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Abstract

We focus on robust estimation of the unobserved
state of a discrete-time stochastic system with
linear dynamics. A standard analysis of this es-
timation problem assumes a baseline innovation
model; with Gaussian innovations we recover the
Kalman filter. However, in many settings, there
is insufficient or corrupted data to validate the
baseline model. To cope with this problem, we
minimize the worst-case mean-squared estima-
tion error of adversarial models chosen within
a Wasserstein neighborhood around the baseline.
We also constrain the adversarial innovations to
form a martingale difference sequence. The mar-
tingale constraint relaxes the i.i.d. assumptions
which are often imposed on the baseline model.
Moreover, we show that the martingale constraints
guarantee that the adversarial dynamics remain
adapted to the natural time-generated information.
Therefore, adding the martingale constraint al-
lows to improve upon over-conservative policies
that also protect against unrealistic omniscient
adversaries. We establish a strong duality result
which we use to develop an efficient subgradient
method to compute the distributionally robust es-
timation policy. If the baseline innovations are
Gaussian, we show that the worst-case adversary
remains Gaussian. Our numerical experiments
indicate that the martingale constraint may also
aid in adding a layer of robustness in the choice
of the adversarial power.

1 INTRODUCTION

We propose and study a Wasserstein distributionally robust
optimization (DRO) formulation with martingale constraints
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for the minimum mean-squared estimation of a linear state-
space stochastic system. State estimation is a central prob-
lem that arises in many real world applications, involving
control systems, such as motion tracking (Lee et al., 2013)
and GPS navigation (Liu et al., 2018) in autonomous vehi-
cles, real-time load tracking in the smart power grid (Ghahre-
mani and Kamwa, 2011; Zhao et al., 2017), healthcare mon-
itoring through wearable devices (Zhang et al., 2014) and
heart-rate estimation (Prakash and Tucker, 2018), and wire-
less sensor networks (Ribeiro et al., 2010). However, es-
timating the hidden state from observation data requires
either an accurate nominal model, or policies that are robust
to model misspecification. DRO formulations have become
increasingly popular in recent years because they provide a
principled way to produce sound estimators which account
for the impact in model misspecification, which may be
caused, for example, by data corruption or non-stationarities
(Rahimian and Mehrotra, 2019; Kuhn et al., 2019; Wiese-
mann et al., 2014; Lin et al., 2022; Delage and Ye, 2010;
Lee and Raginsky, 2018; Yang, 2020; Chen and Paschalidis,
2018; Sinha et al., 2018). Not surprisingly, DRO has been
applied to the types of mean-squared estimation problems
that we consider.

There are two types of distributional perturbations often
studied in DRO. The first type perturbs the likelihood of
an outcome (Love and Bayraksan, 2016), while the second
one perturbs the value of the outcome itself (Rahimian and
Mehrotra, 2019). KL divergence is the canonical type of ad-
versarial perturbation used to account for likelihood misspec-
ification (Nguyen et al., 2020, 2019; Duchi and Namkoong,
2021; Namkoong and Duchi, 2017). The Wasserstein dis-
tance is typically used to account for perturbations in ac-
tual outcomes. In the context of KL divergence (for the
types of models that we consider) Zorzi (2015); Lewis et al.
(2017); Zorzi (2016); Yi and Zorzi (2021) study DRO for-
mulations for mean-squared prediction of Gaussian systems.
They show that the optimal mean-square estimation policy
often remains invariant under adversarial KL-divergence
perturbations, although the worst-case adversarial structure
changes. On the other hand, when Wasserstein-based per-
turbations are allowed, Kuhn et al. (2019); Nguyen et al.
(2021); Shafieezadeh Abadeh et al. (2018) have shown that
the optimal mean-squared estimation policies can be sig-
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nificantly different. In both cases, when using a Gaussian
model as th nominal model, the worst-case non-parametric
estimation is possible, as the worst-case adversaries remain
Gaussian. Our work contributes to this line of research by
studying the impact of natural constraints in the adversar-
ial Wasserstein-based perturbations case. We choose the
Wasserstein distance because we are interested in comparing
with adversarial strategies that affect the estimation policy.

In situations involving a stochastic process over time (as
the one we study), a direct DRO formulation without con-
straints may result in over-conservative estimators (Li et al.,
2022; Liu et al., 2021). This is because the unconstrained
adversary has the ability to look into the future. Endowing
the adversary with a degree of “clairvoyance” would be jus-
tified in some settings, like competitive markets where some
players may have enhanced information sets. We propose
to include martingale constraints for the system’s innova-
tions for adversarial distributions. These constraints, as we
shall see, will ensure that the optimal worst-case adversary
is “adapted” to the information generated by the stochastic
process in time.

Moreover, martingale constraints for the innovations are
often adopted in applications such as economics, signal
processing, and engineering within the framework of lin-
ear state space dynamics, which is our focus here (Zheng
et al., 2015; Oh and Lee, 2018; Kara et al., 1974; Chen and
Caines, 1985). These constraints accommodate i.i.d. inno-
vations, which lead to Markovian state-space models, often
the models of choice in applications. Therefore, martingale
constraints are natural in our setting, as the adversary has the
ability to relax Markovianity while preserving information
adaptivity.

We summarize our contributions as follows:

1. We provide a novel DRO formulation for linear state
estimation with martingale constraints to overcome over-
conservative solutions while preserving adaptivity.

2. We show that the DRO estimation problem is tractable
and further develops a convex subgradient descent
method.

3. If the nominal distribution is Gaussian, we find out that
the worst-case adversary is Gaussian and thus DRO non-
parametric estimation is possible even with martingale
constraints.

4. We provide numerical experiments to showcase that mar-
tingale constraints can improve robustness in the uncer-
tainty size and decrease estimation error when nominal
models are fully misspecified but share the martingale
innovations property with the out-of-sample distribution.

Paper Organization. The rest of the paper is organized
as follows. In Section 2, we introduce some notions re-
lated to DRO that are necessary for our analysis and present

the discrete-time linear model under consideration. In Sec-
tion 3, we introduce the distributionally robust estimation
problem with martingale constraints and develop our main
results. Finally, in Section 4, we evaluate the performance
of our model through simulation experiments and discuss
the results, providing some useful insights.

Notation. Let (Y, d) be a metric space and B(Y) the as-
sociated Borel σ-algebra. We use P(Y) to denote the set of
probability measures on (Y,B(Y)). For P ∈ P(Y), EP de-
notes integration over P, that is, EP[f(Z)] =

∫
Y f(z)dP(z).

For π ∈ P(Y × Y), when (Z, Z̄) ∼ π, we denote
Eπ

[
c(Z, Z̄)

]
=
∫
Y×Y c(z, z̄)dπ(z, z̄) and Eπ

[
f(Z̄)

]
=∫

Y×Y f(z̄)dπ(z, z̄). Moreover, we use πZ and πZ̄ to denote
the marginal distribution of Z and Z̄, respectively. Further-
more, we use N (µ, σ2) to denote the 1-dimensional normal
distribution with mean µ and variance σ2, and Nd(µ,Σ) to
denote the d-dimensional normal distribution with mean µ
and covariance matrix Σ. We use Id to denote the d × d
identity matrix. Finally, we use L to denote the set of linear
functions.

2 PRELIMINARIES

In this section, we present some notions and definitions that
will be very useful for our analysis. We start by introducing
the optimal transport cost, the distributionally robust opti-
mization framework, and the linear state-space model under
consideration.

2.1 Wasserstein Distance and DRO

First, we give the definition of the optimal transport cost
between two probability measure µ and ν and relate it with
the Wasserstein distance.

