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Abstract

In continuum-armed bandit problems where the
underlying function resides in a reproducing ker-
nel Hilbert space (RKHS), namely, the kernelised
bandit problems, an important open problem re-
mains of how well learning algorithms can adapt
if the regularity of the associated kernel func-
tion is unknown. In this work, we study adaptiv-
ity to the regularity of translation-invariant ker-
nels, which is characterized by the decay rate of
the Fourier transformation of the kernel, in the
bandit setting. We derive an adaptivity lower
bound, proving that it is impossible to simultane-
ously achieve optimal cumulative regret in a pair
of RKHSs with different regularities. To verify
the tightness of this lower bound, we show that
an existing bandit model selection algorithm ap-
plied with minimax non-adaptive kernelised ban-
dit algorithms matches the lower bound in de-
pendence of T , the total number of steps, ex-
cept for log factors. By filling in the regret
bounds for adaptivity between RKHSs, we con-
nect the statistical difficulty for adaptivity in
continuum-armed bandits in three fundamental
types of function spaces: RKHS, Sobolev space,
and Hölder space.

1 Introduction

We consider the problem of continuum-armed bandit, a
sequential decision-making problem, where the goal of a
learning algorithm is the optimization of a black-box re-
ward function, by selecting query points and eliciting re-
wards from the underlying function sequentially. The per-
formance of algorithms is measured by the cumulative re-
gret, which is the sum of differences between the maxi-
mum of the underlying function and the reward incurred by
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the learning algorithm across all the time steps. Optimiz-
ing cumulative regret requires from the learning algorithms
a delicate exploration-exploitation tradeoff. The learn-
ing algorithm needs to simultaneously exploit high-reward
regions and explore uncertain regions. The exploration-
exploitation tradeoff is often dependent on complexity of
the function space to which the reward function belongs.
In most theoretical analyses of cumulative regret of al-
gorithms, complexity of the function space is assumed
to be known. Many studies use this assumption to de-
sign algorithms that achieve minimax optimal performance
when the function space is known, for example, for linear
functions (Dani et al., 2008; Abbasi-Yadkori et al., 2011),
functions residing in reproducing kernel Hilbert spaces
(RKHS) (Valko et al., 2013; Janz et al., 2020) or drawn
from Gaussian Processes (Srinivas et al., 2009; Chowd-
hury and Gopalan, 2017), as well as neural networks func-
tions (Zhou et al., 2020; Kassraie and Krause, 2021).

However, despite the theoretical convenience, it is not al-
ways realistic to assume access to the underlying function
space. For this reason, some recent works in continuum-
armed bandits have started to develop adaptive algorithms
for when the function space is misspecified (see Section 2
for a summary of related works). The best possible per-
formance of adaptive algorithms is equivalent to algo-
rithms that know the parameter. An algorithm that simul-
taneously achieves minimax cumulative regret rates with-
out access to the parameter is said to achieve minimax
adaptivity. While minimax adaptivity is possible under
the simple regret minimization setting, recent works have
proved that it is not always achievable for cumulative re-
gret minimzation (Locatelli and Carpentier, 2018), due to
the exploration-exploitation dilemma.

When the reward function resides in an RKHS induced
of some kernel function k , the problem also is referred
to as kernelised bandit. In this work, we focus on an
important and open problem in adaptivity in kernelised
bandits, precisely, adaptivity to unknown kernel regular-
ity. Recently, there has been a line of theoretical works
that study adaptivity under the kernelised bandit setting,
such as adaptivity to the length scale parameter and the
RKHS norm (Berkenkamp et al., 2019) for a given kernel,
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and adaptivity to ϵ-misspecification, where the underlying
function is ϵ-approximated by functions in an RKHS (Bo-
gunovic and Krause, 2021). To the best of our knowledge,
the work of Kassraie et al. (2022) is most closely related
to our setting. They consider the setting where the under-
lying function lies in an RKHS but the kernel is unknown.
Kassraie et al. (2022) assume that the kernel is a sparse
combination of known base kernels and design algorithms
with sublinear regret guarantees under this assumption. A
more detailed discussion of the prior works on adaptivity
in kernelised bandit is continued in Section 2.

Adaptivity of any algorithm with respect to the explicit reg-
ularity of the kernel function k , however, remains an un-
solved problem. We characterize the regularity of k using
a general notion: the decay rate of the Fourier transform of
k (Section 3). In contrast to, for example, adapting to the
RKHS norm which measures the smoothness of a function
with respect to a fixed kernel, we adapt to the regularity
of kernels which controls the differentiability of functions
in the associated RKHSs. The kernel regularity thus de-
termines the statistical complexity of the associated learn-
ing problem in a more fundamental way. In estimation,
optimization (including simple regret minimization) (Bull,
2011) and cumulative regret minimization tasks (Srinivas
et al., 2009; Kandasamy et al., 2019; Janz et al., 2020), the
kernel regularity affects the minimax regret rate through
exponential dependence on T , as opposed to the RKHS
norm which only affects the rate polynomially. We focus
on this fundamental problem of how well bandit algorithms
can adapt to the unknown kernel regularity.

The contributions of this work are summarized as follows:

1. We derive the first lower bound on adaptivity to ker-
nel regularity, expressed in terms of the kernel Fourier
transformation decay rate, for kernelised bandit prob-
lems. This lower bound serves as an impossibility
result, that no algorithms can simultaneously achieve
minimax optimal performance in RKHSs with differ-
ent regularities.

2. For RKHSs of the Matérn family (Matern et al., 1960)
of kernels, we prove that CORRAL (Pacchiano et al.,
2020b), an existing model selection algorithm, applied
with (non-adaptive) minimax optimal kernelised ban-
dit algorithms, matches the adaptivity lower bound1 in
the dependence on T . In contrast, another model se-
lection algorithm RBBE Pacchiano et al. (2020a) does
not match the lower bound.

3. By comparing the upper and lower bounds derived by
this work to existing adaptivity results, we draw con-
nections between the statistical difficulty of adaptivity
in three types of function spaces: RKHSs, Sobolev
spaces, and Hölder spaces.

1Except for log factors.

A summary of our results amongst existing results can be
found in Table 1. Our main results (Section 4.2) are stated
for more general kernels but in Table 1 only results with
Matérn-ν (Definition 4) kernels are shown as an exam-
ple, for clear comparisons. For adaptive results, the values
ν̃ and R are input parameters to the adaptive algorithms,
such that they achieve (non-adaptive) minimax regret rates
if the true parameter satisfies ν = ν̃ (for Matérn RKHS)
or α = R (for Hölder spaces). We use Õ to denote the
asymptotic regret rate of T . Õ omits dependence on other
parameters such as the radius of the RKHS ball B (Sec-
tion 3), any constant factors, and log factors of T unless
otherwise specified.

Relationship with Neural Bandits. The kernelised ban-
dit formulation has implications for optimization of more
complex functions under the bandit setting as well, such
as neural network functions. The Neural Tangent Kernel
(NTK) literature (Jacot et al., 2018; Arora et al., 2019; Lee
et al., 2019; Bietti and Bach, 2020; Chen and Xu, 2020)
argue that over-parameterized neural networks can be ap-
proximated by functions in an RKHS of some composite
kernel named the Neural Tangent Kernel, given that the
network is sufficiently wide and the training is lazy (Chizat
et al., 2019). Recent advances in this field establish inter-
esting connections between the structure of a neural net-
work and the regularity of its corresponding NTK. For ex-
ample, Vakili et al. (2021a) consider wide fully-connected
neural networks with activation functions with smoothness
s. The show that the RKHS of the NTK of such a net-
work is norm equivalent to, or embedded in, the RKHS of
a Matérn-ν kernel with ν = s− 1

2 . The value of ν dictates
the differentiability of functions in the RKHS. Hence, the
neural network functions considered in Vakili et al. (2021a)
are approximated by functions in the RKHS of a Matérn-
ν kernel.2 These connections imply that adaptivity to the
kernel regularity in kernelised bandits can potentially be
extended to adaptivity to the structure of neural networks
(such as smoothness of the activation functions considered
in Vakili et al. (2021a)) in neural network bandits.

The rest of the paper is structured as follows. In Section 2,
we discuss relevant prior works. In Section 3 we state the
problem formulation. In Section 4 we present the main re-
sult of this paper, a lower bound on adaptivity to kernel
regularity. In Secion 5 we discuss upper bounds of exist-
ing adaptive algorithms and whether they match the lower
bound. In Section 6 we connect adaptivity to kernel regu-
larity and adaptivity to Hölder exponents. Finally, we dis-
cuss the limitations and future directions of our work in
Section 7.

2The result in Corollary 3 of Bietti and Bach (2020) can be
thought as a special case of when s = 1, since the activation
function considered is ReLU.
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Table 1: Summary of Our Results and Comparison to Existing Results
Regret RKHS of Matern-ν: Hk ,ν(X ) = Wν+ d

2 (X ) Hölder Space: Σα(X )

Relationship: Hk ,ν(X ) = Wν+ d
2 (X ) ⊂ Σα=ν(X )

Non-adaptive minimax Θ̃(T
ν+d
2ν+d )

Valko et al. (2013),Scarlett et al. (2017)
Θ̃
(
T

d+α
d+2α

)
Liu et al. (2021),Wang et al. (2018)

Adaptive
(d = 1)

Upper bound
Õ
(
T

1+2ν̃+ν̃ν
(1+2ν̃)(1+ν)

)
, for ν < ν̃

ν̃: Input to adaptive algorithm.
This work (Theorem 7)

Õ
(
T

1+2R+Rα
(1+2R)(1+α)

)
, for α < R

R: Input to adaptive algorithm.
Liu et al. (2021, Theorem 8)

Lower bound Ω̃

(
T

12+2ν̃+ν̃ν
(1+2ν̃)(1+ν)

)
, for ν < ν̃

This work (Corollary 5)

Ω̃

(
T

12+2Rα+Rα
(1+2R)(1+α)

)
, for α < R ≤ 1

Locatelli and Carpentier (2018, Theorem 3)

2 Related Work

Kernelised Bandit In kernelised bandit problems, the re-
ward function lies in a reproducing kernel Hilbert space
(RKHS). This problem has been studied by many previous
works, under the assumption that the kernel and other pa-
rameters (such as the upper bound on the function’s RKHS
norm) are known. Valko et al. (2013) take a frequen-
tist approach and design a SuperKernelUCB algorithm,
based on applying the kernel trick to the (Sup)LinREL and
(Sup)LinUCB algorithms (Auer, 2002; Chu et al., 2011).
The same technique is later used in extension to neural net-
works by Kassraie and Krause (2021), who propose Sup-
NTKUCB which works with neural networks. SupKer-
nelUCB achieves Õ(

√
TγT ) regret where γT is the max-

imum information gain between T total observations and
the underlying function. For common kernels such as the
Matérn-ν kernels, this regret is minimax optimal in its de-
pendence on T (except for log factors), by the lower bound
provided later in Scarlett et al. (2017). However, SupKer-
nelUCB relies on a batching technique that makes the al-
gorithm performs poorly in practice (Calandriello et al.,
2019; Janz et al., 2020). In the (parallel) Bayesian set-
ting (the Gaussian Process bandit problem), the underly-
ing function is assumed to be drawn from a GP. GP-UCB
algorithm (Srinivas et al., 2009; Chowdhury and Gopalan,
2017; Janz et al., 2020) achieves the same regret bound as
SupKernelUCB Õ(

√
TγT ) in the GP setting but becomes

suboptimal (sometimes with linear regret rate) in the RKHS
setting with a Õ(γT

√
T ) regret (Vakili et al., 2021b).

