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Abstract

We study the sample complexity of identifying an
approximate equilibrium for two-player zero-sum
n × 2 matrix games. That is, in a sequence of
repeated game plays, how many rounds must the
two players play before reaching an approximate
equilibrium (e.g., Nash)? We derive instance-
dependent bounds that define an ordering over
game matrices that captures the intuition that the
dynamics of some games converge faster than
others. Specifically, we consider a stochastic ob-
servation model such that when the two players
choose actions i and j, respectively, they both ob-
serve each other’s played actions and a stochastic
observation Xij such that E [Xij ] = Aij . To our
knowledge, our work is the first case of instance-
dependent lower bounds on the number of rounds
the players must play before reaching an approxi-
mate equilibrium in the sense that the number of
rounds depends on the specific properties of the
game matrix A as well as the desired accuracy.
We also prove a converse statement: there exist
player strategies that achieve this lower bound.

1 INTRODUCTION

In single player stochastic games like multi-armed bandits
and reinforcement learning, instance dependent or “gap
dependent” sample complexity bounds that characterize the
number of interactions with the environment to identify a
good policy are well-understood. In contrast to minimax or
worst-case sample complexity guarantees, these bounds and
the algorithms that obtain them adapt to the true difficulty
of the problem and are provably better when the problem
is easy. However, very little progress has been made on
multiplayer settings. Even the simplest of such settings—i.e.
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two–player normal form matrix games—have only been
studied in a minimax, worst-case sense to our knowledge.
Nonetheless many practical applications are such that the
outcome for a decision–maker depends not just on their own
action, but on the actions of other decision–makers in the
environment. Indeed, finite normal form games represent a
reasonable abstraction for a multitude of different important
problems from economic decisions to voting systems to
auctions to military abstractions (see, e.g., Başar and Olsder
(1998); Nisan et al. (2007); Von Neumann and Morgenstern
(2007) and references therein).

To concretize ideas, consider a setting in which two firms
produce bids for a sequence of arriving customers. Each
firm has one of two ways of preparing the bid (e.g., use
a higher quality product versus lower quality product but
include a warranty). Customers are drawn iid from a pop-
ulation, and select a firm meaning that the selected firm
“wins” the bid, while the other firm “loses” the bid. This
setting can be abstracted as a repeated two–player zero–sum
game defined by a 2× 2 stochastic matrix with independent
entries in {−1, 0, 1} and with expectation A ∈ [−1, 1]2×2.
For instance, the entries of A may be A11 = A22 = 0,
A12 = 5/6, and A21 = −2/3. Such abstractions arise in
many applications including online platforms and other dig-
ital marketplaces where firms are competing for the same
consumer demand.

With this motivation in mind, in this paper we consider two–
player, zero–sum normal form matrix games possessing a
unique Nash equilibrium which are defined by a stochastic
matrix of dimension n × 2 such that 2 ≤ n < ∞. For
this class of games, we characterize the instance dependent
sample complexity of identifying a joint mixed strategy that
approximately achieves the value of the game, and a joint
mixed strategy from which players have no incentive to
deviate in an approximate sense. That is, in a sequence of re-
peated game plays, we address the following questions: how
many rounds must the two players play before reaching a (i)
ε–good solution, or (ii) ε–Nash equilibrium, respectively?

The repeated play proceeds as follows: for a fixed matrix
A ∈ Rn×2 with entries Aij , at the start of each round
t, the first and second player choose an i ∈ {1, . . . , n}
and j ∈ {1, 2} simultaneously, respectively, observe each
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others chosen actions, and then both simultaneously observe
outcome Xij where E[Xij ] = Aij and is 1-sub-Gaussian
(e.g., Xij ∼ Bernoulli(Aij) ∈ {−1, 1} representing firm 1
winning the bid or not). Hence, the first and second player
receive expected rewards of Aij and −Aij , respectively.
Throughout we refer to this zero-sum stochastic matrix game
by simply referencing the matrix A that induces the game.

Letting m denote the m–dimensional simplex, we analyze
the following two objectives: find a joint mixed strategy
(x, y) ∈ n × 2 such that

(i) |V ⋆
A − ⟨x,Ay⟩| ≤ ε where

V ⋆
A := max

x∈ n

min
y∈ 2

x⊤Ay

is the value of the game, and

(ii) both ⟨x,Ay⟩ ≥ ⟨x′, Ay⟩−ε and ⟨x,Ay′⟩ ≥ ⟨x,Ay⟩−
ε hold for all (x′, y′) ∈ n × 2.

The former is precisely an ε–good solution, and the latter
an ε–Nash equilibrium.

We characterize the instance-dependent sample complexity
of identifying ε-approximate solutions for the above prob-
lems in the sense that they scale with not just ε and the num-
ber of actions, but the particular properties of the matrix A.
Thus, our characterization defines an ordering over games
capturing the intuition that the dynamics of some games
converge must faster than others. Specifically, we prove
lower bounds on the number of rounds necessary for any
two players to converge to an approximate Nash equilibrium.
Moreover, we propose strategies for the two players that
achieve this sample complexity. Our instance-dependent
sample complexities introduce a number of quantities that
characterize notions of the sub-optimality “gap,” and we
discuss why it is non-trivial to extend these definitions and
our analysis to the general n×m dimensional matrix games.

Before we state our main contributions, we state some easily
proven facts to contextualize our results (see Appendix A
for proof).
Proposition 1. For any zero-sum matrix game A, an ε–Nash
equilibrium is also an ε–good solution.

This means any lower bound on identifying an ε–good solu-
tion is also a lower bound on identifying an ε–Nash equilib-
rium. Conversely, any algorithm that can identify an ε–Nash
equilibrium can also identify an ε–good solution with the
same sample complexity.
Lemma 1. Fix any ε > 0 and δ ∈ (0, 1), and matrix
A ∈ Rn×m. Suppose that Ā ∈ Rn×m has entries Āij that
are the empirical mean of 8 log(2mn/δ)

ε2 1-sub-Gaussian ob-
servations resulting from players playing (i, j), and such
that Āij has expectation Aij . Let (x, y) ∈ n × m be the
Nash equilibrium of the game defined by Ā. With probabil-
ity at least 1 − δ, the mixed strategy (x, y) is an ε–Nash
equilibrium of A.

The above strategy is minimax optimal: there exists a worst-
case game matrix A such that identifying an ε–Nash equilib-
rium or ε–good solution with constant probability requires
at least 1/ε2 samples. This worst-case result suggests that
the sample compelxity of identifying an ε–Nash equilibrium
and ε–good solution are about the same, and that this sam-
ple complexity scales with ε. Remarkably, we will show
that both these conclusions are false: there is a provable
separation between these two problems, and that the sample
complexities for natural problems can be as small as 1/ε.

1.1 Contributions

Consider a game defined by a fixed 2× 2 matrix A which
has a unique Nash equilibrium which is not a pure-strategy
Nash equilibrium. In Theorems 1 and 2, we show under
some mild assumptions that to find an ε-good solution for
the matrix game A with probability at least 1 − δ, we re-
quire at least Ω

(
min

{
1
ε2 ,max

{
1

∆2
min

, 1
ε|D|

}}
log(1/δ)

)
samples from the matrix A, where problem-dependent pa-
rameters D and ∆min are functions of A alone and defined
in Section 2. Complementing this result, we present an algo-
rithm (Algorithm 1) that, with probability 1− δ, identifies
an ε-good solution using a number of samples matching this
lower bound up to logarithmic factors.

In the same setting, we show (Theorem 5) that identifying
an ε–Nash equilibrium for the game defined by A with

probability at least 1−δ requires at least Ω
(

∆2
m2

ε2D2 log(1/δ)
)

samples where ∆m2 , defined in Section 3, is function of A
alone. Since a lower bound on ε–good solution identification
immediately implies a lower bound on identifying an ε–
Nash equilibrium, as noted above, we conclude that the
sample complexity of identifying an ε–Nash equilibrium
with probability at least 1− δ requires

Ω
(
min

{
1
ε2 ,max

{
1

∆2
min

,
∆2

m2

ε2D2

}}
log(1/δ)

)
samples. In general, it is the case that

max

{
1

∆2
min

,
∆2

m2

ε2D2

}
≥ max

{
1

∆2
min

, 1
ε|D|

}
which demonstrates a separation in sample complexity be-
tween identifying an ε–good solution and ε–Nash equilib-
rium. Again, we complement this lower bound result by
designing an algorithm (Algorithm 2) that, with probabil-
ity 1 − δ, identifies an ε–Nash equilibrium with a sample
complexity matching this lower bound up to logarithmic
factors.

On the other hand, if the game does have a pure-strategy
Nash equilibrium then we prove nearly optimal instance de-
pendent upper bounds for identifying an ε-good solution or
ε-Nash that are similar to multi-armed bandits. In summary,
our results completely characterize the instance-dependent
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sample complexity of identifying an ε-good solution and
ε-Nash in the 2× 2 case.

Now consider a game defined by a fixed 3 × 2 matrix A
that has a unique Nash equilibrium which is not a pure-
strategy Nash equilibrium. In Theorem 7, we show un-
der some mild assumptions that to find an ε-good solu-
tion for the matrix game defined by A with probability
at least 1 − δ, we require at least Ω

(
1
∆2

g
log(1/δ)

)
sam-

ples. In fact, this number of samples, characterized by the
problem-dependent constant ∆g, is required to just iden-
tify the support of the mixed strategy for player 1 in 3

which we show is necessary for ε-good identification. Now
consider a game defined by an n × 2 matrix B for any
n ≥ 3 which has a unique Nash equilibrium (x∗, y∗) that
is not a pure-strategy equilibrium. We complement our
lower bound result by designing an algorithm (Algorithm
3) that, with probability at least 1 − δ, samples each ele-
ment of B for O

(
min

{
1
ε2 ,max

{
1

∆2
min

, 1
∆2

g

}}
log(1/δ)

)
times (ignoring some logarithmic factors) and either returns
Supp(x∗) and Supp(y∗) or concludes that ∆g is not suffi-
ciently large compared to ε. If the support is successfully
identified, the algorithms for the 2 × 2 cases can be ap-
plied. Otherwise, an ε–Nash equilibrium can be output
after O( n

ε2 · log(n/δ)) using the procedure of Lemma 1.
While these sample complexity results hint at necessary and
sufficient conditions on the instance-dependent sample com-
plexities of general m× n games, a full characterization of
this setting is left for future work.

In their respective sections, we define these problem-
dependent parameters and provide intuition for what they
represent and how they arise, which itself provides some
insight into the difficulty of the general m× n setting.

Above we have highlighted our results in the special case
of a unique Nash Equilibrium which is not a pure strategy.
However, we address all other cases as well, they are simply
more straightforward. For instance, if the Nash equilibrium
is not unique, then ∆min = 0 (and ∆g = 0 for n × 2
games) and therefore our upper and lower bounds match
and correspond to a 1/ε2 rate. Moreover, our algorithms do
not assume that the equilibrium is a pure or mixed strategy,
or if it is unique or not. All cases are covered (see Theorems
4, 6, 8 and Lemma 1). Note that our lower bound results hold
only for the mixed strategy case, and we do omit a lower
bound for the pure strategy case. This was done because the
mixed strategy case is the novel and challenging case while
the pure strategy case is very similar to multi-armed bandit
lower bounds (c.f., Kaufmann et al. (2016)).

1.2 Related Work

Complexity of Matrix Games. Characterizing equilibrium
behavior in normal form matrix games has been studied ex-
tensively in economics (Bohnenblust et al., 1950; Von Neu-

mann and Morgenstern, 1947), as has learning as an abstrac-
tion for how players reach an equilibrium (Fudenberg et al.,
1998). The computational complexity of (exact) Nash equi-
librium, especially in finite normal form games, is known to
be PPAD-complete (Daskalakis et al., 2009a,b). Given such
hardness results, it is natural to reason about the computa-
tional complexity of approximate equilibrium. For instance,
it has been shown that ε–approximate Nash can be com-
puted in polynomial time (Daskalakis et al., 2007, 2009c)
where ε is an absolute constant. These results primarily fo-
cus on settings of full information, and are concerned with
computational complexity.

Iteration complexity has been explored fairly extensively
in partial information settings including settings with time-
varying rewards and continuous action spaces; see, e.g.,
(Blum and Monsour, 2007; Bravo et al., 2018; Cardoso
et al., 2019; Cesa-Bianchi and Lugosi, 2006; Daskalakis
et al., 2011; Drusvyatskiy et al., 2021; Rakhlin and Srid-
haran, 2013; Syrgkanis et al., 2015) and references therein.
Only recently has the focus shifted to characterizing statisti-
cal learnability—i.e., sample complexity—of equilibrium
concepts, or other desiderata such as ε–good solutions, in
the presence of bandit feedback. For example, in the bandit
feedback setting where players also observe the actions of
their opponents, O’Donoghue et al. (2021) show that players
adopting an optimism in the face of uncertainty principle
when selecting actions experience sublinear regret—i.e.,
the short-fall in cumulative rewards relative to the value of
the game—and further show that alternative strategies such
as Thompson sampling cannot do not have a guarantee of
sublinear regret.

Instance Dependent Bounds for Games. To our knowl-
edge, instance dependent sample complexity bounds remain
under explored in games. That being said, there are very
recent results on special classes of games. For instance,
Dou et al. (2022) provide the first minimax bounds for the
class of congestion games, which have the nice property of
being equivalent to an optimization problem due to their
potential game structure. Additionally, Dou et al. (2022)
provide sample complexity results for the centralized and
decentralized problem settings under both semi-bandit and
bandit feedback. Similarly, Cui et al. (2022) study the re-
gret of the Nash Q-learning algorithm for two-player turn
based Markov games, and introduce the first gap dependent
logarithmic upper bounds, which match theoretical lower
bounds up to log factors, in the episodic tabular setting.

Instance Dependent Bounds in Stochastic Bandits. The
sample complexity of stochastic bandits is well-understood:
given n actions each yielding a stochastic reward, to iden-
tify an action with a mean within ε of the maximum with
probability 1 − δ, it is necessary and sufficient to take∑n

i=1 min{ 1
ε2 ,

1
∆2

i
} log(1/δ) total samples, where ∆i is the

difference between the ith mean and the highest mean (up to
log log(1/∆i) factors) (Karnin et al., 2013; Kaufmann et al.,
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2016; Mannor and Tsitsiklis, 2004). Stochastic bandits can
be directly compared to our setting where A is an n × 1
matrix with the means of the arms on the rows.

2 RESULTS FOR ε–GOOD SOLUTIONS
OF 2× 2 MATRIX GAMES

This section is devoted to instance-dependent sample com-
plexity bounds for identifying an ε-good solution (x, y) for
a zero-sum game matrix A. Recall that |V ∗

A − ⟨x,Ay⟩| ≤ ε.
In what follows, we will frequently assume that the mixed
strategies of the unique Nash equilibrium have full sup-
port: the mixed strategy x =∈ m is said to have a full
support if Supp(x) := {i ∈ [m] : xi > 0} is equal to
[m] := {1, . . . ,m}. Here xi is the i-th component of x. If
m = 2 then the unique equilibrium is either a full support
mixed strategy or is a pure strategy, but not both.

Definition 1 (Pure Strategy Nash Equilibrium). An ele-
ment (i∗, j∗) is a Pure Strategy Nash Equilibrium (PSNE)
of the game induced by the matrix A ∈ Rm×n if Ai∗j∗ =
maxi∈[m] Aij∗ and Ai∗j∗ = minj∈[n] Ai∗j . Moreover, a
Nash equilibrium (x, y) ∈ m × n where Supp(x) = {i}
and Supp(y) = {j} corresponds to a PSNE (i, j).