Definition 1 (Optimal Transport cost). Let c : Rp × Rp →
[0,+∞) be a lower semi-continuous function, satisfying
c(z, z̄) = 0 if and only if z = z̄, and µ, ν probability
measures on Rp. The optimal transport cost between µ and
ν under the cost function c is defined as:

Wc(µ, ν) = inf
π∈P(Rp×Rp)

{
Eπ

[
c(Z, Z̄)

]
:
πZ = µ
πZ̄ = ν

}
where P(Rp × Rp) is the set of probability distribution in
Rp × Rp, and πZ , πZ̄ denote the marginal distributions of
Z and Z̄, respectively.

Intuitively,Wc(µ, ν) represents the minimum cost for trans-
porting the mass from the source measure µ to the target one
ν, while π(A,B) indicates the amount of mass transported
from A to B for A,B ∈ B(Rp), where B(Rp) is the Borel
σ-algebra in Rp.
Remark 1. When the cost function c is defined as c(z, z̄) :=
∥z − z̄∥22, it gives rise to the type-2 Wasserstein squared
distance, in which caseWc(µ, ν) is denoted byW2

2 (µ, ν).♦
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Distributionally Robust Optimization (DRO) deals with the
problem of optimizing the functional EP

[
f(Z̄)

]
, with re-

spect to P, in the neighborhood of a misspecified model P0

(Blanchet and Murthy, 2019). The standard DRO formula-
tion with transportation cost c, we consider, is given by the
following problem:

sup
P∈P(Rp)

{
EP
[
f(Z̄)

]
:Wc(P,P0) ≤ δ

}
(1)

for f an upper semi-continuous function and δ the confi-
dence parameter or the radius of the uncertainty region. In
other words, δ captures the amount of trust we have in the
nominal model P0. Equivalently (Blanchet and Murthy,
2019), we can write Eq. (1) as

sup
π∈P(Rp×Rp)

{
Eπ

[
f(Z̄)

]
: Eπ

[
c(Z, Z̄)

]
≤ δ, πZ = P0

}
We proceed by defining the linear state-space model and
the formulation of our distributionally robust estimation
problem.

2.2 Discrete-time Linear Dynamics and State
Estimation

We consider a linear state-space model for the finite time
horizon n = 1, . . . , T :

Xn = DnXn−1 + ηn

Yn = BnXn + εn (2)

where εn ∈ Rd are independent zero-mean random vec-
tors with finite second moment, and ηn ∈ Rm are also
independent zero-mean random vectors with finite second
moment and independent of εn. Moreover, Dn ∈ Rm×m

and Bn ∈ Rd×m are non-random matrices describing the
underlying system. For simplicity, we assume X0 = 0. Let-
ting η := (η1, . . . , ηT ) be the innovation process through-
out the entire horizon, ε := (ε1, . . . , εT ) be the noise
process and Z := (η, ε) the joint random vector, we de-
fine Ω to be the space where the random quantity Z lives,
i.e., Ω := Rm·T × Rd·T . Finally, we denote its nominal
distribution by P0 ∈ P(Ω), and we assume that the co-
variance matrix of (X,Y ) under P0 has full rank, where
X := (X1, . . . , XT ) and Y := (Y1, . . . , YT ).
Remark 2. The random vector Z, or equivalently, P0, cap-
tures all the randomness of the linear system (2). ♦

In Eq. (2), the variable Xn represents the unobservable
state of the system, while Yn the noisy observation at time
n. Optimal filtering deals with the problem of finding the
most accurate estimator of the hidden state Xn based on
the observation history (Y1, . . . , Yn). It is known (Ander-
son and Moore, 1979) that the minimum variance estimator
of Xn given (Y1, . . . , Yn) is the conditional expectation
E[Xn | Y1, . . . , Yn], in the sense that it minimizes the mean-
squared error E

[
∥X − g(Y )∥22

]
among all functions g with

∫
g2(y)dP <∞. However, the conditional expectation is

hard to compute efficiently in general. Instead, a class of
estimators that balances between computational efficiency
and estimation accuracy in practice is that of linear estima-
tors, denoted by L. Formally, the estimation problem under
consideration can be written as:

inf
ϕ1,...,ϕT∈L

{
T∑

n=1

E
[
∥Xn − ϕn(Y1, . . . , Yn)∥22

]}
(3)

where ϕn ∈ L are linear functions.

For reasons that will become apparent next, it is convenient
to unfold the linear equations (2) as follows: Using the
linearity and the recursive nature of the system, Xn can be
expressed as a linear combination of η1, . . . , ηn, i.e., Xn

can be written as:

Xn = ηn +

n−1∑
i=1

 n∏
j=i+1

Dj

ηi = n∑
i=1

ψn,iηi (4)

with ψn,i =
∏n

j=i+1Dj for 1 ≤ i < n and ψn,n =
Im.Thus, Yn can be written as:

Yn = Bn

n∑
i=1

ψn,iηi + εn =

n∑
i=1

ψ̂n,iηi + εn (5)

where ψ̂n,i = Bnψn,i.

2.3 Distributionally Robust Estimation

Under model misspecification, the goal of distributionally
robust (DR) estimation is to find the best estimator un-
der the worst-case distribution within some uncertainty re-
gion. The type-2 Wasserstein distance has been widely
used as a measure of divergence from the nominal model
(Shafieezadeh Abadeh et al., 2018; Nguyen et al., 2021;
Wang and Ye, 2022). In that case, the DR estimation prob-
lem would be defined as:

inf
ϕn∈L

n=1,..,T

sup
W2

2 (P,P0)≤δ

{
T∑

n=1

EP
[
∥Xn − ϕn(Y1, . . . , Yn)∥22

]}
(6)

Intuitively, the estimation problem (6) can be viewed as a
zero-sum game between a statistician and a powerful ad-
versary, who tries to perturb the distribution in a way that
results to the worst possible estimation with respect to the
mean-squared error. Without further restrictions on the dis-
tributions P and P0, solving (6) might be intractable. Indeed,
previous works (Shafieezadeh Abadeh et al., 2018; Nguyen
et al., 2021; Wang and Ye, 2022) that study the problem
of distributionally robust estimation of a linear state-space
system, add the extra assumption that both P0 and P are
Gaussian distributions.

In this work, we relax the Gaussian assumption by adding a
set of martingale constraints, as described in Section 3.
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3 DRO WITH MARTINGALE
CONSTRAINTS

In this section, we define our distributionally robust esti-
mation problem under martingale constraints for the linear
state-space model discussed before.

3.1 Distributionally Robust Linear-quadratic
Estimator

We consider the following distributionally perturbed linear
state-space model:

X̃n = DnX̃n−1 + η̃n

Ỹn = BnX̃n + ε̃n (7)

where η̃n and ε̃n denote the perturbed noise processes from
the nominal ones, ηn and εn, respectively.

For Z = (η, ε), Z̃ = (η̃, ε̃) random vectors in Ω, we con-
sider the transportation cost c defined as:

c(Z, Z̃) := ∥ε− ε̃∥22 +∞∥η − η̃∥22 (8)

with the convention that 0 · ∞ = 0 (Blanchet et al., 2019;
Blanchet and Murthy, 2019). Implicitly, this cost function
enforces that η = η̃ almost surely under the worst-case dis-
tribution. Thus, from now on we neglect the second term
of the cost function and set η = η̃, since the worst-case dis-
tribution chosen by the adversary under this transportation
cost function automatically satisfies η = η̃ almost surely.
Remark 3. This choice of transportation cost function still
allows the adversary to correlate ε̃ with η, in order to use
the innovation process η in their favor, as we show in Theo-
rem 1. So, this modeling choice does not severely limit the
adversarial power. ♦

To obtain a more direct relation between the nominal model
(2) and the perturbed one (7), we define ∆n := ε̃n − εn.
Thus, (7) becomes:

X̃n = DnX̃n−1 + ηn

Ỹn = BnX̃n + εn +∆n (9)

where, now, ηn, εn and ∆n are martingale differences with
finite second moment, as described below.

