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Abstract

Neural operators, which emerge as implicit so-
lution operators of hidden governing equations,
have recently become popular tools for learning
responses of complex real-world physical sys-
tems. Nevertheless, the majority of neural op-
erator applications has thus far been data-driven,
which neglects the intrinsic preservation of fun-
damental physical laws in data. In this paper, we
introduce a novel integral neural operator archi-
tecture, to learn physical models with fundamen-
tal conservation laws automatically guaranteed.
In particular, by replacing the frame-dependent
position information with its invariant counter-
part in the kernel space, the proposed neural
operator is by design translation- and rotation-
invariant, and consequently abides by the con-
servation laws of linear and angular momentums.
As applications, we demonstrate the expressivity
and efficacy of our model in learning complex
material behaviors from both synthetic and ex-
perimental datasets, and show that, by automati-
cally satisfying these essential physical laws, our
learned neural operator is not only generalizable
in handling translated and rotated datasets, but
also achieves state-of-the-art accuracy and effi-
ciency as compared to baseline neural operator
models.

1 INTRODUCTION

Neural operators (Anandkumar et al., 2020; Li et al., 2020c;
Lu et al., 2019) have gained popularity in recent years as a
form of implicit solution operators to unveil hidden physics
of complex real-world physical systems from data. Benefit-
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Figure 1: An illustration of the translational and rotational
invariance on a mesh grid with INO. Here, G represents
the learnt mapping, R represents the rotation and transla-
tion of coordinate frames. To design an invariant neural
operator, our key idea is to characterize the interaction be-
tween nodes via an invariant kernel. The solid red lines
represent the selected local reference edges and the dashed
red lines indicate the two components of relative Euclidean
distance, xj − xi := [|xj − xi| cos θ, |xj − xi| sin θ], with
which we parameterize the proposed kernel form.

ing from their integral form of the architecture, neural op-
erators learn a surrogate mapping between function spaces,
which are resolution independent and can be generalized to
different input instances (Kovachki et al., 2021). Resolu-
tion independence empowers the learned operator to retain
consistent accuracy in prediction regardless of the variation
of input resolutions, while being generalizable to different
input instances offers the possibility to solve unseen input
instances with only a forward pass of the trained network
without the hassle of repeating the time-consuming training
process. These facts make neural operators excellent candi-
dates for providing surrogate models for complex physical
systems (Li et al., 2021; Goswami et al., 2022a).

Despite of the notable advances in the development of neu-
ral operators over traditional neural networks (NNs), their
performance highly rely on the amount of available data,
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especially when the governing PDE is unknown Goswami
et al. (2022a). An effective way to alleviate this pathology
is to incorporate into the designed architecture the intrin-
sic preservation of fundamental physical laws in data, as
is the case of the conservation of linear and angular mo-
mentums in most physical systems. In You et al. (2022b),
it was found that incorporating partial physics, such as the
no-permanent-set assumption, can enhance the prediction
of neural operators in out-of-distribution prediction tasks.
However, to the authors’ best knowledge, neural operators
that preserve the conservation laws of linear and angular
momentums have not yet been explored.

To enhance the accuracy of neural operators in physical
system predictions, in this work we propose the Invari-
ant Neural Operator (INO), a novel integral neural oper-
ator architecture that remains invariant under frame trans-
lations and rotations. Specifically, we substitute the frame-
dependent coordinate information with its invariant coun-
terpart (cf. Figure 1) in the kernel space, so that the learned
kernel is independent of geometric transformations. Com-
pared to existing neural operator methods, the proposed ar-
chitecture mainly carries four significant advantages. First,
different from existing physics-informed neural operators,
our approach only requires observed data pairs and does
not rely on known governing equations (Goswami et al.,
2022b,a; Li et al., 2021; Wang et al., 2021). Therefore, it is
readily applicable to learn physical systems directly from
experimental measurements (Ranade et al., 2021) or simu-
lation data (Kim et al., 2019), for which the underlying gov-
erning equations may not be available. Second, the invari-
ant properties in our approach are realized through built-
in kernel functions, which is anticipated to be more robust
and efficient than data augmentation techniques (Quiroga
et al., 2018). More importantly, through embedding the
invariant kernel and updating frame-dependent coordinate
information with a separate network, our architecture nat-
urally stems from the interpretation of its layer update as a
particle-based method (Karplus & McCammon, 2002; Liu
& Liu, 2010), which significantly simplifies model inter-
pretation. Last but not least, analogous to the E(n) equiv-
ariance concept in Satorras et al. (2021), our architecture is
not limited to two- or three-dimensional invariance. As a
matter of fact, it can be easily scaled up to higher dimen-
sions. In summary, the contributions of our work are:

• We propose INO, a novel integral neural operator ar-
chitecture that is translation- and rotation-invariant, to
learn complex physical systems with guaranteed con-
servation of linear and angular momentums.

• Equipped with the shallow-to-deep initialization tech-
nique and a coordinate embedding network, our INO
finds a physical interpretation from a particle-based
method, and obtains stable predictions as the network
proliferates in depth.

• Our approach only requires data pairs and does not
rely on a priori domain knowledge, while the guaran-
teed momentum conservation laws improve the learn-
ing efficacy, especially in small data regime.

• We demonstrate the expressivity and generalizability
of INO across a variety of synthetic and real-world ex-
perimental datasets, and show that our learned neural
operator is not only generalizable in handling trans-
lated and rotated datasets, but also provides improved
prediction from the baseline neural operators.

2 BACKGROUND AND RELATED
WORK

In this section, we briefly introduce the concept of trans-
lational and rotational invariance in classical mechanics,
and present its connection to the laws of momentum con-
servation. Moreover, we review relevant concepts of in-
variance/equivariance and hidden physical system learning
with NNs, which will later become complementary to the
proposed INO definition.

Throughout this paper, we use lower case letters to de-
note vectors, upper case letters for matrices, bold let-
ters for functions, calligraphic letters for operators, and
blackboard-bold letters for Banach spaces. For any vec-
tor v, we use |v| to denote its l2 norm. For any function
f taking values at nodes χ := {x1, x2, . . . , xM}, ||f || de-

notes its l2 norm, i.e., ||f || :=
√∑M

i=1(f(xi))/M . Rd

represents the dimension-d Euclidean space.

2.1 Invariance, Equivariance, and Momentum
Conservation Laws

We consider the learning of complex physical responses of
a mechanical system, based on a number of observations of
the loading field fi(x) ∈ F(Ω;Rdf ) and the corresponding
physical system response ui(x) ∈ U(Ω;Rdu). Here, i de-
notes the sample index, Ω ∈ Rd is the bounded domain of
interests, and F and U describe the Banach spaces of func-
tions taking values in Rdf and Rdu , respectively. To model
the physical responses of such a system, we aim to learn a
surrogate operator G : F → U, that maps the input function
f(x) to the output function u(x).

