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Abstract
We study federated learning (FL)–especially
cross-silo FL–with non-convex loss functions
and data from people who do not trust the
server or other silos. In this setting, each silo
(e.g. hospital) must protect the privacy of each
person’s data (e.g. patient’s medical record),
even if the server or other silos act as adversarial
eavesdroppers. To that end, we consider inter-silo
record-level (ISRL) differential privacy (DP),
which requires silo i’s communications to
satisfy record/item-level DP. We propose novel
ISRL-DP algorithms for FL with heterogeneous
(non-i.i.d.) silo data and two classes of Lipschitz
continuous loss functions: First, we consider
losses satisfying the Proximal Polyak-Łojasiewicz
(PL) inequality, which is an extension of the
classical PL condition to the constrained setting.
In contrast to our result, prior works only
considered unconstrained private optimization
with Lipschitz PL loss, which rules out most
interesting PL losses such as strongly convex
problems and linear/logistic regression. Our
algorithms nearly attain the optimal strongly
convex, homogeneous (i.i.d.) rate for ISRL-DP FL
without assuming convexity or i.i.d. data. Second,
we give the first private algorithms for non-convex
non-smooth loss functions. Our utility bounds
even improve on the state-of-the-art bounds for
smooth losses. We complement our upper bounds
with lower bounds. Additionally, we provide
shuffle DP (SDP) algorithms that improve over
the state-of-the-art central DP algorithms under
more practical trust assumptions. Numerical
experiments show that our algorithm has bet-
ter accuracy than baselines for most privacy
levels. All the codes are publicly available at:
https://github.com/ghafeleb/Private-NonConvex-
Federated-Learning-Without-a-Trusted-Server.
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1 INTRODUCTION

Federated learning (FL) is a machine learning paradigm
in which many “silos” (a.k.a. “clients”), such as hospitals,
banks, or schools, collaborate to train a model by exchang-
ing local updates, while storing their training data locally
Kairouz et al. (2019). Privacy has been an important motiva-
tion for FL due to decentralized data storage McMahan et al.
(2017). However, silo data can still be leaked in FL without
additional safeguards (e.g. via membership or model inver-
sion attacks) Fredrikson et al. (2015); He et al. (2019); Song
et al. (2020); Zhu and Han (2020). Such leaks can occur
when silos send updates to the central server—which an
adversarial eavesdropper may access—or (in peer-to-peer
FL) directly to other silos.

Differential privacy (DP) Dwork et al. (2006) ensures that
data cannot be leaked to an adversarial eavesdropper. Sev-
eral variations of DP have been considered for FL. Numer-
ous works Jayaraman and Wang (2018); Truex et al. (2019);
Wang et al. (2019a); Kang et al. (2021); Noble et al. (2022)
studied FL with central DP (CDP).1 Central DP provides
protection for silos’ aggregated data against an adversary
who only sees the final trained model. Central DP FL has
two drawbacks: 1) the aggregate guarantee does not protect
the privacy of each individual silo’s local data; and 2) it does
not defend against privacy attacks from other silos or against
an adversary with access to the server during training.

User-level DP (a.k.a. client-level DP) has been proposed as
an alternative to central DP McMahan et al. (2018); Geyer
et al. (2017); Jayaraman and Wang (2018); Gade and Vaidya
(2018); Wei et al. (2020a); Zhou and Tang (2020); Levy et al.
(2021); Ghazi et al. (2021a). User-level DP remedies the
first drawback of CDP by preserving the privacy of every
silo’s full local data set. Such a privacy guarantee is useful
for cross-device FL, where each silo/client is associated with
data from a single person (e.g. cell phone user) possessing
many records (e.g. text messages). However, it is ill-suited
for cross-silo FL, where silos (e.g. hospitals, banks, or

1Central differential privacy (CDP) is often simply referred to
as differential privacy (DP) Dwork and Roth (2014), but we use
CDP here for emphasis. This notion should not be confused with
concentrated DP Dwork and Rothblum (2016); Bun and Steinke
(2016), which is sometimes also abbreviated as “CDP” in other
works.
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schools) typically have data from many different people
(e.g. patients, customers, or students). In cross-silo FL, each
person’s (health, financial, or academic) record (or “item”)
may contain sensitive information. Thus, it is desirable
to ensure DP for each individual record (“item-level DP”)
of silo i, instead of silo i’s full data set. Another crucial
shortcoming of user-level DP is that, like central DP, it
only guarantees the privacy of the final output of the FL
algorithm against external adversaries: it does not protect
against an adversary with access to the server, other silos,
or the communications among silos during training.

While central DP and user-level DP implicitly assume that
people (e.g. patients) trust all parties (e.g. their own hospi-
tal, other hospitals, and the server) with their private data,
local DP (LDP) Kasiviswanathan et al. (2011); Duchi et al.
(2013) makes an extremely different assumption. In the
LDP model, each person (e.g. patient) who contributes data
does not trust anyone: not even their own silo (e.g. hospital)
is considered trustworthy. In cross-silo FL, this assumption
is unrealistic: e.g., patients typically want to share their
accurate medical test results with their own doctor/hospital
to get the best care possible. Therefore, LDP is often un-
necessary and may be too stringent to learn useful/accurate
models.
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Figure 1: ISRL-DP ensures that each patient’s data cannot be
leaked, even if the server/other silos collude to decode the data
of hospital i. In contrast, user-level DP protects the full data of
hospital i and leaves hospitals vulnerable to attacks on the server.

In this work, we consider an intermediate privacy notion
between the two extremes of local DP and central/user-level
DP: inter-silo record-level differential privacy (ISRL-DP).
ISRL-DP realistically assumes that people trust their own
silo, but do not trust the server or other silos. An algorithm
is ISRL-DP if all of the communications that silo i sends
satisfy item-level DP (for all i). See Figure 1 for a pictorial
description and Section 1.1 for the precise definition. ISRL-
DP eradicates all the drawbacks of central/user-level DP and
local DP discussed above: 1) The item-level DP guarantee

for each silo ensures that no person’s data (e.g. medical
record) can be leaked. 2) Privacy of each silo’s communica-
tions protects silo data against attacks from an adversarial
server and/or other silos. By post-processing Dwork and
Roth (2014), it also implies that the final trained model
is private. 3) By relaxing the overly strict trust assump-
tions of local DP, ISRL-DP allows for better model accu-
racy. ISRL-DP has been considered (under different names)
in Truex et al. (2020); Huang et al. (2020); Huang and Gong
(2020); Wu et al. (2019); Wei et al. (2020b); Dobbe et al.
(2020); Zhao et al. (2020); Arachchige et al. (2019); Seif
et al. (2020); Lowy and Razaviyayn (2021b); Noble et al.
(2022); Liu et al. (2022b).

Although ISRL-DP was largely motivated by cross-silo ap-
plications, it can also be useful in cross-device FL without a
trusted server. This is because ISRL-DP implies user-level
DP if the ISRL-DP parameter is small enough: see Ap-
pendix B and also Lowy and Razaviyayn (2021b). However,
unlike user-level DP, ISRL-DP has the benefit of preventing
leaks to the untrusted server and other users.

Another intermediate DP notion between the low-trust local
models and the high-trust central/user-level models is the
shuffle model of DP Bittau et al. (2017); Cheu et al. (2019);
Erlingsson et al. (2020a,b); Feldman et al. (2020); Liu et al.
(2020); Girgis et al. (2021); Ghazi et al. (2021b). In the
shuffle model, silos send their local updates to a secure
shuffler. The shuffler randomly permutes silos’ updates
(anonymizing them), and then sends the shuffled messages
to the server. A is shuffle DP (SDP) if the shuffled messages
satisfy central DP. Figure 2 compares the trust assumptions
of the different notions of DP FL discussed above.

Problem setup: Consider a horizontal FL setting with N
silos (e.g. hospitals). Each silo has a local data set with n
samples (e.g. patient records): Xi “ pxi,1, ¨ ¨ ¨ , xi,nq P Xn

for i P rN s fi t1, ¨ ¨ ¨ , Nu. Let Xi „ Dn
i , for unknown

distributions Di, which may vary across silos (“heteroge-
neous”). In the r-th round of communication, silos receive
the global model wr from the server and use their local
data to improve the model. Then, silos send local updates
to the server (or other silos, in peer-to-peer FL), who up-
dates the global model to wr`1. Given a loss function
f : Rd ˆ X Ñ R

Ť

t`8u, let

Fipwq :“ Exi„Dirfpw, xiqs. (1)

At times, we consider empirical risk minimization (ERM),
with pFipwq :“ 1

n

řn
j“1 fpw, xi,jq. We aim to solve the FL

problem:

min
wPRd

#

F pwq :“
1

N

N
ÿ

i“1

Fipwq

+

, (2)

or minwPRdt pFXpwq :“ 1
N

řN
i“1

pFipwqu for ERM, while
keeping silo data private. Here X “ pX1, ¨ ¨ ¨ , XN q P

Xn
1 ˆ ¨ ¨ ¨ ˆ Xn

N “: X is a distributed database. We allow
for constrained FL by considering f that takes the value
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Figure 2: Trust assumptions of DP FL notions. “Trust” is in
quotes because silo messages must already satisfy (at least a weak
level of) ISRL-DP in order to realize SDP: anonymization alone
cannot provide DP Dwork and Roth (2014).

`8 outside of some closed set W Ă Rd. When Fi takes
the form (1) (not necessarily ERM), we refer to the problem
as stochastic optimization (SO) for emphasis. For SO, we
assume that the samples xi,j are independent. For ERM,
we make no assumptions on the data. The excess risk of
an algorithm A for solving (2) is EF pApXqq ´ F˚, where
F˚ “ infw F pwq and the expectation is taken over both
the random draw of X “ pX1, . . . , XN q and the random-
ness of A. For ERM, the excess empirical risk of A is
E pFXpApXqq ´ pF˚

X, where the expectation is taken solely
over the randomness of A. For general non-convex loss func-
tions, meaningful excess risk guarantees are not tractable in
polynomial time. Thus, we use the norm of the gradient to
measure the utility (stationarity) of FL algorithms.2

Contributions and Related Work: For (strongly) con-
vex losses, the optimal performance of ISRL-DP and SDP
FL algorithms is mostly understood Lowy and Razaviyayn
(2021b); Girgis et al. (2021). In this work, we consider the
following questions for non-convex losses:

Question 1. What is the best performance that any
inter-silo record-level DP algorithm can achieve
for solving (2) with non-convex F ?

Question 2. With a trusted shuffler (but no trusted
server), what performance is attainable?

Our first contribution in Section 2.1 is a nearly complete

2In the non-smooth case, we instead use the norm of the proxi-
mal gradient mapping, defined in Section 3.

answer to Questions 1 and 2 for the subclass of non-convex
loss functions that satisfy the Proximal Polyak-Łojasiewicz
(PL) inequality Karimi et al. (2016). The Proximal PL
(PPL) condition is a generalization of the classical PL in-
equality Polyak (1963) and covers many important ML mod-
els: e.g. some classes of neural nets such as wide neural
nets Liu et al. (2022a); Lei and Ying (2021), linear/logistic
regression, LASSO, strongly convex losses Karimi et al.
(2016). For heterogeneous FL with non-convex proximal
PL losses, our ISRL-DP algorithm attains excess risk that
nearly matches the strongly convex, i.i.d. lower bound Lowy
and Razaviyayn (2021b). Additionally, the excess risk of
our SDP algorithm nearly matches the strongly convex, i.i.d.,
central DP lower bound Bassily et al. (2019) and is attained
without convexity, without i.i.d. data, and without a trusted
server. Our excess risk bounds nearly match the optimal sta-
tistical rates in certain practical parameter regimes, resulting
in “privacy almost for free.”

To obtain these results, we invent a new method of analyzing
noisy proximal gradient algorithms that does not require
convexity, applying tools from the analysis of objective
perturbation Chaudhuri et al. (2011); Kifer et al. (2012).
Our novel analysis is necessary because privacy noise cannot
be easily separated from the non-private optimization terms
in the presence of the proximal operator and non-convexity.

Our second contribution in Section 2.2 is a nearly complete
answer to Questions 1 and 2 for federated ERM with proxi-
mal PL losses. We provide novel, communication-efficient,
proximal variance-reduced ISRL-DP and SDP algorithms
for non-convex ERM. Our algorithms have near-optimal
excess empirical risk that almost match the strongly convex
ISRL-DP and CDP lower bounds Lowy and Razaviyayn
(2021b); Bassily et al. (2014), without requiring convexity.

Prior works Wang et al. (2017); Kang et al. (2021); Zhang
et al. (2021) on DP PL optimization considered an extremely
narrow PL function class: unconstrained optimization with
Lipschitz continuous3 losses satisfying the classical PL in-
equality Polyak (1963). The combined assumptions of Lips-
chitz continuity and the PL condition on Rd (unconstrained)
are very strong and rule out most interesting PL losses (e.g.
neural nets, linear/logistic regression, LASSO, strongly con-
vex), since the Lipschitz parameter of such losses is infinite
or prohibitively large.4 By contrast, the Proximal PL func-
tion class that we consider allows for such losses, which are
Lipschitz on a restricted parameter domain.

Third, we address Questions 1 and 2 for general non-
convex/non-smooth (non-PL) loss functions in Section 3.

3Function h : Rd
Ñ Rm is L-Lipschitz on W Ă Rd if

}hpwq ´ hpw1
q} ď L}w ´ w1

} for all w,w1
P W .

4In particular, the DP strongly convex, Lipschitz lower bounds
of Bassily et al. (2014, 2019); Lowy and Razaviyayn (2021b)
do not imply lower bounds for the unconstrained Lipschitz, PL
function class considered in these works, since their hard instances
are not Lipschitz on all of Rd.
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We develop the first DP optimization (in particular, FL) al-
gorithms for non-convex/non-smooth loss functions. Our
ISRL-DP and SDP algorithms have significantly better util-
ity than all previous ISRL-DP and CDP FL algorithms for
smooth losses Wang et al. (2019a); Ding et al. (2021); Hu
et al. (2021); Noble et al. (2022). We complement our upper
bound with the first non-trivial ISRL-DP lower bound for
non-convex FL in Section 3.1.

As a consequence of our analyses, we also obtain bounds for
FL algorithms that satisfy both ISRL-DP and user-level DP
simultaneously, in Appendix G. Such a privacy requirement
would be useful in cross-device FL with users (e.g. cell
phone) who do not trust the server or other users with their
sensitive data (e.g. text messages).

Finally, numerical experiments in Section 4 showcase the
practical performance of our algorithm on several bench-
mark data sets. In each experiment, our algorithm attains
better accuracy than the baselines for most privacy levels.

See Fig. 3 for a summary of our results and Appendix C for
a thorough discussion of related work.

Function 
Class FL Problem Upper 

Bound
Lower 
Bound

Prior  
state-of-the-

art

Proximal PL 
(PPL) 

(Excess risk)

ISRL-DP 
Non-i.i.d. SO

No work on Proximal 
PL or FL; for CDP 
with

 (i.i.d. data), Zhang et 
al. (2021) consider 
narrow class of 
unconstrained PL, 
Lipschitz losses.

SDP 
Non-i.i.d. SO

ISRL-DP 
ERM

No work on Proximal 
PL, ISRL-DP, or SDP. 
For CDP, Wang et al. 
(2017); Kang et al. 
(2021) consider 
narrow class of 
unconstrained PL, 
Lipschitz losses.

SDP 
ERM

Non-
Convex/

Non-
Smooth 

  
(Squared 

gradient norm)

ISRL-DP 
ERM

Noble et al. (2022)* for 
smooth   :


SDP  
ERM

For smooth CDP, 
Wang et al. (2019); 
Noble et al. (2022):

κ2d
ϵ2n2N

+ κ
nN

d
ϵ2n2Nκ2 + 1

nN
(Theorem 2.1) (Lowy 


and Razaviyayn, 2021b)

κd
ϵ2n2N

(Theorem 2.2)

d
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( d
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( d

ϵn N )
2

(Theorem 3.3)
(Smooth Convex)

d

ϵn N

κd
ϵ2n2N2

(Theorem 2.2)

d
ϵ2n2N2

κ2d
ϵ2n2N2 + κ

nN
d

ϵ2n2N2 + 1
nN

(Theorem 2.1) (Bassily et al., 2019)
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(Smooth Convex)

(Arora et al., 2022)
d

ϵnN
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and Razaviyayn, 2021b)

(Bassily et al., 2014)
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Figure 3: Summary of results for M “ N , log terms omitted.
κ “ β{µ, where β is the smoothness parameter and µ is the
proximal-PL parameter of the loss. *Noble et al. (2022) mostly
analyzes CDP FL but we observe that a ISRL-DP bound can also be
obtained with a small modification of their algorithm and analysis.

1.1 Preliminaries

Differential Privacy: Let X “ Xn
1 ˆ ¨ ¨ ¨Xn and ρ : X2 Ñ

r0,8q be a distance between databases. Two databases
X,X1 P X are ρ-adjacent if ρpX,X1q ď 1. DP ensures that
(with high probability) an adversary cannot distinguish be-
tween the outputs of algorithm A when it is run on adjacent
databases:

Definition 1 (Differential Privacy). Let ϵ ě 0, δ P r0, 1q.

A randomized algorithm A : X Ñ W is pϵ, δq-differentially
private (DP) (with respect to ρ) if for all ρ-adjacent data
sets X,X1 P X and all measurable subsets S Ď W , we
have

PpApXq P Sq ď eϵPpApX1q P Sq ` δ. (3)

Definition 2 (Inter-Silo Record-Level Differential Privacy).
Let ρi : X 2 Ñ r0,8q, ρipXi, X

1
iq :“

řn
j“1 1txi,j‰x1

i,ju,
i P rN s. A randomized algorithm A is pϵ, δq-ISRL-DP if for
all i P rN s and all ρi-adjacent silo data sets Xi, X

1
i, the

full transcript of silo i’s sent messages satisfies (3) for any
fixed settings of other silos’ messages and data.

Definition 3 (Shuffle Differential Privacy Bittau et al.
(2017); Cheu et al. (2019)). A randomized algorithm A
is pϵ, δq-shuffle DP (SDP) if for all ρ-adjacent databases
X,X1 P X and all measurable subsets S, the collec-
tion of all uniformly randomly permuted messages that
are sent by the shuffler satisfies (3), with ρpX,X1q :“
řN

i“1

řn
j“1 1txi,j‰x1

i,ju.

In Appendix D, we recall the basic DP building blocks that
our algorithms employ.