Formally, defining the underlying filtration F = (Fn)
T
n=1

such that Fn includes all the information known by a pow-
erful adversary up to time n, i.e.,

Fn = σ({ηt, εt,∆t}nt=1) (10)

with F0 = {∅,Ω}. So, we restrict the adversary by intro-
ducing the following constraints:

(i) Wasserstein-distance:∑T
n=1 Eπ

[
∥∆n∥22

]
≤ δ

(ii) Martingale-difference:

Eπ[(ηn, εn,∆n) | Fn−1] = 0

for all n = 1, . . . , T .

Note that εn and ηn are independent under P0, as defined in
the nominal model (2).

The Wasserstein-distance constraint restricts the worst-case
distribution, or, equivalently, the distribution of the pertur-
bations ∆1, . . . ,∆n within the type-2 squared Wasserstein
ball of radius δ, centered at P0. The Martingale-difference
constraints, combined with the fact that the objective func-
tion is quadratic, guarantee that the adversarial perturba-
tions do not use future information, i.e., realization of the
processes in the future, as we show next in Theorem 1.
Therefore, this set of constraints makes the adversary to
be adapted, which is a natural requirement in most time-
dependent real-world applications.
Remark 4. If ∆n = 0 a.s. for all n, then model (9) collapses
to the nominal one in (2). ♦

Now, we define the Wasserstein with martingale constraints
distributional uncertainty region over P(Ω× Ω) as:

Dδ =

π ∈ P(Ω× Ω) :

∑T
n=1 Eπ

[
∥∆n∥22

]
≤ δ

Eπ[(ηn, εn,∆n) | Fn−1] = 0

π(η,ε) = P0


Our goal is to find the best linear predictor of (X̃1, . . . , X̃T )
given the observations (Ỹ1, . . . , ỸT ) under the worst-case
distribution in Dδ. Hence, we consider the following DR
estimation problem:

OPT := inf
ϕ∈L

sup
π∈Dδ

f(ϕ, π) (11)

where f(ϕ, π) :=
∑T

n=1 Eπ

[
∥X̃n − ϕn(Ỹ1, . . . , Ỹn)∥22

]
and by ϕ we denote the linear functions ϕ1, . . . , ϕT . No-
tice that when predicting X̃n, we use only the observations
(Ỹ1, . . . , Ỹn), i.e., our predictor does not make use of the
future information (Ỹn+1, . . . , ỸT ).

Remark 5. For each linear function ϕn ∈ L we have
ϕn(Ỹ1, . . . , Ỹn) =

∑n
j=1 ϕn,j Ỹj , where each ϕn,j is a

m × d matrix. From now on, we will write the objective
function f(ϕ, π) as:

f(ϕ, π) = Eπ

[
∥X̃n −

∑n
j=1 ϕn,j Ỹj∥22

]
(12)

♦

Moreover, we define the value function V as:

V (ϕ) := sup
π∈Dδ

f(ϕ, π) (13)

which we will show that it is convex and, ultimately, our
goal will be to minimize, V over ϕ, i.e., to find the optimal
linear estimator.
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Remark 6. Shafieezadeh Abadeh et al. (2018) study the
mean-squared distributionally robust Kalman filter under a
Wasserstein constraint involving a single time period, where
the power of the adversary is replenished at every time step,
and a time-by-time robustification and estimation are per-
formed. This formulation is not designed to account for the
impact of knock-on effects over a multi-period setting. Dif-
ferent from Shafieezadeh Abadeh et al. (2018), we impose a
multi-period Wasserstein constraint, i.e., the time horizon is
arbitrary but fixed. In our model, the total power δ of the ad-
versary does not reset between different time steps. Because
of this multi-temporal feature, martingale constraints arise
naturally to enforce the adaptability both of the adversarial
and the estimation policies. ♦

3.2 Impact of Martingale Constraints

To begin with, we present one crucial lemma which is the
key to make the non-parameteric DRO estimator effective
and tractable with martingale constraints. Technically, the
following lemma can help us simplify the cross term when
we expand the term Eπ

[
∥X̃n −

∑n
j=1 ϕn,j Ỹj∥22

]
.

Lemma 1. For π ∈ Dδ and i ̸= j it holds:

(a) Eπ

[
ε̃⊤j Aε̃i

]
= Eπ

[
ε̃⊤j Bηi

]
= 0 for any A ∈

Rd×d, B ∈ Rd×m.

(b) Eπ

[
ε̃⊤i Bηi

]
= Eπ

[
∆⊤

i Bηi
]

for any B ∈ Rd×m.

Proof. Let i > j.

(a) We have:

Eπ

[
ε̃⊤j Aε̃i

]
= Eπ

[
Eπ

[
ε̃⊤j Aε̃i | Fj

]]
= Eπ

[
ε̃⊤j AEπ[ε̃i | Fj ]

]
= 0

where we used the tower property and the fact that
Eπ[Eπ[ε̃i | Fi−1] | Fj ] = 0. Similarly, we conclude
that Eπ

[
ε̃⊤j Bηi

]
= 0.

(b) It follows directly by writing ε̃i = εi +∆i and using
the independence of εi and ηi under P0.

■

Now, we are ready to state the following proposition.

Proposition 1. The objective function f(ϕ, π) in (11), can
be written as:

Eπ

[
T∑

i=1

η⊤i κi(ϕ)ηi +

T∑
i=1

ε̃⊤i ci(ϕ)ε̃i − 2

T∑
i=1

η⊤i ai(ϕ)ε̃i

]
(14)

where we have ci(ϕ) :=
∑T

n=i ϕ
⊤
n,iϕn,i ∈ Rd×d,

κi(ϕ) :=
∑T

n=iAn,i(ϕ)
⊤An,i(ϕ) ∈ Rm×m, ai(ϕ) :=∑T

n=iAn,i(ϕ)
⊤ϕn,i ∈ Rm×d, and An,i(ϕ) = ψn,i −∑n

j=i ϕn,jψ̂j,i ∈ Rm×m.

Sketch of Proof. Expanding the quantity inside the expec-
tation, and after some algebraic manipulations, we invoke
Lemma 1 to cancel the cross-terms of the form Eπ

[
ε̃⊤i Aε̃j

]
and Eπ

[
ε̃⊤i Bηj

]
for A ∈ Rd×d and B ∈ Rd×m. The full

proof can be found in the appendix. ■

Intuitively, the Martingale-difference constraints allow us to
simplify the objective function in the more elegant expres-
sion of Proposition 1. At the same time, we see that this
new expression does not involve inner products of different
time-steps, allowing us to obtain a solution that respects the
adaptability property.

3.3 Finding the Worst-case Distribution

We will now focus on the inner maximization problem of
(11), i.e.,

Val(P) := sup
π∈Dδ

T∑
n=1

Eπ

∥X̃n −
n∑

j=1

ϕn,j Ỹj∥22

 (15)

for some fixed ϕ ̸= 0. The case where ϕ = 0 is trivial, since
any π ∈ Dδ gives the same objective value. In the following
theorem, we show that problem (15) attains the supremum
for π̃ ∈ Dδ and we fully characterize a optimal solution for
any ϕ ̸= 0.

Theorem 1. For ϕ ̸= 0, one of optimal solution of (15) is
of the form:

∆̃i =

{
(ci(ϕ)− λ̃I)−1

(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)
, i ∈ C

0, otherwise

where C = {i : ci(ϕ) ̸= 0} and λ̃ > 0.

Sketch of Proof. The idea of our proof is based on duality
theory; after, formulating the dual problem of (15), we
will find a primal-dual optimal pair. The result will follow
directly by verifying that strong duality holds.