For a matrix A = [a, b; c, d] (elements of a row are separated
by a comma and rows are separated by a semicolon) that has
a unique Nash equilibrium which is not a PSNE, our bounds
will be given in terms of instance-dependent quantities:

D = a− b− c+ d,

∆min = min{|a− b|, |a− c|, |d− b|, |d− c|}.

The matrix A = [a, b; c, d] has a unique Nash equilibrium
which is not a PSNE if and only if either of the following
hold:

a < b, a < c, d < b, d < c, or
a > b, a > c, d > b, d > c.

Hence |D| ≥ 2∆min > 0. The material of this section
show that the sample complexity of identifying an ε-good
solution behaves as min

{
1
ε2 ,max

{
1

∆2
min

, 1
ε|D|

}}
log(1/δ)

up to log factors. To motivate this bound, for matrix A =
[1, 0; 0, 1] we have that min

{
1
ε2 ,max

{
1

∆2
min

, 1
ε|D|

}}
≈ 1

ε

which is significantly better than the trivial bound of 1
ε2 .

To provide some intuition about where these quantities
come from, suppose we measured each entry of A ex-
actly T times and compiled the empirical means into a
matrix Â. If we let (x, y) and (x̂, ŷ) be the Nash equilib-
ria for A and Â, respectively, then x⊤Ay = ad−bc

D and
we show in Appendices B and C that we roughly have
|x⊤Ay − x̂⊤Aŷ| ≤ min

{
1√
T
, 1
T |D|

}
. Moreover, we re-

quire roughly 1
∆2

min
samples to decide whether a < b or

b > a (same for other pairs). Without this information, we
cannot characterize whether the input matrix has a PSNE

or not, and this affects the value V ∗
A (which in turn affects

the performance of the algorithm). Hence, we observe it
suffices to take T ≈ min

{
1
ε2 ,max

{
1

∆2
min

, 1
ε|D|

}}
. In the

remainder of this section we make this argument rigorous
and show that no smarter algorithm can improve upon this
simple strategy.

The following definition defines the set of algorithms under
consideration.
Definition 2 ((ε, δ)-PAC-good). We say an algorithm is
(ε, δ)-PAC-good if for all matrices A ∈ Rm×n the algorithm
terminates at an almost-sure finite stopping time τ ∈ N and
outputs a pair of mixed strategies (x, y) ∈ m × n such
that |V ∗

A − ⟨x,Ay⟩| ≤ ε with probability at least 1− δ.

Our lower bounds will use this class of algorithms, and our
proposed algorithm falls within this class.

2.1 Lower bound with respect to |D|

This subsection derives a lower bound for the case when A
has a unique Nash equilibrium which is not a PSNE.
Theorem 1. Fix any matrix A = [a, b; c, d] that has a
unique Nash equilibrium which is not a PSNE, ε ∈ (0,

∆2
min

3|D| )

and δ ∈ (0, 1). Any (ε, δ)-PAC-good algorithm that returns
a pair of mixed strategies (x, y) ∈ 2× 2 at stopping time
τ satisfies EA[τ ] ≥ log(1/30δ)

3ε|D| .

The lower bound considers a class of matrices A□ parame-
terized by □ ∈ R defined as follows:

A□ =

[
a+□ b

c d−□

]
.

Clearly A□ = A when □ = 0. Observe that if |□| < ∆min,
then the matrix game defined by A□ has a unique Nash
equilibrium which is not a PSNE. The proof of the theorem,
found in Appendix D, follows from change of measure
arguments applied to the instances defined in the following
lemma.
Lemma 2. Fix any ε ∈ (0,

∆2
min

3|D| ) and let ∆ =
√

3ε|D|.
For any pair of mixed strategies (x′, y′) ∈ 2× 2 we have

max
B∈{A−∆,A0,A∆}

|V ∗
B − ⟨x′, By′⟩| ≥ 3ε

2 .

Unlike many lower bounds for multi-armed bandits that
rely on a number of binary hypothesis tests being decided
correctly (c.f., (Kaufmann et al., 2016)), to prove the lower
bound of this setting it is not possible to find a satisfying
hypothesis test with fewer than three hypotheses due to the
peculiar min-max behavior of the objective.

2.2 Lower bound with respect to ∆min and ε

Consider a matrix A = [a, b; c, d] that has a unique Nash
equilibrium which is not a PSNE. Without loss of generality
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assume that D > 0 and ∆min = a− b. Let us also assume
that a− c ≥ d− b. This subsection derives a lower bound
with respect to ∆min and ε.
Theorem 2. Consider the matrix A and fix any ε > 0 and
δ ∈ (0, 1). Any (ε, δ)-PAC-good algorithm that returns a
pair of mixed strategies (x, y) ∈ 2 × 2 at stopping time

τ satisfies EA[τ ] ≥ min
{

log(1/30δ)
36ε2 , log(1/30δ)

36∆2
min

}
.

The lower bound considers a class of matrices A□ parame-
terized by □ ∈ R defined as follows:

A□ =

[
a+□ b−□
c+□ d−□

]
.

Clearly A□ = A when □ = 0. The proof of the theorem,
found in Appendix E, follows from change of measure ar-
guments applied to the instances defined in the following
lemma.
Lemma 3. Fix any ε > 0. Let ∆ = 6max{ε,∆min}. For
any pair of mixed strategies (x′, y′) ∈ 2 × 2 we have

max
B∈{A−∆,A0,A∆}

|V ∗
B − ⟨x′, By′⟩| > ε.

We can now combine Theorems 1 and 2 to obtain the
claimed result at the beginning of this section. Indeed,
if ε ∈ (0,

∆2
min

3|D| ) then log(1/30δ)
3ε|D| > log(1/30δ)

∆2
min

and so by
Theorem 1 we have

EA[τ ] ≥
log(

1
30δ )

3ε|D|

= max

{
log(

1
30δ )

3ε|D| ,
log(

1
30δ )

∆2
min

}
≥ min

{
log( 1

30δ )

36ε2 ,max

{
log( 1

30δ )

3ε|D| ,
log(

1
30δ )

∆2
min

}}
.

On the other hand, if ε ≥ ∆2
min

3|D| then log(1/30δ)
3ε|D| ≤ log(1/30δ)

∆2
min

and so by Theorem 2 we have

EA[τ ] ≥ min

{
log(

1
30δ )

36ε2 ,
log( 1

30δ )

36∆2
min

}
= 1

36 min

{
log(

1
30δ )

ε2 ,max

{
log(

1
30δ )

3ε|D| ,
log(

1
30δ )

∆2
min

}}
.

Thus, for all ε > 0 we have

EA[τ ] ≥ min
{

1
ε2 ,max

{
1

3ε|D| ,
1

∆2
min

}}
log(1/30δ)

36 .

2.3 Lower bound for games with multiple Nash
Equilibria

Consider a matrix A = [a, a; c, d] such that a > c, a < d.
Let us also assume that a − c ≥ d − a. Observe that the
matrix game on A has multiple Nash Equilibria and this
game is a degenerate version of a matrix game with unique
Nash Equilibrium which is not a PSNE (as ∆min = 0). This
subsection derives a lower bound for the matrix game on A
with respect to ε.

Theorem 3. Consider the matrix A and fix any ε > 0 and
δ ∈ (0, 1). Any (ε, δ)-PAC-good algorithm that returns a
pair of mixed strategies (x, y) ∈ 2 × 2 at stopping time
τ satisfies EA[τ ] ≥ log(1/30δ)

36ε2 .

The lower bound considers a class of matrices A□ parame-
terized by □ ∈ R defined as follows:

A□ =

[
a+□ a−□
c+□ d−□

]
.

Clearly A□ = A when □ = 0. The proof of the theorem,
found in Appendix F, follows from change of measure ar-
guments applied to the instances defined in the following
lemma.

Lemma 4. Fix any ε > 0. Let ∆ = 6ε. For any
pair of mixed strategies (x′, y′) ∈ 2 × 2 we have

max
B∈{A−∆,A0,A∆}

|V ∗
B − ⟨x′, By′⟩| > ε.

2.4 Upper bound for ε–good solution

As discussed above, Lemma 1 describes a minimax optimal
strategy. This subsection is dedicated to Algorithm 1 that
achieves an instance-dependent sample complexity for the
special case of m = n = 2. Algorithm 1 first samples
the elements of A until we can conclude whether A has a
PSNE or not. If A has a PSNE, then we return it. If A
does not have a PSNE, we further sample each element of
A for Õ(

log( 1
δ )

εD̃
) times and return the Nash equilibrium of

the empirical matrix Ā. Here D̃ is an empirical estimate of
|D|. If no prior condition is met, the algorithm terminates in
the worst case at iteration t = T = 8 log(16/δ)

ε2 and outputs
an ε–good solution with high probability. The full sample
complexity guarantees of the algorithm are described in the
following theorem whose proof is in Appendix C.

Theorem 4. Fix any ε > 0 and δ ∈ (0, 1). With probability
at least 1− δ, Algorithm 1 returns an ε–good solution after
at most n0 samples such that

• n0 = c1 · min
{ log(1/δ)

ε2 ,max
{ log( 1

εδ )

∆2
min

,
log( 1

εδ )

ε|D|
}}

if
the matrix game induced by A has a unique Nash equi-
librium which is not a PSNE, and

• n0 = c2 ·min
{ log(1/δ)

ε2 , log(1/(εδ))
∆2

min

}
if the matrix game

induced by A has a PSNE,

where c1, c2 are absolute constants.

3 RESULTS FOR ε–NASH EQUILIBRIUM
OF 2× 2 MATRIX GAMES

This section is devoted to instance-dependent sample com-
plexity bounds for identifying an ε–Nash equilibrium (x, y).
Recall that both ⟨x,Ay⟩ ≥ ⟨x′, Ay⟩ − ε and ⟨x,Ay′⟩ ≥
⟨x,Ay⟩ − ε hold for all (x′, y′) ∈ 2 × 2. For a matrix
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Algorithm 1 Find an ε–good solution

1: T ← 8 log(16/δ)
ε2

2: for time step t = 1, 2, . . . , T do
3: Sample each element (i, j) once and update the em-

pirical means Āij .

4: ∆←
√
2 log(16Tδ )/t

5: ∆̃min ← min{|Ā11 − Ā12|, |Ā21 − Ā22|}|Ā11 −
Ā21|, |Ā12 − Ā22|}

6: D̃ ← |Ā11 − Ā12 − Ā21 + Ā22|
7: if 1 ≤ ∆̃min+2∆

∆̃min−2∆
≤ 3

2 and the matrix game Ā has a
PSNE then

8: Return the PSNE of Ā.
9: else if 1 ≤ ∆̃min+2∆

∆̃min−2∆
≤ 3

2 and D̃ < 10ε then
10: Sample each element (i, j) for T − t times.
11: Return the Nash equilibrium of Ā.
12: else if 1 ≤ ∆̃min+2∆

∆̃min−2∆
≤ 3

2 and D̃ ≥ 10ε then

13: N ← 80 log( 16T
δ )

εD̃
14: if N > T − t then
15: Sample each element (i, j) for T − t times
16: Return the Nash equilibrium of Ā.
17: end if
18: Sample each element (i, j) for N times.
19: Return the Nash equilibrium of Ā.
20: end if
21: end for
22: Return the Nash equilibrium of Ā.

A = [a, b; c, d], our bounds will be given in terms of the
following instance-dependent quantities:

D = a− b− c+ d,

∆m2
= max{min{|a− b|, |d− c|},min{|a− c|, |d− b|}}.

The sample complexity of identifying an ε–Nash equi-

librium is min
{

1
ε2 ,max

{
1

∆2
min

,
∆2

m2

ε2D2

}}
log(1/δ) up to

log factors. To motivate this bound, consider the ma-
trix A = [1 + ε0.5, 1; 0, 1 + ε0.5] where 0 < ε < 1.

Then min
{

1
ε2 ,max

{
1

∆2
min

,
∆2

m2

ε2D2

}}
≈ 1

ε which is sig-

nificantly better than the trivial bound of 1
ε2 . On the

other hand, for the matrix B = [1, 0; 0, 1] we have that

min
{

1
ε2 ,max

{
1

∆2
min

,
∆2

m2

ε2D2

}}
≈ 1

ε2 which is significantly

worse than the bound of 1
ε that we achieved for identify-

ing an ε–good solution before. This shows that finding an
ε–Nash equilibrium can require many more samples than
finding an ε–good solution. This is not unexpected as every
ε–Nash equilibrium is also an ε–good solution.

To provide some intuition about where these quantities come
from, suppose we measured each entry of A exactly T times
and compiled the empirical means into a matrix Â. If we let
(x̂, ŷ) be the Nash equilibrium for Â, respectively, then we

show (cf. Appendix G) that we roughly have

max
x′∈ 2

x′⊤Aŷ − x̂⊤Aŷ ≤ ∆m2√
T |D| ,

x̂⊤Aŷ − min
y′∈ 2

x̂⊤Ay′ ≤ ∆m2√
T |D| .

Moreover, in the previous section we showed that roughly
1/∆2

min samples are required to distinguish between var-
ious alternatives. Hence, we observe it suffices to take

T ≈ min
{

1
ε2 ,max

{
1

∆2
min

,
∆2

m2

ε2D2

}}
. In the remainder of

this section we make this argument rigorous and show that
no smarter algorithm can improve upon this simple strategy.

The following is the definition of the set of algorithms under
consideration.
Definition 3 ((ε, δ)-PAC-Nash). We say an algorithm is
(ε, δ)-PAC-Nash if for all induced by matrices A ∈ Rm×n,
the algorithm terminates at an almost–sure finite stopping
time τ ∈ N and outputs a pair of mixed strategies (x, y) ∈

m× n such that ⟨x,Ay⟩ ≥ ⟨x′, Ay⟩− ε and ⟨x,Ay′⟩ ≥
⟨x,Ay⟩−ε hold for all (x′, y′) ∈ m× n with probability
at least 1− δ.

Our lower bounds will use this class of algorithms, and the
proposed algorithm falls within this class.

3.1 Lower bound for finding ε–Nash equilibrium

This subsection derives a lower bound for the case when A
has a unique Nash equilibrium which is not a PSNE.
Theorem 5. Fix any matrix A = [a, b; c, d] that has a
unique Nash equilibrium which is not a PSNE, ε > 0 and
δ ∈ (0, 1). Any (ε, δ)-PAC-Nash algorithm that returns a
pair of mixed strategies (x, y) ∈ 2 × 2 at stopping time

τ satisfies EA[τ ] ≥
∆2

m2
log(1/30δ)

9ε2D2 .

Without loss of generality assume that D > 0 and ∆m2
=

a − b. The lower bound considers a class of matrices A□

parameterized by □ ∈ R defined as follows:

A□ =

[
a+□ b+□
c−□ d−□

]
.

Clearly A□ = A when □ = 0. The proof of the theorem,
found in Appendix H, follows from change of measure
arguments applied to the instances defined in the following
lemma.
Lemma 5. Fix any ε > 0. For any pair of mixed strate-
gies (x′, y′) ∈ 2 × 2, there exists a matrix B ∈
{A0, A∆, A−∆} such that (x′, y′) is not an ε-Nash equi-
librium of B where ∆ := 3εD

∆m2
.

Recall that any lower bound for an ε–good solution also
holds for ε–Nash equilibrium. Hence, combining Theo-
rems 2 and 5 we obtain the claimed result at the beginning
of this section. Note that the lower bound of Theorem 1 is
redundant as 1

ε|D| ≤
∆2

m2

ε2|D|2 when ε ∈ (0,
∆2

min

3|D| ).
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3.2 Upper bound for ε-Nash equilibrium

Algorithm 2 Find an ε–Nash equilibrium

1: T ← 8 log(16/δ)
ε2

2: for round t = 1, 2, . . . , T do
3: Sample each element (i, j) once and update the em-

pirical means Āij .