Notation and Assumptions: Denote by } ¨ } the ℓ2 norm.
Let W be a closed convex set. For differentiable (w.r.t.
w) f0 : W ˆ X Ñ R, denote its gradient w.r.t. w by
∇f0pw, xq. Function h is β-smooth if ∇h is β-Lipschitz.
A proper function has range R

Ť

t`8u and is not iden-
tically equal to `8. Function g is closed if @α P R,
the set tw P dompgq|gpwq ď αu is closed. The in-

dicator function of W is ιWpwq :“

#

0 if w P W
`8 otherwise

.

The proximal operator of function f1 is proxηf1pzq :“
argminyPRd

`

ηf1pyq ` 1
2}y ´ z}2

˘

, for η ą 0. Write a À

b if DC ą 0 such that a ď Cb and a “ rOpbq if a À log2pθqb

for some parameters θ. Let ∆̂X :“ pFXpw0q ´ pF˚
X,

with pF˚
X “ infw pFXpwq. We assume the loss function

fpw, xq “ f0pw, xq ` f1pwq is non-convex/non-smooth
composite, where f0 is bounded below, and:

Assumption 1. f0p¨, xq is L-Lipschitz (on W if f1 “ ιW `

g for some convex g ě 0; on Rd otherwise) and β-smooth
for all x P X .

Assumption 2. f1 is a proper, closed, convex function.

Examples of functions satisfying Assumption 2 include indi-
cator functions of convex sets ιW and ℓp-regularizers λ}w}p

with p ď 1. We allow FL networks in which some silos
may be unable to participate in every round (e.g. due to
internet/wireless communication problems):

Assumption 3. In each round of communication r, a uni-
formly random subset Sr of M “ |Sr| P rN s silos receives
the global model and can send messages.5

5In the Appendix, we prove general versions of some of our
results with |Sr| “ Mr for random Mr .
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Assumption 3 is realistic for cross-device FL. However, in
cross-silo FL, typically M « N Kairouz et al. (2019).

2 ALGORITHMS FOR PROXIMAL-PL
LOSSES

2.1 Noisy Distributed Proximal SGD for
Heterogeneous FL (SO)

We propose a simple distributed Noisy Proximal SGD (Prox-
SGD) method: in each round r P rRs, available silos i P

Sr draw local samples txr
i,ju

K:“tn{Ru

j“1 from Xi (without
replacement) and compute rgir :“ 1

K

řK
j“1 ∇f0pwr, x

r
i,jq `

ui, where ui „ N p0, σ2Idq for ISRL-DP. For SDP, ui has
Binomial distribution Cheu et al. (2021). The server (or
silos) aggregates rgr :“ 1

M

ř

iPSr
rgir and then updates the

global model wr`1 :“ prox 1
2β f1pwr ´ 1

2βrgrq. The use of
prox is needed to handle the potential non-smoothness of
f . Pseudocodes are in Appendix E.1.

Assumption 4. The loss is µ-PPL in expectation: @w P Rd,

µEr pFSpwq ´ inf
w1

pFSpw1
qs ď ´βE

«

min
y

”

x∇ pF 0
Spwq, y ´ wy

`
β

2
}y ´ w}

2
` f1

pyq ´ f1
pwq

ı

ff

,

where pFSpwq :“ 1
MK

ř

iPS

řK
j“1 fpw, xi,jq, S Ď rN s is

a uniformly random subset of size M , S “ txi,juiPS,jPrKs,
and xi,j „ Di. Denote κ “ β{µ.

As discussed earlier, many interesting losses (e.g. neural
nets, linear regression) satisfy Assumption 4.
Theorem 2.1 (Noisy Prox-SGD: Heterogeneous PPL FL).
Grant Assumption 4. Let ϵ ď mint8 lnp1{δq, 15u, δ P

p0, 1{2q, n ě rΩpκq. Then, there exist σ2 and K such that:
1. ISRL-DP Prox-SGD is pϵ, δq-ISRL-DP, and in R “ rOpκq
communications, we have:

EF pwRq ´ F˚
“ rO

ˆ

L2

µ

ˆ

κ2d lnp1{δq

ϵ2n2M
`

κ

Mn

˙˙

. (4)

2. SDP Prox-SGD is pϵ, δq-SDP for M ě N minpϵ{2, 1q,
and if R “ rOpκq, then:

EF pwRq ´ F˚
“ rO

ˆ

L2

µ

ˆ

κ2d ln2
pd{δq

ϵ2n2N2
`

κ

Mn

˙˙

. (5)

Remark 2.1 (Near-Optimality and “privacy almost for
free”). Let M “ N . Then, the bound in (5) nearly matches
the central DP strongly convex, i.i.d. lower bound of Bass-
ily et al. (2019) up to the factor rOpκ2q without a trusted
server, without convexity, and without i.i.d. silos. Further,
if κd log2pd{δq{ϵ2 À nN , then (5) matches the non-private
strongly convex, i.i.d. lower bound of Agarwal et al. (2012)
up to a rOpκq factor, providing privacy nearly for free, with-
out convexity/homogeneity. The bound in (4) is larger than

the i.i.d., strongly convex, ISRL-DP lower bound of Lowy
and Razaviyayn (2021b) by a factor of rOpκ4q.6 Moreover,
if κd lnp1{δq{ϵ2 À n, then the ISRL-DP rate in (4) matches
the non-private, strongly convex, i.i.d. lower bound Agarwal
et al. (2012) up to rOpκq.

Theorem 2.1 is proved in Appendix E.2. Privacy follows
from parallel composition McSherry (2009) and the guaran-
tees of the Gaussian mechanism Dwork and Roth (2014) and
binomial-noised shuffle vector summation protocol Cheu
et al. (2021). The main idea of the excess loss proofs is
to view each noisy proximal evaluation as an execution of
objective perturbation Chaudhuri et al. (2011). Using tech-
niques from the analysis of objective perturbation, we bound
the key term arising from descent lemma by the correspond-
ing noiseless minimum plus an error term that scales with
} 1
M

ř

iPSr
ui}

2.

Our novel proof approach is necessary because with the
proximal operator and without convexity, privacy noise can-
not be easily separated from the non-private terms. By com-
parison, in the convex case, the proof of (Lowy and Raza-
viyayn, 2021b, Theorem 2.1) uses non-expansiveness of
projection and independence of the noise and data to bound
E}wr`1 ´wr}2, which yields a bound on EF pwrq ´F˚ by
convexity. On the other hand, in the unconstrained PL case
considered in Wang et al. (2017); Kang et al. (2021); Zhang
et al. (2021), the excess loss proof is easy, but the result
is essentially vacuous since Lipschitzness on Rd is incom-
patible with all PL losses that we are aware of. The works
mentioned above considered the simpler i.i.d. or ERM cases:
Balancing divergent silo distributions and privately reach-
ing consensus on a single parameter wR that optimizes the
global objective F poses an additional difficulty.

2.2 Noisy Distributed Prox-PL-SVRG for Federated
ERM

In this subsection, we assume pFX satisfies the proximal-PL
inequality with parameter µ ą 0; i.e. for all w P Rd:

µr pFXpwq ´ inf
w1

pFXpw1
qs ď ´βmin

y

”

x∇ pF 0
Xpwq, y ´ wy

`
β

2
}y ´ w}

2
` pF 1

Xpyq ´ pF 1
Xpwq

ı

.

We propose new, variance-reduced accelerated ISRL-
DP/SDP algorithms in order to achieve near-optimal rates in
fewer communication rounds than would be possible with
Noisy Prox-SGD. Our ISRL-DP Algorithm 2 for Proximal
PL ERM, which builds on J Reddi et al. (2016), iteratively
runs ISRL-DP Prox-SVRG (Algorithm 1) with re-starts.
See Appendix E.3 for our SDP algorithm, which is nearly
identical to Algorithm 2 except that we use the binomial
noise-based shuffle protocol of Cheu et al. (2021) instead of
Gaussian noise.

6In the terminology of Lowy and Razaviyayn (2021b), Noisy
Prox-SGD is C-compositional with C “

?
R “ rOp

?
κq.
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Algorithm 1 ISRL-DP FedProx-SVRG pw0q

1: Input: E P N,K P rns, Q :“ t n
K u,X P X, η ą

0, σ1, σ2 ě 0, sw0 “ wQ
0 “ w0 P Rd.

2: for r P t0, 1, ¨ ¨ ¨ , E ´ 1u do
3: Server updates w0

r`1 “ wQ
r .

4: for i P Sr in parallel do
5: Server sends global model wr to silo i.
6: Silo i draws noise ui

1 „ N p0, σ2
1Idq and computes

rgir`1 :“ ∇ pF 0
i p swrq ` ui

1.
7: for t P t0, 1, ¨ ¨ ¨Q ´ 1u do
8: Silo i draws K samples xr`1,t

i,j uniformly from
Xi with replacement (for j P rKs) and noise
ui
2 „ N p0, σ2

2Idq.
9: Silo i computes rvt,ir`1 “

1
K

řK
j“1r∇f0pwt

r`1, x
r`1,t
i,j q ´

∇f0p swr, x
r`1,t
i,j qs ` rgir`1 ` ui

2.
10: Server aggregates rvtr`1 “ 1

M

ř

iPSr`1
rvt,ir`1, up-

dates wt`1
r`1 :“ proxηf1pwt

r`1 ´ ηrvtr`1q.
11: end for
12: Server updates swr`1 “ wQ

r`1.
13: end for
14: end for
15: Output: wpriv „ Unifptwt

r`1ur“0,¨¨¨ ,E´1;t“0,¨¨¨Q´1q.

Algorithm 2 ISRL-DP FedProx-PL-SVRG
1: Input: E P N,K P rns, Q :“ t n

K u,X P X, η ą

0, σ1, σ2 ě 0, sw0 “ wQ
0 “ w0 P Rd.

2: for s P rSs do
3: ws “ ISRL-DP FedProx-SVRGpws´1q

4: end for
5: Output: wpriv :“ wS .

The key component of ISRL-DP Prox-SVRG is in line
9 of Algorithm 1, where instead of using standard noisy
stochastic gradients, silo i computes the difference between
the stochastic gradient at the current iterate wt

r`1 and the it-
erate swr from the previous epoch, thereby reducing the vari-
ance of the noisy gradient estimator–which is still unbiased–
and facilitating faster convergence (i.e. better communi-
cation complexity). Notice that the ℓ2-sensitivity of the
variance-reduced gradient in line 9 is larger than the sen-
sitivity of standard stochastic gradients (e.g. in line 6), so
larger σ2

2 ą σ2
1 is required for ISRL-DP. However, the sen-

sitivity only increases by a constant factor, which does not
significantly affect utility. Algorithm 2 runs Algorithm 1
S times with re-starts. For a suitable choice of algorithmic
parameters, we have:

Theorem 2.2 (Noisy Prox-PL-SVRG: ERM). Let ϵ ď

mint15, 2 lnp2{δqu, δ P p0, 1{2q, M “ N , X P Xn, and
κ “ β{µ. Then, in rOpκq communication rounds, we have:
1. ISRL-DP Prox-PL-SVRG is pϵ, δq-ISRL-DP and
E pFXpwprivq ´ pF˚

X “ rO
´

κL2d lnp1{δq

µϵ2n2N

¯

.

2. SDP Prox-PL-SVRG is pϵ, δq-SDP and E pFXpwprivq ´

pF˚
X “ rO

´

κL2d lnp1{δq

µϵ2n2N2

¯

.

Expectations are solely over A. A similar result holds
for M ă N , provided silo data is not too heterogeneous.
See Appendix E.4 for details and the proof.

Remark 2.2 (Near-Optimality). The ISRL-DP and SDP
bounds in Theorem 2.2 nearly match (respectively) the ISRL-
DP and CDP strongly convex ERM lower bounds Lowy and
Razaviyayn (2021b); Bassily et al. (2014) (for f1 “ ιWq)
up to the factor rOpκq, and are attained without convexity.

3 ALGORITHMS FOR
NON-CONVEX/NON-SMOOTH
COMPOSITE LOSSES

In this section, we consider private FL with general non-
convex/non-smooth composite losses: i.e. we make no
additional assumptions on f beyond Assumption 1 and As-
sumption 2. In particular, we do not assume the Proximal PL
condition, allowing for a range of constrained/unconstrained
non-convex and non-smooth FL problems. For such a func-
tion class, finding global optima is not possible in polyno-
mial time; optimization algorithms may only find stationary
points in polynomial time. Thus, we measure the utility of
our algorithms in terms of the norm of the proximal gradient
mapping:

pGηpw,Xq :“
1

η
rw ´ proxηf1pw ´ η∇ pF 0

Xpwqqs

For proximal algorithms, this is a natural measure of sta-
tionarity J Reddi et al. (2016); Wang et al. (2019b) which
generalizes the standard (for smooth unconstrained) notion
of first-order stationarity. In the smooth unconstrained case,
}pGηpw,Xq} reduces to }∇ pFXpwq}, which is often used to
measure convergence in non-convex optimization. Building
on Fang et al. (2018); Wang et al. (2019b); Arora et al.
(2022), we propose Algorithm 3 for ISRL-DP FL with
non-convex/non-smooth composite losses. Algorithm 3
is inspired by the optimality of non-private SPIDER for
non-convex ERM Arjevani et al. (2019).

The essential elements of the algorithms are: the variance-
reduced Stochastic Path-Integrated Differential EstimatoR
of the gradient in line 11; and the non-standard choice of
privacy noise in line 10 (inspired by Arora et al. (2022)), in
which we choose σ2

2 “
16β2R lnp1{δq

ϵ2n2 . With careful choices
of η, σ2

1 , σ̂
2
2 , q, R in ISRL-DP FedProx-SPIDER, our algo-

rithm achieves state-of-the-art utility:
Theorem 3.1 (ISRL-DP FedProx-SPIDER, M “ N ver-
sion). Let ϵ ď 2 lnp1{δq. Then, ISRL-DP FedProx-SPIDER
is pϵ, δq-ISRL-DP. Moreover, if M “ N , then

E} pGηpwpriv,Xq}
2

À

¨

˝

b

Lβ∆̂Xd lnp1{δq

ϵn
?
N

˛

‚

4{3

`
L2d lnp1{δq

ϵ2n2N
.
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Algorithm 3 ISRL-DP FedProx-SPIDER
1: Input: R P N,K1,K2 P rns,X P X, η ą

0, σ2
1 , σ

2
2 , σ̂

2
2 ě 0, q P N, w0 P W .

2: for r P t0, 1, ¨ ¨ ¨ , Ru do
3: for i P Sr in parallel do
4: Server sends global model wr to silo i.
5: if r ” 0 pmod qq then
6: Silo i draws K1 samples txr

i,ju
K1
j“1 u.a.r. from

Xi (with replacement) and ui
1 „ N p0, σ2

1Idq.
7: Silo i computes hi

r “
1
K1

řK1

j“1 ∇f0pwr, x
r
i,jq ` ui

1.
8: Server aggregates hr “ 1

Mr

ř

iPSr
hi
r.

9: else
10: Silo i draws K2 samples txr

i,ju
K1
j“1 u.a.r.

from Xi (with replacement) and ui
2 „

N p0, Id mintσ2
2}wr ´ wr´1}2, σ̂2

2uq.
11: Silo i computes Hi

r “
1
K2

řK2

j“1r∇f0pwr, x
r
i,jq´∇f0pwr´1, x

r
i,jqs`

ui
2.

12: Server aggregates Hr “ 1
Mr

ř

iPSr
Hi

r and
hr “ hr´1 ` Hr.

13: end if
14: end for
15: Server updates wr`1 “ proxηf1pwr ´ ηhrq.
16: end for
17: Output: wpriv „ Unifptwrur“1,¨¨¨ ,Rq.

See Appendix F for the general statement for M ď N , and
the detailed proof. Theorem 3.1 provides the first utility
bound for any kind of DP optimization problem (even cen-
tralized) with non-convex/non-smooth losses. In fact, the
only work we are aware of that addresses DP non-convex
optimization with f1 ‰ 0 is Bassily et al. (2021), which con-
siders CDP constrained smooth non-convex SO with N “ 1
(i.i.d.) and f1 “ ιW . However, their noisy Franke-Wolfe
method could not handle general non-smooth f1. Further,
handing N ą 1 heterogeneous silos requires additional
work.

The improved utility that our algorithm offers compared
with existing DP FL works (discussed in Section 1) stems
from the variance-reduction that we get from: a) using
smaller privacy noise that scales with β}wt ´ wt´1} and
shrinks as t increases (in expectation); and b) using SPI-
DER updates. By β-smoothness of f0, we can bound the
sensitivity of the local updates and use standard DP argu-
ments to prove ISRL-DP of Algorithm 3. A key step in the
proof of the utility bound in Theorem 3.1 involves extend-
ing classical ideas from (Bubeck et al., 2015, p. 269-271)
for constrained convex optimization to the noisy distributed
non-convex setting and leveraging non-expansiveness of the
proximal operator in the right way.

Our SDP FedProx-SPIDER Algorithm 10 is described in Ap-

pendix F. SDP FedProx-SPIDER is similar to Algorithm 3
except that Gaussian noises get replaced by appropraitely
re-calibrated binomial noises plus shuffling. It’s privacy and
utility guarantees are provided in Theorem 3.2:
Theorem 3.2 (SDP FedProx-SPIDER, M “ N version).
Let ϵ ď lnp1{δq, δ P p0, 1

2 q. Then, there exist algorithmic
parameters such that SDP FedProx-SPIDER is pϵ, δq-SDP
and

E} pGηpwpriv,Xq}
2

“ rO

˜

»

–

b

Lβ∆̂Xd lnp1{δq

ϵnN

fi

fl

4{3

`
dL2 lnp1{δq

ϵ2n2N2

¸

.

Our non-smooth, SDP federated ERM bound in Theorem 3.2
improves over the state-of-the-art CDP, smooth federated
ERM bound of Wang et al. (2019a), which is Op

?
d{ϵnNq.

We obtain this improved utility even under the weaker as-
sumptions of non-smooth loss and no trusted server.

3.1 Lower Bounds

We complement our upper bounds with lower bounds:
Theorem 3.3 (Smooth Convex Lower Bounds, Informal).
Let ϵ À 1 and 2´ΩpnNq ď δ ď 1{pnNq1`Ωp1q. Then, there
is an L-Lispchitz, β-smooth, convex loss f : Rd ˆ X Ñ R
and a database X P XnˆN such that any compositional,
symmetric 7 pϵ, δq-ISRL-DP algorithm A satisfies

E}∇ pFXpApXqq}
2

“ Ω

ˆ

L2 min

"

1,
d lnp1{δq

ϵ2n2N

*˙

.