Adaptivity in Kernelised Bandit This problem we con-
sider falls under the scope of model misspecification in
bandit setting, which has been studied for linear functions
and Hölder-smooth functions (Du et al., 2019; Foster et al.,
2019; Lattimore et al., 2020; Zhu and Nowak, 2021; Lo-
catelli and Carpentier, 2018; Liu et al., 2021). For Hölder
functions, in particular, Locatelli and Carpentier (2018);
Hadiji (2019) provide a lower bound indicating that it is
impossible to achieve minimax adaptivity to the Hölder ex-
ponent. In this work, we convey a similar message with

respect to the regularity of RKHS. For adaptivity in ker-
nelised bandit problems, Berkenkamp et al. (2019) propose
an algorithm with sublinear regret for when the lengthscale
parameter (Definition 4) and upper bound on the RKHS
norm (equation 4) are unknown. Neiswanger and Ram-
das (2021) develop robust confidence sequence under the
Bayesian framework to use in adaptive methods for GP
optimization when the prior mean and/or covariance pa-
rameters are unknown. They conduct simulations for op-
timization on functions drawn from GPs but do not provide
explicit regret analyses. Bogunovic and Krause (2021) de-
velop methods for ϵ-misspecification, where the underlying
function can be arbitrarily non-smooth, but is approximated
by functions in a (known) RKHS with an ϵ-error in infin-
ity norm. They prove a Ω(ϵT ) lower bound for this set-
ting and derived a matching upper bound. However, note
that between two function spaces, the approximation er-
ror is a constant value and does not depend on T . Since a
constant ϵ means an inevitable linear regret (Ω(ϵT )), the
ϵ-misspecification setting (Bogunovic and Krause, 2021)
does not directly apply to adaptation to the kernel param-
eters. In the Meta-learning regime, Kassraie et al. (2022)
consider RKHS with unknown kernels that are sparse com-
binations of known base kernels and proves that a Meta-
learned kernel can yield sublinear regret. However, since
the kernel is Meta-learned, it relies on offline tasks as train-
ing data. We do not assume the availability of offline data
in the (fully online) bandit setting.

To summarize, prior works (to the best of our knowledge)
only consider parameters that influence the regret rate in
polynomial factors while our focus is on the regularity pa-
rameter which affects the rate in the exponent of T .

General Model Selection for Bandit Another line of re-
cent works on model selection in bandit settings makes less
stringent assumptions on the underlying function. These
works consider algorithms based on a “corralling” mecha-
nism, where a master algorithm “corrals” several base al-
gorithms as arms and each base algorithm selects actions
with different principles. The base algorithms usually as-
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sume different function spaces. Agarwal et al. (2017); Pac-
chiano et al. (2020b) propose an algorithm named COR-
RAL where the master algorithm is based on online mir-
ror descent. In certain cases, CORRAL performs compa-
rably to the best base algorithm running standalone.3 Pac-
chiano et al. (2020a) propose the Regret Bound Balancing
and Elimination (RBBE) which uses a (simpler) stochas-
tic master algorithm and an additional base-algorithm-
elimination step. We refer readers to Section 5 for details
about these two methods and their performance in our prob-
lem setting.

3 Problem Setting

Problem Formulation Consider the problem of zeroth-
order black-box optimization under bandit feedback. The
learner interacts with a stochastic environment in a sequen-
tial manner. This problem is also formulated as stochas-
tic continuum-armed bandit. At time step t ∈ {1, . . . , T},
the learner chooses an action xt from the compact domain
X = [0, 1]d, and receives a reward yt. The reward is a noisy
observation of the underlying reward function f : X → R:

yt = f(xt) + ηt, (1)

where the noise variable ηt follows a zero-mean sub-
Gaussian distribution (see Theorem 3). The optimization
objective is the cumulative (pseudo-)regret defined as fol-
lows.

RT =

T∑
t=1

f(x∗)− f(xt), (2)

where x∗ is the global maximizer of f , unknown to the
learner. Results in this paper are expressed in expected cu-
mulative (pseudo-)regret E[RT ], where the expectation is
taken over the randomness of {xt}t=1...T .

Kernelised Bandit We consider the setting where f is
square-integrable and resides in an RKHS Hk of a sym-
metric, positive-definite kernel k : Rd × Rd → R. The
RKHS is unique given the kernel (Wainwright, 2019, The-
orem 12.11). We denote the RKHS of k on domain X
as Hk (X ). In this work, we restrict our attention to
translation-invariant kernels, precisely, kernels that satisfy
the following: k(x, x′) = κ(x − x′), for some function
κ : Rd → R. For a translation-invariant kernel, the regular-
ity of functions in the RKHS is captured by the Fourier
transform of the kernel. Precisely, we have the follow-
ing definition when the domain is Rd. Let ĝ(ω) denote
the Fourier transformation (Wendland, 2004; Williams and

3Arora et al. (2021) also study the problem of corralling bandit
algorithms in the stochastic setting, but only finite-armed case is
considered.

Rasmussen, 2006) of a function g as ∀ω ∈ Rd.

Hk (Rd) = {f ∈ L2(Rd) ∩ C(Rd) : (3)

∥f∥Hk
:= (2π)−d/2

∫
Rd

|f̂(ω)|2

κ̂(ω)
dω < ∞}.

When the domain X is a subset of Rd, κ̂ still captures
the regularity of Hk (X ), via a norm equivalency result
that holds as long as X has a Lipschitz boundary. De-
tails can be found in Section 4.1, Lemma 1. We write
∥f∥k

△
= ∥f∥Hk (X ) for simplicity. We apply the com-

mon assumption (Srinivas et al., 2009; Valko et al., 2013)
that the RKHS norm of f is upper bounded by a value
B, 0 < B < ∞:

f ∈ Hk (X , B) := {f : f ∈ Hk , ∥f∥k ≤ B}. (4)

We refer to Hk (X , B) as a ball in the RKHS with ra-
dius B.

4 Main Result: Adaptivity Lower Bound

In this section, we present the main result, a lower bound
on adaptivity to the regularity of kernel (Theorem 3). The
regularity of a translation-invariant kernel is expressed as
the decay rate of its Fourier transformation (equation 9).
We next instantiate this idea with a norm equivalency re-
sult between an RKHS and a Sobolev space. The norm
equivalency result is dependent on the kernel Fourier de-
cay rate. The proof of Theorem 3, in turn, relies on this
norm equivalency as well.

4.1 Norm Equivalency Between RKHS and Sobolev
Space

Consider integer-order Sobolev space Wm,p(X ) where
m, p are integers greater or equal to 1. We define the fol-
lowing notions for a multi-index vector α = (α1 . . . αd):
|α|=α1+ · · ·+αd, α! = α1! . . . αd! and xα = xα1

1 . . . xαd

d .
Let D(α) = ∂|α|

∂x
α1
1 ...∂x

αd
d

denote the multivariate mixed par-
tial weak derivative. The Sobolev space and corresponding
Sobolev norm (∥ · ∥m,p,X ) are defined as follows.

Wm,p(X ) = {f ∈ Lp(X ) : D(α)f ∈ Lp(Rd),∀|α| ≤ m},

(5)

∥f∥m,p,X :=

 ∑
|α|≤m

∫
|D(α)f(x)|pdx

 1
p

. (6)

We refer to m as the order of the Sobolev space. Further-
more, define the j-th order seminorm (Adams and Fournier,
2003, Definition 4.11) |·|j,p,X with integer j ≤ m, which
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is the sum of Lp norm of its j-th weak derivatives.

|f |j,p,X =

∑
|α|=j

∫
|D(α)f(x)|pdx

 1
p

. (7)

In correspondence to the RKHS ball (equation 4), we define
a Sobolev ball with radius L as the set of functions whose
m-th order seminorm are upper bounded by L.

Wm,p(X , L) = {f ∈ Wm,p(X ) : |f |m,p,X ≤ L}. (8)

When p = 2, the Sobolev space is equivalent to the
RKHS of a translation-invariant kernel k. This connec-
tion plays an important role in the analysis. We consider
only Sobolev spaces with p = 2, and hence abbreviate

Wm(X )
△
= Wm,2(X ). The precise norm equivalency is

introduced in the following lemma.
Lemma 1. Wendland (2004, Corollary 10.48) Let k : Rd×
Rd → R be a translation-invariant kernel function such
that k(·, ·) = κ(· − ·) for κ ∈ L1(Rd). Suppose Ω ∈ Rd

is a domain with Lipschitz boundary. Suppose κ̂ has the
following polynomial decay rate of s, for s > d/2, s ∈ N,

c1(1 + ∥ω∥22)−s ≤ k̂(ω) ≤ c2(1 + ∥ω∥22)−s,∀w ∈ Rd,
(9)

for some constants 0 < c1 ≤ c2. Then, the associated
RKHS Hk (Ω) is norm equivalent to the Sobolev space
Wm(Ω) with m = s.

Having established the equivalency between RKHS and
Sobolev spaces, we further introduce some notions to quan-
tify the relationship between Sobolev seminorm (which is
the radius of Sobolev balls) and RKHS norm in the follow-
ing lemma.
Lemma 2. Suppose that m is a positive integer larger than
d/2. Let Ω be a finite-width domain with Lipschitz bound-
ary. Let Wm,p

0 (Ω) denote the closure of C∞
0 (Ω) (set of

functions that have compact support in Ω and, together
with their infinite order of partial derivatives, are contin-
uous) in Wm,p(Ω) Adams and Fournier (2003). Then, the
m-th Sobolev seminorm of f can be bounded by its RKHS
norm with respect to a translation-invariant kernel k with
Fourier decay rate m. Precisely,

c|f |m,2 ≤ ∥f∥Hk
≤ c̄|f |m,2, (10)

for some constants 0 < c < c̄.

The constants c, c̄ are used globally in this work and appear
in the lower bound in Section 4.2. The proof of Lemma 2
can be found in Appendix A.1.

4.2 Lower Bound on Adaptivity to Kernel Regularity

Theorem 3 presents our lower bound for adapting between
a pair of RKHSs of different (kernel) regularities. An intu-
itive interpretation of the theorem is as follows. Consider

a nested pair of balls in two RKHSs. Suppose both kernels
satisfy the conditions in Lemma 1 but with different Fourier
decay rates: m1 ∈ N and m2 ∈ N such that 0 < m1 < m2.
If an algorithm that is oblivious to the true regularity value
somehow achieves a small (for example, minimax optimal)
regret on all functions inside the (smoother) RKHS ball
with parameter m2, this algorithm will suffer a price of
larger (suboptimal) regret on at least one function inside
the (rougher) RKSH ball with parameter m1. For the lower
bound analysis, we consider d = 1 and leave the extension
of the lower bound to d > 1 as a future direction (Sec-
tion 7).
Theorem 3. Consider the problem setting in Section 3 with
noises {ηt}t=1...T that are 1

4 -subgaussian. Let R̃ be a posi-
tive number, let m1,m2 be two positive integers that satisfy
m1 < m2. There exist two positive values B1 and B2, such
that the following statement is true. Consider an algorithm
that achieves in the RKHS of a kernel km2 with Fourier de-
cay rate m2 the following regret upper bound.

sup
f∈Hkm2

(X ,B2)

E[RT ] ≤ R̃. (11)

Then, the regret of this algorithm in a (less smooth) RKHS
of another kernel km1

with Fourier decay rate m1 is lower
bounded by the following. Suppose that functions in the
function spaces have bounded L2 norm.4

sup
f∈Hkm1

(X ,B1)

E[RT ] ≥ (12)

1

8

(
C(m1)

32

)m1−1/2

m1+1/2
(
B1

c̄

) 1
m1+1/2

R̃
−m1−1/2

m1+1/2 T.

Here, C(m1) denotes a constant that depends on m1.