4: ∆←
√
2 log(16Tδ )/(t).

5: ∆̃min ← min{|Ā11 − Ā12|, |Ā21 − Ā22|}|Ā11 −
Ā21|, |Ā12 − Ā22|}

6: ∆̃m2
← max{min{|Ā11 − Ā12|, |Ā21 −

Ā22|},min{|Ā11 − Ā21|, |Ā12 − Ā22|}}
7: D̃ ← |Ā11 − Ā12 − Ā21 + Ā22|
8: if 1 ≤ ∆̃min+2∆

∆̃min−2∆
≤ 3

2 and the game induced by Ā

has a pure strategy Nash then
9: Return the Nash equilibrium associated with the

PSNE of Ā.
10: else if 1 ≤ ∆̃min+2∆

∆̃min−2∆
≤ 3

2 and ∆̃m2 ≥ D̃/8 then
11: Sample each element (i, j) for T − t times.
12: Return the Nash equilibrium of Ā.
13: else if 1 ≤ ∆̃min+2∆

∆̃min−2∆
≤ 3

2 and ∆̃m2
< D̃/8 then

14: N ← 200∆̃2
m2

log( 16T
δ )

ε2D̃2

15: if N > T − t then
16: Sample each element (i, j) for T − t times.
17: Return the Nash equilibrium of Ā.
18: end if
19: ∆1 ←

√
2 log(16Tδ )/(N + t)

20: Sample each element (i, j) for N times.
21: i1 ← argmini |Āi1− Āi2| and i2 ← {1, 2}\{i1}
22: j1 ← argmini |Ā1j−Ā2j | and j2 ← {1, 2}\{j1}
23: Bi1j1 ← Āi1j1 , Bi2j2 ← Āi2j2 , Bi1j2 ← Āi1j2 −

2∆1, Bi2j1 ← Āi2j1 + 2∆1

24: Return the Nash equilibrium of B.
25: end if
26: end for
27: Return the Nash equilibrium of Ā.

Next, we characterize the instance-dependent sample com-
plexity of Algorithm 2 for the special case of 2× 2 matrix.
Algorithm 2 first samples the elements of A until we can
conclude whether the game induced by A has a PSNE or
not. If the game does, then we return it. If the matrix game
induced by A does not have a PSNE, we further sample each

element of A for Õ(
∆̃2

m2
log( 1

δ )

ε2D̃2
) times and return the Nash

equilibrium of a matrix B that we get by slightly modifying
the empirical matrix Ā. Here D̃ and ∆̃m2 are the empirical
estimates of |D| and ∆m2

, respectively. If no prior condi-
tion is met, the algorithm terminates in the worst case at
iteration t = T = 8 log(16/δ)

ε2 and outputs an ε–Nash equi-
librium with high probability by Lemma 1. The full sample
complexity guarantees of the algorithm are described in the
following theorem the proof of which is in Appendix G.

Theorem 6. Fix any ε > 0 and δ ∈ (0, 1). With probability
at least 1 − δ Algorithm 2 returns an ε–Nash equilibrium
after at most n0 samples where

• n0 = c1 ·min
{ log(

1
εδ )

ε2 ,max
{ log(

1
εδ )

∆2
min

,
∆2

m2
log(

1
εδ )

ε2D2

}}
if the matrix game induced by A has a unique Nash
equilibrium which is not a PSNE, and

• n0 = c2 ·min
{ log(1/δ)

ε2 , log(1/εδ)
∆2

min

}
otherwise,

where c1, c2 are absolute constants.

4 RESULTS FOR n× 2 MATRIX GAMES

This section is devoted to instance-dependent sample com-
plexity bounds for identifying an ε–good solution and an
ε–Nash equilibrium in a n×2 matrix game that has a unique
Nash equilibrium. For a matrix A ∈ Rn×2, the bounds will
be given in terms of instance-dependent quantities ∆min

and ∆g. For ∆min, the natural extension from the 2× 2 to
the n× 2 case is

∆min = min{min
i
{|Ai1 −Ai2|}, min

j,k:j ̸=k
{|Aj1 −Ak1|},

min
j,k:j ̸=k

{|Aj2 −Ak2|}}.

To define ∆g , observe that if the matrix game induced by A
has a unique Nash equilibrium (x∗, y∗), then |Supp(x∗)| =
|Supp(y∗)| (Bohnenblust et al., 1950). Suppose that A has
a unique Nash equilibrium (x∗, y∗) such that Supp(x∗) =
{i1, i2}. Let Ai11 > Ai12 and Ai21 < Ai22 and define

∆g := min
i∈[n]\{i1,i2}

ri · (V ∗
A − ⟨y∗, (Ai1, Ai2)⟩),

where ri =
|Ai11−Ai12|+|Ai21−Ai22|

|Ai11−Ai12|+|Ai21−Ai22|+|Ai1−Ai2| . It is not
hard to see that mini∈[n]\{i1,i2} V

∗
A − ⟨y∗, (Ai1, Ai2)⟩ > 0

which implies ∆g > 0.

To provide some intuition for the origin of ∆g, consider a
class of matrices A□ = [a, b; c−□, d−□; e+□, f +□]
parameterized by □ ∈ R. In Appendix J.2, we show that for
∆ = c0 ·∆g where c0 is an absolute constant, the matrices
A0, A∆ and A2∆ have different supports for their respec-
tive Nash equilibrium. This implies that we require roughly
1/∆2

g samples to determine the support of the Nash equilib-
rium of A. Without this information, we cannot determine
an ε–good solution with high probability as the support of
the Nash equilibrium affects the value V ∗

A . The same holds
true for finding an ε–Nash equilibirum as every ε–Nash
equilibrium is also an ε–good solution. Moreover, to obtain
any meaningful upper bound, we require an empirical esti-
mate of ∆g to be close to ∆g and this is possible when we
re-scale the gaps V ∗

A − ⟨y∗, (Ai1, Ai2)⟩ by a factor of ri. In
the remainder of this section we make this argument rigor-
ous and further show that roughly 1/∆2

g samples suffices
to find the support of the Nash equilibrium of A. Once the
support is identified, we can use the algorithms derived for
the 2× 2 case in the previous two sections.
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4.1 Lower bound with respect to ∆g

Consider any matrix game A = [a, b; c, d; e, f ] that
has a unique Nash equilibrium (x∗, y∗) which is not a
PSNE. Without loss of generality assume that Supp(x∗) =
Supp(y∗) = {1, 2}. Let us also assume that a > b, a >
c, a > e, d > b, d > c, f > e, f > b. Observe that in this
case we have the following:

∆g =
(|a− b|+ |c− d|)(V ∗

A − ⟨y∗, (e, f)⟩)
|a− b|+ |c− d|+ |e− f |

Let D1 := a − b − c + d and D2 := a − b − e + f . Let
∆ := (d−b)D2−(f−b)D1

D1+D2
and λ := min{ (a−b)∆

D1
, (a−b)∆

D2
}.

This subsection derives a lower bound for ε–good solution
for the matrix game A.

Theorem 7. Consider the matrix A and fix any ε ∈ (0, λ
4 )

and δ ∈ (0, 1). Any (ε, δ)-PAC-good algorithm that returns
a pair of mixed strategies (x, y) ∈ 3× 2 at stopping time
τ satisfies EA[τ ] ≥ log(1/30δ)

4∆2
g

.

The lower bound considers a class of matrices A□ parame-
terized by □ ∈ R defined as follows:

A□ =

 a b
c−□ d−□
e+□ f +□

 .

Clearly A□ = A when □ = 0. The proof of the theorem,
found in Appendix J, follows from change of measure ar-
guments applied to the instances defined in the following
lemma.

Lemma 6. Fix any ε ∈ (0, λ
4 ). For any pair of mixed

strategies (x′, y′) ∈ 3 × 2, we have

max
B∈{A0,A∆,A2∆}

|V ∗
B − ⟨x′, By′⟩| > ε.

4.2 Finding the support in n× 2 matrix games

Next, we characterize the instance-dependent sample com-
plexity of Algorithm 3 which finds the support of the unique
Nash equilibrium, having cardinality at most two, for the
matrix game A ∈ Rn×2. Algorithm 3 first samples the ele-
ments of A until we can conclude whether the game induced
by A has a PSNE or not. If the game has a PSNE, then we
return it. If the game induced by A does not have a PSNE,
we further sample the elements of A until ∆̃g is sufficiently
large and return the support of the Nash equilibrium of the
empirical matrix Ā. Here ∆̃g is an empirical estimate of
∆g . If no prior condition is met, the algorithm terminates in
the worst case at iteration t = T = 8 log(8n/δ)

ε2 and outputs
an ε–Nash equilibrium with high probability by Lemma 1.
The full sample complexity guarantees of the algorithm are
described in the following theorem the proof of which is in
Appendix I.

Algorithm 3 Find the equilibrium support for a n×2 matrix

1: T ← 8 log(8n/δ)
ε2

2: for round t = 1, 2, . . . , T do
3: Sample each element (i, j) once and update the em-

pirical means Āij .

4: ∆←
√
2 log(8nTδ )/(t).

5: ∆̃min ← min {mini{|Āi1 − Āi2|}, min
j,k:j ̸=k

{|Āj1 −

Āk1|}, min
j,k:j ̸=k

{|Āj2 − Āk2|}}

6: if 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 and the matrix game Ā has a

PSNE then
7: Return the PSNE of Ā.
8: else if 1 ≤ ∆̃min+2∆

∆̃min−2∆
≤ 3

2 and Ā does not have a
pure strategy Nash then

9: ∀i ∈ [n], remove the row i of Ā if there is a row j
such that Āj1 > Āi1 and Āj2 > Āi2.

10: for round t′ = t+ 1, t+ 2, . . . , T do
11: Sample each element (i, j) once and update the

empirical means Āij .

12: ∆′ ←
√
2 log(8nTδ )/(t′)

13: (x′, y′)← Nash equilibrium of Ā
14: If t′ = T , return the Nash equilibrium of Ā.
15: if |Supp(x′)| = 2 then
16: {i1, i2} ← Supp(x′)
17: For all rows i,

r̃i ←
|Āi11−Āi12|+|Āi21−Āi22|

|Āi11−Āi12|+|Āi21−Āi22|+|Āi1−Āi2|

18: ∆̃g ← min
i:i/∈{i1,i2}

r̃i · (V ∗
Ā
− ⟨y′, (Āi1, Āi2)⟩)

19: If ∆̃g ≥ 4∆′, then Return {{i1, i2}, {1, 2}}
as the support of the Nash equilibrium.

20: end if
21: end for
22: end if
23: end for
24: Return the Nash equilibrium of Ā.

Theorem 8. Fix any ε > 0 and δ ∈ (0, 1). Let T =
8 log(8n/δ)

ε2 . Consider a game defined by the matrix A ∈
Rn×2 with a unique Nash equilibrium (x∗, y∗) ∈ n ×

2. The following hold, where c1, c2, c3, c4 are absolute
constants.

• If A has a PSNE and 800 log( 8nT
δ )

∆2
min

≤ T , then with
probability at least 1 − δ, Algorithm 3 samples each
element of A for n0 times and returns a PSNE where
n0 = c1 ·

log( n
εδ )

∆2
min

.

• If A has a PSNE and 800 log( 8nT
δ )

∆2
min

> T , then with
probability at least 1 − δ, Algorithm 3 samples each
element of A for n0 times and either returns a PSNE
or an ε–Nash equilibrium where n0 = c2 · log(n/δ)ε2 .
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• If A does not have a PSNE and
max

{ 800 log( 8nT
δ )

∆2
min

,
722 log( 8nT

δ )

∆2
g

}
< T , then with

probability at least 1 − δ, Algorithm 3 samples each
element of A for n0 times and returns Supp(x∗) and

Supp(y∗) where n0 = c3 ·max
{ log( n

εδ )

∆2
min

,
log(nT

δ )

∆2
g

}
.

• If A does not have a PSNE and
max

{ 800 log( 8nT
δ )

∆2
min

,
722 log( 8nT

δ )

∆2
g

}
≥ T , then with

probability at least 1 − δ, Algorithm 3 samples
each element of A for n0 times and either returns
Supp(x∗) and Supp(y∗) or an ε–Nash equilibrium
where n0 = c4 · log(n/δ)ε2 .

If Algorithm 3 returns Supp(x∗) and Supp(y∗) such that
|Supp(x∗)| = |Supp(y∗)| = 2, then Algorithms 1 and 2
can be run on the 2 × 2 sub-matrix formed by Supp(x∗)
and Supp(y∗) and return, with high probability, an ε–good
solution and ε–Nash equilibrium, respectively.

5 CONCLUSION AND OPEN QUESTIONS

To the best of our knowledge, this work provides the first
instance-dependent sample complexity results for zero-sum
normal form games. We have completely characterized
the instance dependent sample complexity of finding Nash
Equilibrium in 2 × 2 matrix games. In addition, we have
shed some light on the case of n× 2 matrix games. These
results shed light on the properties of a game that make its
dynamics converge quickly or slowly. The implications of
this line of results could be new algorithms designed to take
advantage of easy games, where previous minimax optimal
algorithms may not. This more nuanced understanding of
instance-dependent sample complexity may also influence
mechanism design since our results describe specifically
how one could speed up convergence of players to a Nash
equilibrium.

However, our work leaves many questions unresolved as
well as revealing new ones. The most obvious direction–
extending our results to general (n×m) ∈ N× N–is also
one of the most challenging. First, unlike our n × 2 case
in which the size of the support is trivially at most k = 2,
it is unclear how to identify the true size k of the support
of the Nash equilibrium in general, and then how to iden-
tify the k × k sub-matrix within the game matrix. Second,
there does not exist a closed-form expression for the Nash
equilibrium of general (n × m) ∈ N × N matrix games.
We exploit the existence of the closed-form solution in our
2× 2 analysis in many ways, including deriving alternative
instances for lower bounds, and also understanding the right
notions of gap by considering a perturbation of the optimal
solution. Due to Cramer’s rule there exists a closed-form ex-
pression for the Nash equilibrium of general (n× n) matrix
game, however, we would have to analyze how determinants
of a matrix behave under minor perturbations in order to

establish meaningful upper bounds.

Besides larger game matrices, there are other very natural
questions to pursue. Given the instance-dependent quanti-
ties we introduced in this work, how do these generalize
to general-sum games and can our lower bound strategies
be extended? What is the sample complexity of identifying
other kinds of equilibria, such as an ε (coarse) correlated
equilibrium? Finally, can we derive instance-dependent
regret bounds for computationally efficient strategies?
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A Properties of Matrix games

Let ekj denote a k-dimensional vector such that its j-th component is 1 and the rest of the components are 0. We now state
some well known properties of Nash Equilibrium (in short NE) of Matrix games.

1. (Karlin and Peres (2017)) If (x∗, y∗) is a Nash equilibrium of a matrix game A ∈ Rm×n, then ⟨x∗, Ay∗⟩ = V ∗
A .

2. (Karlin and Peres (2017)) Let (x∗, y∗) be a Nash equilibrium of a matrix game A ∈ Rm×n. Then the following holds
true:

• For any i ∈ Supp(x∗), ⟨emi , Ay∗⟩ = V ∗
A . Similarly, for any j ∈ Supp(y∗), ⟨x∗, Aenj ⟩ = V ∗

A .
• For any i /∈ Supp(x∗), ⟨emi , Ay∗⟩ ≤ V ∗

A . Similarly, for any j /∈ Supp(y∗), ⟨x∗, Aenj ⟩ ≥ V ∗
A .

3. (Bohnenblust et al. (1950)) Consider a matrix game on A ∈ Rm×n that has a unique Nash equilibrium (x∗, y∗). Then
the following holds true:

• |Supp(x∗)| = |Supp(y∗)|
• For any i ∈ Supp(x∗), ⟨emi , Ay∗⟩ = V ∗

A . Similarly, for any j ∈ Supp(y∗), ⟨x∗, Aenj ⟩ = V ∗
A .