Note that the primal problem has an uncountable set of
constraints; each one of the three constraints

Eπ[(ηn, εn,∆n) | Fn−1] = 0

is a pathwise equality for any realization of {ηt, εt,∆t}n−1
t=1 .

Hence, the associated dual variables for the aforementioned
constraints, namely ξn(·), βn(·), ζn(·) for n = 1, . . . , T ,
can be chosen to be Lipschitz continuous functions of(
{ηt, εt,∆t}n−1

t=1

)
. Formally, the dual problem is defined:

Val(D) := inf
λ≥0

ξi,βi,ζi

λδ + EP0

[
sup
∆

h(∆)

]
(16)
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where by h(∆) we denote the quantity:

T∑
i=1

[
∆⊤

i (ci(ϕ)− λI)∆i + 2∆⊤
i

(
ci(ϕ)εi − ai(ϕ)⊤ηi

)
+ ξi

(
{ηt, εt,∆t}i−1

t=1

)⊤
ηi + βi

(
{ηt, εt,∆t}i−1

t=1

)⊤
εi

+ ζi
(
{ηt, εt,∆t}i−1

t=1

)⊤
∆i

]
(17)

As noted before, each one of the dual variables ξi, βi and ζi
is a Lipschitz continuous function of {ηt, εt,∆t}i−1

t=1 associ-
ated with the primal constraint Eπ[(ηi, εi,∆i) | Fi−1] = 0,
accordingly, and λ ≥ 0 is the dual variable associated with
the Wasserstein constraint

∑T
n=1 Eπ

[
∥∆n∥22

]
≤ δ.

By weak duality, we automatically obtain that:

Val(P) ≤ Val(D) (18)

As a next step, we guess and verify that a primal-dual opti-
mal pair is of the form:

a) ∆̃i := (ci(ϕ)− λ̃I)−1
(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)

for i =
1, . . . , T under π̃.

b) λ̃ is the greatest solution of equation:∑T
n=1 Eπ

[
∥∆̃n∥22

]
= δ (19)

and ξ̃i(·) = β̃i(·) = ζ̃i(·) = 0 for all i = 1, . . . , T .

with the same primal and dual objective values.

Therefore, combining it with (18), we conclude that strong
duality holds, i.e.,

Val(P) = Val(D), (20)

and the coupling π̃, whose second marginal is the law of
(η, ε+ ∆̃), gives the worst-case distribution in Dδ .

The full proof can be found in the appendix. ■

Remark 7. We interchangeably use ∆̃ or π̃ to denote the
worst-case distribution, as appropriate. ♦

Remark 8. The solution π̃ is parametrized by ϕ, i.e., π̃ϕ.
However, we omit it for notational convenience, when it is
clear from context. Similarly for ∆̃. ♦

Corollary 1. For ϕ ̸= 0, if (η, ε) is normally distributed
under P0, then there exist a worst-case coupling π̃ϕ such
that ∆̃ϕ is also normally distributed under π̃ϕ.

Proof. The conclusion follows immediately, since ∆̃ϕ is a
linear transformation of (η, ε) under π̃ϕ. ■

Remark 9. Note that even in the case that (η, ε) is normally
distributed under P0, there might be other, non-Gaussian,
solutions of (15). ♦

This result is remarkable because it enables non-parametric
DRO estimation of the hidden state under both martingale
and Wasserstein constraints. Precisely, when P0 is Gaussian,
ϕ can be chosen to be a generalL2 function, but an optimal ϕ
exists within the class of affine functions. This complements
previous results by Zorzi (2016); Kuhn et al. (2019); Nguyen
et al. (2021); Shafieezadeh Abadeh et al. (2018) which show
that without martingale constraints (both with Wasserstein
and KL divergence uncertainty) the worst case distribution
remains Gaussian.

3.4 Finding an Optimal Estimator

In order to solve (11) and obtain an optimal estimator, we
first argue that the value function is convex. Formally, we
have the following lemma.

Lemma 2. The value function V (ϕ) is a convex finite-
valued function.

Proof. For any π in the constraint set Dδ , the function ϕ 7→∑T
n=1 Eπ

[
∥X̃n −

∑n
j=1 ϕn,j Ỹj∥22

]
is convex. Taking the

supremum over π ∈ Dδ we readily get that V (ϕ) is a convex
function as the pointwise supremum of convex functions.
The full proof can be found in the appendix. ■

Our strategy for obtaining an optimal estimator, will be to
perform subgradient descent on the value function V . The
following proposition implements a subgradient oracle for
V at each ϕ, and its proof can be found in the appendix.

Proposition 2. Let ϕ′, and π̃ϕ′ the corresponding worst-
case distribution in Dδ , as per Theorem 1. Then, defining

g := ∇ϕf(ϕ, π̃ϕ′) |ϕ=ϕ′ (21)

it holds that g ∈ ∂V (ϕ′).

The proof of Proposition 2 can be found in the ap-
pendix. Now, we claim that the value function V is
coercive. For this, suppose that the function ϕ 7→∑T

n=1 EP0

[
∥Xn −

∑n
j=1 ϕn,jYj∥22

]
is coercive. Then

V (ϕ) is also coercive. To see this, by the definition of
the V , we have that:

V (ϕ) ≥
∑T

n=1 EP0

[
∥Xn −

∑n
j=1 ϕn,jYj∥22

]
(22)

Taking ∥ϕ∥2 →∞, we obtain that V (ϕ)→∞, as the RHS
of (22) goes to infinity.

A sufficient condition for the function ϕ 7→∑T
n=1 EP0

[
∥Xn −

∑n
j=1 ϕn,jYj∥22

]
to be coercive is

that the covariance matrix of the random vector (X,Y ) un-
der P0 is positive definite, which is true by the assumptions
imposed on P0 in Section 2.

By coercivity of V (ϕ), it is natural to assume that ϕ lives
in a compact and convex set, denoted by Φ. By continuity
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of V in the compact set Φ, we automatically get that V is
Lipischitz continuous.

In Algorithm 1 we present our subgradient-based algorithm
for computing Martingale Distributionally Robust Estimator
(MaDRE), with Õ(k−1/2) convergence rate, where k is
the iteration number (Nesterov, 2014), with each iteration
performing spectral decomposition of symmetric matrices,
where known efficient methods can be leveraged.

Algorithm 1: Martingale Distributionally Robust Estimator
(MaDRE)

1: Initialize: ϕ1 ∈ Φ, step-size schedule γt ∝ 1/
√
t

2: for t = 1, 2, . . . do
3: Get ∆̃ϕt , as per Theorem 1.
4: Compute gt ∈ ∂V (ϕt) as per Proposition 2.
5: ϕt+1 ← projΦ(ϕt − γtgt/∥gt∥2)
6: end for

4 PERFORMANCE EVALUATION

In this section, we describe our simulations setup and com-
pare our model against that of Nguyen et al. (2021). Our
goal is to highlight the impact of adding the martingale con-
straint both in terms of sensitivity to model misspecification
and uncertainty size. To do this, we will perform two types
of experiments on a simple, yet illustrative, set of models.

(E1) In the first type, we simulate data from a ground truth
model. This data is used to fit a nominal model (i.e.
P0) that does not coincide with the ground truth model,
which is typically unknown to the modeler. Then, we
use DRO both with martingale and without martingale
constraints to estimate the hidden state based on the
signal. We evaluate the performance of these estima-
tors using the ground truth model out-of-sample via
Monte Carlo simulation and study the impact of the
uncertainty size power, δ.

(E2) In the second type, we fit a nominal model to data
produced with a data generating mechanism which
is different from the ground truth but still preserves
martingale innovations. We again apply DRO with and
without martingale constraints and also evaluate the
out-of-sample performance of the estimators using the
ground truth model. Our focus here is on out-of-sample
performance when the data used to fit P0 is different
from the ground truth.