Let Tg : F → F be a set of transformation operators for an
abstract group g, we say that the operator G is invariant to
g if

G ◦ Tg[f ] = G[f ] , (1)

and G is equivariant to g if there exists an equivariant trans-
formation Sg : U → U, such that

G ◦ Tg[f ] = Sg ◦ G[f ] . (2)

Considering a mechanical response problem as a practi-
cal example in physical systems, we have the input func-
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tion f(x) as the initial location and u(x) as the resulting
mechanical response in the form of a displacement field.
First, let Tg be a translation on the reference frame, i.e.,
Tg[f ] = f̃ , where f̃(x+ g) := f(x) and g ∈ Rd is a con-
stant vector. Translational invariance means that translating
the input function f first and then applying the response
operator G will deliver the same result. As such, the resul-
tant physical model does not vary with locations in space,
and the Noether’s theorem (Noether, 1971) guarantees the
conservation of linear momentum. On the other hand, let
Tg be a rotation on the reference frame, which rotates the
coordinate x as well as the input function, i.e., Tg[f ] = f̃ ,
with f̃(Rx) := Rf(x) and R being an orthogonal matrix.
Rotational equivariance means that rotating the input func-
tion f first and then applying the response operator G will
lead to the same result as first applying G and then rotat-
ing the output function. As such, the described physical
model does not vary under rotations against the origin, and
the Noether’s theorem (Noether, 1971) guarantees the con-
servation of angular momentum.

In this work, the proposed INO is designed to handle the
following four types of invariance/equivariance:

1. Translational Invariance. Translating the reference
frame by g ∈ Rd results in an invariant output, i.e.,
G[f̃ ](x+ g) = G[f ](x), where f̃(x+ g) := f(x).

2. Translational Equivariance. Translating the reference
frame by g ∈ Rd results in an equivariant translation
of the output, i.e., G[f̃ ](x+ g) = G[f ](x) + g, where
f̃(x+ g) := f(x).

3. Rotational Invariance. Rotating the reference frame
results in an invariant output, i.e., for any orthogo-
nal matrix R ∈ Rd×d, one has G[f̃ ](Rx) = G[f ](x),
where f̃(Rx) := Rf(x).

4. Rotational Equivariance. Rotating the reference
frame results in an equivariant rotation of the output,
i.e., for any orthogonal matrix R ∈ Rd×d, one has
G[f̃ ](Rx) = RG[f ](x), where f̃(Rx) := Rf(x).

2.2 Learning Hidden Physics

Learning how complex physical systems respond is essen-
tial in science and engineering. For decades, physics-based
PDEs have been commonly employed to model such sys-
tems, and traditional numerical methods (LeVeque, 1992)
are developed to solve for unobserved system responses.
However, the choice of certain governing PDEs is often
determined a priori, and these PDEs need to be solved nu-
merically for each specified boundary/initial conditions and
loading/source terms, which makes classical PDE-based
methods insufficient in expressivity and computationally
expensive.

Several recent developments in deep NNs have been de-
voted to providing an efficient surrogate directly from data
(Ghaboussi et al., 1998, 1991; Carleo et al., 2019; Karni-
adakis et al., 2021; Zhang et al., 2018; Cai et al., 2022;
Pfau et al., 2020; He et al., 2021; Besnard et al., 2006).
Among others, neural operators manifest superiority in pre-
dicting physical responses as function mappings. Contrary
to classical NNs that operate between finite-dimensional
Euclidean spaces, neural operators are designed to learn
mappings between infinite-dimensional function spaces (Li
et al., 2020a,b,c; You et al., 2022a; Ong et al., 2022; Gupta
et al., 2021b; Lu et al., 2019, 2021a; Goswami et al., 2022b;
Gupta et al., 2021a). A remarkable advantage of neural op-
erators lies in their resolution independence, which implies
that the prediction accuracy is invariant to the resolution of
input functions. Moreover, neural operators are generaliz-
able to different input instances, and hence they can serve
as efficient surrogates in downstream applications. Further-
more, in contrast to classical PDE-based approaches, neu-
ral operators can be trained directly from data, and hence
requires no domain knowledge nor pre-assumed PDEs. All
these advantages make neural operators a promising tool
for learning complex physical systems (Yin et al., 2022a;
Goswami et al., 2022b; Yin et al., 2022b; You et al., 2022b;
Li et al., 2020a,b,c; Lu et al., 2021b).

Despite the aforementioned advances of neural operators,
purely data-driven neural operators still suffer from data
challenge. In particular, in order to generalize the solution,
they require a large corpus of paired datasets, which is pro-
hibitively expensive in many engineering applications. To
resolve this challenge, the physics-informed neural oper-
ator (PINO) Li et al. (2021) and physics-informed Deep-
ONets Goswami et al. (2022b); Wang et al. (2021) are in-
troduced, where a PDE-based loss is added to the training
loss as a penalization term. However, these approaches still
require a priori knowledge of the underlying PDEs, which
restricts their applications to (known) PDE-solving tasks.

2.3 Integral Neural Operators

Integral neural operators, first proposed in Li et al. (2020a)
and further developed in Li et al. (2020b,c); You et al.
(2022a,c), have the foundation in the representation of a
PDE solution by the Green’s function. An integral neural
operator is comprised of three building blocks. First, the
input function, f(x) ∈ F, is lifted to a higher-dimension
representation via h(x, 0) = P[f ](x) := P [x,f(x)]T + p.
Here, P ∈ R(d+df )×dh and p ∈ Rdh define an affine point-
wise mapping. Next, the feature vector function h(x, 0)
goes through an iterative layer block where the layer update
is defined via the sum of a local linear operator, a nonlocal
integral kernel operator, and a bias function: h(·, j + 1) =
Jj+1[h(·, j)], for j = 0, · · · , L − 1. Here, h(·, j) is a se-
quence of functions representing the values of the network
at each hidden layer, taking values in Rdh . J1, · · · ,JL
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are the nonlinear operator layers, which will be further dis-
cussed in the later contents. Finally, the output u(·) ∈ U is
obtained through a projection layer. A common practice is
to project the last hidden layer representation h(·, L) onto
U as: u(x) = Q[h(·, L)](x) := Q2σ(Q1h(x, L)+q1)+q2.
Here, Q1 ∈ RdQ×dh , Q2 ∈ Rdu×dQ , q1 ∈ RdQ and
q2 ∈ Rdu are the appropriately sized matrices and vec-
tors that are part of the trainable parameter set. σ is an
activation function, which is often taken to be the popular
rectified linear unit (ReLU) function.