• For any i /∈ Supp(x∗), ⟨emi , Ay∗⟩ < V ∗
A . Similarly, for any j /∈ Supp(y∗), ⟨x∗, Aenj ⟩ > V ∗

A .

Next we present some useful properties of Matrix games.
Proposition 2. If ∆min = 0, then the matrix game on A = [a, b; c, d] has a PSNE.

Proof. W.l.o.g let us assume that a = b. If a ≥ c, then (1, 1) is a PSNE of A. If a ≥ d, then (1, 2) is a PSNE of A. If
a ≤ c ≤ d, then (2, 1) is a PSNE of A. If a ≤ d ≤ c, then (2, 2) is a PSNE of A.

Proposition 3. If the matrix game on A = [a, b; c, d] has a Nash equilibrium (x∗, y∗) such that
min{| Supp(x∗)|, | Supp(y∗)|} = 1, then the matrix game on A has a PSNE.

Proof. If Supp(x∗) = {i} and Supp(y∗) = {j}, then (i, j) is a PSNE of A. Now w.l.o.g let us assume that Supp(x∗) = {1}
and Supp(y∗) = {1, 2}. This implies that a = b. Hence due to Proposition 2, matrix game on A has a PSNE.

Proposition 4. If the matrix game on A = [a, b; c, d] does not have a PSNE, then either a < b, a < c, d < b and d < c or
a > b, a > c, d > b and d > c.

Proof. Due to Proposition 2, we have ∆min > 0. Let us first assume that a > b. Then d > c otherwise A has a PSNE.
Similarly we have a > c otherwise (2, 1) would be a PSNE of A. Also we have b < d otherwise (1, 2) would be a PSNE of
A. Similarly we can show that if a < b, then a < c, d < b and d < c.

Proposition 5. 1. The matrix game on A = [a, b; c, d] has a unique Nash equilibrium which is not a PSNE if and only if
one of the following condition holds true:

• a < b, a < c, d < b and d < c

• a > b, a > c, d > b and d > c

2. Consider a matrix game on A = [a, b; c, d] that has a unique Nash equilibrium (x∗, y∗) which is not a PSNE. Then
x∗ =

(
d−c
D , a−b

D

)
, y∗ =

(
d−b
D , a−c

D

)
and V ∗

A = ad−bc
D where D = a− b− c+ d.

Proof. Let us assume that a < b, a < c, d < b and d < c. Then the matrix game on A = [a, b; c, d] does not have a PSNE.
Hence due to Proposition 3, any Nash equilibrium (x∗, y∗) of the matrix game on A has Supp(x∗) = Supp(y∗) = {1, 2}.
Let ((x, 1− x), (y, 1− y)) be a Nash equilibrium of matrix game on A. Then it must satisfy the following equations:

ax+ (1− x)c = bx+ (1− x)d

ay + (1− y)b = cy + (1− y)d

The above equations have a unique solution which is x = d−c
a−b−c+d and y = d−b

a−b−c+d . In a similar way we can show that
if a > b, a > c, d > b and d > c, then the matrix game on A has unique Nash equilibrium ((x, 1− x), (y, 1− y)) where
x = d−c

a−b−c+d and y = d−b
a−b−c+d . We also have V ∗

A = d−c
D · a+ a−b

D · c = ad−bc
D where D = a− b− c+ d.

Next let us assume that the matrix game on A = [a, b; c, d] has a unique Nash equilibrium which is not a PSNE. Then it
does not have a PSNE. Due to Proposition 4, either a < b, a < c, d < b and d < c or a > b, a > c, d > b and d > c.
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Proposition 6. Consider a matrix A = [a, b; c, d]. If ∆min > 0, then the input matrix A has a unique Nash Equilibrium.

Proof. If A does not have a PSNE, then due to Propositions 4 and 5, we get that the matrix A has a unique Nash Equilibrium
which is not a PSNE.

Let ∆min > 0. Let us assume that A has a PSNE. W.l.o.g. let the element (1, 1) be a PSNE. Due to the definition of
PSNE, we have a < b and a > c. If d < b, then (1, 1) is the unique Nash Equilibrium of A as a < b and strategy 1 strictly
dominates strategy 2 for the row player. Similarly if d > c, then (1, 1) is the unique Nash Equilibrium of A as a > c and
strategy 1 strictly dominates strategy 2 for the column player. The final case d < c and d > b is not possible otherwise we
would have d > b > a > c which is contradictory. Hence A has a unique Nash Equilibrium.

Proposition 7. The matrix game on A = [a, b; c, d] has a unique Nash equilibrium which is not a PSNE if and only if the
matrix game on A does not have a PSNE.

Proof. If the matrix game on A = [a, b; c, d] has a unique Nash equilibrium which is not a PSNE, then due to Proposition 5
either a < b, a < c, d < b and d < c or a > b, a > c, d > b and d > c. This implies that A does not have a PSNE.

If A does not have a PSNE, then due to Proposition 4 either a < b, a < c, d < b and d < c or a > b, a > c, d > b and d > c.
This along with Proposition 5 implies that the matrix game on A has a unique Nash equilibrium which is not a PSNE.

Proposition 8. Any ε-Nash equilibrium of a matrix game A is also an ε-good solution of the matrix game A.

Proof. Let (x∗, y∗) be a Nash equilibrium of A and (x, y) be an ε-Nash equilibrium of A. Recall that V ∗
A = ⟨x∗, Ay∗⟩.

Now we have the following:

⟨x∗, Ay∗⟩ ≥ ⟨x,Ay∗⟩ (as (x∗, y∗) is a Nash equilibrium)
≥ ⟨x,Ay⟩ − ε (as (x, y) is an ε-Nash equilibrium)

Similarly we have the following:

⟨x∗, Ay∗⟩ ≤ ⟨x∗, Ay⟩ (as (x∗, y∗) is a Nash equilibrium)
≤ ⟨x,Ay⟩+ ε (as (x, y) is an ε-Nash equilibrium)

Hence (x, y) is also an ε-good solution.

B Minimax sample complexity, Proof of Lemma 1

Proof. First note that

P

 m⋃
i=1

n⋃
j=1

{|Āij −Aij | ≥ ε/2}

 ≤ m∑
i=1

n∑
j=1

P(|Āij −Aij | ≥ ε/2) ≤
m∑
i=1

n∑
j=1

δ

mn
= δ

where the last inequality follows from a sub-Gaussian tail bound on our 1-sub-Gaussian observations. The sub-Gaussian tail
bound, also known as Hoeffding bound, is as follows.

Lemma 7 (sub-Gaussian tail bound). Let X1, X2, . . . , Xn be i.i.d samples from a 1-sub-Gaussian distribution with mean µ.
Then we have the following:

P

[∣∣∣∣∣ 1n ·
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥
√

2 log(2/δ)

n

]
≤ δ

Thus, in what follows assume |Āij −Aij | ≤ ε/2 for all (i, j) ∈ [m]× [n]. For any x′ ∈ m we have

⟨x,Ay⟩ = ⟨x, Āy⟩+
∑
i,j

(Aij − Āi,j)xiyj

≥ ⟨x, Āy⟩ − ε

2

≥ ⟨x′, Āy⟩ − ε

2
(as (x, y) is a NE of Ā)

≥ ⟨x′, Ay⟩ − ε
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Similarly, for any y′ ∈ n we have

⟨x,Ay⟩ ≤ ⟨x, Āy⟩+ ε

2

≤ ⟨x, Āy′⟩+ ε

2
(as (x, y) is a NE of Ā)

≤ ⟨x,Ay′⟩+ ε

which completes the proof.

C Proof of ε-good solution Upper Bound

We establish the sample complexity and the correctness of the Algorithm 1 by proving the Theorem 4.

Proof of Theorem 4. Let Āij,t denote the empirical mean of Aij at time step t. Let us begin by defining two events:

G :=

T⋂
t=1

2⋂
i=1

2⋂
j=1

{|Aij − Āij,t| ≤
√

2 log(16T/δ)
t }

E :=

2⋂
i=1

2⋂
j=1

{|Aij − Āij,T | ≤
√

2 log(16/δ)
T }

A union bound and sub-Gaussian-tail bound demonstrates that P(Gc ∪Ec) ≤ P(Gc) + P(Ec) ≤ δ. Consequently, events
E and G hold simultaneously with probability at least 1− δ, so in what follows, assume they hold.

If A has a PSNE and if the condition of line 7 of Algorithm 1 is satisfied, then we identify an ε-good solution in 800 log( 16T
δ )

∆2
min

time steps due to Lemma 9 and Corollary 1. On the other hand, if A has a PSNE but the for loop completes after
t = T iterations, then we identify an ε-good solution in T = 8 log(16/δ)

ε2 time steps due to Lemma 1. Note that in this case,

T <
800 log( 16T

δ )

∆2
min

due to Lemma 9. Hence, if A has a PSNE, we identify an ε-good solution in O
(
min

{
log(1/δ)

ε2 , log(T/δ)
∆2

min

})
time steps.

Let us now assume for the rest of the proof that A has a unique NE which is not a PSNE. If the condition of line 9 of
Algorithm 1 is satisfied, then we identify an ε-good solution in T = 8 log(16/δ)

ε2 time steps due to Lemma 1. Now observe

that in this case T = O
(
min

{
log(1/δ)

ε2 , log(T/δ)
ε|D|

})
due to Lemma 13. On the other hand, if the for loop completes after

t = T iterations, then we identify an ε-good solution in T = 8 log(16/δ)
ε2 time steps due to Lemma 1. Note that in this case,

T <
800 log( 16T

δ )

∆2
min

due to Lemma 9.

Now let us assume for the rest of the proof that the condition in the line 12 is satisfied. Then due to Lemma 12, we have
64 log( 16

δ )

ε|D| ≤ N ≤ 96 log( 16
δ )

ε|D| . If the condition in the line 14 is satisfied, then we identify an ε-good solution in T = 8 log(16/δ)
ε2

time steps due to Lemma 1. Now observe that in this case T = O
(
min

{
log(1/δ)

ε2 ,max
{

log(T/δ)
∆2

min
, log(T/δ)

ε|D|

}})
as

T <
800 log( 16T

δ )

∆2
min

+ N . If the condition in the line 14 is not satisfied, then we identify an ε-good solution due to
Lemma 15. In this case, let the number of times we are required to sample each element be n0. Then n0 ≤ T and
n0 ≤

800 log( 16T
δ )

∆2
min

+
96 log( 16

δ )

ε|D| . Hence, n0 = O
(
min

{
log(1/δ)

ε2 ,max
{

log(T/δ)
∆2

min
, log(T/δ)

ε|D|

}})
.

C.1 Consequential lemmas of Algorithm 1’s conditional statements

Recall the definitions of events E and G. We first present a few lemmas that deal with empirical estimates and instance
dependent parameters like ∆̃min, D̃,∆min and |D|. Whenever we fix a time step t ≤ T and discuss the parameters like
∆̃min, D̃ and ∆, we consider those values that have been assigned to these parameters during the time step t. We begin with
upper bounding |∆min − ∆̃min| in the following lemma.

Lemma 8. Fix a time step t ≤ T . If the event G holds, then we have the following:

|∆min − ∆̃min| ≤ 2∆
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Proof. Let us assume that the event G holds. Then for every element (i, j), we have |Aij − Āij | ≤ ∆. Then we have∣∣|Aij −Ai′j′ | − |Āij − Āi′j′ |
∣∣ ≤ 2∆ for any i, j, i′, j′. By repeatedly applying the Lemma 18, we get |∆min − ∆̃min| ≤

2∆.

The following lemma upper bounds the number of time steps required to satisfy the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 .

Lemma 9. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then t ≤ 800 log( 16T
δ )

∆2
min

.

Proof. Consider the time step t =
800 log( 16T

δ )

∆2
min

. Let us assume that the event G holds. Then for every element (i, j), we

have |Aij − Āij | ≤ ∆ =

√
2 log( 16T

δ )

t = ∆min

20 . Now observe that ∆̃min + 2∆ ≤ ∆min + 4∆ = 6∆min

5 . Similarly, we have

∆̃min − 2∆ ≥ ∆min − 4∆ ≥ 4∆min

5 . Hence, we have 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 .

The following lemma bounds the ratio ∆̃min

∆min
.

Lemma 10. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then 5
6 ≤

∆̃min

∆min
≤ 5

4 at the time step t.

Proof. Let us assume that the event G holds. Then for every element (i, j), we have |Aij−Āij | ≤ ∆. As ∆̃min+2∆
∆̃min−2∆

≤ 3
2 , we

have ∆ ≤ ∆̃min

10 . Now observe that ∆̃min

∆min
≤ ∆̃min

∆̃min−2∆
≤ ∆̃min

4∆̃min/5
= 5

4 . Next observe that ∆̃min

∆min
≥ ∆̃min

∆̃min+2∆
≥ ∆̃min

6∆̃min/5
=

5
6 .

The following lemma and the subsequent corollary relates the empirical matrix Ā to the input matrix A.

Lemma 11. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then at any time step t0 such that t ≤ t0 ≤ T , we have the following:

• If Aij1 > Aij2 , then Āij1 > Āij2

• If Ai1j > Ai2j , then Āi1j > Āi2j

• If Āij1 > Āij2 , then Aij1 > Aij2

• If Āi1j > Āi2j , then Ai1j > Ai2j

Proof. As ∆̃min+2∆
∆̃min−2∆

≤ 3
2 , we have ∆ ≤ ∆̃min

10 . Due to Lemma 10, we have ∆ ≤ ∆min

8 . As event G holds, for any element

(i, j), we have |Aij − Āij | ≤
√

2 log( 16T
δ )

t0
≤ ∆.

If Aij1 > Aij2 , we have the following:

Āij1 ≥ Aij1 −∆

≥ Aij2 +∆min −∆ (as Aij1 −Aij2 ≥ ∆min)

> Aij2 +∆ (as ∆ ≤ ∆min

8 )
≥ Āij2 (as event G holds)
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If Ai1j > Ai2j , we have the following:

Āi1j ≥ Ai1j −∆

≥ Ai2j +∆min −∆ (as Ai1j −Ai2j ≥ ∆min)

> Ai2j +∆ (as ∆ ≤ ∆min

8 )
≥ Āi2j (as event G holds)

If Āij1 > Āij2 , we have the following:

Aij1 ≥ Āij1 −∆

≥ Āij2 + ∆̃min −∆ (as Āij1 − Āij2 ≥ ∆̃min)

> Āij2 +∆ (as ∆ ≤ ∆̃min

10 )
≥ Aij2 (as event G holds)

If Āi1j > Āi1j , we have the following:

Ai1j ≥ Āi1j −∆

≥ Āi2j + ∆̃min −∆ (as Āi1j − Āi2j ≥ ∆̃min)

> Āi2j +∆ (as ∆ ≤ ∆̃min

10 )
≥ Ai2j (as event G holds)

Corollary 1. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then at any time step t0 such that t ≤ t0 ≤ T , we have the following:

• (i, j) is PSNE of A if and only if (i, j) is a PSNE of Ā.

• A does not have a PSNE if and only if Ā does not have a PSNE.

The following lemma bounds the ratio D̃
|D| .

Lemma 12. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds

and A has a unique Equilibrium which is not a PSNE, then 5
6 ≤

D̃
|D| ≤

5
4 at the time step t.