It is worth noting that, although the lower bound has a fac-
tor of T , the regret is not necessarily linear in T , because R̃
also depends on T and in fact usually ranges from Õ(

√
T )

to Õ(T ). The full version of this theorem is presented as
Theorem 9 in Appendix A.2, where we state the full con-
straints on the radius values B1 and B2. Since B1 and B2

are only upper bounds on the RKHS norm and not the ker-
nel regularity that we focus on, we present only the concise
version here to show the adaptivity difficulty with respect
to regularity parameters m1 and m2.

4.2.1 Proof Sketch

The proof of Theorem 3 consists of two key parts. The
first part is constructing the hypothesis functions, in which
we borrow ideas from lower bounds in regression prob-
lems (Tsybakov, 2004). The second part is lower bound-
ing the cumulative regret, given the constructed hypothesis
functions, where we follow Hadiji (2019, Section 2.2). In-
tuitively, the second part shows that if any player achieves a

4Functions in Sobolev spaces and RKHSs are square-
integrable.
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small regret on all the smoother functions, then it inevitably
incurs large regret on the rougher functions in the space, be-
cause of its disproportionally small amount of exploration.
The method in Hadiji (2019) is itself an improved version
of the adaptivity lower bound for Hölder spaces proposed
in Locatelli and Carpentier (2018).

4.2.2 A Sobolev Version of the Lower Bound

It is convenient to construct functions with compact sup-
port and finite Sobolev semi-norms from an infinitely-
differentiable base function, such as the bump func-
tion Tsybakov (2004). On the other hand, directly con-
structing functions with finite RKHS norms (Scarlett et al.,
2017, Section III.A) involves inverse Fourier transforma-
tion of the bump function and thus leads to wavelet-
like functions with non-compact support. Therefore, it is
more natural for us to first consider functions in (integer-
order) Sobolev spaces as hypothesis functions, and then
use the norm equivalency result between Sobolev spaces
and RKHSs to prove the lower bound. More precisely, the
hypothesis functions constructed in the proof reside in a
Sobolev ball Wm(X , L), for some (integer) order m and
radius L. Via the norm equivalency (Lemma 2), those func-
tions also resides in a RKHS ball of a kernel with Fourier
decay rate m.

As a result, there is a Sobolev version of the adaptivity
lower bound. Informally, let m1,m2 be two positive in-
tegers such that m2 > m1. If an algorithm achieves a R̃ re-
gret upper bound in the smoother Sobolev space Wm2(X ),
then its regret over functions in Wm1(X ) is lower bounded

by Ω(R̃
−m1−1/2

m1+1/2 T ). We formally state the Sobolev ver-
sion of the adaptivity lower bound in Theorem 11 in Ap-
pendix B.1. The two lower bounds share the same proof
structure, connected via the norm equivalency in Lemma 1.

4.2.3 Impossibility Result for Matérn Kernels

For the Matérn-ν family of kernels (Matern et al., 1960), an
implication of Theorem 3 is that no algorithm can achieve
minimax adaptivity between two RKHSs if they have dif-
ferent regularity. Therefore, we also refer to this lower
bound as an impossibility result for adaptivity to the kernel
regularity. We formally define Matérn-ν family of kernels
in Definition 4.

Definition 4. The Matérn-ν kernel and its Fourier transfor-
mation are defined as follows for dimension d.

kMatérn,ν(x, x
′) (13)

=
21−ν

Γ(ν)

(√
2ν∥x− x′∥2

l

)ν

Jν(

√
2ν∥x− x′∥2

l
),

(14)

k̂Matérn,ν(ω) = c1(
2ν

l2
+ ∥ω∥22)−(ν+ d

2 ). (15)

where c1 = 2dπd/2Γ(ν+d/2)(2ν)ν

Γ(ν)l2ν , Jν is the modified Bessel
function of the second kind, l is the length-scale, and ν > 0
is the regularity parameter. In this work, we assume for
simplicity that the length-scale is set to ∝

√
2ν.

The Fourier transformation of a Matérn kernel with regular-
ity parameter ν decays with a rate of ν+ d

2 (equation equa-
tion 15). Therefore, we can instantiate the impossibility
result for Matérn kernels. The result is presented in Corol-
lary 5. Precisely, for 0 < ν1 < ν2, if an adaptive algorithm
achieves minimax regret rate on a Matérn RKHS with reg-
ularity ν2, then it has a strictly suboptimal regret rate on the
RKHS with ν1.

Corollary 5. Suppose the problem is the same as defined
in Theorem 3. Let ν1, ν2 be real numbers that satisfy 0 <
ν1 < ν2 and ν1 + 1

2 ∈ N, ν2 + 1
2 ∈ N. There exist two

positive values B1, B2, such that the following statement is
true. Suppose an algorithm oblivious to the true regularity
parameter value achieves the following minimax optimal
regret 5 on HkMatérn,ν2

(X , B2),

sup
f∈HkMatérn,ν2

(X ,B2)

E[RT ] = Õ
(
T

ν2+1
2ν2+1

)
, (16)

then the regret of this algorithm on RKHS
HkMatérn,ν1

(X , B1) is lower bounded by the following.

sup
f∈HkMatérn,ν1

(X ,B1)

E[RT ] = Ω̃
(
T

ν1ν2+2ν2+1

(ν1+1)(2ν2+1)

)
, (17)

The proof of Corollary 5 is an application of Theorem 3 and
can be found in Appendix B.2. The cumulative regret rate
in 17 is suboptimal compared to the minimax rate which

is Õ(T
ν1+1
2ν1+1 ) (see Section 5.1 for non-adaptive minimax

rates). Therefore, Theorem 3 is an impossibility result for
adaptivity to kernel regularity with Matérn kernels.

5 Upper Bounds of Adaptive Algorithms

We consider two adaptive algorithms particularly: COR-
RAL from Agarwal et al. (2017); Pacchiano et al. (2020b)
and Regret Bound Balancing and Elimination (RBBE)
from (Pacchiano et al., 2020a). The two algorithms (i) can
be applied to the problem of adaptation to kernel regularity
and (ii) have explicit regret guarantees in this setting.

The adaptive algorithms, however, need base algorithms
that are non-adaptive minimax optimal. We first provide
an overview of such non-adaptive algorithms for kernelised
bandit in Section 5.1. Then, we derive adaptivity upper
bounds of CORRAL and RBBE in Section 5.2 and Sec-
tion 5.3 respectively. For concreteness, we only consider
RKHS of Matérn-ν kernel (Definition 4) in this section. To

5Omitting the dependence on the upper bound on RKHS norm.
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match the lower bound, we set d = 1. Comparison of the
upper bounds to the lower bound (Theorem 3), shows that
CORRAL (coupled with minimax optimal base algorithms)
can match the lower bound in dependence on T between
certain pairs of values for ν.

5.1 Overview: Non-adaptive Minimax Algorithms

We discuss the theoretical performance of algorithms de-
veloped for kernelised bandits in Section 5.1.1. We show
that a recent algorithm that is designed for continuum-
armed bandit in Hölder spaces (Liu et al., 2021) is also
optimal over functions in RKHS of Matérn kernels in Sec-
tion 5.1.2.

5.1.1 SupKernelUCB and GP-UCB for RKHS

Recall that the lower bound (in terms of T ) on cumulative
regret for kernelised bandit with Matérn-ν kernels kMatérn,ν

is Ω(T
ν+1
2ν+1 ), as proved by Scarlett et al. (2017). There

are mainly two types of algorithms applicable for the ker-
nelised bandit problem: (i) GP-UCB (Srinivas et al., 2009)
and its variants (Chowdhury and Gopalan, 2017; Janz et al.,
2020), and (ii) KernelUCB and its Sup-variant Valko et al.
(2013). The GP-UCB-style algorithms display a non-trivial
empirical advantage over the impractical SupKernelUCB.
That being said, GP-UCB is suboptimal theoretical upper
bounds for certain types of kernels under the RKHS as-
sumption, including for Matérn-ν kernels. In the RKHS
of a Matérn kernel kMatérn,ν , GP-UCB achieves a regret of

Õ(T
ν+3

2
2ν+1 ).6. On the other hand, SupKernelUCB matches

the lower bound with a regret rate of Õ(T
ν+1
2ν+1 ).7

5.1.2 UCB-Meta for Hölder Space

Apart from the kernelised bandit algorithms discussed
above, Liu et al. (2021) propose an algorithm for
continuum-armed bandits in Hölder space with exponent
α > 1 with regret upper bound that matches existing lower
bounds (Wang et al., 2018; Singh, 2021) except log fac-
tors. This algorithm is named UCB-Meta. We show in
Theorem 6 that UCB-Meta is naturally minimax optimal in
dependence on T over the RKHS of certain kernels.

Theorem 6. Consider the kernelised bandit problem where
f ∈ HkMatérn,ν (X , B), where ν > 0 and ν + 1

2 ∈ N. Then,
UCB-Meta achieves the following regret upper bound,

sup
f∈HkMatérn,ν (X ,B)

E[RT ] = Õ
(
T

ν+1
2ν+1

)
, (18)

6The suboptimality of GP-UCB is discussed more extensively
in Vakili et al. (2021b)

7The analysis of SupKernelUCB was originally for finite-
armed setting, but Cai and Scarlett (2021, Appendix A.4) state
that it can be extended to the continuum-armed setting where
X = [0, 1]d, suffering only a O(d log(T )) term in the regret.

where Õ omits dependence on radius of the RKHS ball B,
constant factors depending on ν, and log factors of T .

The regret rate shown in Theorem 6 is derived from the
result that HkMatérn,ν (X ) is embedded in a Hölder space
Σα(X ) with α = ν. The proof can be found in Ap-
pendix B.3. Singh (2021) have shown a similar argument
while focusing mainly on the connection between Besov
and Hölder spaces.

5.2 CORRAL as Adaptive Algorithm

The original CORRAL algorithm for model selection in the
bandit setting is first proposed by Agarwal et al. (2017).
The original CORRAL requires that modifications be made
to each base algorithm for them to satisfy a stability condi-
tion (Definition 3 in Agarwal et al. (2017)). These mod-
ifications, however, have to be made on a case-by-case
basis. Therefore, we use the smoothed version of COR-
RAL which is proposed by Pacchiano et al. (2020b). The
smoothed CORRAL puts a smoothing operation between
the master algorithm and base algorithms and thus does
not require modifications be made to the base algorithms.
Smoothed CORRAL operates only with stochastic environ-
ments, which is satisfied by our assumptions (Section 3).
For simplicity, we refer to the smoothed version of COR-
RAL as CORRAL. CORRAL uses an adversarial online
mirror descent algorithm as the master algorithm.

Recall that a non-adaptive minimax kernelised bandit algo-
rithm achieves Õ(T

ν+1
2ν+1 ) regret (Section 5.1), if instanti-

ated with the correct parameter ν. By plugging in the regret
of base kernelised bandit algorithms in the general result in
Theorem 5.3 in Pacchiano et al. (2020b), we derive a adap-
tive upper bound for CORRAL in Theorem 7. CORRAL
achieves sublinear õ(T ) regret on all possible values of ν∗

(See Theorem 7). Oppositely, a non-adaptive algorithm in-
stantiated with parameter value ν̃ does not have sublinear
regret guarantees if the true parameter ν∗ < ν̃, because
the underlying function space HkMatérn,ν∗ is not contained in
algorithm’s hypothesis space. In Theorem 7, ν̃ ∈ u is a pa-
rameter that is specified by the user and can be interpreted
as the parameter that specifies the space on which the algo-
rithm is configured to achieve minimax regret.

