Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear
Communication Complexity

Xingyu Lu

Hasin Us Sami

Basak Giiler

Department of Electrical and Computer Engineering
University of California, Riverside

x1lu065 @ucr.edu

Abstract

Collaborative machine learning enables privacy-
preserving training of machine learning mod-
els without collecting sensitive client data. De-
spite recent breakthroughs, communication bot-
tleneck is still a major challenge against its
scalability to larger networks. To address this
challenge, we propose PICO, the first collab-
orative learning framework with linear com-
munication complexity, significantly improving
over the quadratic state-of-the-art, under formal
information-theoretic privacy guarantees. Theo-
retical analysis demonstrates that PICO slashes
the communication cost while achieving equal
computational complexity, adversary resilience,
robustness to client dropouts, and model accu-
racy to the state-of-the-art. Extensive experi-
ments demonstrate up to 91x reduction in the
communication overhead, and up to 7x speed-up
in the wall-clock training time compared to the
state-of-the-art. As such, PICO addresses a key
technical challenge in multi-party collaborative
learning, paving the way for future large-scale
privacy-preserving learning frameworks.

1 INTRODUCTION

Privacy-preserving collaborative machine learning (PPML)
allows multiple data owners to collaborate to train ML
models without sharing their data. PPML can greatly im-
prove ML performance by increasing the volume and diver-
sity of data, without compromising privacy (Mohassel and
Zhang, 2017; Al-Rubaie and Chang, 2019). It can even fos-
ter novel applications in which data is rare and collabora-

Proceedings of the 26" International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

hsami003 @ucr.edu

bguler@ece.ucr.edu

tion has traditionally been limited due to privacy concerns,
such as the treatment of rare diseases (Nosowsky and Gior-
dano, 2006; Telenti and Jiang, 2020).

Recently, secure multi-party computing (MPC) has be-
come a popular candidate for PPML (Mohassel and Zhang,
2017). Secure MPC protocols are based on a crypto-
graphic primitive known as secret sharing, where par-
ties inject randomness to local datasets before sharing it
with others (Yao, 1982; Shamir, 1979). Computations are
then performed on the secret shared data (Ben-Or et al.,
1988; Damgard and Nielsen, 2007; Beerliova-Trubiniova
and Hirt, 2008). The injected randomness is reversible,
i.e., parties can decode the computations performed on the
secret shared data to recover the true computation results,
preserving model accuracy. Secure MPC provides strong
information-theoretic privacy guarantees, such that no in-
formation about the datasets is revealed beyond the final
model (even if adversaries have unbounded computational
power) (Nikolaenko et al., 2013; Gascén et al., 2017; Mo-
hassel and Rindal, 2018; Wagh et al., 2018). The main lim-
itation of such information-theoretic PPML protocols is the
intensive client communications needed to perform secure
computations, preventing scalability to larger networks.

Coding theory offers a promising approach to the design
of information-theoretic PPML (Yu et al., 2019; So et al.,
2020, 2021). This approach, called Lagrange Coded Com-
puting (LCC), first encodes the datasets using a Lagrange
interpolation polynomial. The encoding operation injects
randomness and (computational) redundancy within the lo-
cal computations, and provides information-theoretic pri-
vacy, resilience against client dropouts, and reduces the
training load per client. The training computations are
then performed on the encoded data, as if they were per-
formed on the clear data. After multiple training rounds,
the final model is decoded using polynomial interpolation,
by collecting the computations (performed over encoded
data) from individual clients. By doing so, an order-of-
magnitude speed-up is achieved in the training time com-
pared to state-of-the-art MPC baselines, where for the latter
the training load per client is as large as centralized training

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

(over the collection of all client datasets) (So et al., 2020).

Communication bottleneck and ‘“‘degree explosion”.
The major challenge against the scalability of information-
theoretic PPML is its communication complexity, which is
quadratic in the number of clients. This is caused by the
multiplication operations associated with gradient compu-
tations. Specifically, interpolating a polynomial f of degree
deg(f) requires collecting at least deg(f) + 1 interpola-
tion points. As such, decoding the final model from the
local computations requires computations to be collected
from at least N > deg(f) + 1 clients. On the other hand,
the multiplication operations during gradient computations
lead to an exponential growth in the polynomial degree,
leading to a degree explosion after multiple training rounds.
This necessitates an expensive degree reduction step with
a quadratic communication overhead (after each training
round), preventing scalability to large networks.

Contributions. To address this challenge, we propose
PICO, the first information-theoretic PPML framework
with linear communication complexity. The key intuition
behind PICO is an online-offline communication trade-
off, where we trade-off expensive online (data-dependent)
communications with offline (data-agnostic) communica-
tions. For the online phase, we develop a novel degree re-
duction mechanism, which reduces the quadratic commu-
nication overhead of LCC to linear. For the offline phase,
we reduce the communication overhead by reducing the
volume of variables communicated by each client. Com-
municating each variable has a quadratic cost, but the fotal
number of variables scales inversely with the number of
clients, leading to a linear amortized overhead. As such, in
a network of N clients, PICO incurs an O(/N') communica-
tion complexity both offline and online, as opposed to the
O(N?) online communication complexity of the state of
the art, while achieving the same computational complex-
ity, accuracy, dropout-resilience, and privacy guarantees.

Our theoretical analysis provides formal guarantees for
information-theoretic privacy, correctness, and the key
performance trade-offs in terms of the communication
and computation complexity, adversary resilience, client
dropouts, and training time. We perform extensive experi-
ments to evaluate the performance of PICO, by implement-
ing a distributed multi-client network for various image
classification tasks. We then demonstrate the communica-
tion/computation volume and the wall-clock training time
of PICO with respect to state-of-the-art benchmarks, iden-
tify the impact of key system parameters and trade-offs, and
present the model convergence and accuracy.

Our contributions can be summarized as follows:

* We introduce PICO, the first privacy-preserving
collaborative learning framework with linear com-
munication complexity, under strong end-to-end
information-theoretic privacy guarantees.

* We propose an online-offline communication trade-

off for privacy-preserving collaborative learning,
where communication is divided into online (data-
dependent) and offline (data-agnostic) components.
We develop the first degree reduction mechanism for
LCC with linear online communication overhead.

Our theoretical analysis presents formal information-
theoretic privacy guarantees (for end-to-end training),
and shows that PICO cuts the communication over-
head while achieving the same computation complex-
ity, adversary resilience, robustness to client dropouts,
and model accuracy of the state-of-the-art.

Our experiments demonstrate up to 91 x reduction in
the communication overhead, and up to 7x speed-up
in the wall-clock training time compared to the state-
of-the-art, while achieving the same adversary and
dropout resilience, and model accuracy.

2 Related Work

Secure Aggregation. Recently, MPC mechanisms have
also been utilized for model aggregation in distributed and
federated learning, known as secure aggregation, where
parties learn the sum of client models/gradients after each
(global) training round, but without observing the individ-
ual models/gradients, (Bonawitz et al., 2017; Bell et al.,
2020; So et al., 2022; Zhao and Sun, 2021). In contrast, our
focus is on end-to-end PPML, where parties can learn only
the final model (after multiple rounds), and no intermedi-
ate model/gradient should be revealed during training. Be-
yond the information-theoretic setting, there are two com-
plementary approaches to PPML.

Homomorphic Encryption (HE) allows computations to
be performed on encrypted data, when adversaries have
bounded computational power (Gentry and Boneh, 2009;
Gentry, 2009; Gilad-Bachrach et al., 2016; Hesamifard
et al., 2017; Graepel et al., 2012; Yuan and Yu, 2014; Cha-
banne et al., 2017; Li et al., 2017; Kim et al., 2018; Wang
et al., 2018; Han et al., 2019). HE can tolerate a large num-
ber of adversaries (compared to secure MPC). As a trade-
off, privacy guarantees depend on the size of the encrypted
data; stronger guarantees increase the data size, leading to
higher computation load per client. As such, HE is typi-
cally utilized for the inference task in ML (rather than the
more computation-intensive training).

Differential Privacy (DP) is a noisy release mechanism
that protects the privacy of personally identifiable infor-
mation by injecting (irreversible) noise to the computa-
tions, so that an adversary observing the released model
cannot backtrack a certain individual’s information (Dwork
et al., 2006; Chaudhuri and Monteleoni, 2009; Shokri and
Shmatikov, 2015; Abadi et al., 2016; Pathak et al., 2010;
McMahan et al., 2018; Rajkumar and Agarwal, 2012; Ja-
yaraman et al., 2018). Stronger privacy guarantees require
more noise to be added to the computations, leading to a
(model) accuracy-privacy trade-off in distributed settings.

Xingyu Lu, Hasin Us Sami, Basak Giiler

Recent works show that DP can also be combined with
information-theoretic PPML, to reduce the amount of noise
that should be added by each client, thus improving model
accuracy (Chen et al., 2022b,a; Kairouz et al., 2021). As
such, although beyond the focus of the current work, we
note that our techniques can also be combined with and
benefit DP as an interesting future direction.

3 PROBLEM FORMULATION

Collaborative logistic regression. Our focus is on collab-
orative logistic regression in a network of IV clients. Client
i holds a local dataset X; consisting of |X;| = m, data
points, where each data point has d features, along with the
corresponding labels y; € {0,1}"™:. The collection of the
individual datasets X £ (A},...,X) is represented by
a matrix X € RI*1%4 consisting of |X| = Y2 | m; data
points, with the corresponding labels y = (y1,...,yn) €
{0, 1}|X|. The goal is to train a logistic regression model w
jointly over X (the datasets of all N clients), by minimizing
a cross entropy loss function:

|X]

£(w) =ty D (wilog — (1= yi)log(1 — 1)) (1)

X[&
where §; = g(x; x w) € (0,1) is the probability of la-
bel i being equal to 1, x; € R denotes the i*" row of
X (features of data point i), and g(z) £ 1/(1 + e™®) is
the sigmoid function. The model is trained via gradient
descent, by updating it in the negative direction of the gra-
dient VL(w) = ﬁXT(g(X XW)—¥),

wttD — () _ %XT(g(X xw®)—y) (@
where 1) is the learning rate, w(*) is the estimated model pa-
rameters from training round ¢, and function g(-) is applied
element-wise over X x w(*). We consider a decentralized
communication topology, where clients can communicate
through peer-to-peer or broadcast links. At each training
round, up to D clients may drop out from the system due
to poor connectivity (or unavailability). We do not assume
the existence of a trusted third party or central coordinator.
Our system model is presented in Fig. 1.

Threat model. We consider an honest-but curious ad-
versary model, as is the most common model in PPML
(So et al., 2020; Mohassel and Zhang, 2017; Nikolaenko
et al., 2013; Gascoén et al., 2017), where adversaries follow
the protocol but try to reveal additional information about
the local datasets of honest clients, using the messages ex-
changed during training. Up to T clients are adversarial,
who may collude with one another. The set of adversarial
and honest clients are denoted by 7 and H, respectively.

Information-theoretic privacy. Our focus is on
information-theoretic privacy, i.e., to ensure that the adver-
saries learn no information about the local datasets of hon-

local dataset: Client 1 Client 2
X=X, Xik) X
labels: ¥1 Yo
Client N Client 3
Xn X
YN

Figure 1: System model. The multi-client learning setup of
PICO. Client ¢ € [N] holds a dataset X; with labels y;.

est clients, beyond the final model (Yu et al., 2019; Mo-
hassel and Zhang, 2017; So et al., 2020). Formally, this
condition can be stated as,

I{XLy i Mr{& yier.w) =0 (3)
for all 7 such that | 7| < T, where I is the mutual informa-
tion, and M7 is the collection of all messages received or
generated by the adversaries, and .J is the total the number
of training rounds. Our framework is bound to finite field
operations, and we assume that all datasets are represented
in a finite field F, of integers modulo a large prime g, as
detailed in Appendix H. Accordingly, all operations in the
sequel are carried out within IF,.

Limitations of the state-of-the-art. To solve (1) with
the information-theoretic guarantees from (3), the state-of-
the-art is the COPML framework from So et al. (2020),
which builds on LCC (Yu et al., 2019). In this setup,
the dataset X is first partitioned into K equal-sized parts
(X1,...,Xk). The K parts are then encoded using a La-
grange interpolation polynomial, by combining them with
T random matrices R, ..., Ry, to hide their true value
against up to T' adversaries. At the end, client ¢ obtains
a coded dataset X; = u(Xy,...,Xg,R1,..., Ry,),
whose size is (1/K)" of the original dataset X. Client
¢ then computes the gradients on the encoded dataset X,
as if they were computing on the original dataset. After J
training rounds, the final model w(/) can be reconstructed
from the computations performed on the encoded datasets,
as long as N > D + (deg f)(K + T — 1) + 1, where
deg f quantifies the degree of the polynomial after J train-
ing rounds. K is called the degree of parallelization; as the
network size N grows, one can select a larger K to speed
up training, as each client needs to process only (1/K)!"
of the dataset X. On the other hand, the polynomial de-
gree deg f grows exponentially after each training round,
due to the multiplications needed for the gradient in (2).
To prevent a degree explosion, an expensive degree reduc-
tion step has to be carried out after each training round,
with a quadratic communication overhead in the number of
clients. This limits scalability to larger networks.