Let D := {(fi,ui)}Ni=1 be a support set of observations
where the input {fi} ⊂ F is a sequence of independent and
identically distributed (i.i.d.) random fields from a known
probability distribution µ on F, and ui(x) ∈ U, possibly
noisy, is the observed corresponding solution. We aim to
learn the system response by building a surrogate operator:

G̃[f ; θ](x) := Q ◦ JL ◦ · · · ◦ J1 ◦ P[f ](x) ≈ u(x) ,

where the parameter set θ is obtained by solving the fol-
lowing optimization problem:

min
θ∈Θ

LD(θ) = min
θ∈Θ

Ef∼µ

∣∣∣∣∣∣G̃[f ; θ]− G[f ]
∣∣∣∣∣∣

≈ 1

N
min
θ∈Θ

N∑
i=1

∣∣∣∣∣∣G̃[fi; θ]− ui

∣∣∣∣∣∣ . (3)

The particular choice of an integral neural operator varies
by the architecture of the iterative layer block, Jj+1. In Li
et al. (2020a), graph neural operators (GNOs) are proposed,
where the iterative kernel integration is invariant across lay-
ers, i.e., J1 = J2 = · · · = JL := JGNO, with the update
of each layer network given by

h(x, j + 1) = JGNO(h(x, j))

:=σ

(
Wh(x, j) +

∫
Ω

m(x, y)h(x, j)dy + c

)
, (4)

m(x, y) := κ (x, y,f(x),f(y); v) . (5)

Here, W ∈ Rdh×dh and c ∈ Rdh are learnable tensors, and
κ ∈ Rdh×dh is a tensor kernel function that takes the form
of a (usually shallow) NN with learnable parameters v.
Since the layer update in integral neural operators is formu-
lated as a continuous integral operator, the learned network
parameters are resolution-independent: the learned W , c,
and v are close to optimal even when used with different
resolutions. Besides GNOs, when both the domain and the
discretized points are structured, Fourier Neural Operators
(FNOs) (Li et al., 2020c) and Multiwavelet-based Opera-
tors (MWT) (Gupta et al., 2021b) can be employed. In
FNOs, the fast Fourier transform is employed to evaluate
the integrals, which presents superior efficiency. Neverthe-
less, despite the rapid advancement in neural operators, ex-
isting methods fail to preserve the invariance/equivariance
properties under translation and rotation operations.

2.4 Invariant and Equivariant Neural Networks

Recently, invariant and equivariant NNs have been devel-
oped in the context of convolutional neural networks (Lang
& Weiler, 2020; Chirikjian, 2000; Knapp, 2001) and graph
neural networks (GNNs) (Bruna et al., 2013; Defferrard
et al., 2016; Kipf & Welling, 2016), and their effectiveness
is demonstrated via a variety of machine learning tasks,
such as in image classification (Cohen & Welling, 2016a,b;
Weiler & Cesa, 2019; Romero & Cordonnier, 2020) and
dynamical system modelling (Rezende et al., 2019; Sator-
ras et al., 2021). To achieve equivariance, the authors in
Thomas et al. (2018); Fuchs et al. (2020) proposed to utilize
spherical harmonics to compute a set of basis for transfor-
mations between higher-order representations. As another
line of efforts (Schütt et al., 2017; Klicpera et al., 2020;
Anderson et al., 2019; Miller et al., 2020; Satorras et al.,
2021), GNNs were considered based on a message passing
framework Brandstetter et al. (2022), in which the transla-
tional and rotational invariance/equivariance were imposed
by specially designed edge and node update operations.
However, the above-mentioned invariant/equivariant net-
works are restricted to a discrete “vector-to-vector” map-
ping, and the learned parameters cannot be reused in net-
works of different input/output resolutions, which hinders
their application to learn hidden physics laws in the form
of function mappings. Therefore, the goal in this work
is to design neural operators and impose minimal physi-
cal law assumptions as the translational and rotational in-
variance/equivariance, so as to provide a data-driven model
form that learns complex physical systems with guaranteed
momentum conservation.

3 NEURAL OPERATORS WITH
MOMENTUM CONSERVATION

In this section, we develop the invariant/equivariant archi-
tecture based on integral neural operators. Our develop-
ments have two-folds. First, a node embedding update
scheme is proposed, that is physically invariant and pre-
serves invariance/equivariance to translations and rotations
on a continuous domain. The essential idea is to devise
a message passing neural network where its arguments
and relevant representation embeddings are invariant to
transformations. As such, we can convert transformation-
sensitive representations to their transformation-invariant
counterparts. Second, to handle general domains and ac-
celerate training, we also modify the GNO architecture
in Eqs. (4)-(5) in such a way that each layer resembles
a discretized time-dependent nonlocal equation You et al.
(2022a). As a result, our proposed architecture can be
seen as a resemblance with translational and rotational in-
variant/equivariant nonlocal differential equations, allow-
ing for generalization of its optimal parameters from shal-
low to deep networks.
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To establish a transformation-invariant kernel in Eq. (5), we
introduce two types of transformation-invariant quantities
as arguments to the kernel function: the vector Euclidean
norm of the edge between x and y, i.e., |y − x|, and the
orientation of the vector y − x with respect to a local ref-
erence vector in the undeformed coordinates. For exam-
ple, the local reference edge in a rectangular domain can
be either the horizontal or vertical edge of the rectangle. In
the perspective of numerical implementation, one can take
the vector formed by any two fixed nodes as the reference
edge, as illustrated in Figure 1. In physical problems with
2D domains, Ω ⊂ R2, we pass in as kernel arguments the
decomposed Euclidean norm in the following form:

y − x := [|y − x| cos θ, |y − x| sin θ] , (6)

where x and y are the source and target nodes connected
by the edge, and θ denotes the computed local orientation.
Similarly, for Ω ⊂ R3, three kernel arguments are passed
in, based on two angles from the computed local orienta-
tion. Here, we point out that the idea of parameterizing the
edge feature with its Euclidean norm, |y − x|, was also em-
ployed in the equivariant graph neural network proposed
in Satorras et al. (2021). However, our approach has for
the first time considered the local edge orientation together
with its Euclidean norm, which makes the resulting net-
work more expressive. As will be demonstrated in the ab-
lation study in Section 4, an Euclidean norm-based kernel
architecture may not be sufficiently expressive.