Proof. Let us assume that the event G holds. Then for every element (i, j), we have |Aij − Āij | ≤ ∆. As ∆̃min+2∆
∆̃min−2∆

≤ 3
2

and 2∆̃min ≤ D̃, we have ∆ ≤ ∆̃min

10 ≤ D̃
20 . Now observe that D̃

|D| ≤
D̃

D̃−4∆
≤ D̃

4D̃/5
= 5

4 . Next observe that
D̃
|D| ≥

D̃
D̃+4∆

≥ D̃
6D̃/5

= 5
6 .

The following two lemmas bound |D| when certain conditions in the algorithm 1 hold true.

Lemma 13. If the condition in the line 9 of the algorithm 1 holds true and event G holds, then |D| < 12ε

Proof. Due to Lemma 12, we have |D| ≤ 6D̃
5 < 12ε.

Lemma 14. If the condition in the line 12 of the algorithm 1 holds true and event G holds, then |D| ≥ 8ε

Proof. Due to Lemma 12, we have |D| ≥ 4D̃
5 ≥ 8ε.
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For any A ∈ Rm×n, let A(∆) := {B ∈ Rn×n : maxi,j |(B−A)ij | ≤ ∆}. We now present the main lemma that establishes
the correctness of the algorithm 1 when the input matrix A does not have a PSNE.

Lemma 15. If the condition in the line 12 of the algorithm 1 holds true and event G holds, then Nash equilibrium of the
empirical matrix Ā is also an ε-good solution of the input matrix A.

Proof. Ā ∈ A

(√
εD̃
40

)
as event G holds true. Due to Lemma 12, we have D̃ ≤ 5|D|

4 . Hence, Ā ∈ A

(√
ε|D|
32

)
which in

turn implies that A ∈ Ā

(√
ε|D|
32

)
. Now we show that

√
ε|D|

4
√
2

< |Ā11−Ā12−Ā21+Ā22|
12 .

|Ā11 − Ā12 − Ā21 + Ā22|
12

≥
|A11 −A12 −A21 +A22| − 4 ·

√
ε|D|
32

12
(as Ā ∈ A

(√
ε|D|
32

)
)

=
|D| −

√
ε|D|/2

12

≥
√
8ε|D| −

√
ε|D|/2

12
(as |D| ≥ 8ε)

>

√
ε|D|
4
√
2

Let (x, y) be the Nash equilibrium of Ā. Now by applying Lemma 17 we have that |V ∗
A − ⟨x,Ay⟩| ≤ ε. We can apply

lemma 17 as A ∈ Ā

(√
ε|D|

4
√
2

)
,
√

ε|D|
4
√
2

< |Ā11−Ā12−Ā21+Ā22|
12 and Ā has a unique Nash equilibrium which is not a PSNE

(due to Corollary 1).

C.2 Technical Lemmas for Upper Bound

In this section, we present few technical lemmas that are used to establish the upper bound on the sample complexity of
finding ε-good solution.

Let A ∈ Rn×n. Recall that A(∆) := {B ∈ Rn×n : maxi,j |(B − A)ij | ≤ ∆} and for any n-dimensional vector v, v(i)
denotes its i-th component. Now we present the following lemma, where we relate V ∗

A , the Nash equilibrium of A, to V ∗
B

where B ∈ A(∆).

Lemma 16. Consider a matrix A ∈ Rn×n with unique Nash equilibrium (x∗, y∗) which is not a PSNE. Then for any
B ∈ A(∆) that has a unique Nash equilibrium (x, y) which is not a PSNE, we have the following:

V ∗
B = ⟨x∗, By∗⟩+

n∑
j=1

y∗(j)

n∑
i=1

θi∆ij

where ∆ij := Bij −Aij and θi = x(i)− x∗(i).

Proof. For all i ∈ [n], let xi = x(i), yi = y(i), x∗
i = x∗(i) and y∗i = y∗(i).

First observe that ⟨x∗, By∗⟩ = V ∗
A +

∑
i,j x

∗
i y

∗
j∆ij . Also observe that

∑n
i=1 θi = 0. Let Bj denote the j-th column of B.

Let Vj := ⟨x,Bj⟩. Now we have the following:

⟨x,Bj⟩ =
n∑

i=1

[x∗
iAij + x∗

i∆ij + θiAij + θi∆ij ]

= V ∗
A +

n∑
i=1

x∗
i∆ij +

n∑
i=1

θiAij +

n∑
i=1

θi∆ij (as
∑n

i=1 x
∗
iAij = V ∗

A)

Let V = (V1, . . . , Vn). Since Supp(x) = Supp(y) = [n], therefore we have for all j ∈ [n], Vj = V ∗
B . Now we have the
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following:

V ∗
B = ⟨V, y∗⟩

=

n∑
j=1

y∗jV
∗
A +

n∑
j=1

y∗j

n∑
i=1

x∗
i∆ij +

n∑
j=1

y∗j

n∑
i=1

θiAij +

n∑
j=1

y∗j

n∑
i=1

θi∆ij

= V ∗
A +

n∑
i=1

n∑
j=1

x∗
i y

∗
j∆ij +

n∑
i=1

θi

n∑
j=1

y∗jAij +

n∑
j=1

y∗j

n∑
i=1

θi∆ij

= ⟨x∗, By∗⟩+ V ∗
A

n∑
i=1

θi +

n∑
j=1

y∗j

n∑
i=1

θi∆ij (as
∑n

j=1 y
∗
jAij = V ∗

A)

= ⟨x∗, By∗⟩+
n∑

j=1

y∗j

n∑
i=1

θi∆ij

Let us define two matrices A1 and A2 as follows:

A1 =

[
a b
c d

]

A2 =

[
a+∆11 b+∆12

c+∆21 d+∆22

]
Let ∆ = maxi,j |∆ij |. Now we present the following lemma, where we upper bound |V ∗

A2
− ⟨x∗, A2y

∗⟩| where (x∗, y∗) is
the Nash equilibrium of A1.

Lemma 17. Let A1 and A2 have a unique NE which is not a PSNE. Let (x∗, y∗) be the NE of the matrix game A1. Let
∆ ≤ |a− b− c+ d|/12. Then we have the following:

|V ∗
A2
− ⟨x∗, A2y

∗⟩| ≤ 16∆2

|D|
≤ 32∆2

|D′|

where D := a− b− c+ d, D′ := a− b− c+ d+∆11 −∆12 +∆22 −∆21.

Proof. Let (x∗, y∗) = ((x, 1 − x), (y, 1 − y)) be the NE of the matrix game A1 where x = d−c
a−b−c+d and y = d−b

a−b−c+d .
Let ((x′, 1 − x′), (y′, 1 − y′)) be the NE of the matrix game A2 where x′ = d−c+∆22−∆21

a−b−c+d+∆11−∆12+∆22−∆21
and y′ =

d−b+∆22−∆12

a−b−c+d+∆11−∆12+∆22−∆21
For convenience, let N := d − c and D := a − b − c + d. Hence, we have x = |N |

|D| and

x′ = N+∆22−∆21

D+∆11−∆12+∆22−∆21
. Now we will upper bound x′ as follows:

x′ ≤ |N |+ 2∆

|D| − 4∆

=

(
|N |
|D|

+
2∆

|D|

)(
1− 4∆

|D|

)−1

≤
(
|N |
|D|

+
2∆

|D|

)(
1 +

6∆

|D|

)
(as 1

1−z ≤ 1 + 3z
2 when 0 ≤ z ≤ 1

3 )

=
|N |
|D|

+
2∆

|D|
+
|N |
|D|
· 6∆
|D|

+
12∆2

|D|2

≤ |N |
|D|

+
9∆

D
(as |N |

|D| ≤ 1 and ∆
|D| ≤

1
12 )
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Next we will lower x′ as follows:

x′ ≥ |N | − 2∆

|D|+ 4∆

=

(
|N |
|D|
− 2∆

|D|

)(
1 +

4∆

|D|

)−1

≥
(
|N |
|D|
− 2∆

|D|

)(
1− 4∆

|D|

)
(as 1

1+z > 1− z when z > 0)

=
|N |
|D|
− 2∆

|D|
− |N |
|D|
· 4∆
|D|

+
8∆2

|D|2

≥ |N |
|D|
− 6∆

|D|
(as |N |

|D| ≤ 1)

Hence we have |x′ − x| ≤ 8∆
D . Due to Lemma 16, we have the following:

|V ∗
B − ⟨x∗, By∗⟩| ≤

2∑
j=1

y∗(j)

2∑
i=1

|θi∆ij |

≤
2∑

j=1

y∗(j)

2∑
i=1

8∆2

|D|

=
18∆2

|D|

2∑
j=1

y∗(j)

=
18∆2

|D|

≤ 32∆2

|D′|
(as |D′| ≥ |D| − 4∆ ≥ 2|D|/3)

The next lemma states some basic inequalities that will be used frequently in the analysis that follows.

Lemma 18. Let a, ā, b, b̄,∆′ be positive real numbers. Let |a− ā| ≤ ∆′ and |b− b̄| ≤ ∆′. Then we have the following:

• |a+ b− (ā+ b̄)| ≤ 2∆′

• |min{a, b} −min{ā, b̄}| ≤ ∆′

• |max{a, b} −max{ā, b̄}| ≤ ∆′

Proof. First observe that |a− ā+ b− b̄| ≤ |a− ā|+ |b− b̄| ≤ 2∆′.

Next w.l.o.g let us assume that min{a, b} = a. If min{ā, b̄} = ā, then we have |min{a, b}−min{ā, b̄}| = |a− ā| ≤ ∆′. If
min{ā, b̄} = b̄, then b̄ ≤ ā ≤ a+∆′ and b̄ ≥ b−∆′ ≥ a−∆′. Hence, in this case also we have |min{a, b}−min{ā, b̄}| =
|a− b̄| ≤ ∆′.

Finally w.l.o.g let us assume that max{a, b} = b. If max{ā, b̄} = b̄, then we have |max{a, b}−max{ā, b̄}| = |b− b̄| ≤ ∆′.
If max{ā, b̄} = ā, then ā ≥ b̄ ≥ b − ∆′ and ā ≤ a + ∆′ ≤ b + ∆′. Hence, in this case also we have |max{a, b} −
max{ā, b̄}| = |b− ā| ≤ ∆′.

D Proof of ε-good solution lower bound with respect to D

Before finishing the proof of the theorem 1, we begin with the proof of Lemma 2
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Proof. W.l.o.g let us assume that D > 0. For □ ∈ {−∆, 0,∆} it can be shown that

V ∗
A□

=
ad− bc

D
+

d− a

D
□− □2

D

⟨x′, A□y
′⟩ = ad− bc

D
+

d− a

D
□+

αβ + (α+ β)□
D

where x′ = (d−c+α
D , a−b−α

D ) ∈ 2 and y′ = (d−b+β
D , a−c−β

D ) ∈ 2 for any α ∈ [c− d, a− b] and β ∈ [b− d, a− c]. Note
that this parameterization ensures the range of x′, y′ is equal to 2. We refer the reader to the Appendix D.2 for the detailed
calculations.

We will now show that regardless of what values (α, β) take (equivalently, regardless of what values (x′, y′) take), there is at
least one of the three alternative matrices has error of at least 3ε/2. If |αβ| ≥ ∆2/2, then |V ∗

A0
− ⟨x′, A0y

′⟩| = |αβ|
D ≥ ∆2

2D .

If |αβ| < ∆2/2 and α + β ≥ 0, then ⟨x′, A∆y
′⟩ − V ∗

A∆
= ∆2+αβ+(α+β)∆

D ≥ ∆2

2D . Similarly, if |αβ| < ∆2/2 and if

α+ β < 0, then ⟨x′, A−∆y
′⟩ − V ∗

A−∆
= ∆2+αβ−(α+β)∆

D ≥ ∆2

2D . Hence, we proved that for any (x′, y′) ∈ 2 × 2, there
exists a matrix B ∈ {A−∆, A0, A∆} such that

|V ∗
B − ⟨x′, By′⟩| ≥ ∆2

2D
=

3ε

2

D.1 Proof of Theorem 1

Let νAi,j = N (Aij , 1) be the distribution of an observation when playing pair (i, j) with matrix A. Let PA denote the
probability law of the internal randomness of the algorithm and random observations. If an algorithm is (ε, δ)-PAC-good and
outputs a solution (x̂, ŷ) then minA PA(|V ∗

A − ⟨x̂, Aŷ⟩| ≤ ε) ≥ 1− δ. We will show that if an algorithm is (ε, δ)-PAC-good
then it can also accomplish a particular hypothesis. We will conclude by noting that any procedure that can accomplish the
hypothesis test must take the claimed sample complexity.

For any pair of mixed strategies (x̂, ŷ) output by the procedure at the stopping time τ , define

ϕ = {A−∆, A0, A∆} \ arg max
B∈{A−∆,A0,A∆}

|V ∗
B − ⟨x̂, Bŷ⟩|,

breaking ties arbitrarily in the maximum so that ϕ ∈ {A−∆, A0} ∪ {A−∆, A∆} ∪ {A0, A∆}. Note that

PA0(A0 ∈ ϕ) ≥ PA0(A0 ∈ ϕ, |V ∗
A0
− ⟨x̂, A0ŷ⟩| ≤ ε) = PA0(|V ∗

A0
− ⟨x̂, A0ŷ⟩| ≤ ε) ≥ 1− δ (1)

where the equality follows from the Lemma 2: at least one of the three matrices must have a loss of at least 3ε/2, but A0 has
a loss of at most ε, thus A0 ∈ ϕ. Now because

2max{PA0(ϕ = {A0, A−∆}),PA0(ϕ = {A0, A∆})} ≥ PA0(ϕ = {A0, A−∆}) + PA0(ϕ = {A0, A∆})
= PA0(A0 ∈ ϕ) ≥ 1− δ

we have that PA0
(ϕ = {A0, A−∆}) ≥ 1−δ

2 or PA0
(ϕ = {A0, A∆}) ≥ 1−δ

2 . Let’s assume the former (the latter case is
handled identically). By the same argument as (1) we have that PA∆

(ϕ = {A0, A−∆}) ≤ δ.

For a stopping time τ , let Ni,j(τ) denote the number of times (i, j) is sampled. Recalling that νAi,j = N (Aij , 1), we have
by Lemma 1 of Kaufmann et al. (2016) that

EA0
[N1,1(τ)]KL(νA0

1,1, ν
A∆
1,1 ) + EA0

[N2,2(τ)]KL(νA0
2,2, ν

A∆
2,2 ) ≥ d(PA0

(ϕ = {A0, A−∆}),PA∆
(ϕ = {A0, A−∆}))

where KL(νA0
1,1, ν

A∆
1,1 ) = KL(νA0

2,2, ν
A∆
2,2 ) = ∆2/2 and d(p, q) = p log(pq ) + (1− p) log(1−p

1−q ). Since

d(PA0
(ϕ = {A0, A−∆}),PA∆

(ϕ = {A0, A−∆})) ≥ d( 1−δ
2 , δ)

= 1−δ
2 log( 1−δ

2δ ) + 1+δ
2 log( 1+δ

2(1−δ) )

= 1
2 log(

1+δ
4δ )− δ

2 log(
(1−δ)2

δ(1+δ) )

≥ 1
2 log(

1+δ
4δ )− 1/8 > 1

2 log(1/30δ)
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and τ = N1,1(τ) +N1,2(τ) +N2,1(τ) +N2,2(τ) we conclude that

EA0
[τ ] ≥ log(1/30δ)

∆2
=

log(1/30δ)

3ε|D|

as claimed.

D.2 Calculations for Lemma 2

Proposition 9. For □ ∈ {−∆, 0,∆}, V ∗
A□

= ad−bc
D + d−a

D □− □2

D

Proof. V ∗
A□

= (a+□)(d−□)−bc
a+□−b−c+d−□ = ad−bc

D + d−a
D □− □2

D

Recall that x′ = (d−c+α
D , a−b−α

D ) and y′ = (d−b+β
D , a−c−β

D ). Now we present the following proposition.