Main problem. Our goal is to address this challenge,
where we ask the following question:

* How can we develop a scalable PPML framework to

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

Table 1: Comparison of the total communication overhead (across
all clients) for PICO and COPML, where K = O(N), T =
O(N), and m; = mforalli € [N].

COPML PICO
1.Dataset encoding O(N?dm) O(Ndm)
2.Label encoding (N2m+ N2d) O(Nd)
3.Model initialization O(N?d) O(Nd)
4 Model encoding O(N?dJ) O(NdJ)
5.Gradient cmp./model update O(N?d.J) O(NdJ)

solve (1) with linear communication complexity, un-
der formal information-theoretic guarantees from (3)?

To address this challenge, in this work we introduce PICO,
a privacy-preserving collaborative learning framework with
linear communication complexity.

The key contribution of PICO is a novel encoding and de-
gree reduction strategy that incurs a linear communication
overhead (O(N) broadcast), as opposed to the quadratic
(O(N?) point-to-point) overhead of the state-of-the-art.

An offline-online trade-off. To do so, PICO decou-
ples communication into online (data-dependent) and of-
fline (data-agnostic) phases. Online phase depends on the
datasets, hence can only take place after training starts. For
this phase, we introduce a novel degree reduction mecha-
nism for LCC, that reduces the communication overhead
from O(N?) (point-to-point) to O(N) (broadcast). The re-
maining communication-intensive operations are offloaded
to the offline phase, where the communicated variables are
independent from the training data, such as randomness
generation for the encoding operation. Then, the number
of communicated variables is reduced through an efficient
randomness generation mechanism, using linear transfor-
mations with MDS (maximum distance separable) matrices
(also related to hyperinvertible matrices from (Beerliova-
Trubiniovda and Hirt, 2008)). Here, the communication
overhead for each variable is quadratic, but the fotal num-
ber of variables is inversely proportional to the number of
clients, overall achieving an O(N') amortized communica-
tion overhead. In doing so, PICO preserves the same com-
putation complexity as the state-of-the-art; due to the
reduced number of variables, the additional computations
with MDS matrices do not increase the overall complexity.
The flexible modular architecture also provides further op-
portunities for system-wide performance optimization. The
offline phase can take place in advance when the network
load is low, or can be overlapped with other components of
training. We next describe the details of PICO.

4 PICO FRAMEWORK

PICO consists of five main components, consisting of on-
line and offline phases as shown in Fig. 2. Table 1 presents
the communication overhead of each component with re-
spect to COPML (So et al., 2020). For ease of presentation,
we describe the offline and online phases sequentially, to

1. Dataset encoding
offline [=|online

3. Model initialization

2. Label encoding

offline li
- e 4. Model evzncoding

' =
[offline|—> online | —Hg

5. Gradient computing and model update

Figure 2: Flowchart of PICO.

show how the variables generated in the former are utilized
in the latter. We note, however, that each offline phase is
independent from past online/offline phases. Specifically,
variables generated in the offline phase of any component
do not depend on the online/offline phases of previous com-
ponents, hence all offline phases can be executed in par-
allel. We now describe the details of each component.

1. Dataset Encoding. Initially, clients encode their
datasets using locally generated randomness. The goal of
the encoding process is two-fold. First, it hides the dataset
contents against adversaries. Second, it reduces the size of
the data each client should process during training. Specif-
ically, each client computes the gradient on an encoded
dataset X;, whose size is (1/K)" of the original dataset
X. As the network size N increases, one can select a larger
K, reducing the computation load for training per worker
(called the parallelization gain) to speed up training. As
opposed to the expensive gradient computations, the en-
coding operations are much cheaper (we focus on linear
encoding mechanisms) and we delegate the more intensive
computations to the offline phase. The encoding process
consists of the following offline and online phases.

(Offline) Initially, clients agree on N + K + T distinct pub-
licly known parameters {cv; } jc(n] and {53} e[k +r) from
Fq, where o # B, forall j € [N]and k € [K+T]. Client
i then generates K + 71" random matrices { R } e[k, and

{Vir}retr+1.....k+1}- €ach of size & x d, encodes them
using a Lagrange polynomial of degree K + 71 — 1:
5 —
=2 R]I Br —ﬂﬁlz
ke[K] le[K+T\{k}
K+T -8
— b
+ > Vi]I 5=5 @
k=K+1 le[K+T)\{k} &~ P!

and sends to each client j € [N] an encoded matrix,
ﬁij £ u;(ay) (5)

which corresponds to (4) evaluated at ;. The additional
randomness {V; x4+1,..., Vi k+r} is to hide the true
value of R;; against up to 7" adversaries.

(Online) In the online phase, client ¢ € [N] partitions its lo-
cal dataset X; into K submatrices (X;1, ..., X;x), where

Xingyu Lu, Hasin Us Sami, Basak Giiler

Xk € IFngXd for all k& € [K], and broadcasts,

Xir = Xix —Rix VE € [K]. (6)

After receiving {Xjk}je[]v] ke
coded dataset:

X; £ Z (X X)"

ke[K]

(K]> client ¢ generates an en-

- B
lE[K+T\{k} B — B
+@®RT,... . RL)T @)

Intuitively, the encoding operation from (7) cancels the ad-
ditive randomness due to { R,y } x|k}, and at the same time
embeds the entire dataset X in a Lagrange polynomial,

Z X, z— B
ke[K] le[K+T\{k} B — B
K+T v LB .
* Z g H Bk — B ®
k=K+1 le[K+T\{k}
such that X, = (X% ...,

XL)T and V, £
(VI ..., VLT, where u(By) = Xy, for all k& € [K]
and client i € [N] obtains the encoded dataset X; = u(a;).
The 7' random matrices {V}re(x+1,.. x+7) hide the
true values of the local datasets against up to 71" adversaries.

Eq. (7) reflects a key intuition behind PICO. To construct
an encoded matrix X; = u(«;) using the Lagrange poly-
nomial (8), (So et al., 2020) lets each client secret share
their dataset A; using Shamir’s secret sharing (quadratic
overhead). Then, encoding is done using the secret shared
datasets. Instead, PICO lets each client broadcast a masked
dataset as in (6) (linear overhead), where the true dataset is
hidden by random matrices R;;x. Then, the encoded matrix
X; is constructed by using the additional randomness (5)
generated during the offline phase. This dramatically re-
duces the online communication overhead, by moving the
more intensive communications to the offline phase.

2. Label Encoding. In addition to encoding the datasets,
clients also encode the labels to preserve their privacy,
through the following offline and online phases.

(Offline) Client 7 generates K uniformly random vectors
{air }re(k) of size ﬁ, and sends an encoded vector,

RPNV =
ke[K] le[K+T\{k}
K+T =B
+ > by] 6—5 ©
k=K+1 le[k+T\{k} " F
to client j € [N], where by, for k € {K + 1 K +
T} are uniformly random vectors of size W After

receiving {a;; } je[n1, client i combines them to form a new
(larger dimensional) encoded vector,

a,2MeI) x @, ...ak)" (10)
->a I 54
ke[K] le[K+T)\{k}
K+T a’_ﬁl
R | 5175 (11)
k=K+1 le[K+T\{k} " F

where ® is the Kronecker product, a, £ (M ® I) x

(al,,...,aL,)T,and by £ (M ®I) x (bl,,...,b%,)7,
Lis a (5~ ¥ (Nde)K identity matrix, and
1IN AN
M= |: : : 12)
1 An_r ANTE
isa (N —T) x N MDS matrix, where Ay, ..., A\y_r are

distinct public parameters from ;. The key intuition is
that, to generate an encoded vector of size %, each client
only sends ﬁ parameters to every other client, as op-
posed to sending % parameters as in conventional LCC (Yu
et al., 2019). The final encoded vector is then generated by
combining the lower-dimensional encoded vectors received
from all N clients, using the MDS matrix M.

Next, client ¢ € [N] sends a secret share [a;;]; of a;
to client j € [N], for all k& € [K], using Shamir’s T-
out-of-V secret sharing. After receiving the secret shares
{[ajr]i}jen). client i constructs a new (larger dimen-
sional) secret share [a;]; = (M ®1)([a]7, ..., [ane]).
The goal is again to generate a secret share of dimension -2,

where each client sends only a vector of size ﬁ (as
opposed to %). The details of Shamir’s secret sharing and

cryptographic primitives are provided in Appendix A.

(Online) Let y; denote the label for data point x; € Aj.
First, client i partitions x; xlTyl into K equal-sized

parts (yi1,-..,yik), and sends an encoded vector
8
3w Il 55
ke[K] le[K+T\{k}
K+T =8
T | B — Bl (13)
k=K+1 le[K+T\{k} " F !

d
to client j € [IN], where r;, € FJ are uniformly random
vectors!. After receiving {¥i } je(n1, client i broadcasts:

a2y YA (14)

which is also a Lagrange polynomial of degree K +71 —
1. As such, upon receiving a; from any K +7 clients, all
clients can recover } .1y k —ax for all k € [K] (via
polynomial interpolation), and compute a secret share of
XTy = Diex, x]y; as follows,

'"Typically d>> N in real-world tasks (Codella et al., 2018).

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

é Zyjl_a1+a1]) geeey

JE[N]
(Z yik—ak+lagl)")" (15)
JE[N]

3. Model Initialization. Model w(9) at time # =0 is initial-

ized randomly (offline), without revealing it to any client.

(0)

To do so, client ¢ generates a random vector w,; = of size

~%=, and sends a secret share [w; (©)] to client j € [N]
using Shamir’s T-out-of-/V secret sharmg. After receiving

(W) o)] for j € [V], client 4 constructs a new (larger) share,

0 0
< (w2107, (w1)T)T (16)
which represents a secret share of the initial model,
w(® < (W, wIDT)

identity matrix.

w(®]; &£ (MeT)

=MgI)

d d
where I'is a N—_T X N_T

4. Model Encoding. At the beginning of each round,
client i holds a secret share [w(®)]; of the current state of
the model w(®). TInitially at t = 0, [w(?)]; is generated
as described during the model initialization in (16). For
all other training rounds (i.e., t > 0), [w®]; is obtained
after model updating from (34). At each round, clients then
encode the model using the secret shares [w(*)];, to ensure
that gradients can later be computed on the encoded dataset
and model. At the end, client ¢ learns an encoded model
v~v£t). Model encoding consists of the following phases.

(Offline) Client i € [N] generates T + 1 uniformly random
vectors® r; and { Vi }re(x+1,.. k+7} Of size 7%= Then,
r; is secret shared using Shamir’s T-out-of-N secret shar-
ing, by sending a share [r;]; to each client j € [N]. Next,
client ¢ encodes r; by generating a Lagrange polynomial,

z— B
=2 I 5=

ke[K] le[K+T)\{k}
K+T ‘ Z_ﬂl 8
+ > vae] 5= ®
k=K+1 le[K+T)\{k}

and sends each client j € [N] an encoded vector,
Ty = vilay) (19)

By combining the received {T;;, [r;] }je[n), client i gener-
ates a (larger dimensional) encoded vector,

2 M®I) x (F];,...,Thy) " (20)
and a secret share of r £ (M @ I) x (¢T,... v%)7,
(i £ M@ T) x ([r7 - en])" @D

(Online) Client ¢ initially broadcasts,
W) 2 WL~ = W —xl @)

2For simplicity, we omit the time index from random vectors,
and note that at each round, a new set of random vectors is used.

After receiving {[W(")];};c(n], each client can decode,

wt) =w® _p (23)

via polynomial interpolation. Using (23), client ¢ then con-
structs an encoded model,

ANV (1) =B~
w, = w +7r; 24
z kez[;q ze[KL[\{k} Pe = b Y

Intuitively, the encoding operation in (24) embeds the
model w(*) in a Lagrange polynomial,

Y () z—f
= E w
. H Br — B
€[K] le[K+T)\{k}
K4T 5
— Ml
+ 3 v I B — (25)
k=K+1 le[K+T\{k} " F 7!

such that vy 2 (M@ I)x (vI,,...,vE,)T, where v(B;) =
w(® for k € [K], and client i obtains an encoded model
w® = v(a;). The random vectors {Vi}re{k+1,....K+T}

K3
hide the true value of w(*) against up to 7" adversaries.