INO for scalar-valued functions. We first consider the
scenario where the output function takes scalar values, i.e.,
du = 1, and the physical system is both translation- and
rotation-invariant. Examples in this category involve the
prediction of energies in environmentally-powered systems
(Cammarano et al., 2012), pressure monitoring in subsur-
face flows (Fumagalli & Scotti, 2011), and the prediction
of damage field in brittle fracture (Fan et al., 2022). In this
context, we propose the the following INO-scalar architec-
ture: for the lifting block, we only pass in the Euclidean
norm of the input function:

h(x, 0) = P[f ](x) := P |f(x)|+ p , (7)

where P, p ∈ Rdh . Then, for the iterative layer, we in-
troduce a fictitious time step, τ , and regard different layer
features as the solution of a time-dependent nonlocal equa-
tion at different time instances:

h(x, (j + 1)τ) := h(x, jτ)+

τσ

(
Wh(x, jτ) +

∫
Ω

m(x, y)h(y, jτ)dy + c

)
, (8)

m(x, y) := κ (y − x, |f(x)|, |f(y)|; v) . (9)

Finally, the projection block is taken as a 2-layer multi-
layer perceptron (MLP), same as the other integral neural
operators. Herein, we notice that the architecture in Eq. (8)

Input
function

Lifting
layer

Iterative layers
Projection

layer
Output
functionloop for L times

Initial nodal
coordinates

Final nodal
coordinates

Figure 2: An illustration of the proposed INO architec-
ture. We start from input f(x) and the initial coordinate
x(x, 0) := x. Then, the iterative layers are built as integral
operators based on invariant kernel functions, to obtain a
frame-invariant layer feature update h(x, j) and a frame-
dependent coordinate update x(x, j) that embeds the coor-
dinate rotation information. Lastly, we project the last hid-
den layer representation (for scalar-valued functions) and
the coordinate update (for vector-valued functions) to the
target function space.

resembles the time-dependent nonlocal equation: if we di-
vide both sides of Eq. (8) by the fictitious time step, τ , the
term (h(x, (j+1)τ)−h(x, jτ))/τ corresponds to the dis-
cretization of a first order derivative so that this architecture
can indeed be interpreted as a nonlinear differential equa-
tion in the limit of deep layers, as τ → 0. Hence, in prac-
tice we can employ the shallow-to-deep learning technique
(Haber et al., 2018; You et al., 2022a), that corresponds to
training the network for increasing values of network layers
and using optimal parameters obtained with L layers as ini-
tial guesses for the L̃-layer INO. Here L̃ > L. Moreover,
we point out that all network arguments are translational
and rotational invariant, and hence we have the following
theorem, with its detailed proof provided in Appendix A:

Theorem 1 (Invariance for INO-scalar). The INO-scalar
architecture proposed in Eqs. (7)-(9) is translational and
rotational invariant. That means, when translating the ref-
erence frame by g ∈ Rd and rotating it by an orthogonal
matrix R ∈ Rd×d, the following property holds true:

G̃[f̃ ; θ](Rx+ g) = G̃[f ; θ](x) ,

where f̃(Rx+ g) := Rf(x).

INO for vector-valued functions. We now further con-
sider the case where the output function takes vector val-
ues, and hence the output should rotate equivariantly with
the rotation of the reference frame. Under this scenario,
rotation-equivariant property is required to achieve the con-
servation of angular momentum. As such, besides the layer
feature function h(x, jτ), j = 0, · · · , L, we further intro-
duce an additional coordinate function, x(x, jτ), which is
defined on domain Ω and takes values in Rd. Then, the key
is to preserve invariance to rotations on h, as well as equiv-
ariance on x. In light of this, when translational invariance
and rotational equivariance are desired, we propose the fol-
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lowing INO-vector architecture (cf. Figure 2): for the lift-
ing block, we provide the Euclidean norm of the original
feature to h and carry the coordinate information into x:

h(x, 0) = P[f ](x) := P |f(x)|+ p , (10)
x(x, 0) := x , (11)

with P, p ∈ Rdh . Then, the (l+1)-th iterative layer network
update of a L-layer INO is defined as,

h(x, (j + 1)τ) := h(x, jτ)+

τσ

(
Wh(x, jτ) +

∫
Ω

m(x, y)h(y, jτ)dy + c

)
, (12)

x(x, (j + 1)τ) := x(x, jτ)+

τ

∫
Ω

(x− y)ϕ(m(x, y)h(y, jτ);w)dy , (13)

m(x, y) = κ (y − x, |f(x)|, |f(y)|; v) . (14)

Finally, we define the projection block and the output func-
tion as,

u(x) = Q[x(x, Lτ)](x) := x(x, Lτ)− x . (15)

Here, κ and ϕ are two separate (usually shallow) MLPs for
computing edge and coordinate messages, with v and w
being the corresponding trainable parameters, respectively.
In Eq. (13), ϕ takes as input the edge embeddings and out-
puts a scalar representing the weight associated with its
neighboring node. The nodal positions are then updated
as the weighted sum of coordinate differences. When con-
sidering the output function u as the displacement field and
x as the updated position of material points, the proposed
INO-vector architecture can be seen as an analogue to the
particle-based methods, since both approaches describe the
motion of a particle by the summation of forces due to its
neighboring particles. Additionally, the INO architecture
preserves the continuous integral treatment of the interac-
tions between nodes that characterizes neural operators. As
a result, INO also permits resolution independence with re-
spect to the inputs, and hence serves as a surrogate operator
between function spaces. Formally, we have the following
theorem, with the detailed proof provided in Appendix A:
Theorem 2 (Invariance/equivariance for INO-vector).
The INO-vector architecture proposed in Eqs. (10)-(15)
is translation-invariant and rotation-equivariant. That
means, when translating the reference frame by g ∈ Rd

and rotating it by an orthogonal matrix R ∈ Rd×d, the
following property holds true:

G̃[f̃ ; θ](Rx+ g) = RG̃[f ; θ](x) ,

where f̃(Rx+ g) := Rf(x).

4 EXPERIMENTS

In this section, we demonstrate the empirical effectiveness
of INOs. Specifically, we conduct experiments on both

Example 2: glass-ceramics

Output: displacement field

Example 3: tissue

Output: displacement field

u
x

u
y

u
BC u

x

u
y

Example 1: sub-surface flow

Output: pressure field

Figure 3: Illustration of input/output settings in our three
exemplar problems.

2D synthetic and real-world datasets, and compare the pro-
posed INO against three data-based neural operator base-
lines – GNOs Li et al. (2020a), FNOs Li et al. (2020c), and
MWTs Gupta et al. (2021a), a physics-based neural oper-
ator baseline (PINO Li et al. (2021)), and an equivariant
GNN (EGNN Satorras et al. (2021)). Herein, we employ
L = 4 iterative layers for all neural operators. All ex-
periments are tested using PyTorch with Adam optimizer.
For fair comparison, we tune the hyperparameters for each
method, including the learning rates, decay rates, and reg-
ularization coefficient, to minimize the error on the vali-
dation dataset. In all tests, we report the averaged rela-
tive error, ||ui,pred − ui||/||ui||, as the comparison metric
(lower means better). An illustration of our three test exam-
ples are provided in Figure 3, with further details of each
dataset and experimental settings provided in Appendix
B. The source code and the corresponding datasets are
available at https://github.com/ningliu-iga/
invariant_neural_operators.