4.1 Ground Truth and Nominal Models

Ground Truth Model. We now describe how do we
generate the ground truth model. We focus on simple 1-
dimensional models because the insights can already be

studied in this simple setting. For n = 1, . . . , T :

X∗
n+1 = X∗

n + η∗n+1

Y ∗
n+1 = X∗

n+1 + ε∗n+1, (23)

with (i) η∗n’s i.i.d. with distribution N (0, 1), and (ii)
ε∗n = hn(X

∗
1 , . . . , X

∗
n−1)U

∗
n for U∗

n’s which are i.i.d.
unif(−1, 1), and hn(X∗

1 , . . . , X
∗
n−1) is a history-dependent

random function. Specifically, we consider hn to be defined
as hn(X∗

1 , . . . , X
∗
n−1) = (X∗

1 + · · ·+X∗
n−1) · q∗n with q∗n

∼ N (0, 1) i.i.d. We assume that the sequences U∗
n, q

∗
n and

η∗n are all mutually independent.

Nominal model. We assume that the nominal model, P0,
is a linear Markovian model such that n = 1, . . . , T :

Xn+1 = Xn + ηn+1

Yn+1 = Xn+1 + εn+1, (24)

where the ηn’s are i.i.d. with distribution N (0, 1), the
εn’s are conditionally independent given the σn’s with
εn ∼ N (0, σ2

n) . In turn, the σn’s are computed as the
sample variances of the generated data as we will explain in
Section 4.3.

4.2 Equivalent Reformulation

In order to compare our model with that of Nguyen et al.
(2021) , we need to bring the linear model (24) into the
following formulation:

Y = HX + ε (25)

where Y ∈ RT is the observation vector, ε ∈ RT is the
additive noise, X ∈ RT is the (unobserved) state of the
system, and H the matrix of the system.

It is easy to see that for ηi ∼ N (0, 1) i.i.d., the state
variable Xn in (24), is distributed as normal N (0, n).
Therefore, if we consider the random vector X =
(X1, . . . , XT ), we have that X ∼ NT (0,ΣX) with
(ΣX)ij = min{i, j}. Moreover, for ε ∼ NT (0,Σε) with
Σε = diag(σ2

1 , . . . , σ
2
T ), and ε independent of X , we get

that model (25) is equivalent to (24) under P0, for H being
the identity matrix.

The optimal linear estimator of Nguyen et al. (2021) uses
the whole observation profile (Y1, . . . , YT ) for all prediction
steps. In other words, their prediction of the stateXk at time-
step k depends also on Yk+1, . . . , YT , i.e., future values. So,
we consider two interpretations of the estimator in Nguyen
et al. (2021):

WMMSE-Future: The standard estimation of Nguyen
et al. (2021) which uses also the future observations
Yk+1, . . . , YT to predict state Xk. This estimator cannot
be implemented at time k given only the observations
Y1, . . . , Yk.
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Figure 1: P0 fitted in the data generated by the true model (M1)
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Figure 2: P0 fitted in the data generated by the different model (M2)

WMMSE-Conditional: The estimation that replaces
Yk+1, . . . , YT with their conditional expectations under
the corresponding worst-case distribution in Nguyen et al.
(2021) given the observations Y1, . . . , Yk, i.e. with Ȳk+1 :=
E[Yk+1 |Y1, . . . , Yk], . . . , ȲT := E[YT |Y1, . . . , Yk].
Remark 10. It is important to note that while WMMSE-
Future cannot be implemented with current information,
it is useful to keep as a benchmark to quantify the future
information value. However, WMMSE-Future can be im-
plemented for XT . In this case, both WMMSE-Future and
WMMSE-Conditional coincide and this special case is stud-
ied separately in our numerical experiments. ♦

4.3 Data Generating Mechanisms

Now, we describe the two data generating mechanisms we
consider for fitting the nominal model P0, as described in
(24). We simulate 20 independent batches of samples for
T = 5 and T = 10 generated

(M1) Mechanism 1 is used in the first type of experiments
(E1). The data is generated directly from the true
model. (23),

(M2) Mechanism 2 applies to the second type of experiments

(E2). The data is generated from a different model
from ground truth. We assume that the noise process
is generated as ε̄n ∼ unif(−1, 1).

4.4 Evaluation & Discussion

To probe the behavior of MaDRE and evaluate its perfor-
mance we run a number of experiments, as follows.

For each δ (Wasserstein radius) considered, we gener-
ate 1000 batches from the true model (23) and compute
the mean-squared error (MSE) of the predictions from
our model, and the two variants: WMMSE-Future and
WMMSE-Conditional, as discussed before. In each plot,
the vertical axis corresponds to the MSE and the horizontal
to the normalized radius of the uncertainty region δ. We
normalize the absolute values of δ in each plot with the
respective MSE estimated under P0, that is, for δ = 0.

Fig. 1 corresponds to the first experiment (E1), where the
data for fitting the nominal model P0 come from the true
mechanism (M1), and Fig. 2 corresponds to the experiment
(E2), where the data come from mechanism (M2).

In Fig. 1a, Fig. 1c, Fig. 2a, Fig. 2c we compare the out-of-
sample MSE of MaDRE to that of WMMSE-Conditional
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and WMMSE-Future, throughout the entire horizon T , for
T = 5, 10. In Fig. 1b, Fig. 1d, Fig. 2b, Fig. 2d, we compare
the out-of-sample MSE of the estimators only at the last
time-step T . As explained in Remark 10, it is meaningful
to compare the error of the last time-step T too since the
WMMSE-Conditional and WMMSE-Future coincide and
this could be interpreted as a way to directly apply the
WMMSE strategy. We use the label WMMSE to denote the
estimator in the plots.

In Fig. 1a and Fig. 1c, we see that for any given uncer-
tainty budget MaDRE is uniformly better than WMMSE-
Conditional and outperforms (in most cases) even WMMSE-
Future which uses future information (both for the adversary
but also for the policy). This also is apparent not only com-
paring fixed uncertainty budgets, but also the best global
achievable estimated error over δ. Moreover, it is clear that
the MSE of MaDRE changes more smoothly than that of
the others as the δ parameter varies, and its error appears
consistently lower as the value of δ increases. From this,
we see that introducing the martingale constraints can add
an extra layer of robustness in the choice of the uncertainty
parameter δ. We find this property particularly useful since
the process of tuning the hyperparameter δ is not typically
easy. This “extra layer of robustness” and its effect on per-
formance becomes even more visible in Fig. 1b and Fig. 1d,
where the estimators use the same amount of information.

In Fig. 2a and Fig. 2c, where the data for fitting P0 are gen-
erated by the different mechanism (M2), we observe that the
WMMSE-Conditional and WMMSE-Future have greater
estimation improvements for smaller values of δ. How-
ever, as δ increases, there is a broad region of uncertainty
where MaDRE outperforms both WMSSE-Conditional
and WMMSE-Future. Overall, the martingale constraints
achieve the best global achievable estimated error, for suit-
able δ. The intuitive reason, we believe, is the following.
Because P0 is fitted to data generated by a different model
from the testing model, the model misspecification gap is
larger. Therefore, the over-conservative policies produced
by WMMSE-Conditional and WMMSE-Future lead to a
steepest decrease in the estimation error for smaller val-
ues of δ, since the adversary, being less restrictive, has a
stronger ability to efficiently help hedge the misspecification
gap per marginal unit of uncertainty budget. However, as
δ increases, the adversary becomes too powerful, and the
martingale constraints start playing a key role since this is a
common feature shared both by the data generating process
and the out-of-sample distribution. This allows MaDRE to
outperform for a much broader parameter space. Similar
behavior is observed in Fig. 2b and Fig. 2d.