5. Gradient Computing and Model Update. The
last component of PICO is local gradient computation and
model update, using the encoded datasets and model. At
the end, client 4 learns a secret share [w(/+1)]; of the model
w(tt1) for the next training round. PPML frameworks
that utilize polynomial embeddings to hide sensitive data
are bound to polynomial computations (So et al., 2020;
Yu et al., 2019). As the sigmoid function in (1) is not
a polynomial, it is often approximated with a polynomial
g(x) = >i_, 0:a" for some public coefficients {0;};¢(
fitted via least squares, using which one can rewrite (2) as:

w(tHD) — w1 L XT(G(X xw)—y). (26)

||
The degree r quantifies the accuracy of approximation
(Brinkhuis and Tikhomirov, 2005). Then, the offline and
online phases of this stage proceed as follows.

(Offline) Client i € [N] generates C' = (2r +1)(K +T —
1) + 1 random vectors u; of size ﬁ, which are then
encoded using Lagrange polynomial of degree C' — 1,

z— 91
=3 wre] o 27)
ke[C] le[C]\{k}

where 0, = S (hence ¢;(8;) = u;) for k € [K], and
O for k € {K +1,...,C} are distinct public parameters
from F,. Client 7 then sends an encoded vector,

u; = hioy) (28)

to client j € [N]. After receiving {1;;};cn). client i con-
structs a new (larger dimensional) encoded vector,

AMeI) x@n,...,ak)" (29)

Xingyu Lu, Hasin Us Sami, Basak Giiler

which encodes {uy, }c[c) within a Lagrange polynomial,

-0
sy w I

ke[C] le[C]\{k}

(30)

such that uy, £ M ® I) x (uf,...,uk,)T, where
#(0r) = uy, for all & € [C], and client 4 obtains an en-
coded vector u; = ¢(ay;). Client ¢ then secret shares the
sum .| Wik, by sending client j € [N] a share,

[Z uzk Z U, + Z ’Y]zzl

ke[K] k€(K] le[T]

3D

where z;; are uniformly random vectors, and {7;} e[~ are
distinct public parameters. After receiving [() Wjli
for j € [N], client i generates a secret share of 37 - W,

[Z Z ulk Z uNk

ke[K] ke[K] ke[K]

pli = (M) x
(Online) Using the encoded dataset Xi and model WE),
client 2 computes a local gradient,

F(Xs, Wi

and broadcasts 1; = XT (X X w()) — u;, where the
gradient is hidden by u;. From (8) and (25), one can
define a univariate polynomial h(z) = f(u(z),v(2)) =
uw(2)Tg(u(z) xv(2)) of degree C' — 1, where,

h(Br) = f(u(Br), v(Br)) = f (Xp, w) =XT
for all k € [K], and client ¢ € [N] computes,
h(ai) = f(u(ai), v(es)) = f(ii, V~V£t)) :XTQ(SQ x V~V§t))

Define 1)(z) 2 h(z) — ¢(z). Note that ii; = (c;), hence
after receiving ; from any set of at least deg(y)) +1 = C
clients, each client can reconstruct ¢(z) via polynomial in-
terpolation, and compute a secret share of the frue gradient
XT5(X x wt)) = > kelK] X7 §(Xy, x w®)) as follows,

2 XT5(X; x wit) (32)

(X xw®)

XTg(X x w2 3" () + [Y wli (33)
ke[K] kE[K]
_XT (XXWt) Z’YZZh
1e[T)
where z; £ (M ® I) x (z7,,...,2z%,)T. Note that PICO

is bound to polynomial operations, consisting only of fi-
nite field addition and multiplications, whereas (2) requires
a division. To handle this, one can either treat all model
updates as operations in the integer domain, by assuming
a sufficiently large field size, as detailed in Appendix D,
or utilize the secure truncation operation from (Catrina and
Saxena, 2010) as described in Appendix I and update the
model according to (26),

(WD) = (W], - L ((XT

5 ®y]. —

(X"yli)
(34)

Dataset encoding

Offline Client 1 sRn random mask Online X local dataset

point-to-

broadcast X, = X; — R, masked dataset

i X3 local dataset

X3 local dataset X local dataset

Randomness generation at client i Dataset encoding at client i

Xl ﬁlr
~ o~ B o =B b A
R, =R, +V, 0L e 4] X, = 2 i P2 2i Encoded
Y b — B2 B—p e X3 | B — B2 i R, | dataset
Xy Rl
Model encoding
Offline s r1 8 & F2 random mask Online i
N—
point-to- —
point o S [N broadcast [#"); = [w®)]; - [r],
L a from offline QL

g AN \\;@// phase)
S “\ CONRE

H 8 / e - g3 ﬁ n:odel & //s
Ty3, [ra]3 W w5 — [r] &

Randomness generation at client i

Decode masked model (all clients):

. (O
T [r1]i] m i §
_ Tai [r‘,], = Model encoding at client
T =Ma®I) |- fi=MI) | > =51F‘* _5
= e W= =y w0] Qi 7P %, Encoded
= [ral:] K el Ty Ok T A model
di ing and model update
Offline C=Q2r+1)(K+T—-1)+1 Online G = XT9(%, x #))

{wirtieic; € Fr

N— ¥
. N iocalgradient offiine
point-to- \}

u
int
poin [aﬁ =XT§(X, xwz) |
\ _/“
\ u /‘
8] X2 9(Xy x wi)) — gty = XTg(Xa x W) — 0y

ca i3, [uns {wtielc ﬂ“‘
Decode masked gradient:
B
u*g u; 71 @

(X x w)
uy; 1]]
- e [o | oegrdient mask icpy selane @
U= MaeT) || [wi=MeT) | Gl

Randomness generation at client i

Generate secret share of gradient:

Uy; [wa];

X73(X x wh)); = X"§(X x w) — u + [u];

Figure 3: Motivating example. An illustrative example for
PICO with N = 4,d = 6, and K = T = 1. The random-
ness generated in the offline phase is utilized in the online phase.

which reduces the required field size (albeit with weaker
privacy) in practice (So et al., 2020). In our theoretical
analysis in Section 5, we assume a sufficiently large field
size and consider the former, whereas we utilize the latter
in our experiments from Section 6.

Final Model Recovery. After J training rounds, clients
collect the secret shares {[w(”)];},c(n to decode w().

Our overall algorithm is given in Appendix B. Appendix C
illustrates the variables generated at each phase. In Fig. 3,
we demonstrate an illustrative example for PICO, by let-
ting N = 4,d = 6, K = T = 1. For notational simplic-
ity, we exclude the subscripts corresponding to k& € [K]
(as K = 1) whenever possible. We then present the
offline/online phases for the dataset and model encoding
stages, along with gradient computing and model update,
to demonstrate how the smaller dimensional random vec-
tors generated by each client are combined to generate large
dimensional shared randomness.

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

S THEORETICAL ANALYSIS

We first present the formal privacy guarantees from (3).

Theorem 1. (Information-theoretic privacy) PICO guar-
antees information theoretic-privacy:

I({X,yiiew; MT{ X yitier, wD) =0 (35)

where M denotes the collection of all messages received
or generated by the adversaries throughout the training.

Proof. The proof is provided in Appendix D. O

We next present the total communication complexity
(across all clients), and the per-client computation com-
plexity. To explicitly demonstrate the complexity with re-
spect to the number of clients, we let m; = m for i € [N].

Theorem 2. (Communication complexity) The total com-
munication complexity of PICO is O(Ndm+ N72d +NdJ)
in the online phase, and O(%zdm + NL_ZTdJ) in the offline
phase. With K =O(N) and T = O(N), the communica-
tion complexity (offline+online) is linear in the number of
clients, which is O(Ndm + NdJ).

Proof. The proof is provided in Appendix E. O

Theorem 3. (Computation complexity) PICO incurs a per-
client computation overhead of O(Nmd + N % log?(K +
T)loglog(K + T) + J&2(d + r) + Jdr(K +
T)log?> r(K + T)loglogr(K + T)) in the online
phase, and O(Nd% log?(K + T)loglog(K + T) +
IN 5L log” r(K + T)loglogr(K + T) + JNA) in the
offline phase.

Proof. The proof is provided in Appendix F. U

In Appendix F, we also compare the computational com-
plexity of PICO with COPML, and show that PICO reaches
the same computational complexity as COPML.

The recovery threshold is defined as the minimum number
of clients needed for correct recovery of the final model.

Theorem 4. (Recovery threshold) In a network of N
clients, where up to T clients are adversarial, and up
to D clients may drop out (or are unavailable) in each
training round, the recovery threshold of PICO is N >
D+2r+1)(K+T—-1)+1.

Proof. The minimum number of clients is determined by
the number of local computations required for polynomial
interpolation, which, from Section 4 is given by N — D >
(2r+1)(K+T —1)+1 (same as COPML). Hence, PICO
achieves the same adversary robustness (1'), dropout re-
silience (D), and parallelization (K) guarantees, while also
slashing the communication overhead. O

Remark 1. PICO can also be applied to the simpler linear
regression problem, with the same protocol steps.

We next show that the finite field training operations pre-
serve the target model update from (26).

le5 1le5

—&— PICO
—%— COPML

N w ES

Communication (Mbits)
—

=)

10 20 30 40 50 60 ’ 10 20 30 40 50 60
N (number of clients) N (number of clients)

(a) CIFAR-10. (b) MNIST.

Figure 4: Online communication overhead.
le5

2 _'é'z R PICO
o4 Q<

g g —%— COPML
ey <20

g’ s

=1 515

S2 S

£ ! £05

-} [}

Yo Yo

.0
10 20 30 40 50 60 10 20 30 40 50 60
N (number of clients) N (number of clients)

(a) CIFAR-10. (b) MNIST.

Figure 5: Online+offline communication overhead.

Theorem 5. (Correctness) PICO correctly recovers the
target model from (26), within a sufficiently large field .

Proof. The proof is given in Appendix G. O

6 EXPERIMENTS

Setup. We train a logistic regression model for bi-
nary classification on CIFAR-10 (Krizhevsky and Hin-
ton, 2009) (on classes plane and car), and MNIST (Le-
Cun et al., 2010) (on digits 0 and 1), with dataset sizes
(m,d) = (9019, 3073) and (11432, 785), respectively, dis-
tributed evenly across clients. The multi-client network
is implemented using the MP I 4Py Message Passing Inter-
face (MP]) (Dalcin et al., 2005). The hyperparameters are
J = 50and n = 1.4 x 1077, respectively. Additional
experimental details are provided in Appendix L.

Benchmark. We evaluate the performance with respect
to the state-of-the-art multi-party logistic regression frame-
work with end-to-end information-theoretic privacy (with
N > 4), which is the COPML framework from So et al.
(2020). For both frameworks, we leverage the secure trun-
cation operation suggested in So et al. (2020) to reduce the
size of the finite field during model update. Furthermore,
we optimize (speed up) COPML by leveraging the group-
ing strategy suggested in So et al. (2020), which partitions
clients into groups of size 7" + 1, and communicates the
secret shares only between clients within the same group.

Performance evaluation. To ensure correct recovery of
the final model, the number of clients (for both PICO and
COPML) must satisfy the recovery threshold from Thm. 4.
In accordance with So et al. (2020), we then let » = 1, and
first consider the scenario where the degree of privacy (1)
and parallelization (K') are (almost) equal, by letting N =

Xingyu Lu, Hasin Us Sami, Basak Giiler

v
w

IS

N

Time (sec)
w
Time (sec)

N
-

-

10 20 30 40 50 60 10 20 30 40 50 60
N (number of clients) N (number of clients)

(a) CIFAR-10. (b) MNIST.

Figure 6: Online wall-clock training time.

le3 le3
—A— PICO 351 —— PICO
5] —#— COPML 3.0/ —#— COPML
94 ¢| 25
)
03 2.0
£ 15
F2
1.0
1 0.5
10 20 30 40 50 60 10 20 30 40 50 60
N (number of clients) N (number of clients)
(a) CIFAR-10. (b) MNIST.

Figure 7: Online+offline wall-clock training time.

3E+T—1)+1withT = [¥3|and K = | 2] - T.
Similar to So et al. (2020), the bandwidth and finite field
size are set as 40Mbps and ¢ = 225 — 5, respectively.

Communication overhead. We first compare the online
communication overhead (in Mbits) of PICO and COPML
in Fig. 4. This includes all communication during the on-
line phases throughout training. We observe that PICO sig-
nificantly decreases the communication overhead, by up
to 88.3x and 91.5x on CIFAR-10 and MNIST, respec-
tively. Note that some one-time communications (i.e., se-
cret sharing the dataset/labels) were omitted in So et al.
(2020), which we also include as they are data-dependent.
In Fig. 5, we compare the overall (online+offline) commu-
nication overhead of PICO with COPML (where all com-
munication is online), and observe a reduction by up to
15.8x on CIFAR-10 and 15.9%x on MNIST.