4.1 Synthetic dataset: sub-surface flow

As a benchmark for scalar-valued output functions, we con-
sider the modeling of 2D sub-surface flow through a porous
medium with heterogeneous permeability field. The high-
fidelity synthetic simulation data in this example is de-
scribed by the Darcy flow, which has been considered in
a series of neural operator studies (Li et al., 2020a,b,c; Lu
et al., 2021b; You et al., 2022a,c). Specifically, the govern-
ing differential equation is defined as:

−∇ · (f(x)∇u(x)) = 1, ∀ x ∈ Ω := [0, 1]2,

subjected to uBC(x) = 0, ∀ x ∈ ∂Ω,
(16)

where f is the conductivity field, and u is the hydraulic
head (both are scalar-valued functions). In this context, we
aim to learn a solution operator of the Darcy’s equation
that maps each realization of the conductivity field f(x)
to the corresponding solution field u(x). For training, we
employ the dataset from Li et al. (2020a), where the con-
ductivity field f(x) is modeled as a two-valued piecewise
constant function with random geometries such that the two

https://github.com/ningliu-iga/invariant_neural_operators
https://github.com/ningliu-iga/invariant_neural_operators


Ning Liu, Yue Yu, Huaiqian You, Neeraj Tatikola

10-1 100 101 102 103

Translation range with respect to domain length

100

1010

1020

T
es

t l
os

s

GNO Ntrain=10

aug-GNO Naug=20

aug-GNO Naug=40
FNO
INO

GNO Ntrain = 10

aug-GNO Naug = 20

aug-GNO Naug = 40
FNO

50 100 150 200 250 300 350
Rotation range in degree

10-2

10-1

100

101

102

103

T
es

t l
os

s

Figure 4: Results for cases with scalar-valued output function. Left: comparison between INO, GNO, norm-INO, aug-
GNO, and other baseline models in small and medium data regimes. Middle: comparison between FNO, GNO, and INO
with varying numbers of training samples and test on grids with different resolutions. Right: Generalization results to test
samples with translated and rotated reference frames.

values have a ratio of 4. Then, the ground-truth solutions
of u(x) were generated using a second-order finite differ-
ence scheme on a fine resolution of 241 × 241 grids and
downsampled to 16× 16 and 31× 31. Herein, we split the
provided test samples into 40 samples as validation for hy-
perparameter tuning and 40 samples as test. To investigate
the performance of each model under small data regime,
we train with N train = {5, 10, 20, 40, 100} numbers of la-
belled data pairs. The dimension of representation is set to
dh = 64, and the kernel κ is modeled by a 3-layer MLP
with width (n, 512, 1024, d2h), where n is the number of
kernel arguments for each architecture. For 2D problems,
n = 6 for GNOs and n = 4 for INOs.

Ablation study. We first conduct an ablation study on
the proposed algorithm, with four settings: 1) The orig-
inal INO-scalar architecture; 2) The original GNO archi-
tecture; With this test, we aim to investigate the expres-
sivity of our invariant kernel compared to the original ker-
nel of (5). 3) The INO-scalar architecture, with its kernel
κ depending on the Euclidean norm of the edge only (de-
noted as “norm-INO”); With this test, we study if the local
edge orientation, θ, plays an important role in the model.
4) The GNO architecture with training data augmentation
(denoted as “aug-GNO”), where we train the GNO model
with additional translated/rotated samples. Specifically, we
translate the reference frame by setting Ω̃ ∈ R([Cx, 1 +
Cx]× [Cy, 1 + Cy]). Herein, the randomly generated con-
stants Cx, Cy ∼ U [−1, 1], where U [−1, 1] denotes the uni-
form distribution on [−1, 1]. Similarly, for rotation we ran-
domly generate Cθ ∼ U [0, 2π] and rotate the reference co-
ordinates counter-clockwisely. For each training sample,
we repeat the above process to augment the training set for
3 times. With this test, we investigate if our invariant archi-
tecture outperforms an invariance-agnostic approach with
data augmentation. On each of these four settings, we re-
port the training and test errors with N train = {10, 100}1 to

1Since the GNO model could not finish its training in the “aug-

study the performance of each model in small and medium
data regimes. Unless otherwise stated, all trainings and
tests are performed on 16 × 16 structured grids. We plot
the results in the left of Figure 4, with further error com-
parisons provided in Table 1 of Appendix B.

As shown in the left of Figure 4, INOs outperform GNOs in
both small and medium data regimes. When N train = 100,
INOs present 1.2% test error while GNOs have 2.0% test
error. When N train = 10, INOs have 6.1% test error, which
also outperforms GNOs (with 7.7% test error) by 20%.
This is possibly due to the fact that INOs have only 4 argu-
ments in its kernel function κ, while GNOs have 6. Hence,
INOs are less likely to overfit with small and medium data.
Surprisingly, the data-augmentation strategy did not help
much, and the aug-GNOs show a similar accuracy to the
original GNOs. On the other hand, when comparing the
performance between INOs and norm-INOs, we notice that
norm-INOs achieves the best performance in the small data
regime, possibly due to the fact that it further reduces the
number of kernel arguments to 3. However, when we in-
crease N train to 100, the performance of norm-INOs deteri-
orates due to the lack of flexibility. Hence, in this paper we
focus on INOs with a 4-argument kernel, since it outper-
forms GNOs in both small and medium data regimes, and
has better expressivity than the norm-INOs in the medium
data regime.

Comparison with more baselines. We now present
the comparison with other baselines methods by compar-
ing the test errors of INO-scalar with GNO, FNO, MWT,
PINO, and EGNN. To obtain a fair comparison, the num-
bers of trainable parameters for all models are within the
range of [4.2M, 5.0M ] (see Table 2 in Appendix B for
further details). As shown in the left of Figure 4 and Ta-
ble 1, our proposed INOs have achieved the best accuracy
in both small (N train = 10) and medium (N train = 100)

GNO, N train = 100” case within 72 hours, we only report the
results from N train = 10 for this setting.
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data regimes. Here, we note that in the PINO architec-
ture, we follow Li et al. (2021) and add the error asso-
ciated with the PDE governing equation as a penalization
term in the loss. The penalty parameter was tuned together
with other hyperparameters, so as to optimize the valida-
tion error. With this test, we aim to compare the efficacy
of INOs with another popular physics-informed approach,
where full physics knowledge is infused via a soft con-
straint (when the governing equation is known). As can be
seen from the results, INO still outperforms PINO even in
the small data regime, where the best PINO presents 9.7%
error. Generally, when the PDE loss has a large weight,
PINO gets closer to PINN and suffers from slow conver-
gence. On the other hand, our INOs embed the physics
knowledge in the architecture instead of a soft constraint,
and do not suffer from the challenges in optimization.