Theorem 7. Consider the kernelised bandit problem where
f ∈ HkMatérn,ν∗ (X , B∗), ν∗+ 1

2 ∈ N and ν∗, B∗ unknown to
the learner. Let u = {(ν1, B1), (ν2, B2), . . . , (νM , BM )}
be a list of candidate input value pairs such that u
specifies a nested set of RKHS: HkMatérn,ν1

(X , B1) ⊂
HkMatérn,ν2

(X , B2) ⊂ . . .HkMatérn,νM
(X , BM ). Suppose that

(ν∗, B∗) ∈ u. Let A = {Ai, i ∈ [M ]} be a set of (non-
adaptive) minimax optimal kernelised bandit algorithms
with anytime regret guarantees, each instantiated with the
regularity and radius (νi, Bi) ∈ u. The regret from run-
ning CORRAL with input total time steps T and learning
rate η = Õ(T− 1+ν̃

1+2ν̃ ) applied with base algorithms from A
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is as follows.8

sup
f∈HkMatérn,ν∗

E[RT ] = Õ

(
Tmax( 1+ν̃

1+2ν̃ , 12+2ν̃+ν̃ν∗
(1+2ν̃)(1+ν∗)

)

)
.

(19)

The proof of Theorem 7 can be found in Appendix B.4.
This result indicates that CORRAL achieves (i) minimax
optimal rate Õ

(
T

1+ν∗
1+2ν∗

)
in terms of T , if the underlying

kernel regularity ν∗ = ν̃; (ii) suboptimal rate Õ
(
T

1+ν̃
1+2ν̃

)
if

ν∗ > ν̃ and (iii) suboptimal rate Õ
(
T

1+2ν̃+ν̃ν∗
(1+2ν̃)(1+ν∗)

)
when

ν∗ < ν̃. Let ν∗1 , ν
∗
2 satisfying ν∗1 < ν∗2 be two possible

values of the true regularity that both satisfy the assump-
tions in Theorem 7. Suppose ν∗1 ≤ ν̃ < ν2∗. By Theo-

rem 7, CORRAL achieves regret Õ

(
T

12+2ν̃+ν̃ν∗
1

(1+2ν̃)(1+ν∗
1 )

)
if the

true parameter is ν∗1 and Õ
(
T

1+ν̃
1+2ν̃

)
if the true parameter

is ν∗2 . By Theorem 3, the lower bound over the rougher

RKHS with ν∗1 is Ω̃
(
T

1+2ν̃+ν̃ν∗
1

(1+2ν̃)(1+ν∗
1 )

)
. The lower bound is

matched by the upper bound in the exponent of T .

In conclusion, CORRAL matches the adaptivity lower
bound in the dependence on T except log factors, be-
tween any pair of regularity values (ν∗1 , ν

∗
2 ), such that

ν∗1 ≥ ν̃, ν∗1 + 1
2 ∈ N and ν∗2 < ν̃, ν∗2 + 1

2 ∈ N.

Finally, note that in this subsection, the assumption is that
the true parameter(s) are contained in the candidate set u.
Hence, Theorem 7 reflects the cost of adaptation (model
selection), which is the difficulty of selecting the best base
learner out of all candidates. If, however, the true parameter
is not contained in u, then adaptive algorithms will incur
another type of cost, namely the cost of “discretization”.
This cost is generated from the difference between the true
parameter and the closest value in u. Using an exponen-
tial (Pacchiano et al., 2020b) or linear (Liu et al., 2021) grid
for u can usually incur a small cost of ”discretization”.

5.3 RBBE as Adaptive Algorithm

The regret bound balancing and elimination (RBBE) algo-
rithm proposed in Pacchiano et al. (2020a) achieves near-
optimal regret in several adaptivity problems with linear
function spaces. RBBE can be thought of as using a
stochastic master algorithm that selects the base algorithm
with the smallest candidate cumulative regret at each time.
Therefore, it enjoys advantages such as gap-dependent re-
gret bounds and high probability regret bounds. Unlike
CORRAL, it does not need a user-specified parameter to
control the space over which the algorithm will achieve
minimax optimal regret on. Instead, the algorithm achieves

8Õ omits dependence on radius of the RKHS ball B, constant
factors depending on ν, and log factors of T .

simultaneously on all possible values of ν∗ the regret up-

per bound of Õ(T
1+4ν∗+2ν∗2

1+4ν∗+4ν∗2 ). If we plug this upper
bound in Theorem 3 for ν∗ = ν∗2 , then a lower bound of

Ω̃(T
(2ν∗

2+1)2+2ν∗
1 ν∗

2
2

(2ν∗
2
2+1)2(ν∗

1+1) ) is incurred for when ν∗ = ν∗1 , given
that 0 < ν∗1 < ν∗2 . The upper bound of RBBE is larger than
the lower bound in the exponent of T . A more detailed de-
scription of the RBBE algorithm and a formal statement of
its adaptivity upper bound can be found in Appendix A.3
and Theorem 10 therein.

To summarize, although both CORRAL and RBBE as
adaptive algorithms can achieve sublinear regret simultane-
ously on different kernel regularity, CORRAL has a better
theoretical adaptivity in this problem. While RBBE fails
to match the lower bound, CORRAL achieves the adaptiv-
ity lower bound for certain pairs of ν values for Matérn-ν
kernels. 9

6 Connection with Adaptivity to Hölder
Exponents

The adaptivity lower bound in Theorem 3 specifies the dif-
ficulty of adapting between two RKHSs of kernels with
polynomial Fourier decay rate m1 and m2, where 0 <
m1 < m2,m1 ∈ N,m2 ∈ N. Recall that R̃ is the regret
upper bound on the smoother RKHS with parameter m2.
The lower bound on the RKHS specified by m1 depends

inversely on R̃ through an Ω(T · R̃−m1−1/2

m1+1/2 ) dependence.

Shifting the perspective from RKHS to Hölder spaces, the
adaptivity difficulty has been studied by Locatelli and Car-
pentier (2018); Hadiji (2019), for a subset of values for
the Hölder exponent α. Precisely, Theorem 3 in Locatelli
and Carpentier (2018) provides an Ω(T · R̃− α1

α1+1 ) de-
pendence as the lower bound, for adapting between two
Hölder spaces with exponents α1, α2 satisfying α1 < α2 ≤
1.10 Here, R̃ is the upper regret bound on the smoother
Hölder space Σα2(X ). We know by Lemma 1 that an
RKHS Hkm1

(X ) with kernel Fourier decay rate m1 is
norm equivalent to Sobolev space Wm1(X ). Coupled with
the Sobolev embedding theorem for integer-order Sobolev
spaces (Adams and Fournier, 2003, Theorem 5.4), it is
straightforward to see that Hkm1

(X ) ⊂ Σα(X ), where
α = m1 − 1

2 (Appendix B.3).

Note that we have the following equivalence between the
lower bounds if α1 = m1 − 1

2 .

TR̃
−m1−1/2

m1+1/2 ∝ TR̃− α1
α1+1 . (20)

9It is our conjecture that the stochastic master used by RBBE
(as opposed to the adversarial one in CORRAL) limits its model
selection ability in certain cases.

10Proving the adaptivity rate for when the exponents are larger
than 1 remains an open problem.
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Therefore, for continuum-armed bandit problems, the sta-
tistical difficulty of adapting to kernel regularity of RKHS
is the same as adapting to Hölder exponents, if the Hölder
exponents represent the smallest Hölder spaces that the
RKHSs embed in.

7 Discussion

We discuss several future directions, stemming from the
current limitations of our work. Our current theoretical re-
sults are for the domain with d = 1,11 so it is of interest to
extend the current results to d > 1. Instead of partitioning
the domain X = [0, 1] into M sub-intervals, one needs to
partition the hypercube [0, 1]d into M sub-cubes and con-
struct the hypothesis functions with appropriate Fourier de-
cay correspondingly. Such an extension is possible akin
to Scarlett et al. (2017).

Another direction is to derive adaptivity upper bounds in
terms of Fourier decay as well and verify the tightness
of the lower bound in more cases than Matérn kernels.
Since we currently investigate translation-invariant kernels,
a more long-term direction is the investigation of adaptivity
to rotation-invariant kernels, to connect to NTKs which are
usually rotation-invariant dot-product kernels (Bietti and
Bach, 2020; Chen and Xu, 2020; Vakili et al., 2021a). Fi-
nally, this study is of theoretical nature, so it remains an
open problem to empirically study adaptivity to kernel reg-
ularity, based on the insights provided by our lower and
upper bounds.
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rates for the stochastic continuum-armed bandit prob-
lem. In International Conference on Computational
Learning Theory, pages 454–468. Springer.

Berkenkamp, F., Schoellig, A. P., and Krause, A. (2019).
No-regret bayesian optimization with unknown hyperpa-
rameters. arXiv preprint arXiv:1901.03357.

Bietti, A. and Bach, F. (2020). Deep equals shallow
for relu networks in kernel regimes. arXiv preprint
arXiv:2009.14397.

Bogunovic, I. and Krause, A. (2021). Misspecified gaus-
sian process bandit optimization. Advances in Neural
Information Processing Systems, 34:3004–3015.

Bull, A. D. (2011). Convergence rates of efficient global
optimization algorithms. Journal of Machine Learning
Research, 12(10).

Cai, X. and Scarlett, J. (2021). On lower bounds for stan-
dard and robust gaussian process bandit optimization. In
International Conference on Machine Learning, pages
1216–1226. PMLR.

Calandriello, D., Carratino, L., Lazaric, A., Valko, M., and
Rosasco, L. (2019). Gaussian process optimization with
adaptive sketching: Scalable and no regret. In Confer-
ence on Learning Theory, pages 533–557. PMLR.

Chen, L. and Xu, S. (2020). Deep neural tangent kernel
and laplace kernel have the same rkhs. arXiv preprint
arXiv:2009.10683.

Chizat, L., Oyallon, E., and Bach, F. (2019). On lazy train-
ing in differentiable programming. Advances in Neural
Information Processing Systems, 32.

Chowdhury, S. R. and Gopalan, A. (2017). On kernel-
ized multi-armed bandits. In International Conference
on Machine Learning, pages 844–853. PMLR.

Chu, W., Li, L., Reyzin, L., and Schapire, R. (2011). Con-
textual bandits with linear payoff functions. In Proceed-
ings of the Fourteenth International Conference on Arti-
ficial Intelligence and Statistics, pages 208–214. JMLR
Workshop and Conference Proceedings.



Adaptation to Misspecified Kernel Regularity in Kernelised Bandits

Dani, V., Hayes, T. P., and Kakade, S. M. (2008). Stochas-
tic linear optimization under bandit feedback. Confer-
ence on Learning Theory.

Du, S. S., Kakade, S. M., Wang, R., and Yang, L. F. (2019).
Is a good representation sufficient for sample efficient re-
inforcement learning? arXiv preprint arXiv:1910.03016.

Foster, D. J., Krishnamurthy, A., and Luo, H. (2019).
Model selection for contextual bandits. arXiv preprint
arXiv:1906.00531.

Hadiji, H. (2019). Polynomial cost of adaptation for x-
armed bandits. Advances in Neural Information Process-
ing Systems, 32.

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tan-
gent kernel: Convergence and generalization in neural
networks. Advances in neural information processing
systems, 31.

Janz, D., Burt, D., and González, J. (2020). Bandit opti-
misation of functions in the matérn kernel rkhs. In Inter-
national Conference on Artificial Intelligence and Statis-
tics, pages 2486–2495. PMLR.

Kandasamy, K., Neiswanger, W., Zhang, R., Krishna-
murthy, A., Schneider, J., and Poczos, B. (2019). My-
opic posterior sampling for adaptive goal oriented design
of experiments. In International Conference on Machine
Learning, pages 3222–3232. PMLR.

Kassraie, P. and Krause, A. (2021). Neural contextual ban-
dits without regret. arXiv preprint arXiv:2107.03144.

Kassraie, P., Rothfuss, J., and Krause, A. (2022). Meta-
learning hypothesis spaces for sequential decision-
making. arXiv preprint arXiv:2202.00602.