Further, any pϵ, δq-SDP algorithm satisfies

E}∇ pFXpApXqq}
2

“ Ω

ˆ

L2 min

"

1,
d lnp1{δq

ϵ2n2N2

*˙

.

The proof (and formal statement) of the ISRL-DP lower
bound is relegated to Appendix F.1; the SDP lower bound
follows directly from the CDP lower bound of Arora et al.
(2022). Intuitively, it is not surprising that there is a gap
between the non-convex/non-smooth upper bounds in Theo-
rem 3.1 and the smooth, convex lower bounds, since smooth
convex optimization is easier than non-convex/non-smooth
optimization.8 As discussed in (Arora et al., 2022, Appendix
B.2), the non-private lower bound of Arjevani et al. (2019)
provides some evidence that their CDP ERM bound (which
our SDP bound matches when M “ N ) is tight for noisy
gradient methods.9 By Theorem 3.3, this would imply that
our ISRL-DP ERM bound is also tight. Rigorously proving
tight bounds is left as an interesting open problem.

7See Appendix F.1 for precise definitions; to the best of our
knowledge, every DP ERM algorithm proposed in the literature is
compositional and symmetric.

8For example, the non-private sample complexity of smooth
convex SO is significantly smaller than the sample complexity of
non-private non-convex SO Nemirovskii and Yudin (1983); Foster
et al. (2019); Arjevani et al. (2019).

9Note that the non-private first-order oracle complexity lower
bound of Arjevani et al. (2019) requires a very high dimensional
construction, restricting its applicability to the private setting.
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4 NUMERICAL EXPERIMENTS

To evaluate the performance of ISRL-DP FedProx-SPIDER,
we compare it against standard FL baselines for privacy lev-
els ranging from ϵ “ 0.75 to ϵ “ 18: Minibatch SGD (MB-
SGD), Local SGD (a.k.a. Federated Averaging) McMahan
et al. (2017), ISRL-DP MB-SGD Lowy and Razaviyayn
(2021b), and ISRL-DP Local SGD. We fix δ “ 1{n2. Note
that FedProx-SPIDER generalizes MB-SGD (take q “ 1).
Therefore, ISRL-DP FedProx-SPIDER always performs at
least as well as ISRL-DP MB-SGD, with performance being
identical when the optimal phase length hyperparameter is
q “ 1.

The main takeaway from our numerical experiments is that
ISRL-DP FedProx-SPIDER outperforms the other ISRL-
DP baselines for most privacy levels. To quantify the ad-
vantage of our algorithm, we computed the percentage im-
provement in test error over baselines in each experiment
and privacy (ϵ) level, and averaged the results: our algo-
rithm improves over ISRL-DP Local SGD by 6.06% on
average and improves over ISRL-DP MB-SGD by 1.72%.
Although the advantage over MB-SGD may not seem sub-
stantial, it is promising that our algorithm dominated MB-
SGD in every experiment: ISRL-DP MB-SGD never out-
performed ISRL-DP SPIDER for any value of ϵ. More
details about the experiments and additional results are
provided in Appendix H. All codes are publicly avail-
able at: https://github.com/ghafeleb/Private-NonConvex-
Federated-Learning-Without-a-Trusted-Server.

Neural Net Classification with MNIST Data: Follow-
ing Woodworth et al. (2020b); Lowy and Razaviyayn
(2021b), we partition the MNIST LeCun and Cortes (2010)
data set into N “ 25 heterogeneous silos, each containing
one odd/even digit pairing. The task is to classify digits as
even or odd. We use a two-layer perceptron with a hidden
layer of 64 neurons. As Figure 4 and Figure 5 show, ISRL-
DP FedProx-SPIDER tends to outperform both ISRL-DP
baselines.
Convolutional Neural Net Classification with CIFAR-10

Data: CIFAR-10 dataset Krizhevsky et al. (2009) includes
10 image classes and we partition it into N “ 10 heteroge-
neous silos, each containing one class. Following PyTorch
team, we use a 5-layer CNN with two 5x5 convolutional
layers (the first with 6 channels, the second with 16 chan-
nels, each followed by a ReLu activation and a 2x2 max
pooling) and three fully connected layers with 120, 84, 10
neurons in each fully connected layer. The first and second
fully connected layers are followed by a ReLu activation.
As Figure 6 and Figure 7 show, ISRL-DP FedProx-SPIDER
outperforms both ISRL-DP baselines for most tested privacy
levels.

Neural Net Classification with Breast Cancer Data:
With the Wisconsin Breast Cancer (Diagnosis) (WBCD)

Figure 4: MNIST data. M “ 25, R “ 25.

Figure 5: MNIST data. M “ 12, R “ 50.

dataset Dua and Graff (2017), our task is to diagnose breast
cancers as malignant vs. benign. We partition the data set
into N “ 2 heterogeneous silos, one containing malignant
labels and the other benign labels. We use a 2-layer per-
ceptron with 5 neurons in the hidden layer. As Figure 8
shows, ISRL-DP FedProx-SPIDER outperforms both ISRL-
DP baselines for most tested privacy levels.

5 CONCLUDING REMARKS AND OPEN
QUESTIONS

We considered non-convex FL in the absence of trust in the
server or other silos. We discussed the merits of ISRL-DP
and SDP in this setting. For two broad classes of non-convex
loss functions, we provided novel ISRL-DP/SDP FL algo-
rithms and utility bounds that advance the state-of-the-art.
For proximal-PL losses, our algorithms are nearly optimal
and show that neither convexity or i.i.d. data is required to
obtain fast rates. Numerical experiments demonstrated the
practicality of our algorithm at providing both high accuracy
and privacy on several learning tasks and data sets. An inter-
esting open problem is proving tight bounds on the gradient

https://github.com/ghafeleb/Private-NonConvex-Federated-Learning-Without-a-Trusted-Server
https://github.com/ghafeleb/Private-NonConvex-Federated-Learning-Without-a-Trusted-Server
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Figure 6: CIFAR-10 data. M “ 10, R “ 50.

Figure 7: CIFAR-10 data. M “ 10, R “ 100.

norm for private non-convex FL. We discuss limitations and
societal impacts of our work in Appendices I and J.
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SUPPLEMENTARY MATERIAL

A Inter-Silo Record Level Differential Privacy (ISRL-DP): Rigorous Definition

Let A be a randomized algorithm, where the silos communicate over R rounds for their FL task. In each round of
communication r P rRs, each silo i transmits a message Z

piq
r P Z (e.g. stochastic gradient) to the server or other silos,

and the messages are aggregated. The transmitted message Z
piq
r is a (random) function of previously communicated

messages and the data of user i; that is, Zpiq
r :“ Rpiq

r pZ1:r´1, Xiq, where Z1:r´1 :“ tZ
pjq

t ujPrNs,tPrr´1s. The silo-level

local privacy of A is completely characterized by the randomizers Rpiq
r : Zpr´1qˆN ˆ Xni Ñ Z (i P rN s, r P rRs).10 A

is pϵ, δq-ISRL-DP if for all i P rN s, the full transcript of silo i’s communications (i.e. the collection of all R messages
tZ

piq
r urPrRs) is pϵ, δq-DP, conditional on the messages and data of all other silos. We write ApXq »

pϵ,δq
ApX1

q if (3) holds for

all measurable subsets S.

Definition 4. (Inter-Silo Record Level Differential Privacy) Let ρi : X 2 Ñ r0,8q, ρipXi, X
1
iq :“

řn
j“1 1txi,j‰x1

i,ju,
i P rN s. A randomized algorithm A : Xn

1 ˆ ¨ ¨ ¨ ˆ Xn
N Ñ ZRˆN is pϵ, δq-ISRL-DP if for all i P rN s and all ρi-adjacent

Xi, X
1
i P Xn, we have pRpiq

1 pXiq,Rpiq

2 pZ1, Xiq, ¨ ¨ ¨ ,Rpiq

R pZ1:R´1, Xiqq »
pϵ,δq

pRpiq

1 pX 1
iq,R

piq

2 pZ1
1, X

1
iq, ¨ ¨ ¨ ,Rpiq

R pZ1
1:R´1, X

1
iqq,

where Zr :“ tRpiq
r pZ1:r´1, Xiqu

N
i“1 and Z1

r :“ tRpiq
r pZ1

1:r´1, X
1
iqu

N
i“1.

B Relationships Between Notions of Differential Privacy

In this section, we collect a couple of facts about the relationships between different notions of DP, which were proved in
Lowy and Razaviyayn ((2021b)). Suppose A is pϵ, δq-ISRL-DP. Then:

• A is pϵ, δq-CDP; and

• A is pnϵ, nepn´1qϵδq-user-level DP.

Thus, if ϵ0 À 1{n and δ0 “ op1{n2q, then any pϵ0, δ0q-ISRL-DP algorithm also provides a meaningful pϵ, δq-user-level DP
guarantee, with ϵ À 1.

C Further Discussion of Related Work

DP Optimization with the Polyak-Łojasiewicz (PL) Condition: For unconstrained central DP optimization, Wang et al.
((2017)); Kang et al. ((2021)); Zhang et al. ((2021)) provide bounds for Lipschitz losses satisfying the classical PL inequality.
However, the combined assumptions of Lipschitzness and PL on Rd (unconstrained) are very strong and rule out most
interesting PL losses, such as strongly convex, least squares, and neural nets, since the Lipschitz parameter L of such
losses is infinite or prohibitively large.11 We address this gap by considering the Proximal PL condition, which admits such
interesting loss functions. There was no prior work on DP optimization (in particular, FL) with the Proximal PL condition.

DP Smooth Non-convex Distributed ERM: Non-convex federated ERM has been considered in previous works under
stricter assumptions of smooth loss and (usually) a trusted server. Wang et al. ((2019a)) provide state-of-the-art CDP upper
bounds for distributed ERM of order E}∇ pFXpwprivq}2 À

´ ?
d

ϵnN

¯

with perfect communication (M “ N ), relying on a
trusted server (in conjunction with secure multi-party computation) to perturb the aggregated gradients. Similar bounds
were attained by Noble et al. ((2022)) for M ă N with a DP variation of SCAFFOLD Karimireddy et al. ((2020)). In
Theorem 3.2, we improve on these utility bound under the weaker trust model of shuffle DP (no trusted server) and with
unreliable communication (i.e. arbitrary M P rN s). We also improve over the state-of-the-art ISRL-DP bound of Noble
et al. ((2022)), in Theorem 3.1. A number of other works have also addressed private non-convex federated ERM (under
various notions of DP), but have fallen short of the state-of-the-art utility and communication complexity bounds:

10We assume Rpiq
r pZ1:r´1, Xiq does not depend on Xj (j ‰ i) given Z1:r´1 and Xi; i.e. the distribution of the random function Rpiq

r

is completely characterized by Z1:r´1 and Xi. Thus, randomizers of i cannot “eavesdrop” on another silo’s data. This is consistent with
the local data principle of FL. We allow for Zpiq

r to be empty/zero if silo i does not output anything to the server in round r.
11In particular, the DP ERM/SCO strongly convex, Lipschitz lower bounds of Bassily et al. ((2014, 2019)) do not imply lower bounds

for the unconstrained Lipschitz, PL function class considered in these works, since the quadratic hard instance of Bassily et al. ((2014)) is
not L-Lipschitz on all of Rd for any L ă `8.
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• The noisy FedAvg algorithm of Hu et al. ((2021)) is not ISRL-DP for any N ą n since the variance of the Gaussian noise
σ2 « TKL2 logp1{δq{nNϵ2 decreases as N increases; moreover, for their prescribed stepsize η “

?
N?
T

, the resulting

rate (with T “ RK) from ((Hu et al., 2021, Theorem 2)) is E}∇ pF p pwRq}2 “ rO
´

d
?
NTK

ϵ2nN ` NK2

T `
?
N?
T

` dK2

ϵ2n

¯

which grows unbounded with T . Moreover, T and K are not specified in their work, so it is not clear what bound their
algorithm is able to attain, or how many communication rounds are needed to attain it.

• Theorems 3 and 7 of Ding et al. ((2021)) provide ISRL-DP upper bounds on the empirical gradient norm which hold
for sufficiently large R ě T nc

min for some unspecified T nc
min. The resulting upper bounds are bigger than dσ2

R1{3 « dR2{3

ϵ2n2 .
In particular, the bounds becomes trivial for large R (diverges) and no utility bound expressed in terms of problem
parameters (rather than unspecified design parameters R or T ) is provided. Also, no communication complexity bound
is provided.

DP Smooth Non-convex Centralized ERM (N “ 1): In the centralized setting with a single client and smooth
loss function, several works Zhang et al. ((2017)); Wang et al. ((2017, 2019a)); Arora et al. ((2022)) have consid-
ered CDP (unconstrained) non-convex ERM (with gradient norm as the utility measure): the state-of-the-art bound

is E}∇ pFXpwprivq}2 “ O
ˆ?

d lnp1{δq

ϵn

˙4{3

Arora et al. ((2022)). Our private FedProx-SPIDER algorithms build on the DP

SPIDER-Boost of Arora et al. ((2022)), by parallelizing their updates for FL and incorporating proximal updates to cover
non-smooth losses.

Non-private FL: In the absence of privacy constraints, there is a plethora of works studying the convergence of FL
algorithms in both the convex Koloskova et al. ((2020)); Li et al. ((2020b)); Karimireddy et al. ((2020)); Woodworth et al.
((2020a,b)); Yuan and Ma ((2020)) and non-convex Li et al. ((2020a)); Zhang et al. ((2020)); Karimireddy et al. ((2020))
settings. We do not attempt to provide a comprehensive survey of these works here; see Kairouz et al. ((2019)) for such a
survey. However, we briefly discuss some of the well known non-convex FL works:

• The “FedProx” algorithm of Li et al. ((2020a)) augments FedAvg McMahan et al. ((2017)) with a regularization term in
order to decrease “client drift” in heterogeneous FL problems with smooth non-convex loss functions. (By comparison,
we use a proximal term in our private algorithms to deal with non-smooth non-convex loss functions, and show that our
algorithms effectively handle heterogeneous client data via careful analysis.)

• Zhang et al. ((2020)) provides primal-dual FL algorithms for non-convex loss functions that have optimal communica-
tion complexity (in a certain sense).

• The SCAFFOLD algorithm of Karimireddy et al. ((2020)) can be viewed as a hybrid between Local SGD (FedAvg)
and MB-SGD, as Woodworth et al. ((2020b)) observed. Convergence guarantees for their algorithm with non-convex
loss functions are provided.

D Differential Privacy Building Blocks

Basic DP tools: We begin by reviewing the privacy guarantees of the Gaussian mechanism. The classical pϵ, δq-DP bounds
for the Gaussian mechanism ((Dwork and Roth, 2014, Theorem A.1)) were only proved for ϵ ď 1, so we shall instead
state the privacy guarantees in terms of zero-concentrated differential privacy (zCDP)–which should not be confused with
central differential privacy (CDP)–and then convert these into pϵ, δq-DP guarantees. We first recall ((Bun and Steinke, 2016,
Definition 1.1)):

Definition 5. A randomized algorithm A : Xn Ñ W satisfies ρ-zero-concentrated differential privacy (ρ-zCDP) if for all
X,X 1 P Xn differing in a single entry (i.e. dhammingpX,X 1q “ 1), and all α P p1,8q, we have

DαpApXq||ApX 1qq ď ρα,

where DαpApXq||ApX 1qq is the α-Rényi divergence12 between the distributions of ApXq and ApX 1q.

zCDP is weaker than pure DP, but stronger than approximate DP in the following sense:

12For distributions P and Q with probability density/mass functions p and q, DαpP ||Qq :“ 1
α´1

ln
`ş

ppxq
αqpxq

1´αdx
˘

((Rényi,
1961, Eq. 3.3)).
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Proposition D.1. ((Bun and Steinke, 2016, Proposition 1.3)) If A is ρ-zCDP, then A is pρ ` 2
a

ρ logp1{δq, δq for any
δ ą 0. In particular, if ϵ ď 2 lnp1{δq, then any ϵ2

8 lnp1{δq
-zCDP algorithm is pϵ, δq-DP.

The privacy guarantee of the Gaussian mechanism is as follows:

Proposition D.2. ((Bun and Steinke, 2016, Proposition 1.6)) Let q : Xn Ñ R be a query with ℓ2-sensitivity ∆ :“
supX„X1 }qpXq´qpX 1q}. Then the Gaussian mechanism, defined by M : Xn Ñ R, MpXq :“ qpXq`u for u „ N p0, σ2q,
is ρ-zCDP if σ2 ě ∆2

2ρ . Thus, if ϵ ď 2 lnp1{δq and σ2 ě
4∆2 lnp1{δq

ϵ2 , then M is pϵ, δq-DP.

Our multi-pass algorithms will also use advanced composition for their privacy analysis:

Theorem D.1. ((Dwork and Roth, 2014, Theorem 3.20)) Let ϵ ě 0, δ, δ1 P r0, 1q. Assume A1, ¨ ¨ ¨ ,AR, with Ar : Xn ˆ

W Ñ W , are each pϵ, δq-DP @r “ 1, ¨ ¨ ¨ , R. Then, the adaptive composition ApXq :“ ARpX,AR´1pX,AR´2pX, ¨ ¨ ¨ qqq

is pϵ1, Rδ ` δ1q-DP for ϵ1 “
a

2R lnp1{δ1qϵ ` Rϵpeϵ ´ 1q.

Note that the moments accountant Abadi et al. ((2016)) provides a slightly tighter composition bound (by a logarithmic
factor) and can be used instead of Theorem D.1 if one is concerned with logarithmic factors. We use the moments accountant
for our numerical experiments: see Appendix H. Sometimes it is more convenient to analyze the compositional privacy
guarantees of our algorithm through the lens of zCDP:

Lemma D.1. ((Bun and Steinke, 2016, Lemma 2.3)) Suppose A : Xn Ñ Y satisfies ρ-zCDP and A1 : Xn ˆ Y Ñ Z
satisfies ρ1-zCDP (as a function of its first argument). Define the composition of A and A1, A2 : Xn Ñ Z by A2pXq “

A1pX,ApXqq. Then A2 satisfies pρ ` ρ1q-zCDP. In particular, the composition of T ρ-zCDP mechanisms is a Tρ-zCDP
mechanism.

Shuffle Private Vector Summation: Here we recall the shuffle private vector summation protocol Pvec of Cheu et al.
((2021)), and its privacy and utility guarantee. First, we will need the scalar summation protocol, Algorithm 4. Both
of Algorithm 4 and Algorithm 5 decompose into a local randomizer R that silos perform and an analyzer component A that
the shuffler executes. Below we use Spyq to denote the shuffled vector y: i.e. the vector with same dimension as y whose
components are random permutations of the components of y.