5 CONCLUDING REMARKS

In this work, we study the impact of martingale constraints
on the estimation of the unobserved state of a discrete-time

linear state-space model. We show that the worst-case ad-
versary is adapted to the natural time-generated information
and develop an efficient subgradient-based algorithm for
computing an optimal linear estimator. Our experiments
demonstrate that the martingale constraints broadly avoid
over-conservative policies, adding an extra layer of robust-
ness in the choice of the size of the uncertainty region.
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A MISSING PROOFS

A.1 Proof of Proposition 1

Proposition 1. The objective function f(ϕ, π) in (11), can be written as:

Eπ

[
T∑

i=1

η⊤i κi(ϕ)ηi +

T∑
i=1

ε̃⊤i ci(ϕ)ε̃i − 2

T∑
i=1

η⊤i ai(ϕ)ε̃i

]
(14)

where we have ci(ϕ) :=
∑T

n=i ϕ
⊤
n,iϕn,i ∈ Rd×d, κi(ϕ) :=

∑T
n=iAn,i(ϕ)

⊤An,i(ϕ) ∈ Rm×m, ai(ϕ) :=∑T
n=iAn,i(ϕ)

⊤ϕn,i ∈ Rm×d, and An,i(ϕ) = ψn,i −
∑n

j=i ϕn,jψ̂j,i ∈ Rm×m.

Proof. The general term in (11) can be written as:

Eπ

∥X̃n −
n∑

j=1

ϕn,j Ỹj∥22

 = Eπ

∥ n∑
i=1

ψn,iηi −
n∑

j=1

ϕn,j ε̃j −
n∑

j=1

ϕn,j

j∑
i=1

ψ̂j,iηi∥22


= Eπ

∥ n∑
i=1

ψn,iηi −
n∑

j=1

ϕn,j ε̃j −
n∑

i=1

 n∑
j=i

ϕn,jψ̂j,i

ηi∥22


= Eπ

∥ n∑
i=1

ψn,i −
n∑

j=i

ϕn,jψ̂j,i

ηi − n∑
i=1

ϕn,iε̃i∥22


= Eπ

[
∥

n∑
i=1

An,i(ϕ)ηi −
n∑

i=1

ϕn,iε̃i∥22

]

= Eπ

[
∥

n∑
i=1

An,i(ϕ)ηi∥22 + ∥
n∑

i=1

ϕn,iε̃i∥22 − 2

〈
n∑

i=1

An,i(ϕ)ηi,

n∑
i=1

ϕn,iε̃i

〉]

= Eπ

[
n∑

i=1

∥An,i(ϕ)ηi∥22 +
n∑

i=1

∥ϕn,iε̃i∥22 − 2

n∑
i=1

⟨An,i(ϕ)ηi, ϕn,iε̃i⟩

]
(A.1)

where An,i(ϕ) = ψn,i −
∑n

j=i ϕn,jψ̂j,i for 1 ≤ i ≤ n. The last equality in (A.1) follows from Lemma 1 and independence
of ηn’s under P0. Therefore, the objective function of (11) becomes:

f(ϕ, π) =

T∑
n=1

Eπ

∥X̃n −
n∑

j=1

ϕn,j Ỹj∥22


= Eπ

[
T∑

n=1

(
n∑

i=1

∥An,i(ϕ)i∥22 +
n∑

i=1

∥ϕn,iε̃i∥22 − 2

n∑
i=1

⟨An,i(ϕ)ηi, ϕn,iε̃i⟩

)]

= Eπ

[
T∑

i=1

T∑
n=i

∥An,i(ϕ)ηi∥22 +
T∑

i=1

T∑
n=i

∥ϕn,iε̃i∥22 − 2

T∑
i=1

T∑
n=i

⟨An,i(ϕ)ηi, ϕn,iε̃i⟩

]

= Eπ

[
T∑

i=1

η⊤i

(
T∑

n=i

An,i(ϕ)
⊤An,i(ϕ)

)
ηi +

T∑
i=1

ε̃⊤i

(
T∑

n=i

ϕ⊤n,iϕn,i

)
ε̃i − 2

T∑
i=1

η⊤i

(
T∑

n=i

An,i(ϕ)
⊤ϕn,i

)
ε̃i

]
(A.2)

Setting ci(ϕ) :=
∑T

n=i ϕ
⊤
n,iϕn,i, κi(ϕ) :=

∑T
n=iAn,i(ϕ)

⊤An,i(ϕ) and ai(ϕ) :=
∑T

n=iAn,i(ϕ)
⊤ϕn,i, we obtain that

f(ϕ, π) = Eπ

[
T∑

i=1

η⊤i κi(ϕ)ηi +

T∑
i=1

ε̃⊤i ci(ϕ)ε̃i − 2

T∑
i=1

η⊤i ai(ϕ)ε̃i

]
(A.3)

■
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A.2 Proof of Theorem 1

Theorem 1. For ϕ ̸= 0, one of optimal solution of (15) is of the form:

∆̃i =

{
(ci(ϕ)− λ̃I)−1

(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)
, i ∈ C

0, otherwise

where C = {i : ci(ϕ) ̸= 0} and λ̃ > 0.

Proof. By the reformulation of the objective function as per Proposition 1, we can write the inner maximization problem of
(11) as:

Val(P ) = sup
π∈Dδ

{
Eπ

[
T∑

i=1

η⊤i κi(ϕ)ηi +

T∑
i=1

ε̃⊤i ci(ϕ)ε̃i − 2

T∑
i=1

η⊤i ai(ϕ)ε̃i

]}

= sup
π∈Dδ

{
Eπ

[
T∑

i=1

η⊤i κi(ϕ)ηi

]
+ Eπ

[
T∑

i=1

ε̃⊤i ci(ϕ)ε̃i − 2

T∑
i=1

η⊤i ai(ϕ)ε̃i

]}

= sup
π∈Dδ

{
EP0

[
T∑

i=1

η⊤i κi(ϕ)ηi

]
+ Eπ

[
T∑

i=1

ε̃⊤i ci(ϕ)ε̃i − 2

T∑
i=1

η⊤i ai(ϕ)ε̃i

]}

= EP0

[
T∑

i=1

η⊤i κi(ϕ)ηi

]
+ sup

π∈Dδ

{
Eπ

[
T∑

i=1

ε̃⊤i ci(ϕ)ε̃i − 2

T∑
i=1

η⊤i ai(ϕ)ε̃i

]}

= EP0

[
T∑

i=1

η⊤i κi(ϕ)ηi

]
+ sup

π∈Dδ

{
Eπ

[
T∑

i=1

ε̃⊤i ci(ϕ)ε̃i − 2

T∑
i=1

η⊤i ai(ϕ)ε̃i

]}
(A.4)

Replacing ε̃i by ∆i + εi and using the independence of ηi and εi under P0 in (A.4), we get:

Val(P ) = EP0

[
T∑

i=1

η⊤i κi(ϕ)ηi +

T∑
i=1

ε⊤i ci(ϕ)εi

]
+ sup

π∈Dδ

{
Eπ

[
T∑

i=1

∆⊤
i ci(ϕ)∆i + 2

T∑
i=1

∆⊤
i

(
ci(ϕ)εi − ai(ϕ)⊤ηi

)]}
(A.5)

Hence, we will focus on the problem:

Val(P̃ ) := sup
π∈Dδ

{
Eπ

[
T∑

i=1

∆⊤
i ci(ϕ)∆i + 2

T∑
i=1

∆⊤
i

(
ci(ϕ)εi − ai(ϕ)⊤ηi

)]}
(A.6)

Without loss of generality, we can assume that ci(ϕ) ̸= 0 for all i = 1, . . . , T . Indeed, if ci(ϕ) = 0 for some i, this would
mean that

∑T
n=i ϕ

⊤
n,iϕn,i = 0, and since each one of the summands is positive semi-definite, we would get that ϕn,i = 0 for

all n = i, . . . , T . This would also imply that ai(ϕ) = 0, since ai(ϕ) =
∑T

n=iAn,i(ϕ)
⊤ϕn,i, and therefore, ∆i would not

be present in the objective function of (A.6).