Lattimore, T., Szepesvari, C., and Weisz, G. (2020). Learn-
ing with good feature representations in bandits and in rl
with a generative model. In International Conference on
Machine Learning, pages 5662–5670. PMLR.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R.,
Sohl-Dickstein, J., and Pennington, J. (2019). Wide neu-
ral networks of any depth evolve as linear models under
gradient descent. Advances in neural information pro-
cessing systems, 32.

Liu, Y., Wang, Y., and Singh, A. (2021). Smooth bandit
optimization: Generalization to holder space. In Inter-
national Conference on Artificial Intelligence and Statis-
tics, pages 2206–2214. PMLR.

Locatelli, A. and Carpentier, A. (2018). Adaptivity to
smoothness in x-armed bandits. In Conference on Learn-
ing Theory, pages 1463–1492. PMLR.

Matern, B. et al. (1960). Spatial variation. stochastic mod-
els and their application to some problems in forest sur-
veys and other sampling investigations. Meddelanden
fran Statens Skogsforskningsinstitut, 49(5).

Neiswanger, W. and Ramdas, A. (2021). Uncertainty quan-
tification using martingales for misspecified gaussian
processes. In Algorithmic Learning Theory, pages 963–
982. PMLR.

Pacchiano, A., Dann, C., Gentile, C., and Bartlett, P.
(2020a). Regret bound balancing and elimination for
model selection in bandits and rl. arXiv preprint
arXiv:2012.13045.

Pacchiano, A., Phan, M., Abbasi-Yadkori, Y., Rao, A.,
Zimmert, J., Lattimore, T., and Szepesvari, C. (2020b).
Model selection in contextual stochastic bandit prob-
lems. arXiv preprint arXiv:2003.01704.

Scarlett, J., Bogunovic, I., and Cevher, V. (2017). Lower
bounds on regret for noisy gaussian process bandit op-
timization. In Conference on Learning Theory, pages
1723–1742. PMLR.

Shekhar, S. and Javidi, T. (2020). Multi-scale zero-order
optimization of smooth functions in an rkhs. arXiv
preprint arXiv:2005.04832.

Singh, S. (2021). Continuum-armed bandits: A func-
tion space perspective. In International Conference on
Artificial Intelligence and Statistics, pages 2620–2628.
PMLR.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M.
(2009). Gaussian process optimization in the bandit set-
ting: No regret and experimental design. arXiv preprint
arXiv:0912.3995.

Tsybakov, A. B. (2004). Introduction to nonparametric es-
timation, 2009. URL https://doi. org/10.1007/b13794.
Revised and extended from the, 9(10).

Vakili, S., Bromberg, M., Garcia, J., Shiu, D.-s., and
Bernacchia, A. (2021a). Uniform generalization bounds
for overparameterized neural networks. arXiv preprint
arXiv:2109.06099.

Vakili, S., Scarlett, J., and Javidi, T. (2021b). Open prob-
lem: Tight online confidence intervals for rkhs elements.
In Conference on Learning Theory, pages 4647–4652.
PMLR.

Valko, M., Korda, N., Munos, R., Flaounas, I., and Cris-
tianini, N. (2013). Finite-time analysis of kernelised con-
textual bandits. arXiv preprint arXiv:1309.6869.

Wainwright, M. J. (2019). High-dimensional statistics: A
non-asymptotic viewpoint, volume 48. Cambridge Uni-
versity Press.

Wang, Y., Balakrishnan, S., and Singh, A. (2018). Opti-
mization of smooth functions with noisy observations:
Local minimax rates. Advances in Neural Information
Processing Systems, 31.

Wendland, H. (2004). Scattered data approximation, vol-
ume 17. Cambridge university press.



Yusha Liu, Aarti Singh

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian
processes for machine learning. MIT press Cambridge,
MA.

Zhou, D., Li, L., and Gu, Q. (2020). Neural contextual ban-
dits with ucb-based exploration. In International Confer-
ence on Machine Learning, pages 11492–11502. PMLR.

Zhu, Y. and Nowak, R. (2021). Pareto optimal model selec-
tion in linear bandits. arXiv preprint arXiv:2102.06593.



Adaptation to Misspecified Kernel Regularity in Kernelised Bandits

A AUXILIARY

A.1 Proof of Norm Equivalency Between RKHS Norm and Sobolev Seminorm

Proof of Lemma 2. It is shown by Wendland (2004, Theorem 10.12, Corollary 10.48) that: if a translation-invariant kernel
k with Fourier decay rate s (Lemma 1), then the associated RKHS Hk defined on a Lipschitz domain Ω is norm equivalent
to the Sobolev space Wm=s,2(Ω). The norm equivalency indicates that there exist two constants c1, c2, 0 < c1 < c2, such
that for f ∈ Hk (Ω), the following statement holds.

c1∥f∥m,2,X ≤ ∥f∥Hk
≤ c2∥f∥m,2,X . (21)

Now, we examine conditions under which the norm equivalency can be extended between the seminorm (equation 7) of
Sobolev spaces and the RKHS norm. As in Lemma 2, let Wm,p

0 (X ) denote the closure of C∞
0 (X ) in Wm,p(X ).12 Adams

and Fournier (2003, 6.26) give the following result: if X has finite width, then for f ∈ Wm,p
0 , the seminorm |·|m,p

is equivalent to the standard norm ∥ · ∥m,p. The one-dimensional interval domain X we consider trivially satisfies the
Lipschitz boundary condition, hence we have the following result.

Lemma 8. If a function lies in Wm,p
0 (X ) where X = [0, 1], then there exists a constant K < ∞, such that

|·|m,p,X ≤ ∥ · ∥m,p,X ≤ K|·|m,p,X . (22)

Combining Lemma 8 with the norm equivalency in equation 21, we recover the inequalities in Lemma 2.

c1|f |m,2,X ≤ ∥f∥Hk
≤ Kc2|f |m,2,X . (23)

A.2 The Full Statement of Theorem 3

We present the full version of Theorem 3, which fully states the constraints on the radius B1 and B2 in Theorem 3. The
proof is deferred to Appendix B.1.

Theorem 9. Consider the bandit problem setting (Section 3) with noises {ηt}t=1...T that are 1
4 -subgaussian. Further

assume that the L2 norm of functions f we consider is upper bounded by finite value γ0 < ∞: ∥f∥2 ≤ γ0. Let R̃ be
a positive number, let m2 > m1 > 0 be two positive integers, and let B1, B2 be two positive variables that satisfy the
following conditions.

c̄max

{
3m1+

1
2

32
C(m1)

−m1+
1
2 R̃−1,K(m1,m2, γ0,X )c̄

m2−m1
m2 B

m1
m2
2

}
≤ B1 ≤ C ′(m1,m2)

−(m1+
1
2 )c̄(−m1+

1
2 )B

m1+
1
2

2 R̃m1− 1
2 (24)

where C(m1) and C ′(m1,m2) are constants whose exact forms are defined in equation 58 and equation 64 in the proof.
K(m1,m2, γ0,X ) is a constant depending on m1,m2, the domain and γ0.13

Consider any algorithm that achieves in RKHS ball Hkm2
(X , B2) the following regret upper bound, where the kernel km2

has Fourier decay rate m2.
sup

f∈Hkm2
(X ,B2)

E[RT ] ≤ R̃, (25)

then, the regret of this algorithm in a (less smooth) RKHS ball induced by another kernel km1 with Fourier decay rate m1

is lower bounded by the following.

sup
f∈Hkm1

(X ,B1)

E[RT ] ≥
1

8

(
C(m1)

32

)m1−1/2

m1+1/2
(
B1

c̄

) 1
m1+1/2

R̃
−m1−1/2

m1+1/2 T. (26)

12Here, we borrow the definitions from Adams and Fournier (2003).
13The exact value of K(m2, γ0,X ) is deferred to the proof of Theorem 4.14 in Adams and Fournier (2003).
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A.3 Adaptivity Upper Bound of RBBE

At each round, RBBE (Pacchiano et al., 2020a) first performs an elimination step to remove misspecified base algorithms,
then selects a base algorithm among the remaining ones. The elimination step tests whether each base algorithm is well-
specified, that is, whether each base algorithm’s hypothesis space contains the underlying function. If a base algorithm
fails the test, then it is eliminated. In the selection step, the master algorithm simply chooses the base algorithm with the
smallest presumed cumulative pseudo-regret. Therefore, RBBE can be thought of as using a stochastic master algorithm
(remarked in Pacchiano et al. (2020a) as well), instead of using an adversarial one as CORRAL (Agarwal et al., 2017;
Pacchiano et al., 2020b) does.

The general regret of RBBE is stated in terms of the play ratio, which is the ratio between the number of times a base
algorithm is played and the number of times that the best base algorithm is played. To instantiate the play ratio, Pacchiano
et al. (2020b) considers only the setting where the regret rates of all base algorithms (if well-specified) have the same
exponents on T . That is, the regret rates are T β with a fixed β ∈ (0, 1] across all base algorithms. However, this setting
does not align with our setting where, for base algorithm i with input value νi, the exponent of T in its (well-specified)
regret bound is νi+1

2νi+1 . Hence, we make changes to the proof in Pacchiano et al. (2020b) to apply it to our problem setting.
The result of RBBE is stated in Theorem 10 and the proof is deferred to Appendix B.5.
Theorem 10. Suppose that the problem setting, the set of candidate values u and the set of base algorithms A are the
same as defined in Theorem 7. The regret of RBBE applied with base algorithms in A is as follows, with high probability
1− δ.

sup
f∈HkMatérn,ν∗

RT = Õ(T
1+4ν∗+2ν∗2

1+4ν∗+4ν∗2 ). (27)

B PROOFS OF RESULTS

B.1 Proof of Theorem 9

As explained in Section 4.2.1, the proof of Theorem 9 arises from the proof of a parallel Sobolev version of the adaptivity
lower bound. We formally state the Sobolev version of adaptivity lower bound below.
Theorem 11. Consider the bandit problem setting (Section 3) with noises {ηt}t=1...T that are 1

4 -subgaussian. Further
assume that the L2 norms of functions f we consider are upper bounded by the finite value γ0 < ∞: ∥f∥2 ≤ γ0. 14 Let R̃
be a positive number, let m2 > m1 > 0 be two positive integers, and let L1, L2 be two positive variables that satisfy the
following conditions:

max

{
3m1+

1
2

32
C(m1)

−m1+
1
2 R̃−1,K(m1,m2, γ0,X )L2

m1
m2

}
(28)

≤ L1 ≤ C ′(m1,m2)
−(m1+

1
2 )L

m1+
1
2

2 R̃m1− 1
2

where C(m1), C ′(m1,m2) are constants whose exact forms are defined in equation 58 and equation 64 respectively.
K(m1,m2, γ0,X ) is a constant depending on m1,m2, the domain and γ0, the upper bound on the L2 norm of functions
in the Sobolev ball.15 Consider an algorithm that achieves in the Sobolev ball Wm2(X , L2) a regret upper bound of R̃.

sup
f∈Wm2,2(X ,L2)

E[RT ] ≤ R̃, (29)

then, the regret of this algorithm in the less-smooth Sobolev ball Wm1(X , L1) is lower bounded by the following.

sup
f∈Wm1 (X ,L1)

E[RT ] ≥
1

8

(
C(m1)

32

)m1−1/2

m1+1/2

L1

1
m1+1/2 R̃

−m1−1/2

m1+1/2 T. (30)

In the next part, we present the proof of Theorem 11, which also leads to Theorem 9. The values B1, B2 in Theorem 3
should be set as follows.