Algorithm 4 P1D, a shuffle protocol for summing scalars Cheu et al. ((2021))
1: Input: Scalar database X “ px1, ¨ ¨ ¨xN q P r0, LsN ; g, b P N; p P p0, 1

2 q.
2: procedure: Local Randomizer R1Dpxiq

3: sxi Ð txig{Lu.
4: Sample rounding value η1 „ Berpxig{L ´ sxiq.
5: Set x̂i Ð sxi ` η1.
6: Sample privacy noise value η2 „ Binpb, pq.
7: Report yi P t0, 1ug`b containing x̂i ` η2 copies of 1 and g ` b ´ px̂i ` η2q copies of 0.
8: end procedure
9: procedure: Analyzer A1DpSpyqq

10: Output estimator L
g pp

řN
i“1

řb`g
j“1pyiqjq ´ pbnq.

11: end procedure

The vector summation protocol Algorithm 5 invokes the scalar summation protocol, Algorithm 4, d times. In the Analyzer
procedure, we use y to denote the collection of all Nd shuffled (and labeled) messages that are returned by the the local
randomizer applied to all of the N input vectors. Since the randomizer labels these messages by coordinate, yj consists of
N shuffled messages labeled by coordinate j (for all j P rds).

When we use Algorithm 5 in our SDP FL algorithms, each of the Mr “ M available silos contributes K messages, so
N “ MK in the notation of Algorithm 5. Also, xi represents K stochastic gradients, and available silos perform Rvec
on each one (in parallel) before sending the collection of all of these randomized, discrete stochastic gradients–denoted
Rvecpxiq–to the shuffler. The shuffler permutes the elements of Rvecpx1q, ¨ ¨ ¨RvecpxM q, then executes Avec, and sends
1
M o–which is a noisy estimate of the average stochastic gradient–to the server. When there is no confusion, we will
sometimes hide input parameters other than X and denote PvecpXq :“ PvecpX; ϵ, δ;Lq. We now provide the privacy and
utility guarantee of Algorithm 5:

Theorem D.2 (Cheu et al. ((2021))). For any 0 ă ϵ ď 15, 0 ă δ ă 1{2, d,N P N, and L ą 0, there are choices of
parameters b, g P N and p P p0, 1{2q for P1D (Algorithm 4) such that, for X “ px1, ¨ ¨ ¨xN q containing vectors of maximum
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Algorithm 5 Pvec, a shuffle protocol for vector summation Cheu et al. ((2021))
1: Input: database of d-dimensional vectors X “ px1, ¨ ¨ ¨ ,xN ); privacy parameters ϵ, δ; L.
2: procedure: Local Randomizer Rvecpxiq

3: for j P rds do
4: Shift component to enforce non-negativity: wi,j Ð xi,j ` L
5: mj Ð R1Dpwi,jq

6: end for
7: Output labeled messages tpj,mjqujPrds

8: end procedure
9: procedure: Analyzer Avecpyq

10: for j P rds do
11: Run analyzer on coordinate j’s messages zj Ð A1Dpyjq

12: Re-center: oj Ð zj ´ L
13: end for
14: Output the vector of estimates o “ po1, ¨ ¨ ¨ odq

15: end procedure

norm maxiPrNs }xi} ď L, the following holds: 1) Pvec is pϵ, δq-SDP; and 2) PvecpXq is an unbiased estimate of
řN

i“1 xi

with bounded variance

E

»

–

›

›

›

›

›

PvecpX; ϵ, δ;Lq ´

N
ÿ

i“1

xi

›

›

›

›

›

2
fi

fl “ O

˜

dL2 log2
`

d
δ

˘

ϵ2

¸

.

E Supplemental Material for Section 2: Proximal PL Loss Functions

E.1 Noisy Proximal Gradient Methods forProximal PL FL (SO) - Pseudocodes

Algorithm 6 ISRL-DP Noisy Distributed Proximal Gradient Method
1: Input: R P N, Xi P Xnpi P rN sq, σ2 ě 0,K ď n

R , w0 P Rd.
2: for r P t0, 1, ¨ ¨ ¨ , R ´ 1u do
3: for i P Sr in parallel do
4: Server sends global model wr to silo i.
5: Silo i draws txr

i,juKj“1 uniformly from Xi (without replacement) and noise ui „ N p0, σ2Idq.

6: Silo i sends rgir :“ 1
K

řK
j“1 ∇f0pwr, x

r
i,jq ` ui to server.

7: end for
8: Server aggregates rgr :“ 1

Mr

ř

iPSr
rgir.

9: Server updates wr`1 :“ prox 1
2β f1pwr ´ 1

2βrgrq

10: end for
11: Output: wR.

E.2 Proof of Theorem 2.1: Heterogeneous FL (SO)

First we provide a precise re-statement of the result, in which we assume Mr “ M is fixed, for convenience:

Theorem E.1 (Re-statement of Theorem 2.1). Grant Assumption 1, Assumption 2, and Assumption 4 for K “ t n
R u and R

specified below. Let ϵ ď mint8 lnp1{δq, 15u, δ P p0, 1{2q, n ě rΩpκq. There is a choice of σ2 such that:

1. ISRL-DP Prox-SGD is pϵ, δq-ISRL-DP and

EF pwRq ´ F˚
“ rO

ˆ

L2

µ

ˆ

κ2d lnp1{δq

ϵ2n2M
`

κ

Mn

˙˙

(6)

in R “

Q

2κ ln
´

µ∆
L2 min

!

Mn, ϵ2n2M
d lnp1{δq

)¯U

communication rounds, where ∆ ě F pw0q ´ F˚.
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Algorithm 7 SDP Noisy Distributed Proximal Gradient Method
1: Input: Number of rounds R P N, data sets Xi P Xni for i P rN s, loss function fpw, xq “ f0pw, xq ` f1pw, xq,

privacy parameters ϵ, δ, local batch size K ď n
R , w0 P Rd.

2: for r P t0, 1, ¨ ¨ ¨ , R ´ 1u do
3: for i P Sr in parallel do
4: Server sends global model wr to silo i.
5: Silo i draws K samples txr

i,juKj“1 uniformly from Xi (without replacement) and computes t∇f0pwr, x
r
i,jqujPrKs.

6: end for
7: Server updates rgr :“ 1

MrK
Pvecpt∇f0pwr, x

r
i,jquiPSr,jPrKs;

N
2M ϵ, δ;Lq and wr`1 :“ prox 1

2β f1pwr ´ 1
βrgrq

8: end for
9: Output: wR.

2. SDP Prox-SGD is pϵ, δq-SDP for M ě N minpϵ{2, 1q, and

EF pwRq ´ F˚
“ rO

ˆ

L2

µ

ˆ

κ2d ln2
pd{δq

ϵ2n2N2
`

κ

Mn

˙˙

(7)

in R “

Q

2κ ln
´

µ∆
L2 min

!

Mn, ϵ2n2N2

d lnp1{δq

)¯U

communication rounds.

Proof. We prove part 1 first. Privacy: First, by independence of the Gaussian noise across silos, it is enough show that
transcript of silo i’s interactions with the server is DP for all i P rN s (conditional on the transcripts of all other silos). Since
the batches sampled by silo i in each round are disjoint (as we sample without replacement), the parallel composition
theorem of DP McSherry ((2009)) implies that it suffices to show that each round is pϵ, δq-ISRL-DP. Then by post-processing
Dwork and Roth ((2014)), we just need to show that that the noisy stochastic gradient rgir in line 6 of the algorithm is pϵ, δq-
DP. Now, the ℓ2 sensitivity of this stochastic gradient is bounded by ∆2 :“ sup|Xi∆X1

i|ď2,wPW } 1
K

řK
j“1 ∇fpw, xi,jq ´

∇fpw, x1
i,jq} ď 2L{K, by L-Lipschitzness of f. Hence Proposition D.2 implies that rgir in line 6 of the algorithm is

pϵ, δq-DP for σ2 ě
8L2 lnp1{δq

ϵ2K2 . Therefore, ISRL-DP Prox-SGD is pϵ, δq-ISRL-DP.

Excess loss: Denote the stochastic approximation of F in round r by pFrpwq :“ 1
MK

ř

iPSr

řK
j“1 fpw, xr

i,jq, and sur :“
1
M

ř

iPSr
ui „ N p0, σ2

M Idq. By β-smoothness, we have

EF pwr`1q “ E
“

F 0pwr`1q ` f1pwrq ` f1pwr`1q ´ f1pwrq
‰

ď EF pwrq ` E
„

x∇ pF 0
r pwrq, wr`1 ´ wry `

β

2
}wr`1 ´ wr}2 ` f1pwr`1q ´ f1pwrq ` xsur, wr`1y

ȷ

` Ex∇F 0pwrq ´ ∇ pF 0
r pwrq, wr`1 ´ wry ´ Exsur, wr`1y (8)

ď EF pwrq ` E
”

x∇ pF 0
r pwrq, wr`1 ´ wry ` β}wr`1 ´ wr}2 ` f1pwr`1q ´ f1pwrq ` xsur, wr`1y

ı

´ xsur, wr`1y ` E
„

1

2β
}∇F 0pwrq ´ ∇ pF 0

r pwrq}2
ȷ

, (9)

where we used Young’s inequality to bound

Ex∇F 0pwrq ´ ∇ pF 0
r pwrq, wr`1 ´ wry ď E

„

1

2β
}∇F 0pwrq ´ ∇ pF 0

r pwrq}2
ȷ

l jh n

a⃝

`E
„

β

2
}wr`1 ´ wr}2

ȷ

(10)
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in the last line above. We bound a⃝ as follows:

E
„

1

2β

›

›

›
∇F 0pwrq ´ ∇ pF 0

r pwrq

›

›

›

2
ȷ

“
1

2β
E

›

›

›

›

›

1

MK

ÿ

iPSr

K
ÿ

j“1

∇F 0pwrq ´ ∇f0pwr, x
r
i,jq

›

›

›

›

›

2

(11)

“
1

2βM2K2

ÿ

iPSr

K
ÿ

j“1

E}∇F 0pwrq ´ ∇f0pwr, x
r
i,jq}2 (12)

ď
L2

βMK
, (13)

by independence of the data and L-Lipschitzness of f0.

Next, we will bound E
”

x∇ pF 0
r pwrq, wr`1 ´ wry ` β}wr`1 ´ wr}2 ` f1pwr`1q ´ f1pwrq ` xsur, wr`1y

ı

. Denote

Hpriv
r pyq :“ x pF 0

r pwrq, y ´ wry ` β}y ´ wr}2 ` f1pyq ´ f1pwrq ` xsur, yy and Hrpyq :“ x∇ pF 0
r pwrq, y ´ wry ` β}y ´

wr}2 ` f1pyq ´ f1pwrq Note that Hr and Hpriv
r are 2β-strongly convex. Denote the minimizers of these two functions by

y˚ and ypriv
˚ respectively. Now, conditional on wr, Sr, and sur, we claim that

Hrpypriv
˚ q ´ Hrpy˚q ď

}sur}2

2β
. (14)

To prove (14), we will need the following lemma:

Lemma E.1 (Lowy and Razaviyayn ((2021a))). Let Hpyq, hpyq be convex functions on some convex closed set Y Ď Rd

and suppose that Hpwq is 2β-strongly convex. Assume further that h is Lh-Lipschitz. Define y1 “ argminyPY Hpyq and
y2 “ argminyPY rHpyq ` hpyqs. Then }y1 ´ y2}2 ď

Lh

2β .

We apply Lemma E.1 with Hpyq :“ Hrpyq, hpyq :“ xsur, yy, Lh “ }sur}, y1 “ y˚, and y2 “ ypriv
˚ to get

}y˚ ´ ypriv
˚ } ď

}sur}

2β
.

On the other hand,
Hpriv

r pypriv
˚ q “ Hrpypriv

˚ q ` xsur, y
priv
˚ y ď Hpriv

r py˚q “ Hrpy˚q ` xsur, y˚y.

Combining these two inequalities yields

Hrpypriv
˚ q ´ Hrpy˚q ď xsur, y˚ ´ ypriv

˚ y

ď }sur}}y˚ ´ ypriv
˚ }

ď
}sur}2

β
, (15)

as claimed. Also, note that wr`1 “ ypriv
˚ . Further, by Assumption 4, we know

EHrpy˚q “ Emin
y

”

x∇ pF 0
r pwrq, y ´ wry ` β}y ´ wr}2 ` f1pyq ´ f1pwrq

ı

(16)

ď ´
µ

2β
Er pFrpwrq ´ min

w
pFrpwqs ď ´

µ

2β
rF pwrq ´ F˚s. (17)

Combining this with (14), we get:

E
”

x∇ pF 0
r pwrq, wr`1 ´ wry ` β}wr`1 ´ wr}2 ` f1pwr`1q ´ f1pwrq ` xsur, wr`1y

ı

“ EHpriv
r pypriv

˚ q

“ EHrpypriv
˚ q ` Exsur, wr`1y

ď EHrpy˚q `
dσ2

βM
` Exsur, wr`1y

ď ´E
µ

2β
rF pwrq ´ F˚s `

dσ2

βM
` Exsur, wr`1y.
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Plugging the above bounds back into (9), we obtain

EF pwr`1q ď EF pwrq ´
µ

2β
ErF pwrq ´ F˚s `

2dσ2

βM
`

2L2

βMK
, (18)

whence

ErF pwr`1q ´ F˚s ď ErF pwrq ´ F˚s

ˆ

1 ´
µ

2β

˙

`
2dσ2

βM
`

2L2

βMK
. (19)

Using (19) recursively and plugging in σ2, we get

ErF pwRq ´ F˚s ď ∆

ˆ

1 ´
µ

2β

˙R

`
L2

µ

„

16d lnp1{δq

ϵ2K2M
`

1

MK

ȷ

. (20)

Finally, plugging in K and R, and observing that 1

lnp β
β´µ q

ď κ, we conclude

EF pwRq ´ F˚ À
L2

µ

„

ln2
ˆ

µ∆

L2
min

"

Mn,
ϵ2n2M

d

*˙ˆ

κ2d lnp1{δq

ϵ2n2M
`

κ

Mn

˙ȷ

.

Next, we move to part 2.
Privacy: Since the batches used in each iteration are disjoint by our sampling (without replacement) strategy, the parallel
composition theorem McSherry ((2009)) implies that it is enough to show that each of the R rounds is pϵ, δq-SDP. This
follows immediately from Theorem D.2 and privacy amplification by subsambling Ullman ((2017)) (silos only): in each
round, the network “selects” a uniformly random subset of Mr “ M silos out of N , and the shuffler executes a p N

2M ϵ, δq-DP
(by L-Lipschitzness of f0p¨, xq@x P X ) algorithm Pvec on the data of these M silos (line 8), implying that each round is
pϵ, δq-SDP.

Utility: The proof is very similar to the proof of part 1, except that the variance of the Gaussian noise dσ2

M is replaced by the
variance of Pvec. Denoting Z :“ 1

MKPvecpt∇f0pwr, x
r
i,jquiPSr,jPrKs;

N
2M ϵ, δq ´ 1

MK

ř

iPSr`1

řK
j“1 ∇f0pwr, x

r
i,jq, we

have (by Theorem D.2)

E}Z}2 “ O

˜

dL2 ln2pd{δq

M2K2p N
2M ϵq2

¸

“ O
ˆ

dL2 ln2pd{δq

ϵ2K2N2

˙

.

Also, Z is independent of the data and gradients. Hence we can simply replace dσ2

M by O
´

dL2 ln2
pd{δq

ϵ2K2N2

¯

and follow the
same steps as the proof of Theorem 2.1. This yields (c.f. (19))

ErF pwr`1q ´ F˚s ď ErF pwrq ´ F˚s

ˆ

1 ´
µ

2β

˙

` O
ˆ

dL2 ln2pd{δq

ϵ2K2N2

˙

`
2L2

βMK
. (21)

Using (21) recursively, we get

ErF pwRq ´ F˚s ď ∆

ˆ

1 ´
µ

2β

˙R

`
L2

µ

„

O
ˆ

dL2 ln2pd{δq

ϵ2K2N2

˙

`
1

MK

ȷ

. (22)

Finally, plugging in R and K “ n{R, and observing that 1

lnp β
β´µ q

ď κ, we conclude

EF pwRq ´ F˚ À
L2

µ

„

ln2
ˆ

µ∆

L2
min

"

Mn,
ϵ2n2N2

d

*˙ˆ

κ2d ln2pd{δq

ϵ2n2M
`

κ

Mn

˙ȷ

.

E.3 SDP Noisy Distributed Prox-PL SVRG Pseudocode

Our SDP Prox-SVRG algorithm is described in Algorithm 8.
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Algorithm 8 SDP Prox-SVRG pw0, E,K, η, ϵ, δq

1: Input: Number of epochs E P N, local batch size K P rns, epoch length Q “ t n
K u, data sets Xi P Xn, loss function

fpw, xq “ f0pw, xq`f1pwq, step size η, privacy parameters ϵ, δ, initial parameters sw0 “ wQ
0 “ w0 P Rd; Pvec privacy

parameters rϵ :“ ϵNn

8MK
?

4EQ lnp2{δq
and rδ :“ δ

2EQ .

2: for r P t0, 1, ¨ ¨ ¨ , E ´ 1u do
3: Server updates w0

r`1 “ wQ
r .

4: for i P Sr in parallel do
5: Server sends global model wr to silo i.
6: silo i computes t∇f0p swr, xi,jqunj“1.
7: Server updates rgr`1 :“ 1

Mr`1n
Pvecpt∇f0p swr, xi,jquiPSr`1,jPrns;rϵ, rδ;Lq.

8: for t P t0, 1, ¨ ¨ ¨Q ´ 1u do
9: silo i draws txr`1,t

i,j uKj“1 uniformly from Xi with replacement, and computes t∇f0pwt
r`1, x

r`1,t
i,j quKj“1.

10: Server updates rptr`1 :“ 1
Mr`1K

Pvecpt∇f0pwt
r`1, x

r`1,t
i,j q ´ ∇f0p swr`1, x

r`1,t
i,j quiPSr`1,jPrKs;rϵ, rδ; 2Lq

11: Server updates rvtr`1 :“ rptr`1 ` rgr`1 and wt`1
r`1 :“ proxηf1pwt

r`1 ´ ηrvtr`1q.
12: end for
13: Server updates swr`1 :“ wQ

r`1.
14: end for
15: end for
16: Output: wpriv „ Unifptwt

r`1ur“0,1,¨¨¨ ,E´1;t“0,1,¨¨¨Q´1q.