Wall-clock training time. In Fig. 6, we compare the wall-
clock training time of PICO and COPML, including all (on-
line) communication and computations. We observe that
PICO speeds-up the training time by up to 6.8 and 7x on
CIFAR-10 and MNIST, respectively. In Fig. 7, we demon-
strate the overall wall-clock time by including all online
and offline operations. We observe that PICO reduces the
overall wall-clock time by up to 4.2x and 4.1 x for CIFAR-
10 and MNIST, respectively. Therefore, the additional of-
fline operations (performed in PICO) to speed-up the online
training time does not increase the overall (offline+online)
wall-clock time compared to COPML.

Model accuracy. In Fig. 8, we compare the model test
accuracy with respect to both COPML and conventional
logistic regression (representing our target accuracy) for
N = 60 on CIFAR-10. We observe that PICO achieves
comparable accuracy to both COPML and conventional lo-

80
~75
X
>'70
9
© 65
3
360 —A— PICO
55 —%— COPML
50 —— Conventional logistic regression

0 10 20 30 40 50
Iterations

Figure 8: Model convergence (CIFAR-10).

led led

2.0 —&— PICO | 150 —&— PICO
1.25
o115
‘3‘ 1.00
£1.0 0.75
k 0.50
0.5
0.25
1 5 10 15 20 1 5 10 15 20
K (parallelization degree) K (parallelization degree)

(a) CIFAR-10. (b) MNIST.

Figure 9: Online+offline wall-clock training time.

gistic regression. Note that for conventional logistic regres-
sion, training is done without any privacy constraints, in a
centralized setting where all data is located at a single party.

Impact of K (degree of parallelization). In Fig. 9, we
demonstrate the role of parameter K on the overall (of-
fline+online) wall-clock training time of PICO (including
all communication and computations), by letting N = 60
and varying K. As K increases, training time decreases, as
the size of the encoded dataset processed by each client is
proportional to 1/K (reducing the training load per client).
Fig. 9 also illustrates a trade-off between parallelization
(accordingly, training time) and adversary resilience, as in-
creasing K decreases the maximum number of adversaries
T that can be tolerated, as shown in Thm. 4.

7 CONCLUSION

In this work, we introduced PICO, a collaborative learn-
ing framework with linear communication complexity, un-
der the information-theoretic privacy setting. PICO can
achieve an order of magnitude reduction in the communica-
tion overhead, while providing the same accuracy, dropout-
resilience and privacy guarantees of the state-of-the-art.

8 ACKNOWLEDGEMENTS

This research was sponsored in part by the OUSD
(R&E)/RT&L under Cooperative Agreement Number
WOI11NF-20-2-0267, NSF CAREER Award CCF-
2144927, and the UC Regents Faculty Fellowship. The
views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies of the U.S. Government.

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

REFERENCES

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,
Mironov, 1., Talwar, K., and Zhang, L. (2016). Deep
learning with differential privacy. In ACM SIGSAC
Conference on Computer and Communications Security,
pages 308-318.

Al-Rubaie, M. and Chang, J. M. (2019). Privacy-
preserving machine learning: Threats and solutions.
IEEE Security & Privacy, 17(2):49-58.

Beerliova-Trubiniova, Z. and Hirt, M. (2008). Perfectly-
secure MPC with linear communication complexity. In
Theory of Cryptography Conference, pages 213-230.
Springer.

Bell, J. H., Bonawitz, K. A., Gascén, A., Lepoint, T., and
Raykova, M. (2020). Secure single-server aggregation
with (poly) logarithmic overhead. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1253-1269.

Ben-Or, M., Goldwasser, S., and Wigderson, A. (1988).
Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Com-
puting (STOC’88), page 1-10.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A., and
Seth, K. (2017). Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1175-1191.

Brinkhuis, J. and Tikhomirov, V. (2005). Optimization: in-
sights and applications. Princeton University Press.

Catrina, O. and Saxena, A. (2010). Secure computation
with fixed-point numbers. In International Conference
on Financial Cryptography and Data Security, pages
35-50. Springer.

Chabanne, H., de Wargny, A., Milgram, J., Morel, C.,
and Prouff, E. (2017). Privacy-preserving classification
on deep neural network. IACR Cryptol. ePrint Arch.,
2017:35.

Chaudhuri, K. and Monteleoni, C. (2009). Privacy-
preserving logistic regression. In Adv. in Neural Inf.
Proc. Sys., pages 289-296.

Chen, W.-N., Choo, C. A. C., Kairouz, P., and Suresh, A. T.
(2022a). The fundamental price of secure aggregation
in differentially private federated learning. In Interna-

tional Conference on Machine Learning, pages 3056—
3089. PMLR.

Chen, W.-N., Ozgur, A., and Kairouz, P. (2022b). The pois-
son binomial mechanism for unbiased federated learning
with secure aggregation. In International Conference on
Machine Learning, pages 3490-3506. PMLR.

Codella, N. C., Gutman, D., Celebi, M. E., Helba, B.,
Marchetti, M. A., Dusza, S. W., Kalloo, A., Liopyris, K.,
Mishra, N., Kittler, H., et al. (2018). Skin lesion analy-
sis toward melanoma detection: A challenge at the 2017
international symposium on biomedical imaging (isbi),
hosted by the international skin imaging collaboration
(isic). In 2018 IEEE 15th international symposium on
biomedical imaging (ISBI 2018), pages 168—172. IEEE.

Dalcin, L., Paz, R., and Storti, M. (2005). Mpi for
python. Journal of Parallel and Distributed Computing,
65(9):1108-1115.

Damgard, I. and Nielsen, J. B. (2007). Scalable and un-
conditionally secure multiparty computation. In Annual
International Cryptology Conference, pages 572-590.
Springer.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006).
Calibrating noise to sensitivity in private data analysis.
In Theory of Cryptography Conference, pages 265-284.
Springer.

Gascon, A., Schoppmann, P., Balle, B., Raykova,
M., Doerner, J., Zahur, S., and Evans, D. (2017).
Privacy-preserving distributed linear regression on high-
dimensional data. Proceedings on Privacy Enhancing
Tech., 2017(4):345-364.

Gentry, C. (2009). Fully homomorphic encryption using
ideal lattices. In Proceedings of the forty-first annual
ACM symposium on Theory of computing, pages 169—
178.

Gentry, C. and Boneh, D. (2009). A fully homomorphic en-
cryption scheme, volume 20. Stanford University, Stan-
ford.

Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. (2016). Cryptonets:
Applying neural networks to encrypted data with high
throughput and accuracy. In Int. Conf. on Machine
Learning, pages 201-210.

Graepel, T., Lauter, K., and Naehrig, M. (2012). ML con-
fidential: Machine learning on encrypted data. In Int.
Conf. on Information Security and Cryptology, pages 1—-
21. Springer.

Han, K., Hong, S., Cheon, J. H., and Park, D. (2019).
Logistic regression on homomorphic encrypted data at
scale. Annual Conf. on Innovative App. of Artificial In-
telligence (IAAI-19).

Hesamifard, E., Takabi, H., and Ghasemi, M. (2017).
CryptoDL: Deep neural networks over encrypted data.
arXiv:1711.05189.

Jayaraman, B., Wang, L., Evans, D., and Gu, Q. (2018).
Distributed learning without distress: Privacy-preserving
empirical risk minimization. Advances in in Neural In-
formation Processing Systems, pages 6346—-6357.

Xingyu Lu, Hasin Us Sami, Basak Giiler

Kairouz, P, Liu, Z., and Steinke, T. (2021). The distributed
discrete gaussian mechanism for federated learning with
secure aggregation. In International Conference on Ma-
chine Learning, pages 5201-5212. PMLR.

Kedlaya, K. S. and Umans, C. (2011). Fast polynomial
factorization and modular composition. SIAM Journal
on Computing, 40(6):1767-1802.

Kim, A., Song, Y., Kim, M., Lee, K., and Cheon, J. H.
(2018). Logistic regression model training based on the
approximate homomorphic encryption. BMC medical
genomics, 11(4):83.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple
layers of features from tiny images. Technical report,
Citeseer.

LeCun, Y., Cortes, C., and Burges, C. (2010).
MNIST handwritten digit database. http://yann. lecun.
com/exdb/mnist.

Li, P, Li, J., Huang, Z., Gao, C.-Z., Chen, W.-B., and Chen,
K. (2017). Privacy-preserving outsourced classification
in cloud computing. Cluster Computing, pages 1-10.

McMahan, H. B., Ramage, D., Talwar, K., and Zhang,
L. (2018). Learning differentially private recurrent lan-
guage models. In Int. Conf. on Learning Representa-
tions.

Mohassel, P. and Rindal, P. (2018). ABY 3: A mixed pro-
tocol framework for machine learning. In ACM SIGSAC
Conference on Computer and Communications Security,
pages 35-52.

Mohassel, P. and Zhang, Y. (2017). SecureML: A sys-
tem for scalable privacy-preserving machine learning. In
38th IEEE Symposium on Security and Privacy, pages
19-38. IEEE.

Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M.,
Boneh, D., and Taft, N. (2013). Privacy-preserving ridge
regression on hundreds of millions of records. In IEEE
Symposium on Security and Privacy, pages 334-348.

Nosowsky, R. and Giordano, T. J. (2006). The health insur-
ance portability and accountability act of 1996 (hipaa)
privacy rule: implications for clinical research. Annu.
Rev. Med., 57:575-590.

Pathak, M., Rane, S., and Raj, B. (2010). Multiparty dif-
ferential privacy via aggregation of locally trained clas-
sifiers. In Advances in Neural Inf. Processing Systems,
pages 1876-1884.

Rajkumar, A. and Agarwal, S. (2012). A differentially pri-
vate stochastic gradient descent algorithm for multiparty
classification. In Int. Conf. on Artificial Intelligence and
Statistics (AISTATS’ 12), volume 22, pages 933-941, La
Palma, Canary Islands.

Shamir, A. (1979). How to share a secret. Communications
of the ACM, 22(11):612-613.

Shokri, R. and Shmatikov, V. (2015). Privacy-preserving
deep learning. In ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1310-1321.

So, J., Giiler, B., and Avestimehr, A. S. (2021). Coded-
privateml: A fast and privacy-preserving framework for
distributed machine learning. IEEE Journal on Selected
Areas in Information Theory, 2(1):441-451.

So, J., Giiler, B., and Avestimehr, S. (Dec. 2020). A scal-
able approach for privacy-preserving collaborative ma-
chine learning. In Advances in Neural Information Pro-
cessing Systems: Annual Conference on Neural Informa-
tion Processing Systems, NeurIPS.

So, J., He, C.,, Yang, C.-S., Li, S., Yu, Q., E Ali, R.,
Guler, B., and Avestimehr, S. (2022). Lightsecagg: a
lightweight and versatile design for secure aggregation
in federated learning. Proceedings of Machine Learning
and Systems, 4:694-720.

Telenti, A. and Jiang, X. (2020). Treating medical data as
a durable asset. Nature Genetics, 52(10):1005-1010.

Wagh, S., Gupta, D., and Chandran, N. (2018). SecureNN:
Efficient and private neural network training. Cryptology
ePrint Archive, Report 2018/442.

Wang, Q., Du, M., Chen, X., Chen, Y., Zhou, P., Chen,
X., and Huang, X. (2018). Privacy-preserving collab-
orative model learning: The case of word vector train-
ing. IEEE Trans. on Knowledge and Data Engineering,
30(12):2381-2393.

Yao, A. C. (1982). Protocols for secure computations. In
IEEE Symp. on Foundations of Computer Science, pages
160-164.

Yu, Q., Li, S., Raviv, N., Kalan, S. M. M., Soltanolkotabi,
M., and Avestimehr, S. A. (2019). Lagrange coded com-
puting: Optimal design for resiliency, security, and pri-
vacy. In The 22nd International Conference on Artificial
Intelligence and Statistics (AISTATS 2019), pages 1215-
1225. PMLR.

Yuan, J. and Yu, S. (2014). Privacy preserving back-
propagation neural network learning made practical with
cloud computing. /[EEE Trans. on Parallel and Dist. Sys.,
25(1):212-221.

Zhao, Y. and Sun, H. (2021). Information theoretic secure
aggregation with user dropouts. In IEEE International
Symposium on Information Theory, ISIT’21.

SUPPLEMENTARY MATERIAL

A SHAMIR’S SECRET SHARING AND CRYPTOGRAPHIC PRIMITIVES

In PICO, all secret shares are generated using Shamir’s secret sharing. Shamir’s T-out-of-N secret sharing protocol
(Shamir, 1979) embeds a secret x in a degree 1" polynomial,

Q=2+ +...+"rr (36)
where each coefficient {r }1c[7] is generated uniformly at random from IF,. Then, each client i € [IV] receives a secret
share f(a;) £ [r];, which corresponds to the polynomial f(¢) evaluated at ¢ = «;. The secret 2 can be reconstructed

perfectly from any collection of 7"+ 1 secret shares using polynomial interpolation, as any polynomial of degree 7" can be
perfectly reconstructed from at least 741 evaluation points. On the other hand, no information (in an information-theoretic
sense) can be revealed about the secret x from any group of 71" or fewer shares. As such, Shamir’s secret sharing preserves
the information-theoretic privacy of = against any collusions between up to T clients.