B1 = c̄L1, B2 = c̄L2, (31)

14By our assumption on the underlying function f in equation 5, we know that it has bounded L2 norm.
15The exact value of K(m2, γ0,X ) is deferred to the proof of Theorem 4.14 in Adams and Fournier (2003).
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where c̄ is the global constant in Lemma 2.

Proof. Consider the Sobolev version of the theorem (Theorem 11). Recall that the adaptivity is between balls in two differ-
ent spaces, the “rougher” space Wm1(X , L1) and the “smoother” space Wm2(X , L2). First, we consider the constraints
between L1 and L2 such that Wm2(X , L2) ⊂ Wm1(X , L1). In other words, f ∈ Wm2(X , L2) should be sufficient
condition for f ∈ Wm1(X , L1). Theorem 4.14 in Adams and Fournier (2003) and references therein give the following
interpolation upper bound between orders of smoothness for a function f ∈ Wm1(X ),

|f |m1,2 ≤ K(m2,X )(|f |m2
)

m1
m2 ∥f∥

m2−m1
m2

2 , (32)

where K(m2,X ) is a constant depending only on m2 and the domain X . If f ∈ Wm2(X , L2), then by definition (equa-
tion 8) we know that |f |m2 ≤ L2. Using equation 32, we have that:

|f |m1,2 ≤ K(m2,X )L2

m1
m2 ∥f∥

m2−m1
m2

2 (33)

To ensure that the two Sobolev balls are nested, L1 should be larger than the right-hand side of the above inequality. The
L2 norm of f is upper bounded by ∥f∥2 ≤ γ0. Plugging it in equation 33 incurs an lower bound for L1:

L1 ≥ K(m1,m2, γ0,X )L2

m1
m2 = K(m2,X )γ0

m2−m1
m2 L2

m1
m2 .

Having established Wm2(X , L2) ⊂ Wm1(X , L1), we start with the formal proof of the adaptivity lower bound.

Function Construction Part I. This part is adapted from the regression lower bounds in Tsybakov (2004, Section 2.6).
Let M be a positive integer parameter, which is the number of hypothesis functions we need. The value of M remains to
be determined later in the proof. In the following, we shall assume M ≥ 2 and eventually prove that this assumption holds.
Further, define bandwidth h = 1

2M . Let ∆ > 0 be a parameter that represents the maximum of the M hypothesis functions
in Wm1,2(X , L1). The value of ∆ remains to be determined later in the proof same as M .

Partition the 1-dimensional domain X = [0, 1] into M + 1 bins: H0...M , such that ∪s=0...MHs = X . Define the bins and
their middle points x̄0,...M as follows.

Hs =

[
s− 1

2M
,

s

2M

]
, x̄s =

s− 1
2

2M
, for s = 1 . . .M,

H0 =

[
1

2
, 1

]
, x̄0 =

3

4
.

We use the bump function as a base function, then we shift the base function to construct the hypothesis functions. The
bump function is defined as follows. It has compact support on (−1, 1). Function K0(·) is infinitely differentiable with
continuous derivatives (Tsybakov, 2004, (2.34)).

K0(x) = exp(
−1

1− x2
)I(|x| < 1). (34)

Next, define M + 1 functions as follows, each one has support inside one of the M + 1 bins.

fs = ahm1− 1
2K(

x− x̄s

h
), s = 1 . . .M, (35)

f0 = ãhm2− 1
2 K̃(

x− x̄0

h
), (36)

where

K(u) = K0(bu), (37)

K̃(u) = K0(b̃u). (38)

a, b, ã, b̃ are non-negative parameters to be defined later. We require that b ≥ 2 and b̃ ≥ 4h, so that the support of every
function fs is inside Hs, ∀s ≤ M . Lemma 13 ensures that the requirements on b, b̃ hold, by posing constraints between ∆
and M .

We introduce the following lemma to specify requirements on the variables a, b, ã, b̃, with respect to ∆ and L1, L2. This is
to make sure that values of a, b, ã, b̃ guarantee that fs ∈ Wm1(X , L1), ∀1 ≤ s ≤ M and f0 ∈ Wm2(X , L2).
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Lemma 12. Let K∗
0 to denote the maximum value of K0(·), a constant less than 1. Let Im1 , Im2 denote the L2 norms of the

m1,m2-th order derivatives of K0(·), respectively. That is, Im1
=
∫ 1

−1

[
K

(m1)
0 (u)

]2
du and Im2

=
∫ 1

−1

[
K

(m2)
0 (u)

]2
du.

Then, if ∆ is the maximum of fs in Wm1,2(X , L1), for all s = 1 . . .M and ∆/2 is the maximum of f0 in Wm2,2(X , L2),
the function parameters a, b, ã, b̃ satisfy the following:

a = ∆(2M)m1− 1
2 /K∗

0 (39)

ã = ∆(2M)m2− 1
2 /2K∗

0 (40)

b ≤
(

L2
1K

∗
0
2

∆2(2M)2m1−1Im1

) 1
2m1−1

(41)

b̃ ≤
(

4L2
2K

∗
0
2

∆2(2M)2m2−1Im2

) 1
2m2−1

, (42)

Proof of Lemma 12. The constraints on a, ã follows trivially from the requirement that f∗
s = ∆ for s = 1 . . .M , f∗

0 =
∆/2, and plugging in h = 1/2M .

The constraints on b, b̃ are to ensure that

∥f (m1)
s ∥2 ≤ L1, s = 1 . . .M

∥f (m2)
0 ∥2 ≤ L2

We first consider requirement for ∥f (m1)
s ∥2 ≤ L1, s = 1 . . .M . For s ≥ 1,

∥f (m1)
s ∥22

=

∫ 1

0

[
f (m1)(x)

]2
dx

=

∫ 1

0

[
ahm1− 1

2
∂m1

∂xm1

(
K(

x− x̄s

h
)

)]2
dx

= a2h2m1−1

∫ 1

0

[
∂m1

∂xm1

(
K0

(
b

h
(x− x̄s)

))]2
dx

= a2h2m1−1

∫ 1

0

[
(
b

h
)m1K

(m1)
0

(
b

h
(x− x̄s)

)]2
dx

u= b
h (x−x̄s)
= a2h−1b2m1

∫ b
h (1−x̄s)

b
h (−x̄s)

[
K

(m1)
0 (u)

]2 h

b
du

= a2b2m1−1

∫ 1

−1

[
K

(m1)
0 (u)

]2
du = a2b2m1−1Im1 .

The second to last step follows because the bump function K0 has compact support on (−1, 1) and the upper and lower
limits of the integral satisfy:

b

h
(1− x̄s) = b(

1

h
− s+

1

2
) > 1,

b

h
(−x̄s) = −b(s− 1

2
) ≤ −1.

Therefore, for ∥f (m1)
s ∥22 ≤ L2

1 to hold, we need a2b2m1−1Im1
≤ L2

1. This leads to

b ≤
(

L2
1

a2Im1

) 1
2m1−1

(43)

=

(
L2
1(K

∗
0 )

2

∆2(2M)2m1−1Im1

) 1
2m1−1

. (44)
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Similarly, for s = 0, we have the following.

∥f (m2)
s ∥22

=

∫ 1

0

[
f (m2)(x)

]2
dx

=

∫ 1

0

[
ãhm2− 1

2
∂m2

∂xm2

(
K̃(

x− x̄0

h
)

)]2
dx

=

∫ 1

0

ã2h2m2−1

[
∂m2

∂xm2

(
K0(

b̃(x− x̄0

h
))

)]2
dx

= ã2h2m2−1

∫ 1

0

[(
b̃

h

)m2

K
(m2)
0 (

b̃

h
(x− x̄0))

]2
dx

u=b̃(x−x̄0)/h
= ã2b̃2m2−1

∫ b̃
h (1− 3

4 )

− 3b̃
4h

[
K

(m2)
0 (u)

]2
du

= ã2b̃2m2−1

∫ 1

−1

[
K

(m2)
0 (u)

]2
du

= ã2b̃2m2−1Im2 .

Note that in the third last equation, the integral upper and lower limit satisfy:

b̃

h
(1− 3

4
) > 1, − 3b̃

4h
< −1.

For the above ∥f (m2)
s ∥22 to be less or equal to L2

2, we need:

b̃ ≤
(

L2
2

ã2Im2

) 1
2m2−1

=

(
4L2

2(K
∗
0 )

2

∆2(2M)2m2−1Im2

) 1
2m2−1

(45)

Combining Lemma 12 with what we required of the function parameters: b ≥ 2 and b̃ ≥ 4h, we then need the following
requirements for the parameter ∆. Intuitively, the following lemma says that the functions cannot be too “wavy”, so that
they stay within the corresponding balls in Sobolev spaces.

Lemma 13. For b ≥ 2, b̃ ≥ 4h to hold, ∆ needs to satisfy the following constraints with respect to M and the smoothness
constants L1, L2.

∆/L1 ≤ K∗
0

22m1−1Mm1− 1
2

√
Im1

, (46)

∆/L2 ≤ K∗
0

22m2−2
√

Im2

. (47)

Proof of Lemma 13. First, consider function fs when s ≥ 1. Using the conclusions in Lemma 12 we need the following,

L2
1(K

∗
0 )

2

∆2(2M)2m1−1Im1

≥ b2m1−1 ≥ 22m1−1.

What directly follows is the constraint on ∆:

∆2 ≤ L2
1(K

∗
0 )

2

24m1−2M2m1−1Im1

. (48)
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Similarly, for f0, we need

L2
2(K

∗
0 )

2

∆2(2M)2m2−1Im2

≥ b̃2m2−1 ≥ (4h)2m2−1 = 22m2−1M1−2m2 .

This leads to second constraint on ∆:

∆2 ≤ L2
2(K

∗
0 )

2

24m2−4Im2

. (49)

Function Construction Part II. We have defined f0 . . . fM in Part I, and identified the constraints between the floating
parameters M and ∆, with respect to given parameters m1,m2, L1, L2 and known constants K∗

0 , Im1
, Im2

. In this second
part, we define M + 1 bandit problems by defining their reward functions ϕs, s = 0 . . .M in the following way:

ϕ0 = f0, (50)
ϕs = fs + f0, ∀1 ≤ s ≤ M. (51)

It is obvious that the reward functions satisfy the following conditions. The conditions below are the Sobolev version.
They are necessary for the latter half of this proof. Similar conditions were required in Locatelli and Carpentier (2018);
Hadiji (2019), see below for details.

1. The function ϕ0 has peak value ∆/2 and functions ϕs, 1 ≤ s ≤ M all have peak value ∆.

2. The function ϕ0 ∈ Wm2,2(X , L2) and functions ϕs ∈ Wm1,2(X , L1), 1 ≤ s ≤ M .

3. For s ≥ 1, ϕs(x) = ϕ0(x) for x /∈ Hs. Also, ϕ∗
s − ϕs(x) ≥ ∆

2 when x /∈ Hs. Here ϕ∗
s = maxx∈X ϕs(x).

RKHS Version of the Proof. We have now defined M + 1 hypothesis functions in two balls in two different Sobolev
spaces. By (i)the norm equivalency between Sobolev seminorm (Lemma 2) and the RKHS norm; and (ii) the relationships
between B1, L1 and B2, L2 in equation 31, the reward functions also satisfy the following conditions. The conditions
below are the RKHS version.

1. The function ϕ0 has peak value ∆/2 and functions ϕs, 1 ≤ s ≤ M all have peak value ∆.

2. ϕ0 ∈ Hkm2
(X , B2), ϕs ∈ Hkm1

(X , B1), for 1 ≤ s ≤ M .

3. ∀s ≥ 1, ϕs(x) = ϕ0(x) when x /∈ Hs. Also, ϕ∗
s − ϕs(x) ≥ ∆

2 when x /∈ Hs.

