and bounded:

Assumption 1. ⇠ is continuous on B, and has minimum value ⇠(xs) = sl and maximum value su.

Proposition 3. h is continuous and bounded on the domain [sl, su].

Sketch of Proof. This result falls from the continuity and boundedness of f , and by applying the intermediate value theorem
to ⇠.

Proof of Proposition 2. Suppose h is strictly convex over the interval [✓l, ✓u]. For the sake of contradiction, assume that
there exists a ✓† 2 (✓l, ✓u) and an x† such that x†

2 argmax g(x;�) and ⇠(x†) = ✓†.

It is clear that x†
2 argmax f(x) subject to ⇠(x) = ✓†, otherwise the point with strictly larger f and equal ⇠ value would

have a higher value for g, and x† could not be optimal for g. Thus, f(x†) = h(✓†).

https://github.com/facebook/Ax
https://github.com/facebookresearch/ContextualBO
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Figure 6: An illustration of the internal regularization result in Proposition 2. (Left) The objective f is a modified Branin
function. The sparsity penalty ⇠ is the L1 norm. (Right) The optimal objective vs. sparsity trade-off, h(✓), shows the
best-achievable objective value for any specified value of L1 norm. The shaded region is an interval where h is strictly
convex. By Proposition 2, the regularized function in (5) has no maximizers with L1 norm in that range, for any value of �.

We can express ✓† = t✓l + (1� t)✓u for some t 2 (0, 1). By strict convexity of h on this interval, we have that

h(✓†) < th(✓l) + (1� t)h(✓u). (9)

Take xu
2 argmax f(x) subject to ⇠(x) = ✓u, and xl

2 argmax f(x) subject to ⇠(x) = ✓l. These are the points in B

corresponding to h(✓l) and h(✓u). The optimality of x† implies that g(x†;�) � g(xu;�) and g(x†;�) � g(xl;�). Thus,

g(x†;�) � tg(xl;�) + (1� t)g(xu;�)

h(✓†)� �✓† � th(✓l)� t�✓l + (1� t)h(✓u)� (1� t)�✓u

h(✓†) � th(✓l) + (1� t)h(✓u), (10)

using ✓† = t✓l + (1� t)✓u. The result in (10) contradicts the convexity in (9), and so x† cannot be optimal for g.

Fig. 6 shows an illustration of the result of Proposition 2 on a log-transformed version of the classic Branin problem, where
f(x1, x2) = � log(10 + Branin(x1, x2)), and we are using a traditional L1 regularization penalty, ⇠(x1, x2) = |x1|+ |x2|.
The right panel shows h(✓), from (7), as it traces the trade-off from the minimum of ⇠ to the maximum of f . There is a
wide interval of L1-norm values in the middle, 0.4 to 2.7, where h(✓) is strictly convex. By Proposition 2, there is no value
of � under which the maximizer of (5) has L1 norm in that range. That range of sparsity levels thus cannot be reached by
maximizing the regularized function g.

D RELATIONSHIP BETWEEN PAREGO AND INTERNAL REGULARIZATION

As described in Section 2, ParEGO applies the EI acquisition function to a random scalarization of multiple objectives. With
internal regularization, random sampling of � for each acquisition optimization produces a ParEGO-style strategy for sparse
BO, that differs only in the form of the scalarization.

The inability of linear scalarizations to capture the entire Pareto front, seen in Proposition 2, is a well-known failure mode
for MOO. This result has inspired a large number of alternative scalarizations (Das and Dennis, 1997). ParEGO avoids the
issue by replacing the linear scalarization with an augmented Chebyshev scalarization (Bowman, 1976). When applied to
the context of sparse regularization, this means maximizing

T (x;�) = C(f(x)� �⇠(x))�max(f⇤
� f(x),�(⇠(x)� ⇠(xs)),

where f
⇤ is an estimate for the maximum of f and C is a constant, usually set to 0.05. Unlike g in (5), maximizers of

T span the entire objective vs. sparsity trade-off (Knowles, 2006). Using EI to optimize this regularized function with
randomly sampled values of � is equivalent to applying ParEGO to the objective and the (negative) sparsity penalty.
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E OPTIMIZATION WITH L0 SPARSITY