Proposition 10. For □ ∈ {−∆, 0,∆}, ⟨x′, A□y
′⟩ = ad−bc

D + d−a
D □+ αβ+(α+β)□

D

Proof. Let V1 = ⟨x′, (a+□, c)⟩ and V2 = ⟨x′, (b, d−□)⟩. First we have the following.

V1 =
d− c+ α

D
· (a+□) +

a− b− α

D
· c

=
d− c

D
· a+

a− b

D
· c+ d− c+ α

D
□+

a− c

D
· α

=
ad− bc

D
+

d− c+ α

D
□+

a− c

D
· α

Similarly, we have the following.

V2 =
d− c+ α

D
· b+ a− b− α

D
· (d−□)

=
d− c

D
· b+ a− b

D
· d− a− b− α

D
□+

b− d

D
· α

=
ad− bc

D
− a− b− α

D
□+

b− d

D
· α

Now observe that ⟨x′, A□y
′⟩ = ⟨y′, (V1, V2)⟩. Now we have the following:

⟨y′, (V1, V2)⟩ =
〈
y′,

(
ad− bc

D
,
ad− bc

D

)〉
+

d− b+ β

D
· d− c+ α

D
·□− a− c− β

D
· a− b− α

D
·□

+
d− b+ β

D
· a− c

D
· α+

a− c− β

D
· b− d

D
· α

=
ad− bc

D
+

(d− b)(d− c)− (a− c)(a− b)

D2
□+

(d− c+ α)β + (a− b− α)β

D2
·□

+
(d− b)α+ (a− c)α

D2
·□+

(d− b)(a− c)α− (a− c)(d− b)α

D2
+

a− b− c+ d

D2
· αβ

=
ad− bc

D
+

d− a

D
□+

(α+ β)□+ αβ

D
(2)

We get (2) as D = a− b− c+ d and (d− b)(d− c)− (a− c)(a− b) = (d− a)(a− b− c+ d).

E Proof of ε-good lower bound with respect to ε, ∆min

Before finishing the proof of the Theorem 2, we begin with the proof of Lemma 3

Proof. Let us first consider the case when d− c > 2∆. Observe that V ∗
A0

= ad−bc
D , V ∗

A∆
= ad−bc

D + (d−b)−(a−c)
D ·∆ and

V ∗
A−∆

= a−∆. For any α ∈ [ c−d
D , a−b

D ] and β ∈ [ b−d
D , a−c

D ], let x′ = (d−c
D + α, a−b

D − α) and y′ = (d−b
D + β, a−c

D − β).
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Note that this parameterization ensures the range of x′, y′ is equal to 2. It can be shown that ⟨x′, A□y
′⟩ = ad−bc

D +
(d−b)−(a−c)

D □+ 2□β +Dαβ. We refer the reader to the Appendix E.2 for the detailed calculations.

We will now show that regardless of what values (α, β) take (equivalently, regardless of what values (x′, y′) take), there is at
least one of the three alternative matrices has error of more than ε. If |Dαβ| > ε, then |V ∗

A0
−⟨x′, A0y

′⟩| = |Dαβ| > ε. Let
f(∆) = (d−b)−(a−c)

D ∆+2∆β. If |Dαβ| ≤ ε and f(∆) ≥ ∆
2 , then ⟨x′, A∆y

′⟩−V ∗
A∆

= Dαβ+f(∆)− (d−b)−(a−c)
D ·∆ ≥

−ε+ ∆
2 > ε. Similarly, if |Dαβ| ≤ ε and f(∆) < ∆

2 , then V ∗
A−∆

− ⟨x′, A−∆y
′⟩ = (a−b)(a−c)

D −∆−Dαβ + f(∆) <

∆min −∆+ ε+ ∆
2 ≤ −ε. Hence, we proved that for any (x′, y′) ∈ 2 × 2, there exists a matrix B ∈ {A0, A∆, A2∆}

such that the following holds:
|V ∗

B − ⟨x′, By′⟩| > ε

Next we consider the case when d − c ≤ 2∆. Observe that V ∗
A0

= ad−bc
D , V ∗

A∆
= d − ∆ and V ∗

A−∆
= a − ∆. For

any α ∈ [ c−d
D , a−b

D ] and β ∈ [ b−d
D , a−c

D ], let x′ = (d−c
D + α, a−b

D − α) and y′ = (d−b
D + β, a−c

D − β). Note that this
parameterization ensures the range of x′, y′ is equal to 2. Recall that ⟨x′, A□y

′⟩ = ad−bc
D + (d−b)−(a−c)

D □+2□β+Dαβ.

We will now show that regardless of what values (α, β) take (equivalently, regardless of what values (x′, y′) take), there is
at least one of the three alternative matrices has error of more than ε. If |Dαβ| > ε, then |V ∗

A0
− ⟨x′, A0y

′⟩| = |Dαβ| > ε.
Let f(∆) = (d−b)−(a−c)

D ∆+ 2∆β. If |Dαβ| ≤ ε and f(∆) ≥ ∆
2 , then we have the following:

⟨x′, A∆y
′⟩ − V ∗

A∆
= Dαβ + f(∆)− (d− b)(d− c)

D
+∆

≥ −ε+ ∆

2
− d− c

2
+ ∆ (as d− b ≤ D/2)

≥ −ε+ ∆

2
(as d− c ≤ 2∆)

> ε

Similarly, if |Dαβ| ≤ ε and f(∆) < ∆
2 , then V ∗

A−∆
−⟨x′, A−∆y

′⟩ = (a−b)(a−c)
D −∆−Dαβ+f(∆) < ∆min−∆+ε+∆

2 ≤
−ε. Hence, we proved that for any (x′, y′) ∈ 2 × 2, there exists a matrix B ∈ {A0, A∆, A−∆} such that the following
holds:

|V ∗
B − ⟨x′, By′⟩| > ε

E.1 Proof of Theorem 2

Let νAi,j = N (Aij , 1) be the distribution of an observation when playing pair (i, j) with matrix A. Let PA denote the
probability law of the internal randomness of the algorithm and random observations. If an algorithm is (ε, δ)-PAC-good and
outputs a solution (x̂, ŷ) then minA PA(|V ∗

A − ⟨x̂, Aŷ⟩| ≤ ε) ≥ 1− δ. We will show that if an algorithm is (ε, δ)-PAC-good
then it can also accomplish a particular hypothesis. We will conclude by noting that any procedure that can accomplish the
hypothesis test must take the claimed sample complexity.

For any pair of mixed strategies (x̂, ŷ) output by the procedure at the stopping time τ , define

ϕ = {A−∆, A0, A∆} \ arg max
B∈{A−∆,A0,A∆}

|V ∗
B − ⟨x̂, Bŷ⟩|,

breaking ties arbitrarily in the maximum so that ϕ ∈ {A−∆, A0} ∪ {A−∆, A∆} ∪ {A0, A∆}. Note that

PA0
(A0 ∈ ϕ) ≥ PA0

(A0 ∈ ϕ, |V ∗
A0
− ⟨x̂, A0ŷ⟩| ≤ ε) = PA0

(|V ∗
A0
− ⟨x̂, A0ŷ⟩| ≤ ε) ≥ 1− δ (3)

where the equality follows from the Lemma 3: at least one of the three matrices must have a loss of more than ε, but A0 has
a loss of at most ε, thus A0 ∈ ϕ. Now because

2max{PA0
(ϕ = {A0, A−∆}),PA0

(ϕ = {A0, A∆})} ≥ PA0
(ϕ = {A0, A−∆}) + PA0

(ϕ = {A0, A∆})
= PA0

(A0 ∈ ϕ) ≥ 1− δ
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we have that PA0(ϕ = {A0, A−∆}) ≥ 1−δ
2 or PA0(ϕ = {A0, A∆}) ≥ 1−δ

2 . Let’s assume the former (the latter case is
handled identically). By the same argument as (3) we have that PA∆(ϕ = {A0, A−∆}) ≤ δ.

For a stopping time τ , let Ni,j(τ) denote the number of times (i, j) is sampled. Recalling that νAi,j = N (Aij , 1), we have
by Lemma 1 of Kaufmann et al. (2016) that

2∑
i=1

2∑
j=1

EA0
[Ni,j(τ)]KL(νA0

i,j , ν
A∆
i,j ) ≥ d(PA0

(ϕ = {A0, A−∆}),PA∆
(ϕ = {A0, A−∆}))

where for any i, j ∈ {1, 2}, KL(νA0
i,j , ν

A∆
i,j ) = ∆2/2 and d(p, q) = p log(pq ) + (1− p) log( 1−p

1−q ). Since

d(PA0(ϕ = {A0, A−∆}),PA∆(ϕ = {A0, A−∆})) ≥ d( 1−δ
2 , δ)

= 1−δ
2 log( 1−δ

2δ ) + 1+δ
2 log( 1+δ

2(1−δ) )

= 1
2 log(

1+δ
4δ )− δ

2 log(
(1−δ)2

δ(1+δ) )

≥ 1
2 log(

1+δ
4δ )− 1/8 > 1

2 log(1/30δ)

and τ = N1,1(τ) +N1,2(τ) +N2,1(τ) +N2,2(τ) we conclude that

EA0
[τ ] ≥ log(1/30δ)

∆2
= min

{
log(1/30δ)

36ε2
,
log(1/30δ)

36∆2
min

}
as claimed.

E.2 Calculations for Lemma 3

Recall that x′ = (d−c
D + α, a−b

D − α) and y′ = (d−b
D + β, a−c

D − β). Let (A□)
r
i denote the i-th row of A□ and (A□)

c
j

denote the j-th column of A□.

First, observe that ⟨x′, (A□)
c
1⟩ = d−c

D · a+ d−c
D ·□+ aα+□α+ a−b

D · c+ a−b
D ·□− cα−□α = ad−bc

D +□+ (a− c)α.
Similarly, we have ⟨x′, (A□)

c
2⟩ = d−c

D · b− d−c
D ·□+ bα−□α+ a−b

D · d− a−b
D ·□− dα+□α = ad−bc

D −□+ (b− d)α.

Now we present the following proposition.

Proposition 11. ⟨x′, A□y
′⟩ = ad−bc

D + (d−b)−(a−c)
D □+ 2□β +Dαβ

Proof. Let V1 = ⟨x′, (A□)
c
1⟩ and V2 = ⟨x′, (A□)

c
2⟩. Now observe that ⟨x′, A□y

′⟩ = ⟨y′, (V1, V2)⟩. Now we have the
following:

⟨y′, (V1, V2)⟩ =
〈
y′,

(
ad− bc

D
,
ad− bc

D

)〉
+

(
d− b

D
+ β

)
·□−

(
a− c

D
− β

)
·□

+

(
d− b

D
+ β

)
· (a− c)α−

(
a− c

D
− β

)
· (d− b)α

=
ad− bc

D
+

(d− b)− (a− c)

D
□+ 2□β

+
(d− b)(a− c)− (a− c)(d− b)

D
· α+ (a− b− c+ d)αβ

=
ad− bc

D
+

(d− b)− (a− c)

D
□+ 2□β +Dαβ (as D = a− b− c+ d)

F Proof of ε-good lower bound for games with multiple Nash Equilibria

Before finishing the proof of the Theorem 3, we begin with the proof of Lemma 4
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Proof. Let us first consider the case when D = d − c > 2∆. Observe that V ∗
A0

= a, V ∗
A∆

= a + (d−a)−(a−c)
D · ∆ and

V ∗
A−∆

= a−∆. For any α ∈ [−1, 0] and β ∈ [a−d
D , a−c

D ], let x′ = (1 + α,−α) and y′ = (d−a
D + β, a−c

D − β). Note that

this parameterization ensures the range of x′, y′ is equal to 2. It can be shown that ⟨x′, A□y
′⟩ = a + (d−a)−(a−c)

D □ +
2□β +Dαβ. We refer the reader to the Appendix F.2 for the detailed calculations.

We will now show that regardless of what values (α, β) take (equivalently, regardless of what values (x′, y′) take), there is at
least one of the three alternative matrices has error of more than ε. If |Dαβ| > ε, then |V ∗

A0
−⟨x′, A0y

′⟩| = |Dαβ| > ε. Let
f(∆) = (d−a)−(a−c)

D ∆+2∆β. If |Dαβ| ≤ ε and f(∆) ≥ ∆
2 , then ⟨x′, A∆y

′⟩−V ∗
A∆

= Dαβ+f(∆)− (d−a)−(a−c)
D ·∆ ≥

−ε+∆
2 > ε. Similarly, if |Dαβ| ≤ ε and f(∆) < ∆

2 , then V ∗
A−∆
−⟨x′, A−∆y

′⟩ = −∆−Dαβ+f(∆) < −∆+ε+∆
2 ≤ −ε.

Hence, we proved that for any (x′, y′) ∈ 2 × 2, there exists a matrix B ∈ {A0, A∆, A2∆} such that the following holds:

|V ∗
B − ⟨x′, By′⟩| > ε

Next we consider the case when d−c ≤ 2∆. Observe that V ∗
A0

= a, V ∗
A∆

= d−∆ and V ∗
A−∆

= a−∆. For any α ∈ [−1, 0]
and β ∈ [a−d

D , a−c
D ], let x′ = (1 + α,−α) and y′ = (d−a

D + β, a−c
D − β). Note that this parameterization ensures the range

of x′, y′ is equal to 2. Recall that ⟨x′, A□y
′⟩ = a+ (d−a)−(a−c)

D □+ 2□β +Dαβ.

We will now show that regardless of what values (α, β) take (equivalently, regardless of what values (x′, y′) take), there is
at least one of the three alternative matrices has error of more than ε. If |Dαβ| > ε, then |V ∗

A0
− ⟨x′, A0y

′⟩| = |Dαβ| > ε.
Let f(∆) = (d−a)−(a−c)

D ∆+ 2∆β. If |Dαβ| ≤ ε and f(∆) ≥ ∆
2 , then we have the following:

⟨x′, A∆y
′⟩ − V ∗

A∆
= Dαβ + f(∆)− (d− a)(d− c)

D
+∆

≥ −ε+ ∆

2
− d− c

2
+ ∆ (as d− a ≤ D/2)

≥ −ε+ ∆

2
(as d− c ≤ 2∆)

> ε

Similarly, if |Dαβ| ≤ ε and f(∆) < ∆
2 , then V ∗

A−∆
− ⟨x′, A−∆y

′⟩ = −∆−Dαβ + f(∆) < −∆+ ε+ ∆
2 ≤ −ε. Hence,

we proved that for any (x′, y′) ∈ 2 × 2, there exists a matrix B ∈ {A0, A∆, A−∆} such that the following holds:

|V ∗
B − ⟨x′, By′⟩| > ε

F.1 Proof of Theorem 2

Let νAi,j = N (Aij , 1) be the distribution of an observation when playing pair (i, j) with matrix A. Let PA denote the
probability law of the internal randomness of the algorithm and random observations. If an algorithm is (ε, δ)-PAC-good and
outputs a solution (x̂, ŷ) then minA PA(|V ∗

A − ⟨x̂, Aŷ⟩| ≤ ε) ≥ 1− δ. We will show that if an algorithm is (ε, δ)-PAC-good
then it can also accomplish a particular hypothesis. We will conclude by noting that any procedure that can accomplish the
hypothesis test must take the claimed sample complexity.