Lower Bounding Cumulative Regret (Proof Sketch). This part shows the cumulative regret of an algorithm on functions
ϕ1 . . . ϕM is lower bounded by a rate that depends reversely on R̃, if this algorithm has a regret upper bound of R̃ on
reward function ϕ0. The proof in the following directly follows from Hadiji (2019) and relies on Pinsker’s inequality. We
write down a proof sketch here for completeness, readers interested in the full version can refer to Hadiji (2019, Section
F ). We use their notations in this part unless otherwise specified. Those include NHs(T ) which is the number of times
an algorithm selects an action in bin Hs; PT

s (·) which is the probability distribution of trajectory {xt, yt}t=1...T , when the
reward function in the bandit setting is defined by ϕs, for 0 ≤ s ≤ M . Similarly, Es[·] is the expectation with respect to
probability Ps.

By definitions of the reward functions, when the underlying function is ϕs for some s ≥ 1, the cumulative regret is lower
bounded by

RT,s ≥
∆

2
(T − Es[NHs

(T )]) (52)

For s = 0, the regret is lower bounded by

RT,0 ≥ ∆

2

M∑
s′=1

E0[NHs′ (T )]. (53)
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Pinsker’s inequality is used to establish a relationship between the two lower bounds defined above. The equation 54 is a
core step of the proof.

1

T
Es[NHs(T )]−

1

T
E0[NHs(T )] ≤

√
1

2
DKL(PT

0 ,PT
s ). (54)

Calculation of KL distance DKL(·, ·) relies on condition 3 of ϕ0...M , as well as the assumption that the noise is 1/4-
subgaussian. The result is that the KL distance is bounded by the following.

DKL(PT
0 ,PT

s ) = 2E0[NHs
(T )]∆2. (55)

With the above, a key intermediate result is reiterated below.

1

M

M∑
s=1

RT,s ≥
T

2
∆

(
1− 1

M
−
√

∆ ·RT,0

M

)
. (56)

Recall that our Theorem 11 assumes that supf∈Wm2,2(X ,L2) RT ≤ R̃, and since ϕ0 ∈ Wm2,2(X , L2), it follows directly
that RT,0 ≤ R̃. Therefore, the above inequality becomes

1

M

M∑
s=1

RT,s ≥
T

2
∆

(
1− 1

M
−
√

∆ ·RT,0

M

)

≥ T

2
∆

1

2
−

√
∆R̃

M

 .

In the last inequality, M ≥ 2 is used. This assumption is not violated, as shown later.

Choosing the Appropriate value for ∆. Following the above lower bound, we need to choose a value for ∆ that (i) does
not violate any of the requirements (Lemma 13) and (ii) maximizes/tightens the lower bound. To do so, the value of ∆
should satisfy:

1.
√

∆R̃
M ≤ 1

4 , where 1
4 is a constant less than 1

2 (chosen in an arbitrary manner).

2. ∆/L1 ≤ (K∗
0 )

22m1−1Mm1− 1
2 I

1
2
m1

. Note that this condition satisfies only half of the requirements in Lemma 13. We later

show that the other condition in Lemma 13 is also satisfied with the selected ∆.

When maximizing ∆, we first set ∆/L1 ≈ (K∗
0 )

22m1−1Mm1− 1
2 I

1
2
m1

to achieve the optimal trade-off between M and ∆. That is,

we set

M =

( L1K
∗
0

22m1−1I
1
2
m1∆

) 1

m1− 1
2

 , (57)

since M needs to be an integer. By simplifying the constant term:

C(m1)
△
= (

K∗
0

22m1−1I
1
2
m1

), (58)

we get a simpler expression of M :

M =

⌊
C(m1) L

2
2m1−1

1 ∆
−2

2m1−1

⌋
. (59)

If ∆R̃/

(
C(m1)L

2
2m1−1

1 ∆
−2

2m1−1

)
≤ 1

32 , the condition
√

∆R̃
m ≤ 1

4 would be satisfied, using the fact that x
2 ≤ ⌊x⌋,∀x > 2.
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Shuffling some terms, the requirement ∆R̃/

(
C(m1)L

2
2m1−1

1 ∆
−2

2m1−1

)
≤ 1

32 becomes:

∆ ≤ 1

32
C(m1)L

2
2m1−1∆

−2
2m1−1B−1

∆
2m1+1
2m1−1 ≤ C(m1)

32
L

2
2m1−1

1 R̃−1

∆ ≤
(
C(m1)

32

)m1− 1
2

m1+ 1
2
L

1

m1+ 1
2

1 R̃
−

m1− 1
2

m1+ 1
2 .

To maximize ∆, we thereby choose

∆ =

(
C(m1)

32

)m1− 1
2

m1+ 1
2
L

1

m1+ 1
2

1 M
−

m1− 1
2

m1+ 1
2 . (60)

This leads to the final lower bound:

1

M

M∑
s=1

RT,s

≥ T

2
∆

1

2
−

√
∆R̃

M

 ≥ T∆

8

=
1

8

(
C(m1)

32

)m1−1/2

m1+1/2

TL
1

m1+1/2 R̃
−m1−1/2

m1+1/2 . (61)

Verify Assumptions. Last but not least, we have to make sure that the assumptions made throughout the proof are satisfied,
by our choice of ∆ in equation 60 and M in equation 59.

1. M ≥ 2. By the definition of M in equation 59, we need to ensure that C(m1) L
2

2m1−1

1 ∆
−2

2m1−1 ≥ 2+ 1 = 3. Further,
plugging in equation 60, this becomes the following requirement of L1:

L1 ≥ 3m1+
1
2

32
C(m1)

−m1+
1
2 R̃−1. (62)

2. ∆/L2 ≤ K∗
0

22m2−2
√

Im2

. This is the second requirement in Lemma 13 that has not yet been verified to hold. For this

condition to hold, the following constraint on L2 should be met.

L2 ≥ C ′(m1,m2)L
1

m1+1/2

1 R̃
−m1−1/2

m1+1/2 , (63)

where,

C ′(m1,m2) = 22m2−2

(
C(m1)

32

)m1−1/2

m1+1/2
√
Im2

K∗
0

(64)

is a constant (independent of T ) that depends on m1,m2. In other words, to make sure that the requirements in
Lemma 13 are met, we need in the assumptions the following constraint.

L1 ≤ C ′(m1,m2)
−(m1+

1
2 )L

m1+
1
2

2 R̃m1− 1
2 . (65)

We have proved Theorem 11 (Sobolev version).

The constraints on B1 and B2 in Theorem 3 are derived from the constraints on L1, L2 in Theorem 11 and setting B1, B2

as instructed in equation 31. Then the proof of Theorem 3 is also completed.
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B.2 Proof of Corollary 5

When d = 1, Matérn kernel with regularity parameter ν has Fourier decay rate of ν + 1
2 (Definition 4). The algorithm

considered in Corollary 5 thus satisfies the regret upper bound on an RKHS induced by a kernel with decay rate m2 = ν2+
1
2

which is R̃ = Õ(T
m2+ 1

2
2m2 ). Let m1 be an integer larger than m2. Applying Theorem 3, the lower bound on RKHS of a

kernel with Fourier decay rate m1 is Ω(R̃
−

m1− 1
2

m1+ 1
2 T ). For simplicity, we omit the dependence on B (and constant factors)

and focus only on the dependence on T . Plugging in the rate of R̃, the lower bound then becomes Ω(T
m1m2+ 3

2
m2− 1

2
m1+ 1

4
2m1m2+m2 ).

Set m1 = ν1 + 1
2 as the Fourier decay rate of kMatérn,ν1 in Corollary 5. Then, we get the lower bound by substituting

m2 = ν2 +
1
2 and m1 = ν1 +

1
2 , which is Ω(T

ν1ν2+2ν2+1

(ν1+1)(2ν2+1) ).

B.3 Proof of Theorem 6

UCB-Meta (Liu et al., 2021) achieves minimax regret rate in dependence on T (except log factors) in Hölder spaces
with Hölder exponent α > 1. For 0 < α ≤ 1, it reduces to the minimax optimal continuum-armed bandit algorithm
from Auer et al. (2007). For simplicity, we consider UCB-Meta as the general algorithm for continuum-armed bandits in
Hölder spaces. To prove that it is also minimax optimal over RKHS of certain Matérn kernels, we establish the following
embedding of RKHS of Matérn kernels to Hölder spaces, via (i) norm equivalency between RKHS of a Matérn-ν kernel
and Sobolev space with order m and (ii) Sobolev embedding theorem that specifies the embedding of Sobolev space with
order m to Hölder space with exponent α. Note that Singh (2021) have shown that the minimax bandit algorithm over a
Besov or Sobolev space is the same as one that is minimax over the smallest Hölder space that the Besov or Sobolev space
embeds onto, although not explicitly for RKHS. For completeness, we still include the following proof. We first state the
Sobolev embedding theorem (Adams and Fournier, 2003, Theorem 5.4).

Theorem 14 (Sobolev embedding theorem (Adams and Fournier, 2003)). Let m be a non-negative integer. Suppose that
the dimension d < p · m and α = m − d

p . Let Ω be a finite domain with Lipschitz boundary. Then, the Sobolev space
Wm,p(Ω) is embedded onto Hölder space with exponent α:

Wm,p(Ω) ⊂ Σα(Ω). (66)

For our problem setting, we set p = 2 and d = 1. The domain X = [0, 1] satisfies the Lipschitz boundary condition.
Therefore, Wm(X ) ⊂ Σα(X ) where α = m − 1

2 . Combining Sobolev embedding theorem with the norm equivalency
between Sobolev space and RKHS (Lemma 1), we have the following result.

Corollary 15. Suppose that ks : Rd × Rd → R is a positive-definite translation-invariant kernel, whose Fourier transfor-
mation decays polynomially with rate s, s > d/2, s ∈ N. Then, the RKHS Hks(X ) is embedded onto Hölder space Σα(X )
with exponent α = s− d

2 :
Hks(X ) ⊂ Σs− d

2 (X ). (67)

The above relationship is also studied in the earlier work of Shekhar and Javidi (2020, Appendix B.1). Note that Matérn
kernels with regularity parameter ν have a Fourier decay rate of s = ν + d

2 . Hence, HkMatérn,ν (X ) ⊂ Σα(X ), for α = ν.

Therefore, since UCB-Meta achieves on Σα(X ) the regret rate of Õ(T
α+1
2α+1 ) (Liu et al., 2021, Equation (19)), it achieves

the same rate Õ(T
ν+1
2ν+1 ) on the subset HkMatérn,ν (X ). Here, we omit the dependence on B, the RKHS norm bound. A

function f ∈ HkMatérn,ν (X , B) also has a finite Hölder norm ∥f∥Σα=ν . The norm ∥f∥Σν , by definition, poses an upper
bound on L (using the notation from Liu et al. (2021, Definition 1), the Hölder-continuity coefficient of the l-th order
derivative of f , where l is the largest integer strictly less than α. By Theorem 4 from Liu et al. (2021), we can see that L
affects the regret only through a multiplicative term and not through the exponents of T . Therefore, we omit the dependence
on B and write the regret rate of UCB-Meta as Õ(T

ν+1
2ν+1 ).

B.4 Proof of Theorem 7

Recall that Theorem 5.3 in Pacchiano et al. (2020b) provides general regret bounds for CORRAL. The proof of our The-
orem 7 is an adaptation to the proof of Theorem 5.3 in Pacchiano et al. (2020b). We use the same notations as Pacchiano
et al. (2020b) unless otherwise specified. M is the number of base algorithms (also aligning with the statement in Theo-
rem 7). δ is the probability of failure. U : R × [0, 1] → R+ is the cumulative regret function (for a base algorithm), such
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that U(t, δ) is the high-probability and anytime regret bound of a base algorithm. ρ is the maximum of reciprocals of the
probability that the base algorithm is chosen by the master algorithm over all time steps. η is the learning rate of the master
algorithm whose value is determined later in the proof.