Shamir’s secret sharing supports addition and multiplication operations. Consider two variables x and 2/, where client
i € [N] holds the secret shares [z]; and [2];, respectively. Then, addition and multiplication operations proceed as follows.

Addition. In order to compute a summation x + 2/, client ¢ locally adds the secret shares [z]; and [z'];:

[zli + [2)i = (@ + cir1 + ...+ o rp) + (&' +ar’ 1 + .+ af ') (37)
— ($+$/>+Oéi<7"l +T/1)+...+a?(TT+TIT) (38)

hence the resulting polynomial is also Shamir’s secret sharing of the sum x + 2, masked by the random vectors (r; +
r'1),...,(rp + r'1), respectively. As such, Shamir’s secret sharing satisfies a computative property over the addition
function, i.e., the summation of two secret shares [x]; 4+ [2']; results in a secret share [z + 2']; of the summation x + 2.
This operation requires no communication across the clients. The final result x + 2’ can be recovered by collecting the
secret shares [z + 2']; from any set of at least 7' + 1 clients, and using polynomial interpolation. This requires the total
number of clients tobe N > T + 1.

Multiplication by a public constant. In order to multiply a secret with a public constant ¢, each client locally
multiplies its secret share [x]; with ¢, and obtains a secret share [cz]; of the resulting value cz, which follows from the fact
that c[z]; = [cz];. This operation requires no communication between the clients.

Multiplication. In order to compute a product zx’, client 7 locally multiplies the secret shares:
[2]; x [#']; = (x + a1 + ...+ ol rp) x (@ +ar’y + ...+ ol r'7) (40)
=az’ +a(zr] +2'r) + .+ 2T (rpr) (41)

where the resulting polynomial now has degree 2T'. As a result, to recover the final result z2’, polynomial interpolation
requires collecting the secret shares from at least 27" + 1 clients. This requires the minimum number of clients to satisfy
N > 2T + 1. Successive multiplication operations (such as successive training rounds) will further increase the degree
(hence the minimum number of clients required), which is a major limitation. To avoid the degree explosion, after each
multiplication round, clients have to carry out a degree reduction step to reduce the degree of the shares from (40), where
new shares are generated corresponding to a polynomial of degree 7" (Ben-Or et al., 1988). The main intuition behind the
degree reduction step is the observation that (40) represents a polynomial of degree 27", hence the true product zz’ can be
written as a linear function of 27" 4 1 secret shares from (40), i.e., zz’ = Zf:Tf” "\ (za'); for some coefficients \;, where
(xx"); £ [2];[z'];. To perform degree reduction, each client then generates and distributes a T-out-of-N secret share of
(xz2');, using Shamir’s secret sharing, where client ¢ € [N] sends a secret share [(z2’);]; to client j € [N]. Using the
received secret shares, client j then computes a new secret share [z2']; = ZZ;F "Xl)] ;= [Z?Zf "Nl)] j of
xz’, where the final secret share [xxz']; corresponds to a polynomial of degree T" (as opposed to 2T). On the other hand,
this step has a quadratic communication overhead (O(NN?) across the N clients).

B ALGORITHM

The offline and online procedures of PICO are presented in Algorithm 1 and Algorithm 2, respectively. The offline phase
consists of randomness generation across the N users, which will later be used for masking the datasets, models, and
computations in the online phase. For clarity, the random vectors generated at round ¢ are identified with a superscript (¢).

2
3
4

e ®° 9

—
=2

—
°

20

21
22

23

24

25
26

27

28

29
30

31

32

33
34

35

Xingyu Lu, Hasin Us Sami, Basak Giiler

Algorithm 1: PICO - Offline Phase

Input: Number of clients N, polynomial coefficients (a1, ...,an), (B1,...,BK).
Output: Random masks {R.; }; je[n), {[ail; }i e &0 ™), [u(.t)]j}ie[N],tE{OW,J_I}, random initial model

K3 1

{[W(O)]z‘}ie[N]-

// 1. Dataset Encoding

1 for clienti =1,...,N do

Encode the random matrices {Rix }re(x], { Vik }re{x+1,...,k+7} from (4).
forj=1,...,Ndo

L

Send the encoded matrix ﬁ,ij to client j.

// 2. Label Encoding
s for clienti=1,..., N do

L

L

Encode the random vectors {aix } xe[x]> {bik }ke{rx+1,...,k+7} from (9).
forj=1,...,Ndo

Send the encoded vector a;; to client j.
Send a secret share [a;]; to client j using Shamir’s secret sharing.

fori=1,...,N do
Construct a larger dimensional encoded vector &; 2 (M ® I) x (af;,...,ax;)" from (10).
Construct a larger dimensional secret share [ax]; 2 M x ([aix]7, ..., [ank]?)T forall k € [K].

L

// 3. Model Initialization
for clienti=1,..., N do

Generate a random vector WEO) from IF,.
forj=1,...,Ndo

(0)

Send a secret share [w,; ’]; to client j using Shamir’s secret sharing.

for clienti=1,..., N do
L Initialize the model [w®]; using {[W;O)]i}jew] as given in (16).

for iterationt =0,...,J — 1 do

//

//

4. Model Encoding

for clienti=1,...,N do

Encode the random vectors rgt), {VEZ)}kE{K+17“_7K+T} as in (19).
forj=1,...,Ndo
L Send the encoded vector Fx) to client j.
(t)])
i 1i

Send a secret share [r to client j using Shamir’s secret sharing.

for clienti=1,...,N do

Compute the coded vector, FZ(-” as given in (20).

Compute the secret share [r*]; after receiving {[rg-t)]i} je[n] as given in (21).

5. Gradient Computing and Model Update

for clienti=1,...,N do

Encode {UEZ)}ke<2r+1)<K+T—1)+1 as given in (27).
forj=1,...,Ndo

L Send the encoded vector ﬁg’;) to client j.

Send a secret share [, _ uﬁ,’j]j to client j using Shamir’s secret sharing.

for clienti=1,..., N do

Compute the coded vector, 1’ after receiving {ﬁg? }iern as given in (29).

Compute the secret share, [}, ¢ x u,(f)]i after receiving {[3_ ¢) uﬁ)]i}je[N] from (31).

C FLOWCHART OF PICO

Figure 10 demonstrates the generated offline/online variables for each component in PICO, along with the corresponding
relations between the offline and online variables. The offline phase of any component is executed independently from the
offline and online phases of other components.

S

“w

wn

N

16

18
19

20

21
22
23
24
25
26
27

28

29

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

Algorithm 2: PICO - Online Phase

Input: Dataset (X,y) = ((X1,y1),...,(Xn,yn)) distributed over N clients.

Output: Model parameters w!) after J training rounds.

// 1. Dataset Encoding
for clienti=1,...,N do
Partition the dataset &; into K equal-sized shards (X1, ..., Xik).
L Broadcast the masked dataset X, = X, — Rz for k € K]
for clienti=1,...,N do
L Generate the coded dataset)NCZ- from (7).

// 2. Label Encoding

for clienti=1,...,N do
Partition y; = (Zlexi xlTyl) into K equal-sized shards (yi1,...,Yix)-
for clientj =1,...,N do
L Encode {y:x }re[k] as described in (13), and send the encoded vector y;; to client j.
for clienti=1,..., N do
L Broadcast &; = 3_ .y ¥;i — ai from (14).
for clienti =1,..., N do
Reconstruct 3,) ¥k — i forall k € [K] using polynomial interpolation.
| Compute a secret share [X"y]; of X"y as given in (15).
for iterationt = 0,...,J — 1 do
// 4. Model Encoding
fori=1,...,Ndo
L Broadcast [w]; from (22).
fori=1,...,N do
Decode w(¥) £ w(*) — p(® using polynomial interpolation.
| Compute the coded model v~v£t) in (24).

// 5. Gradient Computing and Model Update
for clienti =1,...,N do
Compute the gradient f()~(¢,
| Broadcast ﬁl(.t) :Xng(XZ X
for clienti =1,...,N do
Decode 9(Bx) = h(Br) — ¢(Br) = XE§(Xp x w®) — u,(f) for k € [K] via polynomial interpolation.
Compute a secret share [X7 §(X x w®)]; of the gradient X7 §(X x w®) as given in (33).

| Update the model with [w(t+ D], from (34).

Wi =XT5(X; x w")in (32).
W) —uf".

// Final Model Recovery

Collect the secret shares [w(”)]; from any T + 1 clients.
Decode the final model w'” via polynomial interpolation.

D INFORMATION-THEORETIC PRIVACY

Proof. For tractability of theoretical analysis, in this section we consider a sufficiently large field size, and assume all
computations are performed in the domain of integers. Consider an arbitrary set of adversaries 7 C N. For ease of
exposition, we focus on the worst case scenario by setting |7| = T, while noting that the same analysis holds for all
|T| <T. Let /\/l%— and M2, denote the collection of all messages received by the adversaries during the dataset encoding
(Stage 1), and label encoding (Stage 2) stages, respectively. Let ./\/l?% denote the collection of all messages received by the

4

adversaries during model initialization stage (Stage 3). Similarly, let /\/l7lt denote the collection of all messages received

Xingyu Lu, Hasin Us Sami, Basak Giiler

Online PICO Offline
{Xik}ke[Kj zk}ke zk}ke{K+1 ,,,,, K+T}
)Ni | 1. Dataset encoding {Rﬂ}]e\ﬁ
yi=) X {bik}refrr1,.., K+T}—|—{aik}ke[l(]
5 2. Label ~ 7
Vij i =~ !]
{55} setm encoding Boibsem|
s JHIe x {lajli}jem
[XTyl; {a
w?
{[WS-O)]i}je[N] I 3. Model
w0 [Wz('O)]j initialization
r; —|— {Vzk}k K+1,...,K+T}
4. Model SN
encoding | [il; Tij
l{[rﬂ }Je s
[W®); = [w®]; — [r]; - rl; Tjisje[N]
o K j=1,..., N
: "
o |
- w® &
GJ 3
a
{uik}ke[C’]
XT5(X; x wiy i il
l{uji}jE[N] [kg[;(s
XT5(X; x w) - a u; 1Y wildiem
i=1,...,N =
[XT§(X x w®)); [> ugls
|
w(tHD], 5. Gradient computing and model update

Figure 10: Detailed flowchart of PICO, for each client i € [N].

by the adversaries in model encoding stage (Stage 4) at training round ¢t € {0 J — 1}. Finally, let M§r’t denote the
collection of all messages received by the adversaries in gradient computing and model update stage (Stage 5) at training

round ¢t € {0,...,J — 1}. Then, from the chain rule of mutual information (Cover and Thomas, 1999), one can rewrite
the mutual information condition from (35) as follows:

I{ X, yitiew MT{ X yitier, w)) 42)

- I({Xm yz}lE?‘lv M’1T7 M%’7 M%’a UtE[J]M#ta UtE[J]Mglt‘{Xia Yi}iGTa W(J)) 43)

= I({X;, yitiew; My [{ X yitier, w'"))
+ I({X;, yi Yiew; MFIME X, yi bieT, w/))
+ I({waz}zeHaM |MT7M2 a{XlaYZ}’LET7 ())

J—1
z : 4, R
+ I({XiaYi}iEH;MTt|M’1T,M%’aMTaU[QMTaUl 0 5 ,{Xiayi}iETa
t=0

W(J))
J—1

+) T{X, yitiens MG My, M3, ME UL MF UIZg M A X yidier, w) (44)
t=0

We next investigate the individual terms in the summation (44).