Algorithm 9 SDP Prox-PL-SVRG
1: for s P rSs do
2: ws “ SDP Prox-SVRGpws´1, E,K, η, ϵ

2
?
2S

, δ
2S q.

3: end for
4: Output: wpriv :“ wS .

E.4 Proof of Theorem 2.2: Federated ERM

For the precise/formal version of Theorem 2.2, we will need an additional notation: the heterogeneity parameter υ2
X, which

has appeared in other works on FL (e.g. Woodworth et al. ((2020b))). Assume:
Assumption 5. 1

N

řN
i“1 }∇ pF 0

i pwq ´ ∇ pF 0
Xpwq}2 ď υ̂2

X for all i P rN s, w P W .

Additionally, motivated by practical FL considerations (especially cross-device FL Kairouz et al. ((2019))), we shall actually
prove a more general result, which holds even when the number of active silos in each round is random:
Assumption 6. In each round r, a uniformly random subset Sr of Mr P rN s silos can communicate with the server, where
tMrurě0 are independent with 1

M :“ Ep 1
Mr

q.

We will require the following two lemmas for the proofs in this Appendix section:
Lemma E.2 (J Reddi et al. ((2016))). Let pF pwq “ pF 0pwq ` f1pwq, where pF 0 is β-smooth and f1 is proper, closed, and
convex. Let y :“ proxηf1pw ´ ηd1q for some d1 P Rd. Then for all z P Rd, we have:

pF pyq ď pF pzq ` xy ´ z,∇ pF 0pwq ´ d1y `

„

β

2
´

1

2η

ȷ

}y ´ w}2 `

„

β

2
`

1

2η

ȷ

}z ´ w}2 ´
1

2η
}y ´ z}2.

Lemma E.3. For all t P t0, 1, ¨ ¨ ¨ , Q ´ 1u and r P t0, 1, ¨ ¨ ¨ , E ´ 1u, the iterates of Algorithm 1 satisfy:

E}∇ pF 0pwt
r`1q ´ rvtr`1}2 ď

81tMKăNnu

MK
β2E}wt

r`1 ´ swr}2 `
2pN ´ Mqυ̂2

X

MpN ´ 1q
1tNą1u `

dpσ2
1 ` σ2

2q

M
.

Moreover, the iterates of Algorithm 8 satisfy

E}∇ pF 0pwt
r`1q ´ rvtr`1}2 ď

81tMKăNnu

MK
β2E}wt

r`1 ´ swr}2 `
2pN ´ Mqυ̂2

X

MpN ´ 1q
1tNą1u `O

ˆ

dL2R ln2pdR{δq lnp1{δq

ϵ2n2N2

˙

,

where R “ EQ.
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Proof. We begin with the first claim (Algorithm 1). Denote

ζtr`1 :“
1

Mr`1K

ÿ

iPSr`1

K
ÿ

j“1

r∇f0pwt
r`1, x

r`1,t
i,j q ´ ∇f0p swr, x

r`1,t
i,j q

l jh n

:“ζt,i,j
r`1

s

“ rvtr`1 ´ rgr`1 ´ su2,

where rgr`1 :“ 1
Mr`1

ř

iPSr`1
rgir`1 “ 1

Mr`1

ř

iPSr`1
∇ pF 0

i p swrq ` su1, and suj “ 1
Mr`1

ř

iPSr`1
ui
j for j “ 1, 2. Note

Eζt,i,jr`1 “ ∇ pF 0
i pwt

r`1q ´ ∇ pF 0
i p swrq. Then, conditional on all iterates through wt

r`1 and swr, we have:

E
›

›

›
∇ pF 0pwt

r`1q ´ rvtr`1

›

›

›

2

“ E

›

›

›

›

›

›

1

Mr`1K

ÿ

iPSr`1

K
ÿ

j“1

rζt,i,jr`1 ` rgir`1 ´ ∇ pF 0pwt
r`1qs ` su2

›

›

›

›

›

›

2

(23)

“ E

›

›

›

›

›

›

1

Mr`1K

ÿ

iPSr`1

K
ÿ

j“1

rζt,i,jr`1 ` ∇ pF 0
i p swrq ` ui

1 ´ ∇ pF 0pwt
r`1qs ` su2

›

›

›

›

›

›

2

(24)

“
dpσ2

1 ` σ2
2q

M
` E

›

›

›

›

›

›

1

Mr`1K

ÿ

iPSr`1

K
ÿ

j“1

rζt,i,jr`1 ` ∇ pF 0
i p swrq ´ ∇ pF 0pwt

r`1qs

›

›

›

›

›

›

2

l jh n

:“ a⃝

, (25)

by independence of the Gaussian noise and the gradients. Now,

a⃝ “ E

›

›

›

›

›

›

1

Mr`1K

ÿ

iPSr`1

K
ÿ

j“1

!

rζt,i,jr`1 ´ Eζt,i,jr`1 s ` ∇ pF 0
i pwt

r`1q ´ ∇ pF 0pwt
r`1q

)

›

›

›

›

›

›

2

(26)

ď 2E

›

›

›

›

›

›

1

Mr`1K

ÿ

iPSr`1

K
ÿ

j“1

ζt,i,jr`1 ´ Eζt,i,jr`1

›

›

›

›

›

›

2

` 2E

›

›

›

›

›

›

1

Mr`1K

ÿ

iPSr`1

K
ÿ

j“1

∇ pF 0
i pwt

r`1q ´ ∇ pF 0pwt
r`1q

›

›

›

›

›

›

2

. (27)

We bound the first term (conditional on Mr`1 and all iterates through round r) in (27) using Lemma F.2:

E

›

›

›

›

›

›

1

Mr`1K

ÿ

iPSr`1

K
ÿ

j“1

ζt,i,jr`1 ´ Eζt,i,jr`1

›

›

›

›

›

›

2

ď
1tMr`1KăNnu

Mr`1KNn

N
ÿ

i“1

n
ÿ

j“1

E
›

›

›
ζt,i,jr`1 ´ Eζt,i,jr`1

›

›

›

2

ď
1tMr`1KăNnu

MKNn

N
ÿ

i“1

n
ÿ

j“1

2E
”

›

›∇f0
pwt

r`1, x
r`1,t
i,j q ´ f0

p swr, x
r`1,t
i,j q

›

›

2
ı

` E}∇ pF 0
pwt

r`1q ´ ∇ pF 0
p swrq}

2

ď
41tMr`1KăNnu

Mr`1K
β2

}wt
r`1 ´ swr}

2,

where we used Cauchy-Schwartz and β-smoothness in the second and third inequalities. Now if M “ N , then Mr`1 “ N
(with probability 1) and taking expectation with respect to Mr`1 (conditional on the w’s) bounds the left-hand side
by 41tKănu

MK β2}wt
r`1 ´ swr}2 “

41tMKăNnu

MK β2}wt
r`1 ´ swr}2, via Assumption 6. On the other hand, if M ă N , then

taking expectation with respect to Mr`1 (conditional on the w’s) bounds the left-hand-side by 4
MKβ2}wt

r`1 ´ swr}2 “
41tMKăNnu

MK β2}wt
r`1 ´ swr}2 (since the indicator is always equal to 1 if M ă N ). In either case, taking total expectation

with respect to swr, w
t
r`1 yields

E

›

›

›

›

›

›

1

Mr`1K

ÿ

iPSr`1

K
ÿ

j“1

ζt,i,jr`1 ´ Eζt,i,jr`1

›

›

›

›

›

›

2

ď
41tMKăNnu

MK
β2E}wt

r`1 ´ swr}2.
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We can again invoke Lemma F.2 to bound (conditional on Mr`1 and wt
r`1) the second term in (27):

E

›

›

›

›

›

›

1

Mr`1K

ÿ

iPSr`1

K
ÿ

j“1

∇ pF 0
i pwt

r`1q ´ ∇ pF 0pwt
r`1q

›

›

›

›

›

›

2

ď 1tNą1u

N ´ Mr`1

pN ´ 1qMr`1
ˆ

1

N

N
ÿ

i“1

}∇ pF 0
i pwt

r`1q ´ ∇ pF 0pwt
r`1q}2

ď 1tNą1u

N ´ Mr`1

pN ´ 1qMr`1
υ̂2
X.

Taking total expectation and combining the above pieces completes the proof of the first claim.

The second claim is very similar, except that the Gaussian noise terms su1 and su2 get replaced by the respec-
tive noises due to Pvec: Z1 :“ 1

MnPvecpt∇f0p swr, xi,jquiPSr`1,jPrns;rϵ, rδq ´ 1
M

ř

iPSr`1
∇ pF 0

i p swrq and Z2 :“

1
MK

”

Pvecpt∇f0
pwt

r`1, x
r`1,t
i,j q ´ ∇f0

p swr`1, x
r`1,t
i,j quiPSr`1,jPrKs;rϵ, rδq ´

ř

iPSr`1

řK
j“1p∇f0

pwt
r`1, x

r`1,t
i,j q ´ f0

p swr, x
r`1,t
i,j q

ı

.

By Theorem D.2, we have

E}Z1}2 “ O

˜

dL2 ln2pd{rδq

M2n2
rϵ2

¸

“ O
ˆ

dL2R ln2pdR{δq lnp1{δq

ϵ2n2N2

˙

and

E}Z2}2 “ O

˜

dL2 ln2pd{rδq

M2K2
rϵ2

¸

“ O
ˆ

dL2R ln2pdR{δq lnp1{δq

ϵ2n2N2

˙

.

Below we provide a precise re-statement of Theorem 2.2 for M ă N , including choices of algorithmic parameter.

Theorem E.2 (Complete Statement of Theorem 2.2). Assume ϵ ď mint2 lnp2{δq, 15u and let R :“ EQ. Suppose pFX is
µ-PPL and grant Assumption 1, Assumption 2, Assumption 6, and Assumption 5. Then:
1. Algorithm 2 is pϵ, δq-ISRL-DP if σ2

1 “
256L2SE logp2{δq logp5E{δq

ϵ2n2 , σ2
2 “

1024L2SR logp2{δq logp2.5R{δq

ϵ2n2 , and K ě

ϵn

4
?

2SR lnp2{δq
. Further, if K ě

´

n2

M

¯1{3

, R “ 12κ, and S ě log2

´

∆̂XµMϵ2n2

κdL2

¯

, then there is η such that @X P X,

E pFXpwSq ´ pF˚
X “ rO

ˆ

κ
L2d lnp1{δq

µϵ2n2M
`

pN ´ Mqυ̂2
X

MpN ´ 1q
1tNą1u

˙

in rOpκq communications.

2. Algorithm 8 is pϵ, δq-SDP, provided Mr`1 “ M ě min
!

pϵNLq
3{4

pd ln3
pd{δqq

3{8

n1{4pβ∆̂Xq3{8
, N

)

for all r. Further, if K ě

´

n2

M

¯1{3

,

R “ 12κ, and S ě log2

´

∆̂Xµϵ2N2n2

κdL2

¯

, then there is η such that @X P X,

E pFXpwSq ´ pF˚
X “ rO

ˆ

κ
L2d lnp1{δq

µϵ2n2N2
`

pN ´ Mqυ̂2
X

µMpN ´ 1q
1tNą1u

˙

.

Proof. 1. Privacy: For simplicity, assume S “ 1. It will be clear from the proof (and advanced composition of DP Dwork
and Roth ((2014)) or moments accountant Abadi et al. ((2016))) that the privacy guarantee holds for all S due to the factor
of S appearing in the numerators of σ2

1 and σ2
2 . Then by independence of the Gaussian noise across silos, it is enough show

that transcript of silo i’s interactions with the server is DP for all i P rN s (conditional on the transcripts of all other silos).
Further, by the post-processing property of DP, it suffices to show that all E ´ 1 computations of rgir`1 (line 7) are pϵ{2, δ{2q-
ISRL-DP and all R “ EQ computations of rvt,ir`1 (line 10) by silo i (for r P t0, 1, ¨ ¨ ¨ , E ´ 1u, t P t0, 1, ¨ ¨ ¨ , Q ´ 1u) are
pϵ, δq-ISRL-DP. Now, by the advanced composition theorem (see Theorem 3.20 in Dwork and Roth ((2014))), it suffices to
show that: 1) each of the E computations of rgir`1 (line 7) is prϵ1{2, rδ1{2q-ISRL-DP, where rϵ1 “ ϵ

2
?

2E lnp2{δq
and rδ1 “ δ

2E ;

and 2)each and R “ EQ computations of rvt,ir`1 (line 10) is prϵ2{2, rδ2{2q-ISRL-DP, where rϵ2 “ ϵ

2
?

2R lnp2{δq
and rδ2 “ δ

2R .

We first show 1): The ℓ2 sensitivity of the (noiseless versions of) gradient evaluations in line 7 is bounded by ∆
p1q

2 :“
sup|Xi∆X1

i|ď2,wPW } 1
K2

řn
j“1 ∇f0pw, xi,jq ´ ∇f0pw, x1

i,jq} ď 2L{n, by L-Lipschitzness of f0. Here W denotes the
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constraint set if the problem is constrained (i.e. f1 “ ιW ` h for closed convex h); and W “ R if the problem is
unconstrained. Hence the privacy guarantee of the Gaussian mechanism implies that taking σ2

1 ě
8L2 lnp1.25{prδ1{2qq

prϵ1{2q2n2 “

256L2E lnp2{δq lnp5E{δq

ϵ2n2 suffices to ensure that each update in line 7 is prϵ1{2, rδ1{2q-ISRL-DP.

Now we establish 2): First, condition on the randomness due to local sampling of each local data point xr`1,t
i,j (line 9). Now,

the ℓ2 sensitivity of the (noiseless versions of) stochastic minibatch gradient (ignoring the already private rgir`1) in line 10
is bounded by ∆

p2q

2 :“ sup|Xi∆X1
i|ď2,w,w1PW } 1

K

řK
j“1 ∇f0pw, xi,jq ´ ∇f0pw, x1

i,jq ´ f0pw1, xi,jq ` ∇f0pw1, x1
i,jq} ď

2 sup|Xi∆X1
i|ď2,wPW } 1

K

řK
j“1 ∇f0pw, xi,jq ´ ∇f0pw, x1

i,jq} ď 4L{K, by L-Lipschitzness of f0; W is as defined above.
Thus, the standard privacy guarantee of the Gaussian mechanism (Theorem A.1 in Dwork and Roth ((2014))) implies that
(conditional on the randomness due to sampling) taking σ2

1 ě
8L2 lnp1.25{prδ2{2qq

prϵ2{2q2K2
2

“
32L2 lnp2.5{rδ2q

rϵ22K
2
2

suffices to ensure that

each such update is prϵ2{2, rδ2{2q-ISRL-DP. Now we invoke the randomness due to sampling: Ullman ((2017)) implies that
round r (in isolation) is p 2rϵ2K

n , rδ2q-ISRL-DP. The assumption on K ensures that ϵ1 :“ n
2K

ϵ

2
?

2R lnp2{δq
ď 1, so that the

privacy guarantees of the Gaussian mechanism and amplification by subsampling stated above indeed hold. Therefore,
with sampling, it suffices to take σ2

1 ě
128L2 lnp2.5{rδ2q

n2
rϵ22

“
1024L2R lnp5R{δq lnp2{δq

n2ϵ2 to ensure that all of the R updates made
in line 10 are pϵ{2, δ{2q-ISRL-DP (for every client). Combining this with the above implies that the full algorithm is
pϵ, δq-ISRL-DP.

Utility: For our analysis, it will be useful to denote the full batch gradient update ŵt`1
r`1 :“ proxηf1rwt

r`1´η∇ pF 0pwt
r`1qss.

Fix any database X P X (any database) and denote pF :“ pFX and pF j :“ pF j
X for j P t0, 1u (for brevity of notations). Also,

for α ą 0 and w P Rd denote

Df1pw,αq :“ ´2αmin
yPRd

”

x∇ pF 0pwq, y ´ wy `
α

2
}y ´ w}2 ` f1pyq ´ f1pwq

ı

Set η :“ 1
8β min

´

1, K3{2
?
M

n

¯

. Then we claim

β

2
` ct`1

´

1 `
n

K

¯

ď
1

2η
(28)

for all t P t0, 1, ¨ ¨ ¨ , Q ´ 1u. First, if MK “ Nn, then ct “ ct`1p2q “ ct`2p2q2 “ cQp2qQ´t “ 0 since cQ “ 0. Next,
suppose MK ă Nn. Denote q :“ K

n . Then by unraveling the recursion, we get for all t P t0, ¨ ¨ ¨ , Q ´ 1u that

ct “ ct`1p1 ` qq `
4ηβ2

MK

“
4ηβ2

MK
rp1 ` qqQ´t´1 ` ¨ ¨ ¨ ` p1 ` qq2 ` p1 ` qq ` 1s

“
4ηβ2

MK

ˆ

p1 ` qqQ´t ´ 1q

q

˙

ď
4ηβ2n

MK2

˜

ˆ

1 `
K

n

˙n{K

´ 1

¸

ď
8ηβ2n

MK2
.

Then it’s easy to check that with the prescribed choice of η, (28) holds.

Now, by Lemma E.2 (with w “ z “ wt
r`1 and d1 “ ∇ pF 0pwq), we have

pF p pwt`1
r`1q ď pF pwt

r`1q `

ˆ

β

2
´

1

2η

˙

} pwt`1
r`1 ´ wt

r`1}2 ´
1

2η
} pwt`1

r`1 ´ wt
r`1}2,

which implies

E pF p pwt`1
r`1q ď E pF pwt

r`1q `

ˆ

β

2
´

1

η

˙

E} pwt`1
r`1 ´ wt

r`1}2. (29)
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Recall wt`1
r`1 “ proxηf1pwt

r`1 ´ ηrvtr`1q. Applying Lemma E.2 again (with y “ wt`1
r`1, z “ pwt`1

r`1, d
1 “ rvtr`1, w “ wt

r`1)
yields

pF pwt`1
r`1q ď pF p pwt`1

r`1q ` xwt`1
r`1 ´ pwt`1

r`1,∇ pF 0pwt
r`1q ´ rvtr`1y (30)

`

ˆ

β

2
´

1

2η

˙

}wt`1
r`1 ´ wt

r`1}2 `

ˆ

β

2
`

1

2η

˙

} pwt`1
r`1 ´ wt

r`1}2 ´
1

2η
}wt`1

r`1 ´ pwt`1
r`1}2. (31)

Further, by β-smoothness of pF 0, we have:

pF p pwt`1
r`1q ď pF 0pwt

r`1q ` f1pwt
r`1q ` x∇ pF 0pwt

r`1q, pwt`1
r`1 ´ wt

r`1y `
β

2
} pwt`1

r`1 ´ wt
r`1}2 ` f1p pwt`1

r`1q ´ f1pwt
r`1q

ď pF pwt
r`1q ` x∇ pF 0pwt

r`1q, pwt`1
r`1 ´ wt

r`1y `
1

2η
} pwt`1

r`1 ´ wt
r`1}2 ` f1p pwt`1

r`1q ´ f1pwt
r`1q

“ pF pwt
r`1q ´

η

2
Df1pwt

r`1,
1

η
q

ď pF pwt
r`1q ´

η

2
Df1pwt

r`1, βq

ď pF pwt
r`1q ´ ηµr pF pwt

r`1q ´ pF˚s, (32)

where the second inequality used η ď 1{β, the third inequality used the Proximal-PL lemma (Lemma 1 in Karimi et al.
((2016))), and the last inequality used the assumption that pF satisfies the Proximal-PL inequality.