Obtaining the weak dual. Let Λ be the collection of
(
ρ, λ, {ξi, βi, ζi}Ti=1

)
with the following properties: (i) ρ(·) is a

Borel measurable function of (η, ε) in R̄ := [−∞,+∞], (ii) λ ≥ 0 is a non-negative real number, (iii) ξi(·), βi(·), ζi(·) are
Lipschitz-continuous (and, hence, Borel measurable) functions of {ηt, εt,∆t}i−1

t=1 for i = 1, . . . , T , and (vi) for all η, ε,∆,
it holds:

ρ(η, ε) ≥
T∑

i=1

∆⊤
i ci(ϕ)∆i + 2

T∑
i=1

∆⊤
i

(
ci(ϕ)εi − ai(ϕ)⊤ηi

)
− λ

T∑
i=1

∆⊤
i ∆i

+

T∑
i=1

ξi
(
{ηt, εt,∆t}i−1

t=1

)⊤
ηi +

T∑
i=1

βi
(
{ηt, εt,∆t}i−1

t=1

)⊤
εi

+

T∑
i=1

ζi
(
{ηt, εt,∆t}i−1

t=1

)⊤
∆i (A.7)
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Clearly, the set Λ is non-empty, as (A.7) can be satisfied trivially for the function ρ =∞ everywhere. Moreover, it is easy
to see that the right-hand side of (A.7) is integrable under any π ∈ Dδ, since η, ε and ∆ have finite second-moments and
ξi(·), βi(·), ζi(·) are Lipschitz-continuous functions of {ηt, εt,∆t}i−1

t=1. Then, the integral Eπ[ρ(η, ε)] is well-defined and
we claim that

Val(D̃) := inf λδ + Eπ[ρ(η, ε)]

s.t.
(
ρ, λ, {ξi, βi, ζi}Ti=1

)
∈ Λ (A.8)

is a weak dual of (A.6). Indeed, let
(
ρ, λ, {ξi, βi, ζi}Ti=1

)
∈ Λ and π ∈ Dδ . We have:

λδ + Eπ[ρ(η, ε)]
(A.7)
≥ λδ + Eπ

[
T∑

i=1

∆⊤
i ci(ϕ)∆i + 2

T∑
i=1

∆⊤
i

(
ci(ϕ)εi − ai(ϕ)⊤ηi

)
− λ

T∑
i=1

∆⊤
i ∆i

+

T∑
i=1

ξi
(
{ηt, εt,∆t}i−1

t=1

)⊤
ηi +

T∑
i=1

βi
(
{ηt, εt,∆t}i−1

t=1

)⊤
εi

+

T∑
i=1

ζi
(
{ηt, εt,∆t}i−1

t=1

)⊤
∆i

]

= Eπ

[
T∑

i=1

∆⊤
i ci(ϕ)∆i + 2

T∑
i=1

∆⊤
i

(
ci(ϕ)εi − ai(ϕ)⊤ηi

)]
+ λ

(
δ − Eπ

[
T∑

i=1

∆⊤
i ∆i

])

+ Eπ

[
T∑

i=1

ξi
(
{ηt, εt,∆t}i−1

t=1

)⊤
ηi +

T∑
i=1

βi
(
{ηt, εt,∆t}i−1

t=1

)⊤
εi

+

T∑
i=1

ζi
(
{ηt, εt,∆t}i−1

t=1

)⊤
∆i

]

≥ Eπ

[
T∑

i=1

∆⊤
i ci(ϕ)∆i + 2

T∑
i=1

∆⊤
i

(
ci(ϕ)εi − ai(ϕ)⊤ηi

)]
(A.9)

where the last inequality holds because for π ∈ Dδ , we have:

• δ ≥ Eπ

[∑T
i=1 ∆

⊤
i ∆i

]
• Eπ

[
ξi
(
{ηt, εt,∆t}i−1

t=1

)⊤
ηi

]
= Eπ

[
βi
(
{ηt, εt,∆t}i−1

t=1

)⊤
εi

]
= Eπ

[
ζi
(
{ηt, εt,∆t}i−1

t=1

)⊤
∆i

]
= 0, due to the martin-

gale constraints.

Therefore, taking the infimum over
(
ρ, λ, {ξi, βi, ζi}Ti=1

)
∈ Λ and the supremum over π ∈ Dδ in (A.9), we readily get:

Val(D̃) ≥ Val(P̃ ) (A.10)

Hence, problem (A.8) is a weak dual of (A.6).

Finally, since (A.7) holds for all η, ε,∆, and since the pointwise supremum of a family of continuous functions is lower
semi-continuous, and hence, Borel measurable (Rudin, 1987), the dual problem (A.8) can be rewritten as:

Val(D̃) = inf
λ≥0

ξi,βi,ζi

λδ + EP0

[
sup
∆

{
T∑

i=1

∆⊤
i ci(ϕ)∆i + 2

T∑
i=1

∆⊤
i

(
ci(ϕ)εi − ai(ϕ)⊤ηi

)
− λ

T∑
i=1

∆⊤
i ∆i

+

T∑
i=1

ξi
(
{ηt, εt,∆t}i−1

t=1

)⊤
ηi +

T∑
i=1

βi
(
{ηt, εt,∆t}i−1

t=1

)⊤
εi

+

T∑
i=1

ζi
(
{ηt, εt,∆t}i−1

t=1

)⊤
∆i

}]
(A.11)

From now on, we will refer to (A.11) as the dual.
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Finding an optimal primal-dual pair. Now, we will find an optimal primal-dual solution pair for P̃ and D̃. Since
ci(ϕ) ∈ Rd×d is positive semi-definite, all its eigenvalues are non-negative and it admits a spectral decomposition
ci(ϕ) = QiΣiQ

⊤
i , where Qi orthonormal, and Σi := diag(σi,1, . . . , σi,d). Then, setting σ∗ := maxi,j σi,j to be the

maximum eigenvalue of all ci(ϕ)’s for i = 1, . . . , T , we have that for λ > σ∗, the matrices ci(ϕ)− λI are negative definite,
i = 1, . . . , T , and, hence, invertible. Therefore,

(ci(ϕ)− λI)−1 = Qi(Σi − λI)−1Q⊤
i = Qi diag

(
(σi,1 − λ)−1, . . . , (σi,d − λ)−1

)
Q⊤

i (A.12)

Setting ∆̃i,ϕ := (ci(ϕ)− λI)−1
(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)
, we obtain that

∥∆̃i,ϕ∥22 = ∆̃⊤
i,ϕ∆̃i,ϕ =

(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)⊤
Qi(Σi − λI)−1Q⊤

i Qi(Σi − λI)−1Q⊤
i

(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)

=
(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)⊤
Qi(Σi − λI)−2Q⊤

i

(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)

=
(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)⊤
Qi diag

(
(σi,1 − λ)−2, . . . , (σi,d − λ)−2

)
Q⊤

i

(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)

(A.13)

where we used that Q⊤
i Qi = Id, since Qi orthonormal. Letting wi = (wi,1, . . . , wi,d)

⊤ be defined as:

wi := Q⊤
i

(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)

(A.14)

we obtain

∥∆̃i,ϕ∥22 =

d∑
j=1

w2
i,j(σi,j − λ)−2 (A.15)

Claim 1. For each j such that σi,j > 0, we have
EP0

[w2
i,j ] ̸= 0

where wi is defined in (A.14).