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

Stage 1: Dataset Encoding. First, we start with the first term in (44), which corresponds to Stage 1 of PICO, i.e.,
encoding the datasets. From the description of Stage 1, the first term in the right hand side of (44) can be written as:

I({Xi, yitiews My yidier, w') (45)
= I({Xi, yitiern; {Rijbjer s {Rir} ieT ,{Vik} €T ,{Xm}ie[zv] (X, yitier, w')) (46)
i€H ke[K] ke{K+1,....K+T} ke[K]
= H({Rij}jer {Rir} ieT ; {Vir} ieT {sz}ze[N] (X, yitier, W)
i€EH ke[K] ke{K+1,...K+T ke[K]
— H{Rij}jer AR} ieT . {Vir} ieT AXinie) {5 yi ey W) (47)
1€H ke[K] ke{K+1,...K+T} ke[K]

We next bound the first term in (149) as follows:

H({Ri;}jer {Rir} ieT {Vir} ieT AXinYie { X yitier, W)
i€EH ke[K] ke{K+1,...,.K+T} ke[K]

= H{Rij}jer {Rir} ieT - {Vir} ieT AXir} ien { X yitier, w') (48)

1€EH ke[K] ke{K+1,....K+T} ke[K]
< H({Ryj}jer {Rir} ieT s {Vir} €T AXin} ien) 49)

i€H ke[K] ke{K+1,....K+T} ke[K]
< log (q@m IR +H(Cier dmi) +(Sier TR+H(Sien dmn) (50)
—d(1) (X mi)o 51)
= K 4 i 24q

€[N

where (49) holds since conditioning cannot increase entropy. Equation (50) follows from the fact that uniform distribution
maximizes entropy, and that the entropy of a uniform random variable distributed over an alphabet A is equal to log |.A|.
For the second term in (149), we observe that:

H({Ri;}jer. {Rir} T AVir} ieT AXik e N] X, yitievy, w)) (52)
iE€H ke{K+1,....K+T} ke[K

- H({Ru }jGTa {Rzk}ze[N] {Vzk} i€T {Rzk}ze [N] |{Xu Yl}ZE[N] () (53)
ke[K] ke{K+1,....K+T} kE[K]

= H({R’Lj }jETa {Rzk}zG[N] {V'Lk:} €T) (54)
ke[K) ke{K+1,...K+T}

- H<{R1j}j€T|{Rzk}z€[N] {V’Lk} i€T
ke[K] ke{K+1,....K+T}

+ H({Vi} €T {Riktievy) + H({Rzk}ze (N]) (35)
ke{K+1,....K+T} ke[K] kE[K]

= H({ﬁij}jeTl{Rik}ie[N] AV} T)
1€H ke[K) ke{K+1,...,.K+T}

+ H({Vir} ieT)+ H({Rix}ic(n)) (56)
ke{K+1,....K+T} ke[K]
K+T
i — B omy g
:H({ > Vi]I - l}zeH) +log (g7 T) + log (g Ziem) (57)
ﬂk Bi
k=K+1 1E[K+T\{k}
K+T
- , Rl Td , |
=>a({ X v I e }M) + e (o mlogq +d(Y- mi)logg (58)
i€H k=K-+1 lE[K+T\{k} i€T i€[N)
Td
=Y H({Zij}jer) + ?(Z m;)logq+d(Y m;)logg (59)
= ieT i€[N]

where (53) holds since given {X;, yi}iem, there is no uncertainty remaining in {Xik}ie[N],ke[K], (54) holds since the
generated randomness is independent from the local datasets, (55) follows from the chain rule of entropy, (56) holds since
the random matrices are generated independently where each element is distributed uniformly at random (and independent

Xingyu Lu, Hasin Us Sami, Basak Giiler

from other elements) from the finite field IF,. In (59), we define:

Zi; & KiT N | 60
ij — ik ,Bk — Bl ()
k=K+1 le[K+T)\{k} " "

forall i € H and j € T. In the following, we let the first N-T users be honest (the last T users are adversarial), i.e.,
H=[N—-T)and T ={N —T+1,...,N}. The sole purpose of this assumption is notational simplicity, and the same
analysis holds for any set of adversarial users 7 of size 7". We also represent the Lagrange polynomial coefficients as:

w5

IE[K T\ [k}

forall j € [N] and k € [K + T]. Then, from (60), one can write:

PN-T+1,K+1 ~°° PN,K+1
(ZiNn-T+15---,LiN) = (Vigs1,---» Vig+T) : : (62)

PN-T+1,K+T *** PNK+T

r

where I' is a T' x T" MDS matrix (hence is invertible), which follows from the MDS property of Lagrange polynomi-
als as shown in Yu et al. (2019). An MDS matrix guarantees that (62) is a bijective mapping, in other words every

(Vik+1,---, Vi g+r) maps to a unique (Z; y—741, - - ., Z; n). As aresult,
H({Zij}jer) = HZiN-T+41,-- -, LiN) (63)
=H(Viks1, - Viksr) (64)
Tdm,;
- Km log q (65)

where (64) follows from (62) and that I" is an MDS matrix, and (65) follows from the fact that each element of V; is
distributed uniformly at random over the finite field IF,. By combining (65) with (59), we have:

H({ﬁij}g_'e% {Rir} ieT . {Vir} ieT AXiw e {5 yi ey, W)
1E€EH ke[K] ke{K+1,....K+T} ke[K]

= (2~ loga) + 5 (3_mi)loga+d(}_mi)logq (66)
i€EH €T €T
T
- d(E n 1) (‘Z mi) log 67)
1€[N]
Finally, by combining (50) and (67) with (149), we have:
0 < I({X5, yibier; M yitier, w')) (68)
= H({Ryj}jer {Rir} ieT , {Vir} ieT AXikYiern) { X yitier, w))
i€H ke[K] ke{K+1,. . K+T} ke[K]
- H({ﬁij}jeT; {Rir} ieT ,{Vir} T »{Xik}ie[N] \{Xm}’i}ie[N],W(J)) (69)
i€H ke[K] ke{K+1,....K+T} ke[K]
T T
<dl—) —dl =)
_d(K—i-l)(‘Z m2> log g d(K—I-l)(‘Z mz)logq (70)
i€[N] i€[N]
=0 (71)

where the first inequality follows from the non-negativity of mutual information. Therefore, the first term in (44) satisfies
the following:

I{X, yiYiew; MA{X, yiYier,w) =0 (72)

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

Stage 2: Label Encoding. We next consider the second term in (44), which corresponds to the secret sharing of the
labels. Without loss of generality, we represent the secret share of a;; from user ¢ to user j as follows:

laik); £ am + Y Vizim (73)
le[T]
where z,;; are random vectors of size %, where each element is distributed independently and uniformly at random from
[F,. Coefficients {v; };c[n) are distinct public parameters agreed in advance between all N users, where ; € T, for all
i € [N] such that {;}icin) N A{Brtrer+m N {aj}ieny = 0. Using (73), we can rewrite the second term in (44) as
follows:

I({ X, yitiewns M5 MY, (X, yitier, w) 74)

= I({Xn Yi}ie?—l; {51‘3‘, [aik]j}ieﬂ,jeT,ke[K]a {éi}ie[N]v {riIm bk, air/, Zik’l} ieT k' €[K],le[T)
ke{K+1,....K+T}

M { X yiYier, wt) (75)
= I({X;,yiiens; {ai), [aiklj biew,jeT e { Z Yik — @k }ee[K]s 1 Z rir — brtre{k+1,... . K+T}
JE[N] JE[N]
{rir, bik, @irr, Zinnt Y iet e i) ierr) M {1, yitier w(/)) (76)

ke{K+1,...,.K4+T}

= H({ai;, [an]; Yienjerwermy £ D Yiv — arbreixls { Y Tk — brtre(x i1, k47}
JEN] JEN]

{rir, ik, i, Zikt} se7 1 e[k 1€(T) MY X yitier, w!) 77
ke{K+1,....K+T}

— H({&y, [al; Yienjerreix; { Y ¥ik — arteerx) { D Tk — brbhe(rin, .k i1)s
JEN] JE[N]

{rir, ik, i, Zikt } se7 1 e[k 1€(T) M { A, Yi}ie[N]»W(J)) (78)
ke{K+1,...K+T)}

where (76) follows from the fact that any polynomial of degree K + T — 1 can be determined from at least K + T'
evaluation points, therefore there is a bijective mapping from any feasible set {a;};c[n] to a set of K + T' coefficients
{Zjem Yjk — &k Fke[K]s {Zje[N] rjr —brtre{r+1,.. . k+1}- As such, the uncertainty in the former is equal to the latter.

For the second term in (78), we find that:

JE[N] JE[N]

(i, birs Airr Zawt } e we i) aer) 1M {2 yitie), w) (79)
kE{K+1,....,K+T}

= H({&;, [air]; Yier et hen) {8k theix) { Y Tik = Prbrek+1,.... 4T}
JEIN]

i, birs i Zawt } e we il aer) 1M {2 yitie), w) (80)
kE{K+1,...,K+T}

alk blk
= H({ayj, [air]jtien jeT vex), { M) | Y - (MeTI) | :
ankl) ek Jem bkl) egiosr,.. ko)

{rit, bir, ainr, zinr } ieT, k' €[K],le[T] |M1ra {&, yz‘}ie[N]’W(J)) (81)
ke{K+1,...K+T)}
alk blk‘,
= H({ay;, [aikl; biew.jeT ke, {(M®I) { } { > Tk (Mol [5]} ’
aN-1)k] Jyepe VSN bv-mk] Jyegri, . wiry
{rik, Biks @ik, Zikr 1} ser 1 e [K]0e(T) M A& yitien, w()) (82)

ke{K+1,....K+T}

aig
H({ﬁij,[aik]j}ieﬂ,jeT,ke[K]’H :]} { > - (Mel)
k

b1y]}
AN-T)k JEIN-T] b(n-1)k ke{K+1,...,K+T}

€[K]

Xingyu Lu, Hasin Us Sami, Basak Giiler

+ H({rik, bik, @ik, Zikt Vi T 1/ e[K) 1€ [T) ke {K+1,.... K+T}) (83)
= H({a;, [aw); Yier jerwexy {iniev—mine» £ Y Tk — M) bibreri,.. .x+1))
JEIN-T]
T T 1 T
Td() 1 84
gt RN T N—T T N_T) %81 (84)
where (80) follows from the fact that given { A7, yl}ZE (n]» there is uncertainty in Z N) Yik for all k € [K]. In (82), we
define the following square submatrix of M from (12),
IR VD T
I D VORI VA
M2 |, .) : (85)
L Av7 ... MANE!

which is an (N — T') x (N — T') MDS matrix (hence is invertible), from which (83) follows. Equation (84) follows from
the entropy of uniform random variables, and,

b1y
b, £ : (86)
bv_1)k
For the first term in (84),
H({2ij, (2] YierjeT relx]s 185k e V1] ke [K]s 1 Z rjg — (M ®I) bk}ke{KJrl K+T}) (87)
JE[N-T]
H({ai;}ier jer, { Z rjr — (M®I) bitre(xit,. . x+ri{[airl; }zeH,JeT Aajrtjev-m,)
el ke[K] ke[K]
+ H({[air]j YierjeT keim{ajn}jeiv—11keix]) + H({ a5k} je(v—11,ke[k]) (88)
(> B e }
=H Z b H) Z rjr — (M@1) by)
R ey O TP ERIET R FE L T
+H <{ Z 'YJZ‘Zikl}iEH,jET,kE[K]> + H({ajk}jE[N—T]yke[K]) (89)
le[T]

where (88) follows from the chain rule of entropy, and (89) holds since the random vectors are generated independently.

We next introduce the following variables to simplify the analysis of (89). First, we let,

1 1
IN-T+1 -+ IN

Z’YN T41%ikls - - - Z'YNZU@Z (Zik1, - - - s ZikT) : VR (90)
—_——

1€[T) le[T] Zik '717\}7T+1 . ’ﬁ\;

A

where A is an T x T'MDS matrix, hence is invertible. From (90), it then follows for the second term in (89) that,

H<{ > 'Yé‘zikl}ie?l,jeT,ke[K]) 1)

le[T)
=3 H{Y Vizimlier) 92)
i€H ke[K] le[T)
= > > H{D . V#miwibie(n-141....x}) 93)
i€[N-T] k€[K] le[T]

Z Z H(zixA) (94)

i€[N-T] ke[K]

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

- Y 3 H(za) (95)

i€[N-T] ke[K]

d
=Tdlogq (Ch)

where (92) follows from the independence of the generated random variables, (94) follows from (90), and (95) holds since
matrix A is invertible, hence represents a bijective relationship between z;; and z;;A. Finally, (96) follows from the
entropy of uniform random variables. Similarly, for the last term in (89), we find that,

H({ajr}jeiv—1)keir)) = (N = T)K logq = dlogq (98)

d
(N-T)K
which also follows from the entropy of uniform random variables.