Now adding 2{3ˆ (29) to 1{3ˆ (32) and taking expectation gives

E pF p pwt`1
r`1q ď E

„

pF pwt
r`1q `

2

3

ˆ

β

2
´

1

η

˙

} pwt`1
r`1 ´ wt

r`1}2 ´
ηµ

3
p pF pwt

r`1q ´ pF˚q

ȷ

. (33)

Adding (33) to (30) yields

E pF pwt`1
r`1q ď E

«

pF pwt
r`1q `

ˆ

5β

6
´

1

6η

˙

} pwt`1
r`1 ´ wt

r`1}2 ´
ηµ

3
p pF pwt

r`1q ´ pF˚q

` xwt`1
r`1 ´ pwt`1

r`1,∇ pF 0pwt
r`1q ´ rvtr`1y `

ˆ

β

2
´

1

2η

˙

}wt`1
r`1 ´ wt

r`1}2 ´
1

2η
}wt`1

r`1 ´ pwt`1
r`1}2

ff

. (34)

Since η ď 1
5β , Young’s inequality implies

E pF pwt`1
r`1q ď E

«

pF pwt
r`1q `

ˆ

β

2
´

1

2η

˙

}wt`1
r`1 ´ wt

r`1}2 ´
ηµ

3
p pF pwt

r`1q ´ pF˚q `
η

2
} pF pwt

r`1q ´ rvtr`1}2

ff

ď E

«

pF pwt
r`1q `

ˆ

β

2
´

1

2η

˙

}wt`1
r`1 ´ wt

r`1}2 ´
ηµ

3
p pF pwt

r`1q ´ pF˚q `
4η1tMKăNnu

MK
β2}wt

r`1 ´ swr}2

`
ηpN ´ Mqυ̂2

X

MpN ´ 1q
1tNą1u `

ηdpσ2
1 ` σ2

2q

2M

ff

, (35)

where we used Lemma E.3 to get the second inequality. Now, denote γt
r`1 :“ Er pF pwt

r`1q ` ct}w
t
r`1 ´ swr}2s, ct :“
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ct`1p1 ` K
n q `

4η1tMKăNnu

MK β2 for t “ 0, ¨ ¨ ¨ , Q ´ 1, and cQ :“ 0. Then (35) is equivalent to

γt`1
r`1 ď E

«

pF pwt
r`1q `

ˆ

β

2
´

1

2η

˙

}wt`1
r`1 ´ wt

r`1}2 ´
ηµ

3
p pF pwt

r`1q ´ pF˚q `
4η1tMKăNnu

MK
β2}wt

r`1 ´ swr}2

`
ηpN ´ Mqυ̂2

X

MpN ´ 1q
1tNą1u `

ηdpσ2
1 ` σ2

2q

2M
` ct`1}wt`1

r`1 ´ swr}2

ff

ď E

«

pF pwt
r`1q `

ˆ

β

2
´

1

2η
` ct`1p1 `

1

q
q

˙

}wt`1
r`1 ´ wt

r`1}2 ´
ηµ

3
p pF pwt

r`1q ´ pF˚q

`

ˆ

4η1tMKăNnu

MK
β2 ` ct`1p1 ` qq

˙

}wt
r`1 ´ swr}2

`
ηpN ´ Mqυ̂2

X

MpN ´ 1q
1tNą1u `

ηdpσ2
1 ` σ2

2q

2M

ff

, (36)

where q :“ K
n and we used Young’s inequality (after expanding the square, to bound }wt`1

r`1 ´ swr}2) in the second inequality
above. Now, applying (28) yields

γt`1
r`1 ď E

«

pF pwt
r`1q ´

ηµ

3
p pF pwt

r`1q ´ pF˚q `

ˆ

4η1tMKăNnu

MK
β2 ` ct`1p1 ` qq

˙

}wt
r`1 ´ swr}2

`
ηpN ´ Mqυ̂2

X

MpN ´ 1q
1tNą1u `

ηdpσ2
1 ` σ2

2q

2M

ff

“ γt
r`1 ´

ηµ

3
Ep pF pwt

r`1q ´ pF˚q `
ηdpσ2

1 ` σ2
2q

2M
(37)

Summing up, we get

Er pF p swr`1q ´ pF p swrqs “

Q´1
ÿ

t“0

γt`1
r`1. ´ γt

r`1 “
ηµ

3

Q´1
ÿ

t“0

Er pF pwt
r`1 ´ pF˚s `

ηQpN ´ Mqυ̂2
X

MpN ´ 1q
1tNą1u

`
ηQdpσ2

1 ` σ2
2q

2M

ùñ
ηµ

3

E´1
ÿ

r“0

Q´1
ÿ

t“0

Er pF pwt
r`1 ´ pF˚s ď ∆ ` Rη

ˆ

pN ´ Mqυ̂2
X

MpN ´ 1q
1tNą1u `

dpσ2
1 ` σ2

2q

2M

˙

,

where ∆̂ :“ pF p sw0q ´ pF˚ “ ∆̂X and R “ EQ. Recall ws :“ ISRL-DP Prox-SVRGpws´1, E,K, η, σ1, σ2q for s P rSs.
Plugging in the prescribed η and σ2

1 , σ
2
2 , we get

Er pF pw1q ´ pF˚s ď
3∆̂β

µR

ˆ

1 `
n

K3{2
?
M

˙

`
3υ̂2

XpN ´ Mq

µMpN ´ 1q
` rO

ˆ

RdL2 lnp1{δq

ϵ2n2M

˙

. (38)

Our choice of K ě

´

n?
M

¯2{3

implies

Er pF pw1q ´ pF˚s ď
6∆̂κ

R
`

3υ̂2
XpN ´ Mq

µMpN ´ 1q
` rO

ˆ

RdL2 lnp1{δq

ϵ2n2M

˙

. (39)

Our choice of R “ 12κ implies

Er pF pw1q ´ pF˚s ď
∆̂

2
`

3υ̂2
XpN ´ Mq

µMpN ´ 1q
` rO

ˆ

κdL2 lnp1{δq

ϵ2n2M

˙

. (40)

Iterating (40) S ě log2

´

∆̂XµMϵ2n2

κdL2

¯

times proves the desired excess loss bound. Note that the total number of communica-

tions is SR “ rOpκq.
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2. Privacy: As in Part 1, we shall first consider the case of S “ 1. It suffices to show that: 1) the collection of all E
computations of rgr`1 (line 7 of Algorithm 8) (for r P t0, 1, ¨ ¨ ¨ , E ´ 1u) is pϵ{2, δ{2q-DP; and 2) the collection of all
R “ EQ computations of rptr`1 (line 10) (for r P t0, 1, ¨ ¨ ¨ , E ´ 1u, t P t0, 1, ¨ ¨ ¨ , Q´ 1u) is pϵ{2, δ{2q-DP. Further, by the
advanced composition theorem (see Theorem 3.20 in Dwork and Roth ((2014))) and the assumption on ϵ, it suffices to show
that: 1) each of the E computations of rgr`1 (line 7) is pϵ1{2, δ1{2q-DP; and 2)each of the R “ EQ computations of rptr`1

(line 10) is pϵ1{2, δ1{2q-DP, where ϵ1 :“ ϵ

2
?

2R lnp2{δq
and δ1 :“ δ

2R . Now, condition on the randomness due to subsampling

of silos (line 4) and local data (line 9). Then Theorem D.2 implies that each computation in line 7 and line 10 is prϵ, rδq-DP
(with notation as defined in Algorithm 8), since the norm of each stochastic gradient (and gradient difference) is bounded
by 2L by L-Lipschitzness of f0. Now, invoking privacy amplification from subsampling Ullman ((2017)) and using the
assumption on M (and choices of K and R) to ensure that rϵ ď 1, we get that each computation in line 7 and line 10 is
p 2MK

Nn rϵ, rδq-DP. Recalling rϵ :“ ϵNn

8MK
?

4EQ lnp2{δq
and rδ :“ δ

2EQ , we conclude that Algorithm 8 is pϵ, δq-SDP. Finally, SDP

follows by the advanced composition theorem Theorem D.1, since Algorithm 9 calls Algorithm 8 S times.

Excess Loss: The proof is very similar to the proof of Theorem 2.2, except that the variance of the Gaussian noises dpσ2
1`σ2

2q

M

is replaced by the variance of Pvec. Denoting Z1 :“ 1
MnPvecpt∇f0p swr, xi,jquiPSr`1,jPrns;rϵ, rδq ´ 1

M

ř

iPSr`1
∇ pF 0

i p swrq

and

Z2 :“
1

MK

«

Pvecpt∇f0pwt
r`1, x

r`1,t
i,j q ´ ∇f0p swr`1, x

r`1,t
i,j quiPSr`1,jPrKs;rϵ, rδq

´
ÿ

iPSr`1

K
ÿ

j“1

p∇f0pwt
r`1, x

r`1,t
i,j q ´ f0p swr, x

r`1,t
i,j q

ff

,

we have (by Theorem D.2)

E}Z1}2 “ O

˜

dL2 ln2pd{rδq

M2n2
rϵ2

¸

“ O
ˆ

dL2R ln2pdR{δq lnp1{δq

ϵ2n2N2

˙

and

E}Z2}2 “ O

˜

dL2 ln2pd{rδq

M2K2
rϵ2

¸

“ O
ˆ

dL2R ln2pdR{δq lnp1{δq

ϵ2n2N2

˙

.

Hence we can simply replace dpσ2
1`σ2

2q

M by O
´

dL2R ln2
pdR{δq lnp1{δq

ϵ2n2N2

¯

and follow the same steps as the proof of Theorem 2.2.
This yields (c.f. (38))

Er pF pw1q ´ pF˚s ď
3∆̂Xβ

µR

ˆ

1 `
n

K3{2
?
M

˙

`
3υ̂2

XpN ´ Mq

µMpN ´ 1q
` O

ˆ

dL2R ln2pdR{δq lnp1{δq

ϵ2n2N2

˙

. (41)

Our choice of K ě

´

n?
M

¯2{3

implies

Er pF pw1q ´ pF˚s ď
6∆̂Xκ

R
`

3υ̂2
XpN ´ Mq

µMpN ´ 1q
` O

ˆ

dL2R ln2pdR{δq lnp1{δq

ϵ2n2N2

˙

. (42)

Our choice of R “ 12κ implies

Er pF pw1q ´ pF˚s ď
∆̂X

2
`

3υ̂2
XpN ´ Mq

µMpN ´ 1q
` O

ˆ

κdL2 ln2pdκ{δq lnp1{δq

ϵ2n2N2

˙

. (43)

Iterating (43) S ě log2

´

∆̂Xµϵ2N2n2

κdL2

¯

times proves the desired excess loss bound. Note that the total number of communi-

cations is SR “ rOpκq.
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F Supplemental Material for Section 3: Non-Convex/Non-Smooth Losses

Theorem F.1 (Complete Statement of Theorem 3.1). Let ϵ ď 2 lnp1{δq. Then, there are choices of algorithmic parameters
such that ISRL-DP FedProx-SPIDER is pϵ, δq-ISRL-DP. Moreover, we have

E}pGηpwpriv,Xq}2 À

»

—

–

¨

˝

b

Lβ∆̂Xd lnp1{δq

ϵn
?
M

˛

‚

4{3

`
L2d lnp1{δq

ϵ2n2M
` 1tMăNu

¨

˝

L

b

β∆̂Xd lnp1{δq

ϵn3{2M
`

L2

Mn

˛

‚

fi

ffi

fl

. (44)

Proof. Choose η “ 1
2β , σ2

1 “
16L2 lnp1{δq

ϵ2n2 max
´

R
q , 1

¯

, σ2
2 “

16β2R lnp1{δq

ϵ2n2 , σ̂2
2 “

64L2R lnp1{δq

ϵ2n2 , and K1 “ K2 “ n (full
batch).
Privacy: First, by independence of the Gaussian noise across silos, it is enough show that transcript of silo i’s
interactions with the server is DP for all i P rN s (conditional on the transcripts of all other silos). Since ϵ ď

2 lnp1{δq, it suffices (by Proposition D.1) to show that silo i’s transcript is ϵ2

8 lnp1{δq
-zCDP. Then by Proposition D.2

and Lemma D.1, it suffices to bound the sensitivity of the update in line 7 of Algorithm 3 by 2L{n and the update in
line 11 by 1

n mint2β}wr ´ wr´1}, 4Lu.The line 7 sensitivity bound holds because supXi„X1
i

} 1
n

řn
j“1 ∇f0pw, xi,jq ´

∇f0pw, x1
i,jq} “ supx,x1 }∇f0pw, xq ´ ∇f0pw, x1q} ď 2L{n for any w since f0 is L-Lipschitz. The line 11 sensitiv-

ity bound holds because supXi„X1
i

} 1
n

řn
j“1 ∇f0pwr, xi,j ´ ∇f0pwr´1, xi,jq ´ pf0pwr, x

1
i,jq ´ ∇f0pwr´1, x

1
i,jqq} “

1
n supx,x1 }∇f0pwr, x ´ ∇f0pwr´1, xq ´ pf0pwr, x

1q ´ ∇f0pwr´1, x
1qq} ď 1

n mint2β}wr ´ wr´1}, 4Lu since f0 is
L-Lipschitz and β-smooth. Note that if R ă q, then only one update in line 7 is made, and the privacy of this update
follows simply from the guarantee of the Gaussian mechanism and the sensitivity bound, without needing to appeal to the
composition theorem.
Utility: Fix any X P X and denote pGηpwq “ pGηpw,Xq for brevity of notation. Recall the notation of Algorithm 3. Note
that Lemma F.1 holds with

τ21 “ sup
r”0 pmod qq

E
›

›

›
hr ´ ∇ pF 0

Xpwrq

›

›

›

2

“ sup
r”0 pmod qq

E

›

›

›

›

›

1

Mrn

ÿ

iPSr

n
ÿ

j“1

”

∇f0pwr, xi,jq ´ ∇ pF 0
Xpwrq

ı

›

›

›

›

›

2

`
dσ2

1

M

ď
2L2

Mn
1tMăNu `

dσ2
1

M
,

using independence of the noises across silos and Lemma F.2. Further, for any r, we have (conditional on wr, wr´1)

E
›

›

›
Hr ´ ∇ pF 0

Xpwrq

›

›

›

2

ď 2

»

–

dσ2
2

M
}wr ´ wr´1}2 ` E

›

›

›

›

›

1

Mrn

ÿ

iPSr

n
ÿ

j“1

”

∇f0pwr, xi,jq ´ ∇f0pwr´1, xi,jq ´

´

∇ pF 0
Xpwrq ´ pF 0

Xpwr´1q

¯ı

›

›

›

›

›

2
fi

fl

ď
2dσ2

2

M
}wr ´ wr´1}2 `

8β2

Mn
}wr ´ wr´1}21tMăNu,

using Young’s inequality, independence of the noises across silos, and Lemma F.2. Therefore, Lemma F.1 holds with
τ22 “ 8

´

β2

Mn1tMăNu `
dσ2

2

M

¯

. Next, we claim that if η “ 1{2β and q ď 1
η2τ2

2
, then

E}Gηpwprivq}2 ď 16

˜

∆̂X

ηR
` τ21

¸

. (45)

We prove (45) as follows. Let gpwrq :“ ´ 1
η pwr`1 ´ wrq. By Lemma E.2 (with y “ wr`1, z “ w “ wr, d

1 “ hr), we
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have

E pFXpwr`1q ď E pFXpwrq ` E
A

wr`1 ´ wr,∇ pF 0
Xpwrq ´ hr

E

`

ˆ

β

2
´

1

2η

˙

E}wr`1 ´ wr}2 ´
1

2η
E}wr`1 ´ wr}2

ď E pFXpwrq `
η

2
E
›

›

›
∇ pF 0

Xpwrq ´ hr

›

›

›

2

`

ˆ

β

2
´

1

2η

˙

E}wr`1 ´ wr}2

“ E pFXpwrq `
η

2
E
›

›

›
∇ pF 0

Xpwrq ´ hr

›

›

›

2

`

ˆ

β

2
´

1

2η

˙

η2E}gpwrq}2.

Thus, by Lemma F.1, we have

Er pFXpwr`1q ´ pFXpwrqs ď
η

2
E
›

›

›
∇ pF 0

Xpwrq ´ hr

›

›

›

2

`

ˆ

β

2
´

1

2η

˙

η2E}gpwrq}2

ď
η

2
τ22

r
ÿ

t“sr`1

Er}wt ´ wt´1}2s `
η

2
τ21 `

ˆ

β

2
´

1

2η

˙

η2E}gpwrq}2

“
η3

2
τ22

r
ÿ

t“sr`1

Er}gpwtq}2s `
η

2
τ21 `

ˆ

β

2
´

1

2η

˙

η2E}gpwrq}2,

where sr “ t rq uq. Now we sum over a given phase (from sr to r), noting that r ´ q ď sr ď r:

Er pFXpwr`1q ´ pFXpwsr qs ď
η3τ22
2

r
ÿ

k“sr

k
ÿ

j“sr`1

Er}gpwjq}2s `

r
ÿ

k“sr

„

η

2
τ21 `

ˆ

β

2
´

1

2η

˙

η2E}gpwkq}2
ȷ

ď
qη3τ22
2

r
ÿ

k“sr

Er}gpwkq}2s `

r
ÿ

k“sr

„

η

2
τ21 `

ˆ

β

2
´

1

2η

˙

η2E}gpwkq}2
ȷ

“ ´

r
ÿ

k“sr

"

Er}gpwkq}2s

ˆ

η

2
´

βη2

2
´

η3τ22 q

2

˙

´
ητ21
2

*

Denoting A “
η
2 ´

βη2

2 ´
η3τ2

2 q
2 and summing over all phases P “ tp0, p1, . . .u “

!