For any pair of mixed strategies (x̂, ŷ) output by the procedure at the stopping time τ , define

ϕ = {A−∆, A0, A∆} \ arg max
B∈{A−∆,A0,A∆}

|V ∗
B − ⟨x̂, Bŷ⟩|,

breaking ties arbitrarily in the maximum so that ϕ ∈ {A−∆, A0} ∪ {A−∆, A∆} ∪ {A0, A∆}. Note that

PA0
(A0 ∈ ϕ) ≥ PA0

(A0 ∈ ϕ, |V ∗
A0
− ⟨x̂, A0ŷ⟩| ≤ ε) = PA0

(|V ∗
A0
− ⟨x̂, A0ŷ⟩| ≤ ε) ≥ 1− δ (4)

where the equality follows from the Lemma 4: at least one of the three matrices must have a loss of more than ε, but A0 has
a loss of at most ε, thus A0 ∈ ϕ. Now because

2max{PA0
(ϕ = {A0, A−∆}),PA0

(ϕ = {A0, A∆})} ≥ PA0
(ϕ = {A0, A−∆}) + PA0

(ϕ = {A0, A∆})
= PA0

(A0 ∈ ϕ) ≥ 1− δ
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we have that PA0(ϕ = {A0, A−∆}) ≥ 1−δ
2 or PA0(ϕ = {A0, A∆}) ≥ 1−δ

2 . Let’s assume the former (the latter case is
handled identically). By the same argument as (4) we have that PA∆(ϕ = {A0, A−∆}) ≤ δ.

For a stopping time τ , let Ni,j(τ) denote the number of times (i, j) is sampled. Recalling that νAi,j = N (Aij , 1), we have
by Lemma 1 of Kaufmann et al. (2016) that

2∑
i=1

2∑
j=1

EA0
[Ni,j(τ)]KL(νA0

i,j , ν
A∆
i,j ) ≥ d(PA0

(ϕ = {A0, A−∆}),PA∆
(ϕ = {A0, A−∆}))

where for any i, j ∈ {1, 2}, KL(νA0
i,j , ν

A∆
i,j ) = ∆2/2 and d(p, q) = p log(pq ) + (1− p) log( 1−p

1−q ). Since

d(PA0
(ϕ = {A0, A−∆}),PA∆

(ϕ = {A0, A−∆})) ≥ d( 1−δ
2 , δ)

= 1−δ
2 log( 1−δ

2δ ) + 1+δ
2 log( 1+δ

2(1−δ) )

= 1
2 log(

1+δ
4δ )− δ

2 log(
(1−δ)2

δ(1+δ) )

≥ 1
2 log(

1+δ
4δ )− 1/8 > 1

2 log(1/30δ)

and τ = N1,1(τ) +N1,2(τ) +N2,1(τ) +N2,2(τ) we conclude that

EA0
[τ ] ≥ log(1/30δ)

∆2
=

log(1/30δ)

36ε2

as claimed.

F.2 Calculations for Lemma 4

Recall that x′ = (1 + α,−α) and y′ = (d−a
D + β, a−c

D − β). Let (A□)
r
i denote the i-th row of A□ and (A□)

c
j denote the

j-th column of A□.

First, observe that ⟨x′, (A□)
c
1⟩ = 1 · a + 1 · □ + aα + □α − cα − □α = a + □ + (a − c)α. Similarly, we have

⟨x′, (A□)
c
2⟩ = 1 · a− 1 ·□+ aα−□α− dα+□α = a−□+ (a− d)α.

Now we present the following proposition.

Proposition 12. ⟨x′, A□y
′⟩ = a+ (d−a)−(a−c)

D □+ 2□β +Dαβ

Proof. Let V1 = ⟨x′, (A□)
c
1⟩ and V2 = ⟨x′, (A□)

c
2⟩. Now observe that ⟨x′, A□y

′⟩ = ⟨y′, (V1, V2)⟩. Now we have the
following:

⟨y′, (V1, V2)⟩ = ⟨y′, (a, a)⟩+
(
d− a

D
+ β

)
·□−

(
a− c

D
− β

)
·□

+

(
d− a

D
+ β

)
· (a− c)α−

(
a− c

D
− β

)
· (d− a)α

= a+
(d− a)− (a− c)

D
□+ 2□β

+
(d− a)(a− c)− (a− c)(d− a)

D
· α+ (a− c+ d− a)αβ

= a+
(d− a)− (a− c)

D
□+ 2□β +Dαβ (as D = d− c)

G Proof of ε-Nash equilibrium Upper Bound

We establish the sample complexity and the correctness of the Algorithm 2 by proving the Theorem 6.
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Proof of Theorem 6. Let Āij,t denote the empirical mean of Aij at time step t. Let us begin by defining two events:

G :=

T⋂
t=1

2⋂
i=1

2⋂
j=1

{|Aij − Āij,t| ≤
√

2 log(16T/δ)
t }

E :=

2⋂
i=1

2⋂
j=1

{|Aij − Āij,T | ≤
√

2 log(16/δ)
T }

A union bound and sub-Gaussian-tail bound demonstrates that P(Gc ∪Ec) ≤ P(Gc) + P(Ec) ≤ δ. Consequently, events
E and G hold simultaneously with probability at least 1− δ, so in what follows, assume they hold.

If A has a PSNE and if the condition in the line 8 of the algorithm 2 is satisfied, then we identify an ε-Nash equilibrium
in 800 log( 16T

δ )

∆2
min

time steps due to Lemma 20 and Corollary 2. On the other hand, if A has a PSNE but the for loop

completes after t = T iterations, then we identify an ε-good solution in T = 8 log(16/δ)
ε2 time steps due to Lemma 1. Note

that in this case, T <
800 log( 16T

δ )

∆2
min

due to Lemma 20. Hence, if A has a PSNE, we identify an ε-Nash equilibrium in

O
(
min

{
log(1/δ)

ε2 , log(T/δ)
∆2

min

})
time steps.

Let us assume for the rest of the proof that A has a unique Nash equilibrium which is not a PSNE. If the condition in the line
10 of the algorithm 2 is satisfied, then we identify an ε-Nash equilibrium in T = 8 log(16/δ)

ε2 time steps due to Lemma 1.

Now observe that in this case T = O

(
min

{
log(1/δ)

ε2 ,
∆2

m2
log(T/δ)

ε2D2

})
due to Lemma 25. On the other hand, if the for loop

completes after t = T iterations, then we identify an ε-good solution in T = 8 log(16/δ)
ε2 time steps due to Lemma 1. Note

that in this case, T <
800 log( 16T

δ )

∆2
min

due to Lemma 20.

Now let us assume for the rest of the proof that the condition in the line 13 is satisfied. Then due to Lemma

26, we have
800∆2

m2
log( 16T

δ )

9ε2|D|2 ≤ N ≤ 450∆2
m2

log( 16T
δ )

ε2|D|2 . If the condition in the line 15 is satisfied, then we iden-

tify an ε-Nash equilibrium in T = 8 log(16/δ)
ε2 time steps due to Lemma 1. Now observe that in this case T =

O

(
min

{
log(1/δ)

ε2 ,max

{
log(T/δ)
∆2

min
,
∆2

m2
log(T/δ)

ε2D2

}})
as T <

800 log( 16T
δ )

∆2
min

+ N . If the condition in the line 15 is

not satisfied, then we identify an ε-Nash equilibrium due to Lemma 27. In this case, let the number of times we

are required to sample each element be n0. Then n0 ≤ T and n0 ≤
800 log( 16T

δ )

∆2
min

+
450∆2

m2
log( 16T

δ )

ε2|D|2 . Hence,

n0 = O

(
min

{
log(1/δ)

ε2 ,max

{
log(T/δ)
∆2

min
,
∆2

m2
log(T/δ)

ε2D2

}})
.

G.1 Consequential lemmas of Algorithm 2’s conditional statements

Recall the definitions of events E and G. We first present a few lemmas that deal with empirical estimates and instance
dependent parameters like ∆̃min, D̃, ∆̃m2

,∆m2
,∆min and |D|. Whenever we fix a time step t ≤ T and discuss the

parameters like ∆̃min, D̃, ∆̃m2
and ∆, we consider those values that have been assigned to these parameters during the time

step t.

We begin with upper bounding |∆min − ∆̃min| and |∆m2
− ∆̃m2

| in the following lemma.

Lemma 19. Fix a time step t ≤ T . If the event G holds, then we have the following:

• |∆min − ∆̃min| ≤ 2∆

• |∆m2
− ∆̃m2

| ≤ 2∆

Proof. As the event G holds true, we have
∣∣|Aij −Ai′j′ | − |Āij − Āi′j′ |

∣∣ ≤ 2∆ for any i, j, i′, j′. By repeatedly apply
Lemma 18, we get |∆min − ∆̃min| ≤ 2∆ and |∆m2

− ∆̃m2
| ≤ 2∆.

The following lemma upper bounds the number of time steps required to satisfy the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 .
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Lemma 20. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then t ≤ 800 log( 16T
δ )

∆2
min

.

Proof. Consider the time step t =
800 log( 16T

δ )

∆2
min

. Let us assume that the event G holds. Then for every element (i, j), we

have |Aij − Āij | ≤ ∆ =

√
2 log( 16T

δ )

t = ∆min

20 . Now observe that ∆̃min + 2∆ ≤ ∆min + 4∆ = 6∆min

5 . Similarly, we have

∆̃min − 2∆ ≥ ∆min − 4∆ ≥ 4∆min

5 . Hence, we have 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 .

The following two lemmas bound the ratios ∆̃min

∆min
and ∆̃m2

∆m2
.

Lemma 21. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then 5
6 ≤

∆̃min

∆min
≤ 5

4 at the time step t.

Proof. Let us assume that the event G holds. Then for every element (i, j), we have |Aij−Āij | ≤ ∆. As ∆̃min+2∆
∆̃min−2∆

≤ 3
2 , we

have ∆ ≤ ∆̃min

10 . Now observe that ∆̃min

∆min
≤ ∆̃min

∆̃min−2∆
≤ ∆̃min

4∆̃min/5
= 5

4 . Next observe that ∆̃min

∆min
≥ ∆̃min

∆̃min+2∆
≥ ∆̃min

6∆̃min/5
=

5
6 .

Lemma 22. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then 5
6 ≤

∆̃m2

∆m2
≤ 5

4 at the time step t.

Proof. Let us assume that the event G holds true. Then for every element (i, j), we have |Aij−Āij | ≤ ∆. As ∆̃min+2∆
∆̃min−2∆

≤ 3
2 ,

we have ∆ ≤ ∆̃min

10 ≤
∆̃m2

10 . Now observe that ∆̃m2

∆m2
≤ ∆̃m2

∆̃m2
−2∆

≤ ∆̃m2

4∆̃m2
/5

= 5
4 . Next observe that ∆̃m2

∆m2
≥ ∆̃m2

∆̃m2
+2∆

≥
∆̃m2

6∆̃m2
/5

= 5
6 .

The following lemma and the subsequent corollary relates the empirical matrix Ā to the input matrix A.

Lemma 23. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then at any time step t0 such that t ≤ t0 ≤ T , we have the following:

• If Aij1 > Aij2 , then Āij1 > Āij2

• If Ai1j > Ai2j , then Āi1j > Āi2j

• If Āij1 > Āij2 , then Aij1 > Aij2

• If Āi1j > Āi2j , then Ai1j > Ai2j

Proof. As ∆̃min+2∆
∆̃min−2∆

≤ 3
2 , we have ∆ ≤ ∆̃min

10 . Due to Lemma 21, we have ∆ ≤ ∆min

8 . As event G holds, for any element

(i, j), we have |Aij − Āij | ≤
√

2 log( 16T
δ )

t0
≤ ∆.

If Aij1 > Aij2 , we have the following:

Āij1 ≥ Aij1 −∆

≥ Aij2 +∆min −∆ (as Aij1 −Aij2 ≥ ∆min)

> Aij2 +∆ (as ∆ ≤ ∆min

8 )
≥ Āij2 (as event G holds)
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If Ai1j > Ai2j , we have the following:

Āi1j ≥ Ai1j −∆

≥ Ai2j +∆min −∆ (as Ai1j −Ai2j ≥ ∆min)

> Ai2j +∆ (as ∆ ≤ ∆min

8 )
≥ Āi2j (as event G holds)

If Āij1 > Āij2 , we have the following:

Aij1 ≥ Āij1 −∆

≥ Āij2 + ∆̃min −∆ (as Āij1 − Āij2 ≥ ∆̃min)

> Āij2 +∆ (as ∆ ≤ ∆̃min

10 )
≥ Aij2 (as event G holds)

If Āi1j > Āi1j , we have the following:

Ai1j ≥ Āi1j −∆

≥ Āi2j + ∆̃min −∆ (as Āi1j − Āi2j ≥ ∆̃min)

> Āi2j +∆ (as ∆ ≤ ∆̃min

10 )
≥ Ai2j (as event G holds)

Corollary 2. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then at any time step t0 such that t ≤ t0 ≤ T , we have the following:

• (i, j) is PSNE of A if and only if (i, j) is a PSNE of Ā.

• A does not have a PSNE if and only if Ā does not have a PSNE.

The following lemma bounds the ratio D̃
|D| .

Lemma 24. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds

and A has a unique Equilibrium which is not a PSNE, then 5
6 ≤

D̃
|D| ≤

5
4 at the time step t.

Proof. Let us assume that the event G holds. Then for every element (i, j), we have |Aij − Āij | ≤ ∆. As ∆̃min+2∆
∆̃min−2∆

≤ 3
2

and 2∆̃min ≤ D̃, we have ∆ ≤ ∆̃min

10 ≤ D̃
20 . Now observe that D̃

|D| ≤
D̃

D̃−4∆
≤ D̃

4D̃/5
= 5

4 . Next observe that
D̃
|D| ≥

D̃
D̃+4∆

≥ D̃
6D̃/5

= 5
6 .

The following two lemmas bound the ratio ∆m2

|D| when certain conditions in the algorithm 2 hold true.

Lemma 25. If the condition in the line 10 of the algorithm 2 holds true and event G holds, then ∆m2

|D| ≥
1
12

Proof. Due to Lemma 22, we have ∆m2
≥ 4∆̃m2

5 . Due to Lemma 24, we have |D| ≤ 6D̃
5 . Hence, we have ∆m2

D ≥ 2∆̃m2

3D̃
≥

1
12 . We get the latter inequality as the condition in the line 10 holds true.

Lemma 26. If the condition in the line 13 of the algorithm 2 holds true and event G holds, then 2∆m2

3|D| ≤
∆̃m2

D̃
≤ 3∆m2

2|D| .
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Proof. Due to Lemma 22, we have 5∆m2

6 ≤ ∆̃m2 ≤
5∆m2

4 . Due to Lemma 24, we have 5|D|
6 ≤ D̃ ≤ 5|D|

4 . Hence, we have
2∆m2

3|D| ≤
∆̃m2

D̃
≤ 3∆m2

2|D| .

We now present the main lemma that establishes the correctness of the algorithm 2 when the input matrix A does not have a
PSNE.

Lemma 27. If the condition in the line 13 of the algorithm 2 holds true and event G holds, then Nash equilibrium of the
matrix B is also an ε-Nash equilibrium of A

Proof. First observe that ∆1 ≤
√
2 log(16Tδ )/(

200∆̃2
m2

log( 16T
δ )

ε2D̃2
) = εD̃

10∆̃m2

. Due to Lemma 26, we then have ∆1 ≤ 3ε|D|
20∆m2

.

Let ∆ij := Aij − Bij for all i, j. As event G holds true and due to the construction of the matrix B, we have |∆ij | ≤
3∆1 < ε|D|

2∆m2
.

As ∆̃min+2∆
∆̃min−2∆

≤ 3
2 and ∆1 ≤ ∆, we have ∆1 ≤ ∆̃min

10 . Due to Lemma 21, we then have ∆1 ≤ ∆min

8 . As the condition in the

line 13 holds true and due to Lemma 26, we have ∆m2

|D| ≤
3∆̃m2

2D̃
< 3

16 .