For the first term in (89), to rewrite { ZkK;[?H bik [Lie ik (1) B;_ﬁi } - as:

H an_r+1— B H an — B3
(3w TImgrsfo Mo IS0

k=K+1 le[K+T\{k} k=K+1 le[K+T\{k}
PN-T+1,K+1 " PN,K+1
= (bi,k+1,-- - bi,K4T) : : 99)
PN—T+1,K+T *°° PN,K+T
r

where p; 1 is as defined in (61), and I' is an T' x T" MDS matrix from (62) (hence is invertible). Using (99), we rewrite the
first term in (89) as:

K+T o — B - B
H({ S oba] ,Bli—ﬂl}ieﬂ,je7'7{ 3 I‘jk_(M®I)bk}ke{K+l7m)K+T}> (100)

k=K+1 1€[K+T\{k} JEIN=T]
_ ({ biscits oo birir)Thiens { > i~ (MaT) Bk}ke{l{+1 K+T}> (101)
JEN-T]
H({ ,K+1,...,bi,K+T)}Z-eH,{ Z rjk.f(M(zoI)Ek}ke{K+1 K+T}> (102)
je[N-T) T
=H< bk tien ke {Kx+1,.. ,K+T}a{ Z rjr — (M®T) Bk}ke{K+1 K+T}> (103)
JEIN-T] ’
—H —(MeDb ‘bi .
< T McI) k}ke{K+1,...,K+T}{ k) €[N T],ke{K+1,u.,K+T}>
JE[N-T]
+ H({bik}ie[N-T) ke {K+1,....K+T}) (104)
=H({ Z Tkt he{K+1,...k+T} {Pik tieN—T) ke {K+1,....k+7}) FH{Di r }ie N —1) kefk +1,.... k+13) (105)
JEIN-T]
=H({ Z Uik teeik+1,.... k+1}) T H{Dir bien—1) he{K +1,....K+T}) (106)
JEIN-T]
—Tilo FN-TT— 1o (107)
2Td

where (102) holds since I' is invertible, hence represents a bijective mapping. Equation (104) follows from the chain rule
of entropy, (105) holds since given, there is no uncertainty in (M ® I) by, (106) follows from the independence of the
random vectors, and (107) follows from the entropy of uniform random variables.

Xingyu Lu, Hasin Us Sami, Basak Giiler

By combining (108), (97), and (98), with (84), we can rewrite the second term in (78) as follows,

H({gz‘p [aik}j}ieﬂ,jeT,ke[K]v{ Z Yik — ak}ke[K]v{ Z Tjg — bk}kE{K+l,...,K+T}

JelN] JEN]
{rir, ik, i, Zikt} e 1 e[k 1€(T) |IME { A, Yi}ie[N]7W(J)) (109)
ke{K+1,....K+T}

2Td T T 1 T
_ 24 Tdl dl T = 1 110
K csqtldloggtdloggt (K+K(N7T)+N7T+N—T) °8q (110)

2T T T 1 T

- d(— T+1)+7Td(~=))1 11
(x0T)+ (K+K(N—T)+N—T+N—T e d (1)

Next, for the first term in (78), we observe that,

H({ai;, [ain; Viernjer e { Y Yik — akbreir)s { D Tik — brtre(i+1,.. 4T}

J€lN] J€lN]
{rik, bik, ainr, Zinnt} ier weir e M (X yitieT, w()) (112)
ke{K+1,....K+T}
<((N—T)Td+(N—T)TdK+@+@+L%+ % Td T2d>10 113)
S\WW-DK " W-DK 'K K"K "KWN-T) N-T N_T1)%1
2T T T 1 T

= (d(= +T+1)+Td(= 1 114

(<K+ +)+ <K+K(N—T)+N—T+N—T)) o84 (114

Finally, by combining (114) and (111) with (78), the mutual information condition from (74) satisfies the following:

0 < I({X, yitiern: MFIME X yitier, w?)) (115)
oT T T 1 T
<(d(ZE+74+1) +7d(~ 1
< (a(F+T+1)+ d(K+K(N—T)+N—T+N—T)> 084
oT T T 1 T
(T 1) v Td(= ! 1
((F+T+1)+ d<K+K(N—T)+N—T+N—T>) 084 (116)
—0 (117)

where the inequality in (115) follows from the non-negativity of mutual information. Hence,
I({X:, yiYiew; MFIME (X, yitier, w) = 0 (118)

for the second term in (44).

Stage 3: Model Initialization. We now consider the third term in (44), which corresponds to Stage 3 of PICO, i.e., model
(0)

%

initialization. Without loss of generality, we represent the secret share [w
follows:

]; sent from user i € [N] to user j € [N] as

Wil 2wl + 3" kal) (119)
ke[T)
where {zﬁ{” }eepr are T random vectors of size d where each element is generated independently and uniformly at random

from the finite field IF,,, and coefficients {v;} je[n) are as defined in (73). We can then rewrite the mutual information
condition from the third term in (44) as follows:

I({Xs, yi}ien; MM, MF { X, yidier, W) (120)
= ({0 yiiens W) biewger AWl 23 Vier perm) Mo, M3 {2, yiYier, w) (121)
= I({X:,yitien; {[WEO)]j}ieﬂ,jeT‘M%ﬁ M X, yitier, w)) (122)

+ I({ X, yiien; (', Zik }ie T ke[T) w1 Yier jers M, ME { X yiYier, w™)) (123)

= H{[w\"]; Yiew jer| M, ME { X,y Yier, w'))
— H{W"]; View jerI M ME (X yibien), W)

+ (J))

0 0
H{w),z Yicr ke {wW) View jers M, M2 { X yiYier, w
H{W 2 bicr ke W] Ve, jers M, ME A X yidien), W) (124)

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

We next consider each term in (124) separately. For the first term in (124), we have that,

d
H{Iw(")j}ienjer| M, Ma {X, yiYier, w!)) < (N = T)T 5~ logg (125)
=Tdlogq (126)
which follows from the fact that uniform distribution maximizes entropy.
For the second term in (124), we first define,
YN-T+1 IN
(W N—rir - WO) =w@ (1,1,)+ (=20, 29) : P (127)
1 (0) YN-T+1 YA
A
= wgo)l + ZZ(.O)A (128)

where A is an 7' x 7" MDS matrix defined in (90), and 1 is a 1 x T vector, where each element is equal to 1. Using (128),
the second term in (124) can be written as,

H{W Ve jer | M, ME (X yibicing, W) (129)
> H({[w"; }zemeﬂMmM% (X, yitiewy, W Aw Y icn) (130)
= H{w 21 + 2V A} | ME, M2 ,{Xl,yl}ze[w) (WY en) (131)
- H({Z»E A}IEH|MTaM2 7{Xl7YZ}’L€ N]a {W }IE’H) (132)
= H{z{” Vien| M, ME { X0y Yien)s W ,{w§ Nien) (133)
= H {zio)}iey> (134)
d
=N -T)T'—— T log g (135)
=dTlogq (136)

where (130) holds since conditioning cannot increase entropy, and matrix A in (131) isa 7" x 1" MDS matrix as defined in
(90). Equation (133) holds since A is an MDS matrix, hence is invertible. Equation (134) follows from the independence
of the generated random vectors, and (135) follows from the entropy of uniform random variables.

For the third term in (124), we have that,

H{W, 2 Yier wem {W) Viergers M, ME { X,y bier, W) (137)
< HUwW”, 2} ie per) (138)
Td T2d
< (1%] 1
_<N—T+N—T) 8 q (139)

where (138) holds since conditioning cannot increase entropy, and (139) follows from the entropy of uniform random
variables.

For the last term in (124), we find that,

0 0
H({w!)7Z¢k}i€T,ke[T]|{[Wz(‘ NiVierjer M, MZ, (X, yitiew), W)

> H({w'”, za it wem {w)y Vierger, M, M2 {X, yi ey, w7, w®) (140)
— H{w, Zik }icT ke[T) {w O Yiew jer, w®) (141)
= H{w!”, 2t }icT k) (142)
Td T2d
= I 14
(N—T+N—T> 084 (143)

Xingyu Lu, Hasin Us Sami, Basak Giiler

where (140) follows from the fact that conditioning cannot increase entropy, and (141) holds since:
(W ziYier wem) — WO AW ien jer — M, MZ Xy dien, w') (144)
forms a Markov chain, and (143) follows from the entropy of uniform random variables. For (142), we first observe,
10w,z }ier wepry: w® AW] Yien jer) (145)
= I({w” 2 }ier herm; W) + IEW? 2 Yier wepm; (W) Yiew serIw®). (146)

For the first term in (146), we find that,

0 < I{w” .z bier ke W) (147)
= H(w) = HwO w2 }ier rein) (148)
'W(l())
<dlogg—H [MaT)| : ||[{w”,zs}icr ke (149)
w0
- w0
=dlogg—H | (MaT)| : ‘{wi‘”, Zi bie T el (150)
v,
wl®)
=dlogg— H| (M®I)| : (151)
WE\(I])—T
w0
=dlogq— H : (152)
Wg\(/))—T
=dlogg— (N -1T) d log q (153)
N-T
=0 (154)

where M and M are as defined in (12), and (85), respectively, (147) is due to the non-negativity of mutual information,
(149) holds since entropy is maximized by uniform distribution, (151) holds since the randomness generated by the honest
clients is independent from the randomness generated by adversaries, (152) holds since M is an (N —T') x (N — T') MDS
matrix, hence is invertible, and (153) follows from the entropy of unfiormly random variables. From (154), we have that,

I({W§O)7Zik}i€7_,k€[T];W(O)) =0 (155)

Next, for the second term in (146), we find that,

0 < 1w, 2t ier kerr AW V) Yien jer 1w ®) (156)
= H{w Ve jerw®) — H{wW) Yen jerw® AW zi}icr keir) (157)
where
d

H{w(");}ienertw®) < == (N = T)Tlogg (158)

since uniform distribution maximizes entropy, and

0 0
H{w " Viewserw @, w2 Yier perm)

= H({Wgo)l + 2" Alien| (M@ 1) [(W§0))T e (w§3>)T} Aw?, zik}ieT,ke[T]) (159)
= 1({(w"1+ 2 A el M D) (W) o (wl)T] Y zadier i) (160

T
= H({w" 1+ 2 Abicnl (W) - (wW0L)7]) (161)

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

= H({ZEO)A}ie?A (WEO))T . Wg\?) T)T}) (162)
= H({z\” }ien) (163)
_ Nd_T(N—T)Tlogq (164)

which holds since M and A are MDS matrices (invertible) and that the random vectors are generated independently. By
combining (157) with (158) and (164), we find that,

1w,z Yier werr; {Iw) Verjerw®) = 0. (165)
Then, by combining (155) and (165) with (146), we have that,
16wzt Yier ke wO AW Vienjer) = 0 (166)

from which (142) follows.
Finally, by combining (126), (136), (139), and (143) with (124), we find for (120) the following,

0<I({mez}ze7{»M | My, M3 { Xy Yier, W) (167)
({[] Yien,]eT|MT7M7’» {X yitieT,w (J))
H({[w"); }z‘eH,jeﬂM%MT» (X, yitiepn), W)
+H ({Wg sz Yier werr W) Yerger, My, M3 (X, yiYier, w))
~ H{wW” 2 Yier nem (W V) Verjers M, ME X,y ierny, W) (168)

Td T24d Td T24
N—T+N—T)10gq_(N—T+N—T)10gq (169)
—0 (170)

< Tdlogq — Tdlogq + (

Hence, the third term in (44) satisfies:
I({ %, yitiews M| My, M3 (X yitier, wt!)) = 0. (171)
The steps for the remaining two stages follow along the same lines, from which one can find that:

I{ X, yitiew MTH{ X yitier. w)) =0 (172)

E COMMUNICATION COMPLEXITY

In the following, we first analyze the per-client communication complexity of PICO.

(Online) The online communication per-client consists of the following components: 1) O(dm) for dataset encoding (Stage
1),2) O(%d) for label encoding (Stage 2), 3) O(d) for model encoding (Stage 4) per training round, 4) O(d) for gradient
computing and model update (Stage 5) per training round.

(Offline) The offline communication per-client consists of the following components: 1) O(Nd%) for dataset encoding
(Stage 1), 2) 0(7) for label encoding (Stage 2) 3) O(:24) for model initialization (Stage 3), 4) O(:2%) for
model encoding (Stage 4) per training round, 5) O() for gradient computing and model update (Stage 5) per training
round.

Hence, the communication overhead per-client is O(dm + £d + d.J) in the online phase, and O(&dm + ~=dJ) in the
offline phase. As a result, the total communication complexity across all N clients is O(Ndm + N?d +NdJ) in the online
phase, and O(%dm + NNi_ZTdJ) in the offline phase.

Xingyu Lu, Hasin Us Sami, Basak Giiler

F COMPUTATION COMPLEXITY

In the following we first analyze the per-client computational overhead of each stage of PICO, for both the offline and
online phases, respectively.

Offline Phase. The offline phase consists of encoding the local randomness generated by the clients, and random initial-
ization of the model as follows.

Stage 1: Generation of {ﬁij }jen) requires evaluating a Lagrange polynomial of degree K + 7' — 1 at N points.
It is known that interpolating a polynomial of degree « (and evaluating it at x points) has a computational complex-
ity of O(klog® kloglog k) (Kedlaya and Umans, 2011). As such, this stage has a complexity of O(Nd% log?(K +
T)loglog(K + T')) per client.

Stage 2: Computing {a;; } <] requires evaluating a polynomial of degree K + 1" — 1 at N points, which has a com-
putational complexity of O(N ﬁ log?(K + T)loglog(K + T)) per client. Computing a; in (10) has a complexity
of O(%d) per client (since only the non-zero terms should be multiplied due to the identity matrix). Computing the se-

cret shares {[a;x];} ;e[for all k£ € [K] requires evaluating each of the K polynomials of degree 7" at N points, which

d

T log? T'loglog T) for each client. Evaluating the secret shares {[ar]i }xe[x) has an overhead of

has complexity O(N
O(Nd) per client.