E.1 Homotopy continuation

In this section we provide some additional details for the homotopy continuation described in Sec. 5. For computational
reasons, we use a sequence of 30 a’s starting from astart = 10�0.5 and ending at 10�3 that is linearly spaced on a log-scale.
First, we optimize the acquisition function using L-BFGS-B from 20 different starting points to obtain 20 local optima
of H(x, astart). We then increment the value of a and use L-BFGS-B to re-optimize the homotopy starting from each of
the previously found 20 local optima. This process is continued until we reach a = 0 which is the acquisition function
corresponding to the true L0 norm. Note that this procedure traces 20 curves c(a) 2 argminx H(x, a) from a = astart to
a = 0 and that this curve is of finite length under the assumption that the domain is compact. These curves are potentially
different as the acquisition function may be non-convex and have multiple local optima. Finally, we choose the candidate as
the point that achieves the best acquisition function value.

We use astart = 10�0.5 as it strikes a balance between being large enough to find initial points with non-zero acquisition
function values, and being small enough to discover points that are almost sparse. To better understand this choice note that
maxx,z2[0,1]

��'0
10�0.5(x� z)

�� ⇡ 0.067 while, e.g., maxx,z2[0,1] |'
0
0.1(x� z)| ⇡ 2⇥ 10�20 which shows that 0.1 may be

too small to serve as astart. We also investigate this choice in an ablation study in Appendix F.5 and find that the performance
of SEBO-L0 is not sensitive to the choice of astart as long as the value is not too small.

E.2 SEBO algorithm

The SEBO-L0 method is described in Algorithm 1. We start with an initial space-filling experiment design. In each iteration
step, we fit a SAAS GP model and optimize the acquisition function to find the next point to evaluate, as shown at line 1.
When optimizing the acquisition function, homotopy continuation is used to handle the discontinuous L0 norm. This part is
shown on line 11.

Algorithm 1 Sparsity Exploring Bayesian Optimization with L0 norm (SEBO-L0)
1: procedure SEBO-L0 . Outer loop of BO
2: Place a Gaussian Process prior on f

3: Observe f at n0 quasi-random initial points and get the initial dataset Dn0

4: for n n0 + 1 to N do
5: Update the posterior probability distribution on f using observed data Dn�1

6: Select the next point xn  OPTIMIZE-HOMOTOPY(f̂n)
7: Evaluate xn: Dn  {Dn�1, (xn, f(xn))}
8: end for
9: return The best point

10: end procedure

11: procedure OPTIMIZE-HOMOTOPY(f̂ ) . Optimize SEBO-L0 acquisition function
12: Define a homotopy H(x, a) using the posterior on f

13: Initialize a candidate pool Xa  {}

14: for a astart to aend do
15: xa  maximize H(x, a) based on the best points in Xa

16: Xa  {Xa,xa}

17: end for
18: return xa

19: end procedure

F ADDITIONAL EXPERIMENTAL STUDIES

F.1 Ranking sourcing system simulation

In the sourcing simulation experiment in Section 6, the recommender sourcing system has 25 content sources and 1000
possible pieces of content (i.e., items) for retrieval. We consider a 25-dimensional retrieval policy x over the integer domain
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[0, 50]25. We take inspiration from the Latent Dirichlet Allocation (LDA) model (Blei et al., 2003) in defining a generative
probabilistic model of items recommended by each source. We assume there are 8 latent topics and that each item can be
represented as a mixture over topics. Each source contains a mixture over a set of topics, and particular items will be more
likely to be recommended by topically related sources. Such topical overlaps can create redundancy of recommendations
across sources. Retrieving more items from additional sources comes at a cost, making sparse retrieval policies preferred.

Before describing the simulation in pseudo-code, we need the following definitions:

• T is the number of latent topics.

• K is the number of distinct items.

• S is the number of content sources.

• ✓s 2 �T is the topic distribution for source s, where �T denotes the T -dimensional simplex. {✓s}
S
s=1 follow a

Dirichlet distribution, i.e., ✓s ⇠ Dir(↵) where ↵ = 0.2.