In Section 5.1.1, we discussed briefly SupKernelUCB (Valko et al., 2013) versus GP-UCB Srinivas et al. (2009). Despite
the convenient implementation and good empirical performance of GP-UCB, SupKernelUCB matches the non-adaptive
lower bound in the dependence on T except log factors under the RKHS assumption and thus is minimax optimal while
GP-UCB is not. UCB-Meta (Liu et al., 2021) as shown in Theorem 6 is also minimax optimal in the dependence on T
except log factors for the Matérn RKHS setting. For this subsection, however, we use SupKernelUCB as base algorithms,
since the regret bound of SupKernelUCB has an explicit dependence on B, while for UCB-Meta the dependence on B
would rely on an implicit constant (see proof of Theorem 6 in Appendix B.3). We set d = 1 as specified in Section 5.

Given B and ν of a Matérn-ν kernel, the regret bound of SupKernelUCB is Õ(B
1
2T

ν+1
ν+2 ) in the RKHS of the Matérn

kernel (Valko et al., 2013, Theorem 1). Note that the original SupKernelUCB (i) is for finite action set and (ii) takes T as
input and therefore does not have any time regret guarantees. As mentioned in Section 5.1.1, Cai and Scarlett (2021) argue
that the aforementioned problem (i) could be extended to the continuum-armed setting by a discretization argument with an
extra O(d(log(T ))) term in the regret. The problem (ii) can be theoretically circumvented by the doubling procedure (Auer
et al., 1995). Doubling converts an algorithm with (cumulative) regret bound for fixed T to one with anytime regret bound,
suffering only up to constant factors in the regret. 16 Therefore, for theoretical interest, we treat SupKernelUCB as the
minimax optimal base algorithm with anytime regret upper bound Õ(B

1
2T

ν+1
ν+2 ),∀T .

We acknowledge that this is for theoretical convenience only and it remains an important open problem (Vakili et al.,
2021b) to improve the regret bound of the practical GP-UCB algorithm under RKHS assumptions.

We plug in U(T, δ) = Õ(B
1
2T

ν+1
2ν+1 ) for the base algorithms for CORRAL. Following the proof of Pacchiano et al.

(2020b, Theorem 5.3), we have the following. Note that this upper bound holds with respect to any base algorithm with
anytime high-probability regret U(t, δ). Therefore, we plug in the regret of the best base algorithm, which is U(t, δ) =

Õ(B∗ 1
2 t

ν∗+1
2ν∗+1 ) because ν∗, B∗ belong in the set of candidate values u.

RT ≤ O(
M ln(T )

η
+ Tη)− E

[
ρ

40η ln(T )
− ρU(T/ρ, δ) log(T )

]
+ δT + 8

√
MT log(

4TM

δ
)

≤ Õ(
M

η
+ Tη + δT +

√
MT )− E

[
Õ(

ρ

η
− ρ

√
B∗T

ν∗+1
2ν∗+1 ρ−

ν∗+1
2ν∗+1 )

]
set δ= 1

T= Õ(
M

η
+ Tη +

√
MT )− E

[
Õ(

ρ

η
−

√
B∗T

ν∗+1
2ν∗+1 ρ

ν∗
2ν∗+1 )

]
Maximizing the above equation over ρ results in ρ ∝ η

2ν∗+1
ν∗+1 B∗

ν∗+1
2

ν∗+1 T . If we plug this value for ρ in the above equation,
then the regret is bounded by:

RT = Õ(
M

η
+ Tη +

√
MT )− Õ(η

ν∗
ν∗+1B∗

ν∗+1
2

ν∗+1 T − η
ν∗

ν∗+1B∗ 2ν∗+1
2ν∗+2T )

≤ Õ(
M

η
+ Tη +

√
MT + η

ν∗
ν∗+1B∗ 2ν∗+1

2ν∗+2T )

For the problem of adapting to kernel regularity (represented by ν∗ when the kernel is a Matérn kernel), since CORRAL
does not have access to ν∗ (and B∗), we choose η with respect to the user-specified parameter ν̃: η = T− ν̃+1

2ν̃+1 . Plugging
this choice of η back in the above equation, we have:

RT ≤ Õ(MT
ν̃+1
2ν̃+1 +B∗ 2ν∗+1

2ν∗+2T
ν̃ν∗+2ν̃+1

(2ν̃+1)(ν∗+1) ).

Absorbing the dependence on M and B in Õ, we then have the regret rate in equation 19.

B.5 Proof of Theorem 10

The proof follows from the general form of regret upper bound of RBBE (Theorem 5.1 from Pacchiano et al. (2020a)). The
regret bound in Theorem 5.1 in Pacchiano et al. (2020a) is expressed with the “play ratio”

∑
i∈B

ni(ti)
n∗(ti)

, where B denotes

16The doubling procedure is also used in other works that use CORRAL to adapt to unknown parameters of the function space, for
example Liu et al. (2021) which studied adaptivity to the Hölder exponent.



Adaptation to Misspecified Kernel Regularity in Kernelised Bandits

the set of misspecified base algorithms, ti denotes the last round before base algorithm i is eliminated, and ni(t) denotes
the number of times i is selected until time step t ≤ T . In the following part, we use Lemma A.3 in Pacchiano et al.
(2020a) to calculate the play ratio, then plug it in Theorem 5.1 of Pacchiano et al. (2020a) to get the final regret bound.
For reasons why the more straightforward result (Theorem 5.4 in Pacchiano et al. (2020a)) is not used, see the end of this
subsection for an explanation.

In the following, each base algorithm i has the following candidate pseudo regret bound (equation (7) in Pacchiano et al.
(2020a)):

Ri(t) ≤ CθiT
βi , (68)

where C ≥ 1 is some term independent of T or i, and θi ≥ 1 is some parameter dependent on i. For minimax optimal
kernelised bandit algorithms instantiated with νi (parameter of the Matérn kernel), βi =

νi+d
2νi+d . We write down the general

regret bound of RBBE here for completeness (Theorem 5.1 (Pacchiano et al., 2020a)). Below, ∗ denotes any well-specified
learner, that is, a leaner whose actual (pseudo) regret Regi is upper bounded by its candidate (which means if well-specified)
regret bound Ri(T ).

RT ≤
M∑
i=1

R∗(n∗(ti)) +
∑
i∈B

ni(ti)

n∗(ti)
R∗ (n∗(ti)) + 2M + 2c

∑
i∈B

√
ni(ti) ln(

M ln(T )

δ
)

+ 2c
∑
i∈B

√
ni(ti)

n∗(ti)

√
ni(ti) ln(

M ln(T )

δ
)

We refer to the five terms in the above summation above as #1 . . .#5.

The terms #1 +#3 can be bounded the same way as in the proof of Theorem 5.4 in Pacchiano et al. (2020a):

M∑
i=1

R∗(n∗(ti)) + 2M ≤ MR∗(T ) + 2M ≤ Õ(Mθ∗T
β∗).

The term #4 is bounded also following the proof in Pacchiano et al. (2020a):

2c
∑
i∈B

√
ni(ti) ln(

M ln(T )

δ
) ≤ 2c

√
|B| ln M ln(T )

δ

∑
i∈B

ni(ti)

≤ 2c

√
|B|T ln

M ln(T )

δ

Bounding the term #1 and #5, however, needs changes to the proof of Theorem 5.4 (Pacchiano et al., 2020a), since the
play ratio is involved. Lemma A.3 in Pacchiano et al. (2020a) states that for two base learners i, j,

ni(t)

nj(t)
≤ max

{(
2
θj
θi

) 1
βi

(nj(t))
βj
βi

−1
, 2

}
. (69)

Therefore, the play ratio between a misspecified base learner i and a well-specified leaner ∗ can be bounded by:

ni(t)

n∗(t)
≤ 2 +

(
2
θ∗
θi

) 1
βi

n∗(t)
β∗
βi

−1

≤ 2 + 4C2B∗n∗(t)
β∗
βi

−1

≤ 2 + 4C2B∗n∗(t)
2β∗−1.

The first inequality above is simply plugging j = ∗ (representing a well-specified learner), and using that max{x, y} ≤
x+ y. For the second inequality, recall that the minimax optimal SupKernelUCB algorithm has a regret rate (if the kernel
parameter ν and RKHS norm bound B are known) of Õ(

√
BγTT ) = Õ(

√
BT

ν+d
2ν+d ). The Õ notation hides polynomial

terms that are dependent on log(T ), d. Therefore, the parameter θi in equation 68 that depends on the index of the base
algorithm i is θi ∝

√
Bi. Given the assumption that θi ≥ 1, θ∗

θi
≤ C1

√
B∗ for some constant C1. Since βi ≥ 1

2 ,
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(
2 θ∗
θi

) 1
βi ≤ 4C2B∗ for some constant C2. Also in the last two inequalities, we used βi ≥ 1

2 , that is, every base algorithm

used in Theorem 10 have at least Õ(T
1
2 ) regret. Therefore, we have the following bound on the sum of play ratio:∑

i∈B

ni(t)

n∗(t)
≤ 2|B|+ 4C2B∗|B|(n∗(t))

(2β∗−1) (70)

≤ 2|B|+ 4C2B∗|B|T (2β∗−1) = 2|B|(1 + 2C2B∗T
(2β∗−1)) (71)

We can plug equation equation 71 to bound #5 as follows.

2c
∑
i∈B

√
ni(ti)

n∗(ti)

√
ni(ti) ln(

M ln(T )

δ
) ≤ 2c

√∑
i∈B

ni(ti)

n∗(ti)

∑
i∈B

ni(ti) ln
M ln(T )

δ

≤ 2c

√∑
i∈B

ni(t)

n∗(t)
T ln

M ln(T )

δ

≤ 2c

√
2|B|(1 + 2C2B∗T (2β∗−1))T ln

M ln(T )

δ

= Õ(|B| 12B∗
1
2T β∗)

Similarly, the upper bound of term #2 relies on equation 71 as well.∑
i∈B

ni(ti)

n∗(ti)
R∗ (n∗(ti)) ≤ C

∑
i∈B

ni(t)

n∗(t)
θ∗n∗(ti)

≤ C
∑
i∈B

ni(ti)

(n∗(ti))1−β∗
θ∗

≤ C

(∑
i∈B

ni(ti)

n∗(ti)

)(1−β∗)

θ∗(ni(ti))
β∗

≤ Cθ∗

(
2|B|(1 + 2C2B∗T

(2β∗−1))
)(1−β∗)

T β∗

= Õ(θ∗|B|(1−β∗)B∗
1−β∗

T (2β∗−1)(1−β∗)+β∗)

= Õ(θ∗|B|(1−β∗)B∗
1−β∗

T 4β∗+2β2
∗−1)

Now that the asymptotic rates of the five terms are derived, we can see that term #2 dominates in the dependence of T and
#5 dominates dependence on |B|, B∗, and hence, the regret of RBBE can be bounded as follows.

RT ≤ Õ(θ∗|B|
1
2B∗

1
2T 4β∗+2β2

∗−1) (72)

= Õ(θ∗|B|
1
2B∗

1
2T

2ν2
∗+4ν∗+1

(2ν∗+1)2 ) (73)

= Õ(θ∗M
1
2B∗

1
2T

2ν2
∗+4ν∗+1

(2ν∗+1)2 ) (74)

Finally, the reason for not using the straightforward results in Theorem 5.4 of Pacchiano et al. (2020a) is as follows.
In adaptation to the kernel regularity parameter ν, the candidate regret bounds of base algorithms do not have the same
exponent of T . The candidate regret bounds having the same rates of T is a requirement for the more straightforward
results, hence, those results are not directly applicable to our setting.
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