Performance with the change of N train and resolutions.
Next, we further compare our INOs with two popular
baseline neural operators, FNOs and GNOs, for N train =
{5, 10, 20, 40, 100}. For the purpose of testing general-
ization properties with respect to resolution, we train all
models on 16× 16 structured grids, and consider two test-
ing datasets: the “original-resolution” dataset with 16× 16
grids, and a “fine-resolution” dataset with 31 × 31 grids.
In the middle plot of Figure 4, we report the training and
test errors on both original- and fine-resolution datasets for
each model, with further visual comparison on an exem-
plar test instance provided in Figure 7 of Appendix B. One
can observe that INOs consistently out-performe GNOs
and FNOs. Among all three neural operators, in the small
data regime FNOs have the smallest training error and the
largest test error, indicating that they suffer more from over-
fitting. This observation is also consistent with the findings
in You et al. (2022a,c). When comparing the test results
across two resolutions, we observe that test errors at differ-
ent resolutions remain on a similar scale for all three meth-
ods. This fact again verifies the capability of neural opera-
tors in handling different resolutions. On the contrary, the
EGNN model learns a vector-vector mapping rather than a
function-function mapping, which makes it not resolution-
invariant: testing EGNN on 31 × 31 grid samples yields
492% error.

Translation and rotation tests. Lastly, we verify the capa-
bility of INOs in handling translated and rotated samples.
In the translated test dataset, we translate the reference
frame of each test sample by shifting it onto a new domain,
Ω̃ ∈ [Cx, 1+Cx]×[Cy, 1+Cy]. Here the movement of do-
main is randomly generated as Cx, Cy ∼ U [−C,C] and the
constant C defines the translation range. Similarly, in the
rotated dataset we randomly generate Cθ ∼ [0, C] for each
test sample, and rotate the reference frame by Cθ counter-
clockwisely. The test errors of GNOs and INOs are re-
ported in the right plot of Figure 4, along with results from
GNOs with data-augmentation, where N aug represents the

total number of augmented training samples in addition
to N train. Perhaps unsurprisingly, while INOs exhibit in-
variant performance on translated and rotated datasets, the
performance of GNOs deteriorates as the range of trans-
lation/rotation, C, increases. When comparing the results
from original GNOs and aug-GNOs, we notice that the
data-augmentation trick is generally helpful in handling
transformations, although it increases the training dataset
size and requires longer training time. Similar observa-
tion holds for FNOs: in Figure 6 of Appendix B we plot
the test results of INO, GNO, and FNO on an exemplar
instance with translated and rotated frame coordinates, re-
spectively, where one can see that the INO solutions are
invariant while the solutions from GNO and FNO are not.

4.2 Synthetic dataset: glass-ceramics deformation

In this example, we study material deformation in a glass-
ceramic specimen as a prototypical exemplar on the het-
erogeneous material response prediction. A glass-ceramic
material is the product of controlled crystallization of a spe-
cialized glass composition, which results in a microstruc-
ture of one or more crystalline phases within the residual
amorphous glass (Prakash et al., 2022; Serbena & Zanotto,
2012). We consider an idealized microstructural realiza-
tion on a circular domain with radius= 0.4, which is sub-
ject to displacement-type loading on its boundary. This
microstructure realization is composed of randomly dis-
tributed crystals embedded in a glassy matrix, such that the
crystals occupy 40% of the volume. To generate the train-
ing and test samples, we adopted the mechanical parame-
ters in Fan et al. (2022) and employed the quasi-static linear
peridynamic solid (LPS) solver to generate the high-fidelity
simulation data. We train N train = {10, 40, 100} numbers
of labelled data pairs, while validate/test the model with
40/40 samples, respectively. In this example, the speci-
men deformation is driven by the loading on its bound-
ary, and hence our goal is to learn the mapping from
f(x) := [uBC(x),a(x)] to u(x), where uBC(x) stands
for (padded) Dirichlet-type boundary condition, and a(x)
provides the microstructure information such that a(x) =
0 if the material point x is glass and a(x) = 0 if x is crystal.
The INO-vector architecture is employed. Here, we em-
phasize that the domain is no longer structured and hence
FNOs and MWT are not applicable. Therefore, in this ex-
ample we compare the performances of GNOs and INOs.

In the left plot of Figure 5, we report our experimental re-
sults on N train = {10, 40, 100} samples. The proposed
INOs obtain the lowest relative errors on the test dataset
compared to GNOs. Furthermore, in the right plot of Fig-
ure 5, we study the performance of both neural operators
on translated and rotated test samples. One can see that the
error from INOs is invariant, whereas GNOs errors increase
with the increase of the translation and rotation ranges.
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Dataset Glass-Ceramics Biological Tissue
N train 10 40 100 10 100

GNO, train 9.48% 4.09% 1.58% 9.63% 6.76%
GNO, test 31.25% 10.16% 8.50% 38.36% 14.15%
INO, train 4.43% 7.20% 7.28% 4.50% 3.65%
INO, test 12.65% 8.19% 7.94% 17.37% 6.38%

FNO, train - - - 8.49% 3.95%
FNO, test - - - 36.73% 8.49%
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MWT, test - - - 38.84% 7.57% 10-1 100 101 102

Translation range with respect to domain length

100

105

1010

1015

T
es

t l
os

s

Glass-Ceramics - GNO
Glass-Ceramics - GNO
Glass-Ceramics - INO
Tissue - GNO
Tissue - GNO
Tissue - INO

50 100 150 200 250 300 350
Rotation range in degree

10-1

100

101

102

103

T
es

t l
os

s

Figure 5: Results for cases with vector-valued output function. Left: Training and test errors in small and medium data
regimes, where bold numbers highlight the best method for each case. Right: Generalization to test samples with translated
and rotated reference frames.

4.3 Real-world dataset: biological tissue deformation

We now take one step further to demonstrate the perfor-
mance of our method on a real-world physical response
dataset not generated by solving PDEs. We consider learn-
ing the mechanical response of multiple biological tissue
specimens from DIC displacement tracking measurements
(You et al., 2022b). In this example the constitutive equa-
tions and material microstructure are both unknown, and
the dataset has unavoidable measurement noise. In this
task, we aim to model the tissue response by learning a neu-
ral operator mapping the boundary displacement loading
to the interior displacement field. We train with N train =
{10, 100} numbers of samples, validate with 40 samples,
and test the learned model with 4500 samples. Since there
is no known governing PDE, the PINO architecture is not
applicable. Hence, we compare INOs with other three neu-
ral operator baselines (GNOs, FNOs, and MWTs). We note
that experimental measurements are generally not provided
on Cartesian grids. To test FNOs and MWTs, we apply a
cubic spline interpolation to the displacement field, to ob-
tain measurements on a structured grid. The results are pro-
vided in Figure 5. As one can see, INOs again perform the
best. Interestingly, compared with GNOs, in this exam-
ple INOs halve the test errors not only in the small data
regime (N train = 10), but also in the medium data regime
(N train = 100). This is possibly due to the fact that the
experimental measurement noise makes the learning with a
small number of samples more challenging. Therefore, this
example validates the robustness of our INOs not only in a
small data regime, but also on noisy real-world datasets.