• �i 2 �K is the item distribution for each topic i, where �K denotes the K-dimensional simplex. {�i}
T
i=1 also follow

a Dirichlet distribution, i.e., �i ⇠ Dir(�) where � = 0.5.

• zs,k is the topic assignment for item k in source s and follows a multinomial distribution: zs,k ⇠ Multi(✓s)

• ws,k is the indicator of item k is retrieved from source s and follows multinomial distribution: ws,k ⇠ Multi(�zs,k).

• Qi is the relevance score of each topic i and is sampled from a log-normal distribution with mean 0.25 and standard
deviation 1.5.

• mk is the relevance score of each item k, which is derived as the weighted average across topic scores based on the
item distribution over 8 latent topics, i.e., mk =

PT
i=1 �i,kQi.

• cs is the infrastructure cost per fetched item for source s. The cost cs is assumed to be positively correlated with source
relevance score qs =

PT
i=1 ✓s,iQi and follows a Gaussian distribution with mean qs

2
PS

s=1 qs
and standard deviation of

0.1.

To simulate the retrieval of one item from the source s, we sample a topic for an item k from the multinomial Multi(✓s),
i.e., zs,k ⇠ Multi(✓s), and sample an item ws,k ⇠ Multi(�zs,k) where ws,k indicates item k being retrieved from source s.
Given the sourcing policy x 2 RS , we execute the above sampling xs times for each source s as described at lines 1 in
Algorithm 2, and then compute the quality score given a list of retrieved items.

The overall content relevance score is the sum of the content relevance scores after de-duplicating the retrieved content.
The infrastructure load is a sum of products of a number of retrievals and the cost per fetched item cs for each source,
in which cs varies across sources and positively correlates with the source relevance score. This setup is based on the
real-world observation that sources providing higher relevance content are generally more computationally expensive. The
objective in the benchmark experiments is a weighted sum of overall content relevance and negative infrastructure load. In
the experiment, we repeat this simulation (at line 10) 1000 times for a given policy and compute the mean and standard error
of the objective values, which we refer to as the quality score in the main text.

F.2 Hypervolume trace plots

We evaluate optimization performance by showing the average best obtained hypervolume across 20 replicates, with 95%
confidence interval over 100 trials. The results are shown for the sourcing problem (left), the SVM problem (middle) and
the Hartmann6 function embedded into a 50D (right) in Figure 7. It can be seen that SEBO-L0 (red traces) outperforms
all the other methods and achieved the best hypervolume value over 100 iterations. The IR and ER methods with well
selected regularization parameter values can sometimes achieve competitive results and usually outperform the methods
with non-regularized acquisition functions, e.g. SAASBO.
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Algorithm 2 Recsys Simulation
1: procedure ITEM-RETRIEVAL(xs)
2: ~ns  

�!
0 2 RK

. number of retrievals for K distinct items
3: for n 1 to xs do . retrieve xs items
4: Sample a topic for an item k in source s i.e. zs,k ⇠ Multi(✓s)
5: Sample an item ws,k ⇠ Multi(�zs,k)
6: ~ns  ~ns + ~ws

7: end for
8: return ~ns

9: end procedure

10: procedure SOURCING(x)
11: ~n 

�!
0 2 RK

. number of retrievals for K distinct items
12: for s 1 to S do . retrieve items for each source s

13: ~ns  ITEM-RETRIEVAL(xs)
14: ~n {~n+ ~ns}

15: end for
16: Compute relevance score RS =

PK
k=1 (nk > 0)mk and infrastructure cost C =

PS
s=1 cs ⇥ xs

17: return quality score Q = RS� 0.6⇥ C

18: end procedure
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Figure 7: Hypervolume benchmark traces. (Left) Sourcing problem.(Middle) SVM problem. (Right) Hartmann6 function
embedded into a 50D. The results are the average best hypervolume (with 95% confidence interval) obtained over 100
iterations across 20 replications. SEBO-L0, shown in red, performs the best in all three problems.