0, q, . . . , tR´1
q uq,R

)

, we get

Er pFXpwRq ´ pFXpw0qs ď

|P |
ÿ

j“1

Er pFXpwpj
q ´ pFXpwpj´1

qs

ď
ηRτ21
2

´ A
R
ÿ

r“0

Er}gpwrq}2s,

which implies

1

R

R
ÿ

r“0

Er}gpwrq}2s ď
∆̂X

RA
`

ητ21
2A

. (46)

Now, for any r ě 0,

›

›

›

pGηpwrq ´ gpwrq

›

›

›

2

“
1

η2

›

›

›
wr`1 ´ proxηf1pwr ´ η pF 0

Xpwrqq

›

›

›

2

“
1

η2

›

›

›
proxηf1pwr ´ ηhrq ´ proxηf1pwr ´ η pF 0

Xpwrqq

›

›

›

2

ď
1

η2

›

›

›
´ηhr ` η pF 0

Xpwrq

›

›

›

2

“

›

›

›
hr ´ pF 0

Xpwrq

›

›

›

2

,
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by non-expansiveness of the proximal operator. Furthermore, conditional on the uniformly drawn r “ r˚ P t0, 1, . . . , Ru,
we have

E
›

›

›

pGηpwr˚ q ´ gpwr˚ q

›

›

›

2

ď E
›

›

›
hr˚ ´ pF 0

Xpwr˚ q

›

›

›

2

ď τ22

r˚
ÿ

k“sr˚ `1

E}wk ´ wk´1}2 ` τ21

“ η2τ22

r˚
ÿ

k“sr˚ `1

E}gpwk´1q}2 ` τ21 ,

by Lemma F.1, and taking total expectation yields

E
›

›

›

pGηpwprivq ´ gpwprivq

›

›

›

2

ď
η2τ22
R

R
ÿ

r“1

r
ÿ

k“sr`1

E}gpwr´1q}2 ` τ21

ď
qη2τ22
R

R
ÿ

r“1

E}gpwr´1q}2 ` τ21

ď qη2τ22

«

∆̂X

RA
`

ητ21
2A

ff

` τ21 ,

where the last inequality follows from (46). Hence

E}pGηpwprivq}2 ď 2

«

qη2τ22

«

∆̂X

RA
`

ητ21
2A

ff

` τ21

ff

` 2E}gpwprivq}2

ď 2

«

qη2τ22

«

∆̂X

RA
`

ητ21
2A

ff

` τ21

ff

`
2∆̂X

RA
`

ητ21
A

,

by Young’s inequality and (46). Now, our choices of η “ 1{2β and q ď 1
τ2
2 η

2 imply A “
η
2 ´

βη2

2 ´
η3τ2

2 q
2 ě

η
4 and

E}pGηpwprivq}2 ď 8

«˜

∆̂X

Rη
`

τ21
2

¸

` τ21

ff

`
8∆̂X

Rη
` 4τ21

“
16∆̂X

Rη
` 16τ21 ,

proving (45). The rest of the proof follows from plugging in τ21 and setting algorithmic parameters. Plugging τ21 “

2L2

Mn1tMăNu `
dσ2

1

M ď 2L2

Mn1tMăNu `
16dL2R lnp1{δq

qϵ2n2M `
16dL2 lnp1{δq

ϵ2n2M into (45) yields

E}pGηpwprivq}2 ď 16

˜

∆̂X

ηR
`

2L2

Mn
1tMăNu `

16dL2R lnp1{δq

qϵ2n2M
`

16dL2 lnp1{δq

ϵ2n2M

¸

.

Choosing R “
ϵn

?
Mq

?
∆̂Xβ

L
?

d lnp1{δq
equalizes the two terms in the above display involving R (up to constants) and we get

E}pGηpwprivq}2 ď C

¨

˝

L

b

∆̂Xβ
a

d lnp1{δq

ϵn
?
Mq

`
dL2 lnp1{δq

ϵ2n2M
`

L2

Mn
1tMăNu

˛

‚ (47)

for some absolute constant C ą 0. Further, with this choice of R, it suffices to choose

q “

—

—

—

—

–

min

$

’

&

’

%

¨

˝

ϵnL
?
M

b

d lnp1{δq∆̂Xβ

˛

‚

2{3

,
nM

1tMăNu

,

/

.

/

-

ffi

ffi

ffi

ffi

fl
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to ensure that q ď 1
τ2
2 η

2 , so that (45) holds. Assume q ě 1. Then plugging this q into (47) yields

E}pGηpwprivq}2 ď C 1

»

—

–

¨

˝

b

Lβ∆̂Xd lnp1{δq

ϵn
?
M

˛

‚

4{3

`
dL2 lnp1{δq

ϵ2n2M
`

¨

˝

L

b

β∆̂Xd lnp1{δq

ϵn3{2M
`

L2

Mn

˛

‚1tMăNu

fi

ffi

fl

for some absolute constant C 1 ą 0, as desired. In case q ă 1, then we must have L ă

?
β∆̂Xd lnp1{δq

ϵn
?
M

; hence, we

can simply output w0 (which is clearly ISRL-DP) instead of running Algorithm 3 and get E}pGηpwpriv,Xq}2 ď L2 ă
ˆ?

Lβ∆̂Xd lnp1{δq

ϵn
?
M

˙4{3

.

The lemmas used in the above proof are stated below. The following lemma is an immediate consequence of the martingale
variance bound for SPIDER, given in ((Fang et al., 2018, Proposition 1)):

Lemma F.1 (Fang et al. ((2018))). Let r P t0, 1, . . . , Ru and sr “ t rq uq. With the notation of Algorithm 3, assume that

E|hsr ´ ∇ pF 0
Xpwsr q}2 ď τ21 and E

›

›

›
Hr ´

´

∇ pF 0
Xpwrq ´ ∇ pF 0

Xpwr´1q

¯›

›

›

2

ď τ22 }wr ´ wr´1}2. Then for all r ě sr ` 1,
the iterates of Algorithm 3 satisfy:

E}hr ´ ∇ pF 0
Xpwrq}2 ď τ22

r
ÿ

t“sr`1

E}wt ´ wt´1}2 ` τ21 .

Lemma F.2 (Lei et al. ((2017))). Let talulPrĂNs
be an arbitrary collection of vectors such that

ř
ĂN
l“1 al “ 0. Further, let S

be a uniformly random subset of r rN s of size ĂM . Then,

E

›

›

›

›

›

1

ĂM

ÿ

lPS
al

›

›

›

›

›

2

“
rN ´ ĂM

p rN ´ 1qĂM

1

rN

ĂN
ÿ

l“1

}al}
2 ď

1
tĂMă ĂNu

ĂM rN

ĂN
ÿ

l“1

}al}
2.

We present SDP FedProx-SPIDER in Algorithm 10.

Algorithm 10 SDP FedProx-SPIDER
1: Input: R P N,K1,K2 P rns,X P X, η ą 0, ϵ ą 0, δ P p0, 1{2q, q P N, w0 P W .
2: for r P t0, 1, ¨ ¨ ¨ , Ru do
3: for i P Sr in parallel do
4: Server sends global model wr to silo i.
5: if r ” 0 pmod qq then
6: silo i draws K1 samples txr

i,ju
K1
j“1 u.a.r. from Xi (with replacement).

7: silo i computes
␣

∇f0pwr, x
r
i,jq

(K1

j“1
.

8: Server updates hr “ 1
MK1

Pvec

ˆ

␣

∇f0pwr, x
r
i,jq

(

iPSr,jPrK1s
; ϵnN

4K1M
?

2 lnp1{δq max
´

1,
?

q
?

R

¯ , δq
2R ;L

˙

.

9: else
10: silo i draws K2 samples txr

i,ju
K1
j“1 u.a.r. from Xi (with replacement).

11: silo i computes Ji “ t∇f0pwr, x
r
i,jq ´ ∇f0pwr´1, x

r
i,jqu

K2
j“1.

12: Server receives Hr “ 1
MK2

Pvec

´

tJiuiPSr ;
ϵNn

4MK2

?
2R lnp1{δq

; δ
2R ; mint2L, β}wr ´wr´1}u

¯

, and updates hr “

hr´1 ` Hr.
13: end if
14: end for
15: Server updates wr`1 “ proxηf1pwr ´ ηhrq.
16: end for
17: Output: wpriv „ Unifptwrur“1,¨¨¨ ,Rq.
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Theorem F.2 (Complete Statement of Theorem 3.2). Let ϵ ď lnp1{δq, δ P p0, 1
2 q, and

Mr “ M ě

ˆ

ϵNd2

n2

˙1{3
¨

˝

L
b

β∆̂X

˛

‚

1{3
»

—

–

1 `

¨

˝

L
b

β∆̂X

˛

‚

1{3
fi

ffi

fl

.

Then, there exist algorithmic parameters such that SDP FedProx-SPIDER is pϵ, δq-SDP. Further,

E} pGηpwpriv,Xq}
2

À

»

—

–

¨

˝

b

Lβ∆̂Xd ln3
pdnN{δq

ϵnN

˛

‚

4{3

`
dL2 ln3

pRd{qδq

ϵ2n2N2
` 1tMăNu

¨

˝

L

b

β∆̂Xd ln3
pdnN{δq

ϵn3{2N
?
M

`
L2

Mn

˛

‚

fi

ffi

fl

.

Proof. We will choose

R “

»

—

—

—

ϵnN

L

d

∆̂Xβ

d ln3pdnN{δq
min

$

&

%

?
Mn

1tMăNu

,

¨

˝

ϵnNL
b

∆̂Xβd ln3pdnN{δq

˛

‚

,

.

-

fi

ffi

ffi

ffi

,

η “ 1{2β, and K1 “ K2 “ n.
Privacy: By Theorem D.1, it suffices to show that the message received by the server in each update in line 12 of Algorithm 10

(in isolation) is
ˆ

ϵ

2
?

2R lnp1{δq
, δ
2R

˙

-DP, and that each update in line 8 is
ˆ

ϵ
?
q

2
?

2R lnp1{δq
, δq
2R

˙

-DP. Conditional on the random

subsampling of silos, Theorem D.2 (together with the sensitivity estimates established in the proof of Theorem 3.1) implies
that each update in line 12 is pϵ1, δ1q-SDP, where ϵ1 ď ϵN

4M
?

2R lnp1{δq
and δ1 “ δ

2R ; each update in line 8 is pϵ2, δ2q-SDP,

where ϵ2 “ ϵ1?q and δ2 “ δ1?q. By our choice of R and our assumption on M , we have M ě ϵN

4
?

2R lnp1{δq
and hence

ϵ1 ď 1. Thus, privacy amplification by subsampling (silos only) (see e.g. ((Ullman, 2017, Problem 1))) implies that the
privacy loss of each round is bounded as desired, establishing that Algorithm 10 is pϵ, δq-SDP, as long as q ď R. If instead
q ą R, then the update in line 8 is only executed once (at iteration r “ 0), so our choice of σ2

1 ensures SDP simply
by Theorem D.2 and privacy amplification by subsampling.

Utility: Denote the (normalized) privacy noises induced by Pvec in lines 8 and 12 of the algorithm by Z1 and Z2 respectively.
By Theorem D.2, Zi is an unbiased estimator of its respective mean and we have

E}Z1}2 À
dL2 ln3pRd{qδq

ϵ2n2N2
max

ˆ

R

q
, 1

˙

,

and

E}Z2}2 À
dR ln3pdR{δq

ϵ2n2N2
β2}wr ´ wr´1}2

for the r-th round. Also, note that Lemma F.1 is satisfied with

τ21 “
2L2

Mn
1tMăNu `

dL2 ln3pRd{qδq

ϵ2n2N2
max

ˆ

R

q
, 1

˙

,

and

τ22 “ 8β2

ˆ

1tMăNu

Mn
`

dR ln3pRd{δq

ϵ2n2N2

˙

.

Then by the proof of Theorem 3.1, we have

E}Gηpwprivq}2 ď 16

˜

∆̂X

ηR
` τ21

¸

. (48)

if η “ 1{2β and q ď 1
η2τ2

2
. Thus,

E}pGηpwpriv,Xq}2 À
∆̂X

ηR
`

L2

Mn
1tMăNu `

dL2 ln3pRd{qδq

ϵ2n2N2
max

ˆ

R

q
, 1

˙

.
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Our choice of R together with the choice of

q “

—

—

—

–

1

2
min

¨

˝

Mn

1tMăNu

,

¨

˝

ϵnNL
b

∆̂Xβd ln3pRd{δq

˛

‚

˛

‚

ffi

ffi

ffi

fl

equalizes the two terms involving R (up to constants), and we obtain the desired ERM bound (upon noting that q ď 1{pη2τ22 q

is satisfied).

F.1 ISRL-DP Lower Bound

We first provide a couple of definitions. Our lower bound will hold for all non-interactive and sequentially interactive Duchi
et al. ((2013)); Joseph et al. ((2019)) algorithms, as well as a broad subclass of fully interactive13 ISRL-DP algorithms that
are compositional Joseph et al. ((2019)); Lowy and Razaviyayn ((2021b)):

Definition 6 (Compositionality). Let A be an R-round pϵ0, δ0q-ISRL-DP FL algorithm with data domain X . Let
tpϵr0, δ

r
0quRr“1 denote the minimal (non-negative) parameters of the local randomizers Rpiq

r selected at round r such
that Rpiq

r pZp1:r´1q, ¨q is pϵr0, δ
r
0q-DP for all i P rN s and all Zp1:r´1q. For C ą 0, we say that A is C-compositional if

b

ř

rPrRspϵ
r
0q2 ď Cϵ0. If such C is an absolute constant, we simply say A is compositional.

Any algorithm that uses the composition theorems of Dwork and Roth ((2014)); Kairouz et al. ((2015)) for its privacy
analysis is 1-compositional; this includes Algorithm 3 and most (but not all Lowy and Razaviyayn ((2021b))) ISRL-DP
algorithms in the literature. Define the pϵ, δq-ISRL-DP algorithm class Apϵ,δq,C to contain all sequentially interactive
algorithms and all fully interactive, C-compositional algorithms. If A is sequentially interactive or OOp1q-compositional,
denote A P A.

Next we re-state the precise form of our lower bound (using notation from Appendix A) and then provide the proof.

Theorem F.3 (Precise Statement of Theorem 3.3). Let ϵ P p0,
?
N s, 2´ΩpnNq ď δ ď 1{pnNq1`Ωp1q. Suppose that in

each round r, the local randomizers are all pϵr0, δ
r
0q-DP, for ϵr0 À 1

n , δ
r
0 “ op1{nNRq, M “ N ě 16 lnp2{δr0nq. Then,

there exists an L-Lispchitz, β-smooth smooth, convex loss f : Rd ˆ X Ñ R and a database X P XnˆN such that any
compositional and symmetric pϵ0, δ0q-ISRL-DP algorithm A run on X with output wpriv satisfies

E}∇ pFXpwprivq}2 “ Ω

ˆ

L2 min

"

1,
d lnp1{δ0q

ϵ20n
2N

*˙

.

Proof. The work of Lowy and Razaviyayn ((2021b)) showed that a compositional pϵ0, δ0q-ISRL-DP algorithm can become
an

´

O
´

ϵ0?
N

¯

, δ
¯

-SDP algorithm when a shuffler is introduced:

Theorem F.4 (Lowy and Razaviyayn ((2021b))). Let A P Apϵ0,δ0q,C such that ϵ0 P p0,
?
N s and δ0 P p0, 1q. Assume that

in each round, the local randomizers Rpiq
r pZp1:r´1q, ¨q : Xn Ñ Z are pϵr0, δ

r
0q-DP for all i P rN s, r P rRs, Zp1:r´1q P

Zr´1ˆN with ϵr0 ď 1
n . Assume N ě 16 lnp2{δr0nq. If A is C-compositional, then assume δr0 ď 1

14nNR and denote
δ :“ 14Nn

řR
r“1 δ

r
0; if instead A is sequentially interactive, then assume δ0 “ δr0 ď 1

7Nn and denote δ :“ 7Nnδ0. Let
As : X Ñ W be the same algorithm as A except that in each round r, As draws a random permutation πr of rN s and

applies Rpiq
r to Xπrpiq instead of Xi. Then, As is pϵ, δq-CDP, where ϵ “ O

ˆ

ϵ0 lnp1{nNδmin
0 qC2

?
N

˙

, and δmin
0 :“ minrPrRs δ

r
0 .

In particular, if A P A, then ϵ “ O
ˆ

ϵ0 lnp1{nNδmin
0 q

?
N

˙

. Note that for sequentially interactive A, δmin
0 “ δ0.

Next, we will observe that the expected (squared) gradient norm of the output of As is the same as the expected (squared)
gradient norm of the output of A for symmetric FL algorithms. The precise definition of a “symmetric” (fully interactive)
ISRL-DP algorithm is that the aggregation functions gr (used to aggregate silo updates/messages and update the global
model) are symmetric (i.e. grpZ1, ¨ ¨ ¨ , ZN q “ grpZπp1q, ¨ ¨ ¨ZπpNqq for all permutations π) and in each round r the

13Full interactivity is the most permissive notion of interactivity, allowing for algorithms to query silos multiple times, adaptively,
simultaneously, and in any sequence Joseph et al. ((2019)). Sequentially interactive algorithms can only query each silo once, adaptively
in sequence. Non-interactive algorithms query each silo once independently/non-adaptively.
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randomizers Rpiq
r “ Rr are the same for all silos i P rN s. (Rpiq

r can still change with r though.) For example, all of the
algorithms presented in this paper (and essentially all algorithms that we’ve come across in the literature, for that matter) are
symmetric. This is because the aggregation functions used in each round are simple averages of the Mr noisy gradients
received from all silos and the randomizers used by every silo in round r are identical: each adds the same Gaussian noise
to the stochastic gradients. Note that for any symmetric algorithm, the distributions of the updates of A and As are both
averages over all permutations of rN s of the conditional (on π) distributions of the randomizers applied to the π-permuted
database.

Now, for a given pϵ0, δ0q-ISRL-DP algorithm A, denote the shuffled algorithm derived from A by As. Then apply Theo-
rem F.5 to As to obtain lower bounds on its expected squared gradient norm:

Theorem F.5 (Arora et al. ((2022))). Let ϵ P p0,
?
N s, 2´ΩpnNq ď δ ď 1{pnNq1`Ωp1q. Then, there exists an L-Lispchitz,

β-smooth smooth, convex loss f : Rd ˆ X Ñ R and a database X P XnˆN such that any pϵ, δq-CDP algorithm A run on
X with output wpriv satisfies

E}∇ pFXpwprivq}2 “ Ω

ˆ

L2 min

"

1,
d lnp1{δq

ϵ2n2N2

*˙

.