5 CONCLUSION

We proposed INO to learn complex physical systems with
guaranteed momentums conservation. The key is to design
the network architecture that preserves the translational
and rotational invariance/equivariance properties. Our ap-
proach finds a physical interpretation from a particle-based

method, and only requires observed data pairs with mini-
mal physical assumptions. We demonstrate with both syn-
thetic and real-world datasets the expressivity and gener-
alizability of the proposed INOs, and show that the guar-
anteed momentum conservation improves the learning ef-
ficacy, especially in small and noisy data regimes. INO is
not only generalizable in handling translated and rotated
datasets, but also provides improved prediction from the
baseline neural operator models. Herein, we point out that
our INOs represent the first conservation law guaranteed
neural operator architecture, and we believe that it is a
novel and promising framework applicable to many exam-
ples in physical system learning.
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Supplementary Material:
INO: Invariant Neural Operators for Learning Complex Physical

Systems with Momentum Conservation

A DETAILED DERIVATIONS

A.1 Proof for Theorem 1

Herein, we provide the proof for the translation- and rotation-invariant properties of INO-scalar.

Proof. Notice that |f̃(Rx+ g)| = |Rf(x)| = |f(x)|, hence for the lifting layer (7) we have

h̃(Rx+ g, 0) = P[f̃ ](Rx+ g) = P |f̃(Rx+ g)|+ p = P |f(x)|+ p = h(x, 0).

Substituting it into the iterative layer, we can prove by induction that the j-th layer feature function is invariant, i.e.,
h̃(Rx+ g, jτ) = h(x, jτ), j = 0, · · · , L. Since the derivation for the lifting layer has already provided the base case, i.e.,
for j = 0, it suffices to prove the induction step. Since y − x is frame-invariant, we have

m̃(Rx+ g,Ry + g) = κ(y − x,
∣∣∣f̃(Rx+ g)

∣∣∣, ∣∣∣f̃(Ry + g)
∣∣∣) = κ(y − x, |f(x)|, |f(y)|) = m(x, y)

and hence given that h̃(Rx+ g, jτ) = h(x, jτ), for the (j + 1)-th layer we have

h̃(Rx+ g, (j + 1)τ) :=h̃(Rx+ g, jτ) + τσ

(
W h̃(Rx+ g, jτ) +

∫
Ω

m̃(Rx+ g,Ry + g)h̃(Ry + g, jτ)dy + c

)
=h(x, jτ) + τσ

(
Wh(y, jτ) +R

∫
Ω

m(x, y)h(x, jτ)dy + c

)
= h(x, jτ),

where Ω̃ := {Rx+ g : x ∈ Ω}, j = 0, · · · , L− 1. Similarly, for the projection layer we obtain

G̃[f̃ ](Rx+ g) = Q2σ(Q1h̃(Rx+ g, Lτ) + q1) + q2 = Q2σ(Q1h(x, Lτ) + q1) + q2 = G[f ](x).

A.2 Proof for Theorem 2

We now provide the detailed proof for the translation-invariant and rotation-equivariant properties for INO-vector.

Proof. Following the proof of Theorem 1, we have

h̃(Rx+ g, jτ) = h(x, jτ), j = 0, · · · , L,

m̃(Rx+ g,Ry + g) = m(x, y).

Then, for the additional coordinate function, x(x, jτ), we have

x̃(Rx+ g, 0) = Rx+ g = Rx(x, 0) + g.

Moreover, assume that x̃(Rx+ g, jτ) = Rx(x, jτ) + g, for the (j + 1)-th layer we have

x̃(Rx+ g, (j + 1)τ) :=x̃(Rx+ g, jτ) + τ

∫
Ω

(Rx+ g −Ry − g)ϕ(m̃(Rx+ g,Ry + g)h̃(Ry + g, jτ);w)dy

=Rx(x, jτ) + g + τ

∫
Ω

R(x− y)ϕ(m(x, y)h(y, jτ);w)dy

=R

(
x(x, jτ) + τ

∫
Ω

(x− y)ϕ(m(x, y)h(y, jτ);w)dy

)
+ g = Rx(x, (j + 1)τ) + g.
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Therefore, we obtain x̃(Rx+ g, jτ) = Rx(x, jτ) + g for j = 0, · · · , L. Finally, we have

G̃[f̃ ](Rx+ g) = x̃(Rx+ g, Lτ)− (Rx+ g) = R (x(x, Lτ)− x) = RG[f ](x).

A.3 A translation- and rotation-equivariant architecture

Besides the translation-invariant and rotation-equivariant problem we have discussed in the main text, for some physi-
cal problems a translation- and rotation-equivariant INO-vector architecture would be desired. For instance, in particle-
tracking problems, the current location of each molecular is of interest, which would be translation- and rotation-equivariant
with the change of reference frames. In this case, one can employ the same lifting and iterative block architectures as in
(10)-(14), and modify the projection block as

u(x) = Q[x(x, Lτ)](x) := x(x, Lτ). (17)

For this architecture we have the following theorem:

Theorem 3 (Equivariance for INO-vector). The INO-vector architecture proposed in Eqs. (10)-(14) and (17) is translation-
and rotation-equivariant. That means, when translating the reference frame by g ∈ Rd and rotating it by an orthogonal
matrix R ∈ Rd×d, the following property holds true:

G̃[f̃ ; θ](Rx+ g) = RG̃[f ; θ](x) + g ,

where f̃(Rx+ g) := Rf(x).

Proof. The proof can be trivially obtained following the same argument as in Theorem 2.

B PROBLEM DEFINITIONS AND NETWORK SETTINGS

We note that, in order to demonstrate the full expressivity of INO and carry out fair comparisons with GNO, MWT, and
FNO, all the involved integral operators are evaluated over the entire domain. However, in practical applications, one
can strike a balance between computational time and accuracy by evaluating the integral over a ball of a smaller radius.
Moreover, to prevent overfitting, an early stopping scheme is employed: the training process is stopped if the validation
loss does not drop in 60 epochs, and validation is performed only when the train loss is improved over the last saved
model. For fair comparison, the hyperparameters are tuned for each method, including the learning rates (tuned in the
range [1e − 2, 1e − 4]), decay rates (tuned out of {0.5, 0.7, 0.9}), and regularization coefficients (tuned in the range
[1e− 2, 1e− 5]). In PINOs, we further tune the penalty coefficient for the PDE loss in the range [0.1, 10]. All the models
are trained up to a total of 2000 epochs, and the learning rate is decayed at the interval of every 50 epochs. In all the
examples, the dimension of representation is set to dh = 64, and the kernel κ is modeled by a 3-layer MLP with width
(n, 512, 1024, d2h), where n is the number of kernel arguments for each architecture. Finally, the output u(x) ∈ Rdu at
each point x is obtained via a projection layer in the form of a 2-layer MLP with width (dh, 2dh, du).