F.3 Sensitivity analysis of regularization parameter �

We conduct a sensitivity analysis of regularization parameter � used by IR and ER by sweeping different values of � on the
50D Hartmann6 benchmark. The results are given in Fig. 8 and Fig. 9. We observe that we are able to control the sparsity
level by appropriately choosing �. In general, larger � implies stronger regularization and results in finding configurations
with a higher level of sparsity. When � increases above a certain point, the regularization becomes too strong and fails to
help find high-quality sparse points.

By comparing results of IR and ER for different � values, we note that IR is able to achieve effective optimization
performance over a wider range of �’s while ER is more sensitive to the value of �. This validates the discussion about ER
in Section 3.1 that ER is not as effective as IR due to ER’s inability to select a new sparse point that improves over sparse
points from previous iterates if the new sparse point does not improve on the dense points that are already observed.
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Figure 8: Results of IR with different � values for Hartmann6 function embedded into a 50D space. (Left) The objective-
sparsity trade-off after all 100 iterations. (Right) The simple regret considering only observations with at most 6 active
(non-sparse) parameters.
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Figure 9: Results of ER with different � values for Hartmann6 function embedded into a 50D space. (Left) The objective-
sparsity trade-off after all 100 iterations. (Right) The simple regret considering only observations with at most 6 active
(non-sparse) parameters.

F.4 Benchmarks with L1 regularization

Our proposed method can work together with different forms of sparsity. Here we show the results of ER, IR and SEBO
using L0 or L1 regularization for the Hartmann6 function embedded in a 50D space. As can been seen in Fig. 10, using L0

leads to significant improvement over L1 for all three methods.

F.5 Sensitivity Analysis of astart in SEBO-L0 optimization

The value of astart is set to be 10�0.5 for all the experiments. To better understand the robustness of this choice we conducted
an ablation study on the Branin(d = 2, D = 50) and Sourcing (D = 25) problems considered in Section 6. The results in
Figure 11 show that there is no statistically significant difference between using 10�1, 10�0.5, 100 and 101 as the value of
astart. However, using a value of 10�2 leads to a clear drop in performance as this starting value is too small to optimize the
acquisition function.
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Figure 10: Results for the Hartmann6 function embedded in a 50D space. (Left) L0 regularization outperforms L1

regularization in exploring the objective-sparsity trade-offs for IR, ER and SEBO. (Right) L0 regularization obtains better
optimization performances considering only observations with at most 6 active (non-sparse) parameters.
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Figure 11: Ablation study of astart in SEBO-L0. (Left). Results of Branin (d = 2, D = 50). (Right). Results of Sourcing
(D = 25). There is no statistically significant difference between using different astart except for the extremely small astart

(= 10�2). This shows the robustness of having a default astart for optimizing SEBO-L0 acquisition function.

F.6 Ablation study on using SAAS

To illustrate the importance of using the SAAS model, we compare to using IR-L1 with a standard GP in Fig. 12. We observe
that IR-L1 with a standard GP fails to discover non-trivial sparse configurations for all values of �. This confirms that
sparsity in the GP model is crucial for finding sparse configurations. This can also be observed by comparing performances
of SAASBO and GPEI in Fig. 3 where there is a huge gap in terms of the best function value optimized even when looking
at dense points (active dimensions = 50).

F.7 Benchmark with additional HDBO methods

We conduct evaluations of additional high-dimensional BO methods for the Hartmann6 function embedded in a 50D space,
including trust region BO (TuRBO) by (Eriksson et al., 2019) and Random Embedding BO (REMBO) by (Wang et al.,
2016). The left plot in Figure 13 shows the trade-off between the objective and sparsity after all 100 iterations. Although
SAASBO and TuRBO achieve good non-sparse solutions, they fail to obtain sparse solutions. REMBO does not obtain
better sparse solution than SAASBO. In the right plot, we show the simple regret considering only observations with at most
35 active (non-sparse) parameters. SEBO-L0 outperforms these high-dimensional BO since these methods do not encourage
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Figure 12: Results for the Hartmann6 function embedded in a 50D space. IR-L1 using the SAAS model significantly
outperforms IR-L1 using a standard GP.

sparse solutions.
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Figure 13: Results of additional high-dimensional BO methods for the Hartmann6 function embedded in a 50D space. (Left)
The objective-sparsity trade-off after all 100 iterations. SAASBO and TuRBO, although obtaining competitive objective
values with 50 active parameters, do not encourage sparse solutions. (Right) The simple regret for Hartmann6 function
considering only observations with at most 35 active (non-sparse) parameters.