Proof of Claim 1: Let j such that σi,j > 0. By the definition of wi, we have that

wi = Q⊤
i

(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)

= −Q⊤
i ci(ϕ)εi +Q⊤

i ai(ϕ)
⊤ηi

= −Q⊤
i QiΣiQ

⊤
i εi +Q⊤

i ai(ϕ)
⊤ηi

= −ΣiQ
⊤
i εi +Q⊤

i ai(ϕ)
⊤ηi (A.16)

Hence, wi,j = −σi,jQ⊤
i,jεi +Q⊤

i,jai(ϕ)
⊤ηi, where Qi,j is the j-th row of the matrix Q⊤

i . Since Qi orthonormal, we readily
get that Qi,j is not the zero vector. If EP0

[w2
i,j ] = 0, it would hold that wi,j = 0, P0-a.s., and so:

σi,jQ
⊤
i,jεi = Q⊤

i,jai(ϕ)
⊤ηi P0 - a.s. (A.17)

However, εi cannot be perpendicular to Qi,j a.s. under P0, since this would mean that εi lives in a lower-dimensional
subspace, but the covariance matrix of εi is assumed to have full rank. Therefore, (A.17) would imply that there is
linear relation between εi and ηi. But, since the covariance matrix of (X,Y ) under P0 is assumed to have full rank, and
[X⊤ Y ⊤]⊤ = A[η⊤ ε⊤]⊤ for some A square matrix, this implies that the covariance matrix of (η, ε) is also full rank.
Hence, (A.17) leads to a contradiction, and, so, we reach the conclusion. ♦

Then, we have that:

T∑
i=1

Eπ

[
∥∆̃i,ϕ∥22

]
=

T∑
i=1

d∑
j=1

EP0

[
w2

i,j

]
(σi,j − λ)−2 (A.18)
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Setting:

G(λ) :=

T∑
i=1

d∑
j=1

EP0

[
w2

i,j

]
(σi,j − λ)−2 (A.19)

and, since εi, ηi have finite second-moment for all i, we get that:

• G(λ)→ +∞, as λ→ σ∗

• For λ > σ∗, G(λ) is continuously decreasing with G(λ)→ 0 as λ→ +∞

Hence, for λ > σ∗, there is a unique solution λ̃ of the equation G(λ) = δ, i.e.,

T∑
i=1

d∑
j=1

EP0

[
w2

i,j

]
(σi,j − λ̃)−2 = δ (A.20)

Then, we claim that the primal-dual solution pair:

(I) ∆̃i,ϕ := (ci(ϕ)− λ̃I)−1
(
−ci(ϕ)εi + ai(ϕ)

⊤ηi
)

for i = 1, . . . , T .

(II) λ̃ := the unique solution of (A.20) greater than σ∗, and ξ̃i(·) = β̃i(·) = ζ̃i(·) = 0 for i = 1, . . . , T .

with primal-dual objective values p̃ and d̃ of P̃ and D̃, respectively, is optimal. Indeed, the solution pair is feasible for the
primal and dual problem, respectively. Moreover, the maximization problem inside the expectation in (A.11) for λ = λ̃, and
ξ̃i(·) = β̃i(·) = ζ̃i(·) = 0 for i = 1, . . . , T becomes:

sup
∆

{
T∑

i=1

∆⊤
i (ci(ϕ)− λ̃I)∆i + 2

T∑
i=1

∆⊤
i

(
ci(ϕ)εi − ai(ϕ)⊤ηi

)}
(A.21)

Since (ci(ϕ)− λ̃I) is negative definite for all i = 1, . . . , T (because λ̃ > σ∗, as argued before), we get that the objective
function in (A.21) is strictly concave. Solving the first-order optimality condition, we readily get that it is maximized for
∆i = ∆̃i,ϕ, where ∆̃i,ϕ is defined in (I).

Therefore, the objective value, d̃, of the dual problem (A.11) for the assignment of the dual variables as per (II), becomes:

d̃ = λ̃δ + EP0

[
T∑

i=1

∆̃⊤
i,ϕci(ϕ)∆̃i,ϕ + 2

T∑
i=1

∆̃i,ϕ

(
ci(ϕ)εi − ai(ϕ)⊤ηi

)
− λ̃

T∑
i=1

∥∆̃i,ϕ∥22

]
(A.22)

= EP0

[
T∑

i=1

∆̃⊤
i,ϕci(ϕ)∆̃i,ϕ + 2

T∑
i=1

∆̃i,ϕ

(
ci(ϕ)εi − ai(ϕ)⊤ηi

)]
(A.23)

= p̃ (A.24)

where in (A.23) we used that
∑T

i=1 Eπ[∥∆̃i,ϕ∥22] = δ by (A.20), and in (A.24) we invoked that this quantity equals to the
objective value, p̃, of the primal problem (A.6) for the assignment of the primal variables as per (I). Hence, combining
(A.24) with (A.10), we conclude that strong duality holds, i.e.,

Val(P̃ ) = Val(D̃) (A.25)

and the coupling π̃, whose second marginal is the law of (η, ε+ ∆̃), is an optimal solution of (15) in the constraint set Dδ .
This concludes our proof.

■
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A.3 Proof of Lemma 2

Lemma 2. The value function V (ϕ) is a convex finite-valued function.

Proof. Let ϕ with real-valued entries. Then, we have for π ∈ Dδ:

Eπ

[
∥X̃ − ϕỸ ∥22

]
≤ 2Eπ

[
∥X̃∥22

]
+ 2Eπ

[
∥ϕỸ ∥22

]
≤ 2Eπ

[
∥X̃∥22

]
+ 2∥ϕ∥22 Eπ

[
∥Ỹ ∥22

]
(A.26)

Then, taking the supremum over π ∈ Dδ , we get

V (ϕ) ≤ sup
π∈Dδ

2Eπ

[
∥X̃∥22

]
+ 2∥ϕ∥22 Eπ

[
∥Ỹ ∥22

]
<∞ (A.27)

since, the second norms of both X̃ and Ỹ are uniformly bounded within Dδ due to the Wasserstein constraint.

Now, for any π in the constraint set Dδ , the function

ϕ 7→
T∑

n=1

Eπ

∥X̃n −
n∑

j=1

ϕn,j Ỹj∥22


is convex. Taking the supremum over π ∈ Dδ we readily get that V (ϕ) is a convex function as the pointwise supremum of
convex functions Nesterov (2014). ■

A.4 Proof of Proposition 2

Proposition 2. Let ϕ′, and π̃ϕ′ the corresponding worst-case distribution in Dδ , as per Theorem 1. Then, defining

g := ∇ϕf(ϕ, π̃ϕ′) |ϕ=ϕ′ (21)

it holds that g ∈ ∂V (ϕ′).

Proof. By the definition of of π̃ϕ′ , we obtain that

V (ϕ′) = sup
π∈Dδ

f(ϕ′, π) = f(ϕ′, π̃ϕ′) (A.28)

Moreover, by the definition f , it is easy to see that f(·, π̃ϕ′) is convex and differentiable, and letting g := ∇ϕf(ϕ, π̃ϕ′) |ϕ=ϕ′ ,
we obtain:

f(ϕ, π̃ϕ′) ≥ f(ϕ′, π̃ϕ′) + ⟨g, ϕ− ϕ′⟩ (A.29)

Then,

V (ϕ) ≥ f(ϕ, π̃ϕ′)
(A.29)
≥ f(ϕ′, π̃ϕ′) + ⟨g, ϕ− ϕ′⟩

(A.28)
= V (ϕ′) + ⟨g, ϕ− ϕ′⟩ (A.30)

i.e., g ∈ ∂V (ϕ′). ■
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