Applying Theorem F.5 with ϵ “ ϵ0{
?
N yields the desired lower bound for As. Further, by the observations above about

symmetric algorithms, this lower bound also apply to A.

G Upper and Lower Bounds for Cross-Device FL Without a Trusted Server

In this section, we use our results to derive upper and lower bounds for FL algorithms that satisfy both ISRL-DP and
user-level DP. Algorithms that satisfy both both ISRL-DP and user-level DP provide privacy for the full data of each
individual silo/user, even in the presence of an adversary that has access to the server, other silos/users, or silo/user
communications. Such a guarantee would be desirable in practical cross-device FL settings in which silos/users (e.g cell
phone users) do not trust the server or other users with their sensitive data (e.g. text messages).

Assume M “ N for simplicity.14 Given ISRL-DP parameters pϵ, δq with ϵ ď 1, let ϵ0 “ ϵ{n and δ0 “ δ{4n ď

δ{pnepn´1qϵ0q “ δ{pnepn´1qϵ{nq. Consider the Proximal PL case for now. Run Noisy pϵ0, δ0q-ISRL-DP Prox-SGD, which
also satisfies pϵ, δq-user level DP by Appendix B. Thus, Theorem 2.1 yields an ISRL-DP/user-level DP excess risk upper
bound for heterogeneous FL with Proximal-PL losses:

EF p pwRq ´ F pw˚q “ rO

˜

L2

µ

˜

κ2
a

d lnp1{δ0q

ϵ20n
2
?
N

`
κ

?
Nn

¸¸

“ rO

˜

L2

µ

˜

κ2
a

d lnp1{δ0q

ϵ2
?
N

`
κ

?
Nn

¸¸

(49)

“ rO

˜

L2

µ

˜

κ2
a

d lnp1{δ0q

ϵ2
?
N

¸¸

.

Regarding lower bounds: note that the semantics of the hybrid ISRL-DP/user-level DP notion are essentially identical to
local DP, except that individual “records/items” are now thought of as datasets of size n. Thus, letting n “ 1 in the strongly
convex ISRL-DP lower bound of Lowy and Razaviyayn ((2021b)) (where we think of each silo as having just one “record”
even though that record is really a dataset) yields a lower bound that matches the upper bound attained above up to a factor
of rOpκ2q. Note that the minimax risk bounds for ISRL-DP/user-level DP hybrid algorithms resemble the bounds for LDP
algorithms Duchi et al. ((2013)), scaling with N , but not with n. A similar procedure can be used to derive upper and lower
bounds for Proximal PL ERM and non-convex/non-smooth ERM, using our upper bounds in Theorems 2.2 and 3.1 and
lower bound in Theorem 3.3.

14The extension to M ă N will be clear.



Andrew Lowy, Ali Ghafelebashi, Meisam Razaviyayn

H Experimental Details and Additional Results

H.1 ISRL-DP Fed-SPIDER: Alternate implementation of ISRL-DP FedProx-SPIDER

We also evaluated an alternative implementation of ISRL-DP FedProx-SPIDER, given in Algorithm 11. We found that this
variation of ISRL-DP FedProx-SPIDER sometimes performed better in practice. For each ϵ P t0.75, 1, 1.5, 3, 6, 12, 18u, we
chose the algorithm with smaller training loss and reported the test error for the corresponding algorithm as SPIDER in the
plots.

Algorithm 11 ISRL-DP Fed-SPIDER: Alternate Implementation
1: Input: Number of silos N P N, dimension d P N of data, noise parameters σ2

1 and σ2
2 , data sets Xi P Xni for i P rN s,

loss function fpw, xq, number of rounds E ´ 1 P N, local batch size parameters K1 and K2, step size η.
2: Server initializes w2

0 :“ 0 and broadcasts.
3: Silos sync wi,2

0 :“ w2
0 (i P rN s).

4: Network determines random subset S0 of M0 P rN s available silos.
5: for i P S0 in parallel do
6: Silo i draws K2 random samples tx0,2

i,j ujPrK2s (with replacement) from Xi and noise u
piq
2 „ Np0, σ2

2Idq.

7: Silo i computes noisy stochastic gradient rvi,20 :“ 1
K2

řK2

j“1 ∇fpw2
0, x

0,2
i,j q ` u

piq
2 and sends to server.

8: end for
9: Server aggregates rv20 :“ 1

M0

ř

iPS0
rvi,20 and broadcasts.

10: for r P t0, 1, ¨ ¨ ¨ , E ´ 2u do
11: Network determines random subset Sr`1 of Mr`1 P rN s available silos.
12: for i P Sr`1 in parallel do
13: Server updates w0

r`1 :“ w2
r , w1

r`1 :“ w2
r ´ ηrv2r and broadcasts to silos.

14: Silos sync wi,0
r`1 :“ w0

r`1, rvi,0r`1 :“ rv2r , and wi,1
r`1 :“ w1

r`1 (i P rN sq.
15: Silo i draws K1 random samples txr`1,1

i,j ujPrK1s (with replacement) from Xi and noise u
piq
1 „ Np0, σ2

1Idq.

16: Silo i computes rvi,1r`1 :“ 1
K1

řK1

j“1r∇fpw1
r`1, x

r`1,1
i,j q ´ ∇fpw0

r`1, x
r`1,1
i,j qs ` rvi,0r`1 ` u

piq
1 and sends to server.

17: Server aggregates rv1r`1 :“ 1
Mr`1

ř

iPSr`1
rvi,1r`1, updates w2

r`1 :“ w1
r`1 ´ ηrv1r`1, and broadcasts.

18: Silos sync wi,2
r`1 :“ w2

r`1.
19: Silo i draws K2 random samples txr`1,2

i,j ujPrK2s (with replacement) from Xi and noise u
piq
2 „ Np0, σ2

2Idq.

20: Silo i computes rvi,2r`1 :“ 1
K2

řK2

j“1 ∇fpw2
r`1, x

r`1,2
i,j q ` u

piq
2 and sends to server.

21: Server updates rv2r`1 :“ 1
Mr`1

ř

iPSr`1
rvi,2r`1 and broadcasts.

22: end for
23: end for
24: Output: wpriv „ Unifptwt

rur“1,¨¨¨ ,E´1;t“1,2q.

H.2 MNIST experiment

The MNIST data is available at http://yann.lecun.com/exdb/mnist/. In our implementation, we use
torchvision.datasets.MNIST to download the MNIST data. All experiments are conducted on a device with
6-core Intel Core i7-8700.

Experimental setup: To divide the data into N “ 25 silos and pre-process it, we rely on the code provided by Woodworth
et al. ((2020b)). The code is shared under a Creative Commons Attribution-Share Alike 3.0 license. We fix δ “ 1{n2 (where
n “number of training samples per silo, is given in “Preprocessing”) and test ϵ P t0.75, 1, 1.5, 3, 6, 12, 18u.

Preprocessing: First, we standardize the numerical data to have mean zero and unit variance, and flatten them. Then, we
utilize PCA to reduce the dimension of flattened images from d “ 784 to d “ 50. To expedite training, we used 1/7 of the
5, 421 samples per digit, which is 774 samples per digit. As each silo is assigned data of two digits, each silo has n “ 1, 543
samples. We employ an 80/20 train/test split for data of each silo.

Gradient clipping: Since the Lipschitz parameter of the loss is unknown for this problem, we incorporated gradient
clipping Abadi et al. ((2016)) into the algorithms. Noise was calibrated to the clip threshold L to guarantee ISRL-DP (see
below for more details). We also allowed the non-private algorithms to employ clipping if it was beneficial.

http://yann.lecun.com/exdb/mnist/
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Hyperparameter tuning: For each algorithm, each ϵ P t0.75, 1, 1.5, 3, 6, 12, 18u, and each pM,Rq P tp12, 25q, p12, 50q,
p25, 25q, p25, 50qu, we swept through a range of constant stepsizes and clipping thresholds to find the (approximately)
optimal stepsize and clipping threshold for each algorithm and setting. The stepsize grid consists of 5 evenly spaced points
between e´9 and 1. The clipping threshold includes 5 values of 1, 5, 10, 100, 10000. For ISRL-DP FedProx-SPIDER,
we use q P t1, 2, 3, 4u for R “ 50 and q P t1, 2u for R “ 25. Due to memory limitation, we did not check large q values
because it results in large batch size based on K in ISRL-DP FedProx-SPIDER (see below for more details).

Choice of σ2 and K: We used noise with smaller constants/log terms (compared to the theoretical portion of the paper) to
get better utility (at the expense of needing larger K to ensure privacy), by appealing to the moments accountant ((Abadi
et al., 2016, Theorem 1)) instead of the advanced composition theorem ((Dwork and Roth, 2014, Theorem 3.20)).

For ISRL-DP FedProx-SPIDER, we used σ2
1 “

16L2 lnp1{δq

ϵ2n2 max
´

R
q , 1

¯

, σ2 “ 8, and σ̂2
2 “

64L2R lnp1{δq

ϵ2n2 . We chose
σ2 “ 8 because we do not have an a priori bound on the smoothness parameter β. Therefore, only the variance-reduction
benefits of SPIDER are illustrated in the experiments and not the smaller privacy noise.

For ISRL-DP FedSPIDER: Alternate Implementation, we used σ2
1 “

32L2 lnp2{δqR
n2ϵ2 and σ2

2 “
8L2 lnp2{δqR

n2ϵ2 with K1 “ K2 “
n

?
ϵ

2
?
R

given above, which guarantees ISRL-DP by ((Abadi et al., 2016, Theorem 1)). Note that the larger constant 32 is
needed for ISRL-DP in σ2

1 because the ℓ2 sensitivity of the updates in line 16 of Algorithm 3 is larger than simple SGD
updates (which are used in MB-SGD, Local SGD, and line 20 of Algorithm 3) by a factor of 2.

For ISRL-DP MB-SGD and ISRL-DP Local SGD, we use the same implementation as Lowy and Razaviyayn ((2021b)).

Generating Noise: Due to the low speed of NumPy package in generating multivariate random normal vectors, we use an
alternative approach to generate noises. For ISRL-DP SPIDER and ISRL-DP MB-SGD algorithms, we generate the noises
on MATLAB and save them. Then, we load them into Python when we run the algorithms. Since the number of required
noise vectors for ISRL-DP Local SGD is much larger (K times larger) than two other ISRL-DP algorithms, saving the
noises beforehand requires a lot of memory. Hence, we generate the noises of ISRL-DP Local SGD on Python by importing
a MATLAB engine.

Plots and additional experimental results: See Figure 9 and Figure 10 for results of the two remaining experiments:
pM “ 12, R “ 25q and pM “ 25, R “ 50q. The results are qualitatively similar to those presented in the main body. In
particular, ISRL-DP SPIDER continues to outperform both ISRL-DP baselines in most tested privacy levels. Also, ISRL-DP
MB-SGD continues to show strong performance in the high privacy regime (ϵ ď 1.5).

Figure 9: MNIST. M “ 12, R “ 25.

H.3 CIFAR10 experiment

We run an experiment on CIFAR10 data to further evaluate the performance of ISRL-DP SPIDER in image classification. We
partition the data set into 10 heterogeneous silos, each containing one class out of 10 classes of data. We use a 5-layer CNN
with two 5x5 convolutional layers (the first with 6 channels, the second with 16 channels, each followed by a ReLu activation
and a 2x2 max pooling) and three fully connected layers with 120, 84, 10 neurons in each fully connected layer (the first and
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Figure 10: MNIST. M “ 25, R “ 50.

second fully connected layers followed by a ReLu activation). For 7 privacy levels ranging from ϵ “ 0.75 to ϵ “ 18, we
compare ISRL-DP SPIDER against standard FL baselines: MB-SGD, Local SGD (a.k.a. Federated Averaging) McMahan
et al. ((2017)), ISRL-DP MB-SGD Lowy and Razaviyayn ((2021b)), and ISRL-DP Local SGD. We fix δ “ 1{n2. As
Figure 6 shows, ISRL-DP SPIDER outperforms both ISRL-DP baselines for most tested privacy levels. The results are based
on the average error of 10 random assignment of train/test split of data for each algorithm/epsilon pair. CIFAR10 data is
available at https://www.cs.toronto.edu/~kriz/cifar.html. In our implementation, we directly download
the data from torchvision.datasets.CIFAR10.

Experimental setup: To divide the CIFAR10 data into N “ 10 heterogeneous silos, we use labels. That is, we assign one
unique image class to each of 10 heterogeneous silos.

Preprocessing: We standardize the numerical data to have mean zero and unit variance. We utilize a 80/20 train/test split
for data of each client.

Gradient clipping: Since the Lipschitz parameter of the loss is unknown for this problem, we incorporated gradient
clipping Abadi et al. ((2016)) into the algorithms. Noise was calibrated to the clip threshold L to guarantee ISRL-DP (see
below for more details). We also allowed the non-private algorithms to employ clipping if it was beneficial.

Hyperparameter tuning: It is similar to hyperparameter tuning of MNIST data. However, we check pM,Rq “ p10, 50q

and pM,Rq “ p10, 100q here. Also, the stepsize grid of Local SGD consists of 20 evenly spaced points between e´5 and e1

for local SGD. The stepsize grid of MB-SGD and SPIDER with R=50 consists of 12 evenly spaced points between e´5

and e0 and with R=100 consists of 8 evenly spaced points between e´5 and e1. The clipping threshold of all algorithms
includes 6 values of 0.001, 0.01, 0.1, 1, 5, 10. For ISRL-DP FedProx-SPIDER, we use q P t1, 2, 3, 4u for R “ 50 and
q P t1, 2, . . . , 8u for R “ 100. Due to memory limitation, we did not check large q values because it results in large batch
size based on K in ISRL-DP FedProx-SPIDER (see below for more details).

Choice of σ2 and K: Same as in MNIST: see Appendix H.2.

H.4 Breast cancer experiment

We run an experiment on Wisconsin Breast Cancer (Diagnosis) data (WBCD) to further evaluate the performance of
ISRL-DP SPIDER in binary (malignant vs. benign) classification. We partition the data set into 2 heterogeneous silos, one
containing malignant labels and the other benign labels. We use a 2-layer perceptron with 5 neurons in the hidden layer. For
7 privacy levels ranging from ϵ “ 0.75 to ϵ “ 18, we compare ISRL-DP SPIDER against standard FL baselines: MB-SGD,
Local SGD (a.k.a. Federated Averaging) McMahan et al. ((2017)), ISRL-DP MB-SGD Lowy and Razaviyayn ((2021b)),
and ISRL-DP Local SGD. We fix δ “ 1{n2. As Figure 8 shows, ISRL-DP SPIDER outperforms both ISRL-DP baselines for
most tested privacy levels. The results are based on the average error of 10 random assignment of train/test split of data for
each algorithm/epsilon pair. WBCD data is available at https://archive.ics.uci.edu/ml/datasets and we
directly download the data from UCI repository website. The experiment is conducted on a device with 6-core Intel Core
i7-8700.

https://www.cs.toronto.edu/~kriz/cifar.html
https://archive.ics.uci.edu/ml/datasets


Private Non-Convex Federated Learning Without a Trusted Server

Experimental setup: To divide the WBCD data into N “ 2 silos, we use labels (malignant vs. benign). We split the data
into 2 parts, one only has malignant labels and the other only has benign data. Then, we assign each part to a client to have
full heterogeneous silos. In all experiments, we fix δ “ 1{n2 (where n “number of training samples per client, is given in
“Preprocessing”) and test ϵ P t0.75, 1, 1.5, 3, 6, 12, 18u.

Preprocessing: We standardize the numerical data to have mean zero and unit variance. We utilize a 80/20 train/test split
for data of each client.

Gradient clipping: Since the Lipschitz parameter of the loss is unknown for this problem, we incorporated gradient
clipping Abadi et al. ((2016)) into the algorithms. Noise was calibrated to the clip threshold L to guarantee ISRL-DP (see
below for more details). We also allowed the non-private algorithms to employ clipping if it was beneficial.

Hyperparameter tuning: It is similar to hyperparameter tuning of MNIST data. However, we check pM,Rq “ p4, 25q here.
Also, the stepsize grid consists of 15 evenly spaced points between e´9 and 1. The clipping threshold includes 4 values of
0.1, 1, 5, 10. For ISRL-DP FedProx-SPIDER, we use q P t1, 2, . . . , 10u. Due to memory limitation, we did not check large
q values because it results in large batch size based on K in ISRL-DP FedProx-SPIDER (see below for more details).

Choice of σ2 and K: Same as in MNIST: see Appendix H.2.

Generating Noise: Due to the low speed of NumPy package in generating multivariate random normal vectors, we use an
alternative approach to generate noises. For ISRL-DP SPIDER and ISRL-DP MB-SGD algorithms, we generate the noises
on MATLAB and use them in Python when we run the algorithms. Since the number of required noise vectors for ISRL-DP
Local SGD is much larger (K times larger) than two other ISRL-DP algorithms, saving the noises beforehand requires a lot
of memory. Hence, we generate the noises of ISRL-DP Local SGD on Python by importing a MATLAB engine.

I Limitations

A major focus of this work is on developing DP algorithms that can handle a broader, more practical range of ML/optimization
problems: e.g. non-convex/non-smooth, Proximal-PL, heterogeneous silos. However, some assumptions may still be strict
for certain practical applications. In particular, the requirement of an a priori bound on the Lipschitz parameter of the
loss–which the vast majority of works on DP ERM and SO also rely on–may be unrealistic in cases where the underlying
data distribution is unbounded and heavy-tailed. Understanding what privacy and utility guarantees are possible without this
assumption is an interesting problem for future work.

Limitations of Experiments: Pre-processing and hyperparameter tuning were done non-privately, since the focus of this work
is on DP FL.15 This means that the total privacy loss of the entire experimental process is higher than the ϵ indicated, which
only accounts for the privacy loss from executing the FL algorithms with given (fixed) hyperparameters and (pre-processed)
data.

J Societal Impacts

We expect a net positive impact on society from our work, given that our algorithms can prevent sensitive data leakage during
FL. Nonetheless, like all technologies, it carries potential for misuse and unintended outcomes. For instance, companies
may attempt to legitimize invasive data collection by arguing that the user data will solely be utilized to train a differentially
private model to safeguard privacy. Furthermore, in some parameter ranges, privacy comes at the expense of lower model
accuracy, which could have adverse effects in crucial applications such as medicine and environmental science.

15See Abadi et al. ((2016)); Liu and Talwar ((2019)); Papernot and Steinke ((2021)) and the references therein for discussion of DP
PCA and DP hyperparameter tuning.
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