F.8 Interpretation of Sparse Solutions

Ranking sourcing system simulation. We examine what active dimensions are selected in the recommender sourcing
system problem to understand the obtained sparse solutions. For SEBO-L0 results across 20 replications, we obtain the
optimal 25-dimensional retrieval policy and also compute the average of retrievals per source at each sparsity level. For each
source, we compute a source quality scores based on the simulation setup stated in F.1. Each source contains a mixture
over a set of topics with source relevance score being qs and the infrastructure cost per fetched item being cs. With this, we
define and compute the source quality score as qs � 4⇥ cs. Note the score is computed for each source in order to interpret
the obtained solutions and differ from the quality score used in the optimization.

In Figure 14, the left heatmap visualizes the optimal policy at different sparsity levels across 20 replications and the middle
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one visualizes the average retrieval policy values. Each column corresponds to one source and is sorted based on source
quality score in an ascending order (from left to right); each row represents the sparsity level (number of active dimensions).
The color indicates the parameter values. As it can be seen, sources with low quality scores are turned off (zero query) and
sources with higher scores have higher number of retrievals even with smaller active dimensions. This indicates that the
sparse policy obtained from SEBO identifies the most effective sources at each sparsity level. The right plot in Figure 14
shows the relationship between number of items retrieved from each source and source quality score with 5 active parameters.
Each dot represents a source. The curve is a fitted spline to visualize the relationship. From both plots we can see that more
items are retrieved from higher quality sources, while the number of items from lower quality sources are driven to zero.
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Figure 14: (Left). The heatmap of optimal retrieval policy at different sparsity levels. (Mid) The heatmap of average retrieval
policy values at different sparsity levels. (Right) The scatter plot between average retrieval policy values with 5 active
parameters and source quality score. We can see that more items are retrieved from higher quality sources, while the number
of items from lower quality sources are driven to zero to achieve sparsity.

Synthetic function - Branin (d = 2, D = 50). Similar to Fig. 5 (right), we compute the frequency of each parameter is
turned on (non-zero) in the final Pareto frontier for each replication of SEBO-L0. These frequencies help us to identify
the important parameters and interpret the sparse policies, shown in Fig. 15 (left). The two true effective dimensions in
augmented Branin (d = 2, D = 50), colored in orange bars, have the highest frequencies and are identified by SEBO-L0.

SVM Machine learning hyperparameter tuning. Fig. 15 (right) visualizes the frequency of parameter values being
non-sparse in the final Pareto frontier for each replication of SEBO-L0. The sparse values are the center of each interval
of the three hyperparameters �, C and ". For the augmented parameters, values being zero are considered as sparse. The
three orange bars correspond to the three effective hyperparameters of the SVM, which obtains high frequencies of being
non-sparse. The gray bars, corresponding to the augmented dimensions, have much lower frequencies.

F.9 Low-dimensional BO Problem

SEBO can also be applied to low-dim problems using arbitrary GP models as it targets the trade-off between objective
and sparsity. In the experiments section (Section 6), we focus on high-dimensional problems because sparsity (and
interpretability) tends to be more important with more parameters. In Figure 16, we compare the performance on the
Hartmann6 problem for Sobol, SAASBO, GPEI, and SEBO with L0 or L1 penalty using a standard GP as a surrogate model.
This problem is known to have structures where some dimensions are more important than others for maximizing function
value. SEBO-L0 with a standard GP achieves the best trade-off in the low-dimensional (6D) problem.
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Figure 15: (Left) Branin (d = 2, D = 50). The 2 true effective parameters (colored as orange) are more frequently set to be
non-zero in Pareto optimal configurations. (Right) SVM (d = 3, D = 103). The 3 effective hyperparameters (orange) of
the SVM have higher frequencies of being non-sparse compared with the augmented dimensions (gray bars).
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Figure 16: Hartmann6 function where 0 is considered sparse. Standard GP (without SAAS model) is used as the GP
surrogate model for SEBO-L1 and SEBO-L0.
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