Stage 3: Computing the secret share {[wgo)] j}je[n) requires evaluating a polynomial of degree 7" at N points, which has

complexity O(N NiT log? T'log log T') for each client. Finally, computation of the final secret share, w(®) from (16) has

complexity O(Nd) per client.

Stage 4: Computation of FZ(-;) requires evaluating a Lagrange polynomial of degree K + T' — 1 at N points, which

has a complexity of O(N %= log®(K + T)loglog(K + T)) per client. Given {Fg? }jen)» the computation of FZ(-t)

from (20) has an overhead of O(Nd) per client. Constructing the secret share [rgt)} 4 requires evaluating a polyno-
mial of degree T" at N points, which has complexity O(N ﬁ log? T'log log T) for each client. Afterwards, creating
the secret share [r(]; has a complexity of O(Nd) per client. Overall, this stage has a per client computational over-
head of O(N %~ log?(K + T)loglog(K + T) + Nd) per training round. For .J rounds, this leads to an overhead of

N-T
O(JN log?(K + T)loglog(K + T) + JNd) per client.

N-T

Stage 5: Computing {ﬁl(;) }ien) requires evaluating a Lagrange polynomial of degree (2r + 1)(K + T — 1) at N

points, which has a complexity of O(N x4 log? (K + T)loglogr(K + T)) per client per training round. Given

{ﬁ(,t,) }je[n], computation of ﬁz(-t) in (29) has complexity of O(Nd) per client per training round. Next, comput-

Ji
ing ZkE[K] uz(.,? has a computational overhead of O(K ﬁ) per client per training round. Computing the secret

shares {[Zke[K] uz(.z)] j}je[n) requires evaluating a polynomial of degree 7" at N points, which incurs a complexity

of O(N %= log? T'loglog T) per client per training round. Finally, given {2 ke uﬁtk)]i}je[~]» the computation of

Dok €[K] ul(f)]i has complexity of O(NNd) per client per training round. For J iterations, the computational complexity is
O(JN log? r(K + T)loglogr(K + T) + JNd) per client.

N-T

Overall, the computation complexity of the offline phase is O(Nd % log?(K +T)loglog(K +T) + JN log? r(K +

T)loglogr(K + T) + JNd) per client.

d
N-T

Online Phase. The online phase consists of encoding the dataset and the model, gradient computations, and model update.

Stage 1: Computing X; has an overhead of O(md) per client, as each client holds a local dataset of size m locally.
Computing X; has an overhead of O(Nmd) per client.

Stage 2: Computation of y; = >,y x; y has complexity of O(md) per client. Computation of {¥;;};e[n] re-
quires evaluation of Lagrange polynomial of degree K + T — 1 at N points, which has complexity of O(N % log2(K +
T')loglog(K +1T)) per client. Given {y;}jc;n] and a; (from offline computation), computation of &; incurs a complexity
of O(N <) per client. Next, upon receiving {a;} je[n) from atleast K + T clients, client i recovers .y ¥k — ax for
all k € [K], which has complexity of O(% (K + T) log?(K + T)loglog(K + T)). Next, computation of [X”y]; from
(15) has complexity of O(d) per client.

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

Table 2: Comparison of the total computation overhead (per client) for PICO with respect to COPML with m; = m for all « € [N].

COPML PICO
; 2m 2 (online) O(Ndm)
! Datasetencoding | O(N"izd log” (K + T) loglog (K + 1) 5ffine) —o(frdlog” (K + 1) loglog(K + 1)
2. Label encoding |O(N(m+d) log? T loglog T) (onlinc) 85%? log (Il(og (TI)(lig;’)glggl:g(T[)()Jr iy
(offline) —Q—N? + N log TloglogT)
3. Model initialization |O(Ndlog?(K + T)loglog(K + T)) (online) —
(offline) O(N NiT log” Tloglog T + Nd)
. 9 (online) O(KdJ + TdJ log® Tloglog T)
4. Model encoding O(JNdlog®(K + T)loglog(K +T)) ' O(JN %2 Tog? (K + T) log log(K 1 T)
(offline) +INd)
5. Gradient comp./ o(J ¥ (d + r) + Jdr(K +1T) (online) O(‘]T(d + T) + Jdr(K +T)
K x log? r(K + T)loglogr(K +T))
model update xlog? r(K + T)loglogr(K +T))
(offline) O(JN % log’r(K +1T)
x loglogr(K +T) + JNd)

Table 3: Comparison of the total computation overhead (per client) for PICO with respect to COPML with m; = m for all ¢ € [N],
when K, T = O(N)

COPML PICO (online+offline)
1. Dataset encoding O(Ndmlog® N log log N) O(Ndm + dmlog® N loglog N)
2. Label encoding 0 (m+d) log® N loglog N) O(dlog® N loglog N)

)
4. Model encoding O(JNdlog® Nloglog N) O
5. Gradient comp./

model update

JNdlog® N loglog N)
m(d +r) + JNdlog® N loglog N))

((
(v (
3. Model initialization | O(Ndlog” Nlog log N) (dlog? Nlog log N + Nd)
((
(J (J

O(Jm(d +r) + JNdlog® Nloglog N) | O

Stage 4: Computing W) requires interpolating a polynomial of degree 7, which has a complexity of
o(Td log? T'loglog T) per client per training round. Computing the encoded model w; has a computation overhead
of O(Kd) per client. As the above computation steps should be repeated at every training round, for a total number of J
training iterations, the computational overhead is O(Kd.J 4+ Td.J log® T loglog T)) per client.

Stage 5: Computation of the gradient X7 §(X; x VNV(t)) has an overhead of O(&7 (d+r)) per client, at each training round.
Next, the computation of 1; has an overhead of O(d) per client. Then, each client recovers { X7 (X x w(!)) — (t) Yree[k]s
which requires interpolating a polynomial of degree (2r 4+ 1)(K + T — 1), which has complexity O(dr(K +T) 1og2 r(K+
T)loglogr(K + T)) per client. Finally, the summation to obtain [X”§(X x w(")]; has a computational cost O(Kd)
per client. The computation overhead of model update is O(d). The above computation steps are operated over J training
iterations. For .J training rounds, the computation complexity is O(J &2 (d+r)+ Jdr(K+T) log® r(K+T)loglog r(K +
T')) per client.

Overall, the computation complexity of the online phase is O(Nmd+ N - log?(K 4 T)loglog(K +T) + TN (d+r) +
Jdr(K + T)log® r(K + T)loglog r(K + T)) per client.

Computation complexity of PICO vs COPML. In Table 2, we demonstrate the per-client computational complexity
of PICO versus COPML (So et al., 2020) for each stage. For a fair comparison, we also considered the utilization of fast
polynomial interpolation mechanisms (Kedlaya and Umans, 2011) for evaluating and interpolating polynomials in COPML
(hence the complexity we report below is even lower than the one originally reported in So et al. (2020)).

In Table 3, we demonstrate the per-client computational complexity for PICO (offline+online) and COPML, with
T = O(N) and K = O(N). We observe that the overall per-client complexity (across all algorithm steps) is
O(Ndm + dmlog® Nloglog N 4+ JNdlog?® N loglog N + Jm(d + r)) for PICO and O(Ndmlog® N loglog N +
JNdlog® N'loglog N + Jm(d + r)) for COPML, respectively. Hence, PICO achieves the same computation complex-
ity as COPML. This is due to the fact that PICO reduces the overall number of variables encoded, hence the additional
operations due to the matrix transformations with MDS matrices do not increase the overall computation complexity.

Xingyu Lu, Hasin Us Sami, Basak Giiler

G CORRECTNESS

We now demonstrate the correctness of PICO. The correctness of the encoding and decoding process is a result of the
decodability of the Lagrange interpolation polynomial, in particular, any polynomial f of degree deg(f) can be uniquely
reconstructed from any set of at least deg(f) + 1. As such, as long as the total number of clients N satisfy the minimum
number identified by the recovery threshold, i.e., N — D > (2r + 1)(K + T — 1) + 1, then all polynomials, including
both the encoded computations using the Lagrange interpolation polynomial, as well as Shamir’s secret sharing (which
corresponds to a degree 7' polynomial), is decodable. As such, one can correctly recover w(/) from the computations
performed on the encoded datasets and models.

H FINITE FIELD REPRESENTATION

To represent the real-valued data points in a finite field I, of integers modulo a prime g, each client initially quantizes its
local dataset from the real domain to the domain of integers, and then embeds it in a field IF, of integers modulo a large
prime q. Parameter q is selected sufficiently large to avoid wrap-around in finite field computations. The dataset X; of
client ¢ € [N]is quantized using a simple scalar quantization function ¢ (round(2¢ - x;)) for all I € X;, with the stochastic
rounding operation,

=] if z—|z] <05
round(z) = { |z] +1 otherwise (173)

applied element-wise to the features x of data point x; from dataset X; of client 7, where c is an integer parameter to control
the quantization loss. |z] is the largest integer less than or equal to «, and function ¢ : Z — F is a mapping used to
represent a negative integer in the finite field, also known as two’s complement representation,

T ifx>0
‘p(w)_{ g+a ifz<0 (179

which maps the positive/negative numbers to the first/second half of the finite field, respectively. All operations are then
carried out within the finite field IF,. After the completion of training (i.e., after .J training iterations), the final model w)
is mapped back from the finite field to the real domain, by inverting (174), i.e., w(/) < (¢~ (w(/))).

I ADDITIONAL EXPERIMENTAL DETAILS

Details on the communication protocol. In all our experiments, the inter-client communication is implemented using the
MPI4Py Message Passing Interface (MPI) for Python. The broadcast functionality of the MPI protocol communicates
messages through a tree topology, as opposed to an ideal broadcast (e.g., a cellular network). As such, the communication
overhead of PICO scales with respect to O(N log N) in the experiments, slightly higher than O (V). This suggests PICO
could in principle achieve even higher gains in an ideal broadcasting setting, such as a cellular network among devices
within the same coverage area.

Details on the datasets. For the CIFAR-10 dataset, 9019 samples are used in the training set, and an additional 1000
samples are reserved for test set. Then, each local training set is complemented with simple random crop augmentation
(to avoid having too few samples per client as the number of clients increase), leading to a total number of 18038 training
samples. Similarly, for the MNIST dataset, 11432 samples are used for training, and additional 2115 samples are reserved
for testing. Then, each local training set is again complemented with random crop augmentation, leading to 22864 training
samples. Model accuracy is then evaluated on the test set, using the model trained jointly across the N clients.

For binary classification, we consider the following two classes, the plane and car classes on CIFAR-10 and digits 0
and 1 for MNIST. Note that the size of the MNIST dataset for the two classes is larger than that of CIFAR-10. In our
experiments, we have observed that as the dataset size grows, the performance gain of PICO over the baseline increases,
for both communication overhead and online wall-clock training time. Moreover, the gain of PICO over the baseline
increases as the number of clients increase, for both the communication overhead and wall-clock training time, suggesting
PICO to be a promising candidate for large-scale collaborative learning tasks.

Secure truncation. In the experiments, for both PICO and COPML, we leverage the secure truncation protocol from
Catrina and Saxena (2010), as suggested by So et al. (2020), to reduce the size of the finite field required for model update
operations. The secure truncation protocol takes the secret shares {[z]; } ;cn] Of a secret variable 2 (where client i holds a

Dropout-Resilient Secure Multi-Party Collaborative Learning with Linear Communication Complexity

share [s];), along with two public integer parameters 1 and ko such that 0 < k1 < kg, and & € Fax,. Then, the secure
truncation protocol returns the secret shares {[z];};c[n] of a variable z such that z = [] + b where b is a Bernoulli
random variable (random bit) with probability P[b = 1] = (= mod 2"1)/2"1. In other words, the secure truncation
protocol quantizes the secret z, by rounding x/(2"1) to the nearest integer with probability 1 — p, where p is the distance

between the two.

During training, secure truncation is applied for the model updating stage, to ensure that the range of the updated model
stays within the range of the finite field. In particular, after obtaining [X” §(X x w®))]; from (33), client i computes a

secret share,
XT5(X x w)]; — [XTy]; = [XT(5(X x w)) - y)];, (175)

then, clients carry out a secure truncation operation to multiply X7 (§(X x w()) — y with parameter %, where I%I <1
Then, the model is updated at each client 7 as follows,

(Wl = [= S XT (O w) =) (176)
= W = XX W)~y (177)

after which each client learns the secret share [w(**1)]; of the model w(*+1) for the next training round. In the experiments,
we use (K1, ke) = (21, 24) for both datasets.