B.1 Synthetic dataset: sub-surface flow

The detailed numerical results for ablation study and empirical experiments (displayed in Figure 4) are provided in Table 1.
The number of trainable parameters are listed in Table 2. Furthermore, a demonstration of the predictions of INO, GNO,
and FNO on randomly translated and rotated datasets is displayed in Figure 6. In order to demonstrate the resolution
independence nature of INO, an example is illustrated in 7 where INO is trained on 16× 16 grids and predicted directly on
31× 31 and 61× 61 grids.
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Model, Dataset, Resolution Number of training samples
10 20 40 100

FNO, train, 16× 16 0.153% 0.715% 0.906% 0.216%
FNO, test, 16× 16 14.29% 8.582% 5.235% 2.510%
FNO, test, 31× 31 14.75% 10.69% 9.072% 8.244%

GNO, train, 16× 16 2.117% 4.730% 2.002% 0.872%
GNO, test, 16× 16 7.708% 6.536% 4.389% 1.966%
GNO, test, 31× 31 8.167% 7.659% 7.579% 5.842%
INO, train, 16× 16 1.414% 1.580% 1.068% 0.500%
INO, test, 16× 16 6.145% 4.922% 3.110% 1.182%
INO, test, 31× 31 6.900% 6.345% 4.693% 4.167%

norm-INO, train, 16× 16 1.008% - - 0.627%
norm-INO, test, 16× 16 4.598% - - 1.273%

PINO, train, 16× 16 3.105% - - 0.468%
PINO, test, 16× 16 9.652% - - 2.560%

aug-GNO Naug=20, train, 16× 16 10.036% - - -
aug-GNO Naug=20, test, 16× 16 18.050% - - -
aug-GNO Naug=40, train, 16× 16 1.822% - - -
aug-GNO Naug=40, test, 16× 16 8.850% - - -

MWT, train, 16× 16 1.472% 1.212% 0.094% 0.044%
MWT, test, 16× 16 9.554% 7.370% 5.558% 3.436%

EGNN, train, 16× 16 16.56% - - 7.710%
EGNN, test, 16× 16 19.67% - - 9.550%

Table 1: Results for the sub-surface flow problem, where bold numbers highlight the best method for the test datasets on
original-resolution (16× 16 grids) and refined-resolution (31× 31 grids), respectively.

model INO GNO FNO PINO MWT EGNN
nparams 4,739,201 4,740,353 4,219,841 4,219,841 4,565,185 4,677,156

Table 2: Total number of parameters of each model for the sub-surface flow problem.

INO
Prediction on translated domain

Prediction on rotated domain

Coefficient

Ground truth

GNO
Prediction on translated domain

Prediction on rotated domain

FNO
Prediction on translated domain

Prediction on rotated domain

Figure 6: Demonstration of the predictions of INO, GNO, and FNO on randomly translated and rotated domains.
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Figure 7: Demonstration of the cross-resolution predictability of INO trained on 16 × 16 grids and predicted directly on
31× 31 and 61× 61 grids.

Figure 8: Input functions and (non-uniform) grids employed in examples 2 and 3.

B.2 Synthetic dataset: glass-ceramics deformation

Following Fan et al. (2022), we model the glass-ceramic material deformation with the linear peridynamic solid (LPS)
model:

Lδu :=− 1

m(δ)

∫
Bδ(x)

(λ(x, y)− µ(x, y))K(|y − x|) (y − x) (d(x) + d(y)) dy

− 8

m(δ)

∫
Bδ(x)

µ(x, y)K(|y − x|) (y − x)⊗ (y − x)

|y − x|2
(u(y)− u(x)) dy = 0 , for x ∈ Ω ,

u(x) :=uBC(x) , for x ∈ BBΩ ,

(18)
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where the nonlocal dilatation d(x) is defined as

d(x) :=
1

m(δ)

∫
Bδ(x)

K(|y − x|)(y − x) · (u(y)− u(x)) dy, for x ∈ Ω ∪ BΩ . (19)

Here, BΩ and BBΩ are the one-layer and two-layer nonlocal boundaries, respectively, which will be defined later. The
kernel function K and nonlocal volume m(δ) are defined as

K(|y − x|) = 1

|y − x|
, m(δ) :=

∫
Bδ(0)

K(|y|)|y|2dy =
2πδ3

3
. (20)

µ(x, y), λ(x, y) are the averaged shear modulus and Lamé first parameters of material points x and y.

To model the glass-ceramic specimen, we consider a circular domain with the same material parameters as provided in Fan
et al. (2022). The microstructure realization is randomly generated such that the volume ratio between crystal and glass is
around 2:3. To generate the displacement under different boundary conditions, we consider the horizon size δ = 0.3, the
nonlocal domain as Ω = {x : |x| ≤ 0.4}, and the nonlocal boundary regions as BΩ = {x : 0.4 < |x| ≤ 0.7},BBΩ =
{x : 0.4 < |x| ≤ 1.0}. For each sample, the nonlocal boundary condition uBC(x) is generated from a Gaussian random

field with G(x) = Re

([∑
k1,k2

ξk exp(i2πk · x/D)U [0, 1]∑
k1,k2

ξk exp(i2πk · x/D)U [0, 1]

])
, where k = (k1, k2), D = 2.8, ξk = (k21 + k22)

−5/4,

U [0, 1] represents the uniform distribution on (0, 1), and k1, k2 ∈ {−15,−14, . . . , 13}. The Gaussian random field G(x)
is created on a square domain [−1.4, 1.4]× [−1.4, 1.4] with structured grids, and the nonlocal boundary condition uBC is
obtained by cubic interpolation on unstructured grids within the region BBΩ. The corresponding high-fidelity displacement
field u(x) is generated employing the meshfree solver as described in Fan et al. (2022). Here, we point out that in this
example the domain shape and the grids are not structured, hence the FNO and MWT models are not applicable and we
focus on the comparison between GNOs and INOs.

B.3 Real-world dataset: biological tissue deformation

We briefly introduce the experimented specimen and the corresponding biological tissue dataset. In this example, we
employ the opensource dataset provided in https://github.com/fishmoon1234/IFNO-tissue, where a tri-
cuspid valve anterior leaflet tissue with an effective testing area of 9 × 9mm was mounted on a biaxial testing device.
Then, various loadings were applied on the boundary of this tissue specimen, and the corresponding displacement was
recorded for each material point by employing the digital image correlation (DIC) toolkit of the BioTester’s software. The
unstructured coordinate locations of the DIC-tracked grids were directly used to train the proposed INO and reference
GNO models. To create a structured grid for FNOs and MWTs, we further applied a cubic spline interpolation to the
displacement field on a structured 21 × 21 node grid. The dataset consists of a total of 26, 523 time instants (samples),
which is further divided into 22, 023 for training and 4, 500 for testing. In our example, we focus on the small training data
regime, by randomly select 10 or 100 numbers of samples for the purpose of training, then validate the model on all 4, 500
test samples and provide the averaged relative error for displacement fields.

https://github.com/fishmoon1234/IFNO-tissue
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