Now we show that B does not have PSNE. Recall that Bi1j1 = Āi1j1 , Bi2j2 = Āi2j2 , Bi1j2 = Āi1j2 − 2∆1 and
Bi2j1 = Āi2j1 + 2∆1. Due to Corollary 2, Ā does not have a PSNE. Hence, it suffices to show that 2∆1 < min{|Ā11 −
Ā12|, |Ā21− Ā22|}|Ā11− Ā21|, |Ā12− Ā22|}. As event G holds and due to Lemma 19, we have min{|Ā11− Ā12|, |Ā21−
Ā22|}|Ā11 − Ā21|, |Ā12 − Ā22|} ≥ ∆min − 2∆1. As ∆1 ≤ ∆min

8 , we have ∆min − 2∆1 > 2∆1. Hence, B does not have
a PSNE.

Let (x∗, y∗) := ((x∗
1, x

∗
2), (y

∗
1 , y

∗
2)) be the Nash equilibrium of B. Let DB = |B11 − B12 − B21 + B22|. Observe that

DB = |Ā11 − Ā12 − Ā21 + Ā22| ≥ |D| − 4∆1 as event G holds true. Now we have the following:

x∗
i2 =

|Bi11 −Bi12|
DB

≤ |Āi11 − Āi12|+ 2∆1

DB
(Due to the construction of B)

≤ ∆̃m2
+ 2∆1

DB
(Due to the choice of i1 in Algorithm 2)

≤ ∆m2
+ 4∆1

|D| − 4∆1
(as event G holds)

≤ ∆m2
+∆m2

/2

|D| − |D|/4
(as ∆1 ≤ ∆min

8 ≤ |D|/4)

=
2∆m2

|D|

<
3

8
(as ∆m2

|D| < 3
16 )
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Similarly we have the following:

y∗j2 =
|B1j1 −B2j1 |

DB

≤ |Ā1j1 − Ā2j1 |+ 2∆1

DB
(Due to the construction of B)

≤ ∆̃m2
+ 2∆1

DB
(Due to the choice of i1 in Algorithm 2)

≤ ∆m2
+ 4∆1

|D| − 4∆1
(as event G holds)

≤ ∆m2 +∆m2/2

|D| − |D|/4
(as ∆1 ≤ ∆min

8 ≤ |D|/4)

=
2∆m2

|D|

<
3

8
(as ∆m2

|D| < 3
16 )

Hence, we have shown that i1 = argmaxi x
∗
i and j1 = argmaxi y

∗
i .

Now we have Bi1j1 = Āi1j1 ≤ Ai1j1 +∆1 = Bi1j1 +∆i1j1 +∆1. We also have Bi2j1 = Āi2j1 + 2∆1 ≥ Ai2j1 +∆1 =
Bi2j1 +∆i2j1 +∆1. Hence we have ∆i1j1 ≥ −∆1 ≥ ∆i2j1 .

Similarly, we have Bi1j1 = Āi1j1 ≥ Ai1j1−∆1 = Bi1j1+∆i1j1−∆1. We also have Bi1j2 = Āi1j2−2∆1 ≤ Ai1j2−∆1 =
Bi1j2 +∆i1j2 −∆1. Hence we have ∆i1j1 ≤ ∆1 ≤ ∆i1j2 .

Hence, all the conditions of the Lemma 28 is satisfied by the matrices A and B. Hence, we can apply Lemma 28 and
conclude that (x∗, y∗) is an ε-Nash equilibrium of A.

G.2 Technical Lemma for Upper Bound

In this section, we present an important technical lemma that is used to establish the upper bound on the sample complexity
of finding ε-Nash equilibrium.

Let us first define two matrices A1 and A2 as follows:

A1 =

[
a b
c d

]
A2 =

[
a+∆11 b+∆12

c+∆21 d+∆22

]

Let (x∗, y∗) := ((x∗
1, x

∗
2), (y

∗
1 , y

∗
2)) be the unique Nash equilibrium of A1. Let Supp(x∗) = Supp(y∗) = {1, 2}. Let

i∗ := argmaxi x
∗
i and j∗ := argmaxj y

∗
j . Recall that ∆m2

:= max{min{|a − b|, |d − c|},min{|a − c|, |d − b|}} and
D := a− b− c+ d. Now we present the technical lemma.

Lemma 28. Let |∆ij | ≤ ε|D|
2∆m2

for all i, j. If ∆i∗j∗ ≥ ∆ij∗ for all i and ∆i∗j∗ ≤ ∆i∗j for all j, then (x∗, y∗) is an ε-Nash
equilibrium of matrix A2.

Proof. First, observe that ⟨x∗, A2y
∗⟩ = ad−bc

D +
∑

i,j x
∗
i y

∗
j∆ij . Let (A2)

r
i denote the i-th row of A2 and (A2)

c
j denote the

j-th column of A2. Now observe that ⟨(A2)
r
1, y

∗⟩ = ad−bc
D + y∗1∆11 + y∗2∆12 and ⟨(A2)

r
2, y

∗⟩ = ad−bc
D + y∗1∆21 + y∗2∆22.

Finally, observe that ⟨(A2)
c
1, x

∗⟩ = ad−bc
D + x∗

1∆11 + x∗
2∆21 and ⟨(A2)

c
2, x

∗⟩ = ad−bc
D + x∗

1∆12 + x∗
2∆22.
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W.l.o.g let us assume that i∗ = 1 and j∗ = 1. Now we have the following:

⟨(A2)
r
1, y

∗⟩ − ⟨x∗, A2y
∗⟩ = x∗

2y
∗
1(∆11 −∆21) + x∗

2y
∗
2(∆12 −∆22)

≤ x∗
2y

∗
1(|∆11|+ |∆21|) + x∗

2y
∗
2(|∆12|+ |∆22|)

≤ ε|D|
∆m2

(x∗
2y

∗
1 + x∗

2y
∗
2)

= x∗
2

ε|D|
∆m2

=
|a− b|
|D|

ε|D|
∆m2

≤ ε (as |a− b| ≤ ∆m2
)

⟨(A2)
r
2, y

∗⟩ − ⟨x∗, A2y
∗⟩ = x∗

1y
∗
1(∆21 −∆11) + x∗

1y
∗
2(∆22 −∆12)

≤ x∗
1y

∗
2(∆22 −∆12) (as ∆11 ≥ ∆21)

≤ x∗
1y

∗
2(|∆22|+ |∆12|)

≤ ε|D|
∆m2

x∗
1y

∗
2

≤ |a− c|
|D|

ε|D|
∆m2

(as x∗
1 ≤ 1 and y∗2 = |a−c|

|D| )

≤ ε (as |a− c| ≤ ∆m2 )

⟨x∗, A2y
∗⟩ − ⟨(A2)

c
1, x

∗⟩ = x∗
1y

∗
2(∆12 −∆11) + x∗

2y
∗
2(∆22 −∆21)

≤ x∗
1y

∗
2(|∆12|+ |∆11|) + x∗

2y
∗
2(|∆22|+ |∆21|)

≤ ε|D|
∆m2

(x∗
1y

∗
2 + x∗

2y
∗
2)

= y∗2
ε|D|
∆m2

=
|a− c|
|D|

ε|D|
∆m2

≤ ε (as |a− c| ≤ ∆m2
)

⟨x∗, A2y
∗⟩ − ⟨(A2)

c
2, x

∗⟩ = x∗
1y

∗
1(∆11 −∆12) + x∗

2y
∗
1(∆21 −∆22)

≤ x∗
2y

∗
1(∆21 −∆22) (as ∆11 ≤ ∆12)

≤ x∗
2y

∗
1(|∆21|+ |∆22|)

≤ ε|D|
∆m2

x∗
2y

∗
1

≤ |a− b|
|D|

ε|D|
∆m2

(as y∗1 ≤ 1 and x∗
2 = |a−b|

|D| )

≤ ε (as |a− b| ≤ ∆m2
)

H Proof of ε-Nash equilibrium Lower Bound

Before finishing the proof of the theorem 5, we begin with the proof of Lemma 5
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Proof. For any α ∈ [ c−d
D , a−b

D ] and β ∈ [ b−d
D , a−c

D ], let x′ = (d−c
D + α, a−b

D − α) and y′ = (d−b
D + β, a−c

D − β). Note that
this parameterization ensures the range of x′, y′ is equal to 2. It can be shown that ⟨x′, A□y

′⟩ = ad−bc
D + (d−c)−(a−b)

D □+
2□α + Dαβ. Let (A□)

r
i denote the i-th row of A□ and (A□)

c
j denote the j-th column of A□. It can be shown that

⟨x′, (A□)
c
1⟩ = ad−bc

D + (d−c)−(a−b)
D □+ 2□α+ (a− c)α and ⟨x′, (A□)

c
2⟩ = ad−bc

D + (d−c)−(a−b)
D □+ 2□α+ (b− d)α.

Similarly, it can be shown that ⟨y′, (A□)
r
1⟩ = ad−bc

D +□+ (a− b)β and ⟨y′, (A□)
r
2⟩ = ad−bc

D −□− (d− c)β. We refer
the reader to the Appendix H.2 for the detailed calculations.

Now we have the following:

⟨y′, (A□)
r
1⟩ − ⟨x′, A□y

′⟩ = 2(a− b)

D
□+ (a− b)β − 2□α−Dαβ

⟨y′, (A□)
r
2⟩ − ⟨x′, A□y

′⟩ = −2(d− c)

D
□− (d− c)β − 2□α−Dαβ

⟨x′, A□y
′⟩ − ⟨x′, (A□)

c
1⟩ = Dαβ − (a− c)α

⟨x′, A□y
′⟩ − ⟨x′, (A□)

c
2⟩ = Dαβ + (d− b)α

Observe that if (x′, y′) is an ε-Nash equilibrium of A□, then ⟨y′, (A□)
r
1⟩ − ⟨x′, A□y

′⟩ ≤ ε, ⟨y′, (A□)
r
2⟩ − ⟨x′, A□y

′⟩ ≤ ε,
⟨x′, A□y

′⟩ − ⟨x′, (A□)
c
1⟩ ≤ ε and ⟨x′, A□y

′⟩ − ⟨x′, (A□)
c
2⟩ ≤ ε.

We will now show that regardless of what values (α, β) take (equivalently, regardless of what values (x′, y′) take), there is
at least one of the three alternative matrices for which (x′, y′) is not an ε-Nash equilibrium. Let us assume that (x′, y′) is
an ε-Nash equilibrium of A, otherwise A0 is the matrix for which (x′, y′) is not an ε-Nash equilibrium. Now we have the
following:

(a− b)β −Dαβ ≤ ε

−(d− c)β −Dαβ ≤ ε

−(a− c)α+Dαβ ≤ ε

(d− b)α+Dαβ ≤ ε

Using the above equations, we get the following:

−ε ≤ Dαβ ≤ ε

β ≥ − 2ε

d− c

β ≤ 2ε

a− b

If ∆α < ε, we have the following:

⟨y′, (A∆)
r
1⟩ − ⟨x′, A∆y

′⟩ = 2(a− b)

D
∆+ (a− b)β − 2∆α−Dαβ

≥ 2(a− b)

D
∆+ (a− b)β − 2∆α− ε (as −Dαβ ≥ −ε)

≥ 2(a− b)

D
∆− 2∆α− 3ε (as β ≥ − 2ε

d−c )

>
2(a− b)

D
∆− 5ε (as −∆α > −ε)

= ε (as ∆ = 3εD
a−b )
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If ∆α ≥ ε, we have the following:

⟨y′, (A−∆)
r
2⟩ − ⟨x′, A−∆y

′⟩ = 2(d− c)

D
∆− (d− c)β + 2∆α−Dαβ

≥ 2(d− c)

D
∆− (d− c)β + 2∆α− ε (as −Dαβ ≥ −ε)

≥ 2(d− c)

D
∆− (d− c)β + ε (as ∆α ≥ ε)

≥ 2(d− c)

D
∆− 2(d− c)

a− b
ε+ ε (as −β ≥ − 2ε

a−b )

=
6(d− c)

a− b
ε− 2(d− c)

a− b
ε+ ε (as ∆ = 3εD

a−b )

> ε

Hence, we proved that for any (x′, y′) ∈ 2 × 2, there exists a matrix B ∈ {A0, A∆, A−∆} such that (x′, y′) is not an
ε-Nash equilibrium of B.

H.1 Proof of Theorem 5

Let νAi,j = N (Aij , 1) be the distribution of an observation when playing pair (i, j) with matrix A. Let PA de-
note the probability law of the internal randomness of the algorithm and random observations. Let fA(x, y) =
max{maxx′∈ 2

⟨x′, Ay⟩ − ⟨x,Ay⟩, ⟨x,Ay⟩ − miny′∈ 2
⟨x,Ay′⟩}. If an algorithm is (ε, δ)-PAC-Nash and outputs a

solution (x̂, ŷ) then minA PA(fA(x̂, ŷ) ≤ ε) ≥ 1− δ. We will show that if an algorithm is (ε, δ)-PAC-Nash then it can also
accomplish a particular hypothesis. We will conclude by noting that any procedure that can accomplish the hypothesis test
must take the claimed sample complexity.

For any pair of mixed strategies (x̂, ŷ) output by the procedure at the stopping time τ , define

ϕ = {A−∆, A0, A∆} \ arg max
B∈{A−∆,A0,A∆}

fB(x̂, ŷ),

breaking ties arbitrarily in the maximum so that ϕ ∈ {A−∆, A0} ∪ {A−∆, A∆} ∪ {A0, A∆}. Note that

PA0
(A0 ∈ ϕ) ≥ PA0

(A0 ∈ ϕ, fA0
(x̂, ŷ) ≤ ε) = PA0

(fA0
(x̂, ŷ) ≤ ε) ≥ 1− δ (5)

where the equality follows from the Lemma 5: at least one of the three matrices must have a loss of more than ε, but A0 has
a loss of at most ε, thus A0 ∈ ϕ. Now because

2max{PA0
(ϕ = {A0, A−∆}),PA0

(ϕ = {A0, A∆})} ≥ PA0
(ϕ = {A0, A−∆}) + PA0

(ϕ = {A0, A∆})
= PA0

(A0 ∈ ϕ) ≥ 1− δ

we have that PA0(ϕ = {A0, A−∆}) ≥ 1−δ
2 or PA0(ϕ = {A0, A∆}) ≥ 1−δ

2 . Let’s assume the former (the latter case is
handled identically). By the same argument as (5) we have that PA∆(ϕ = {A0, A−∆}) ≤ δ.

For a stopping time τ , let Ni,j(τ) denote the number of times (i, j) is sampled. Recalling that νAi,j = N (Aij , 1), we have
by Lemma 1 of Kaufmann et al. (2016) that

2∑
i=1

2∑
j=1

EA0 [Ni,j(τ)]KL(νA0
i,j , ν

A2∆
i,j ) ≥ d(PA0(ϕ = {A0, A−∆}),PA∆(ϕ = {A0, A−∆}))

where for any i, j ∈ {1, 2}, KL(νA0
i,j , ν

A∆
i,j ) = ∆2/2 and d(p, q) = p log(pq ) + (1− p) log( 1−p

1−q ). Since

d(PA0
(ϕ = {A0, A−∆}),PA∆

(ϕ = {A0, A−∆})) ≥ d( 1−δ
2 , δ)

= 1−δ
2 log( 1−δ

2δ ) + 1+δ
2 log( 1+δ

2(1−δ) )

= 1
2 log(

1+δ
4δ )− δ

2 log(
(1−δ)2

δ(1+δ) )

≥ 1
2 log(

1+δ
4δ )− 1/8 > 1

2 log(1/30δ)
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and τ = N1,1(τ) +N1,2(τ) +N2,1(τ) +N2,2(τ) we conclude that

EA0
[τ ] ≥ log(1/30δ)

∆2
=

∆2
m2

log(1/30δ)

9ε2D2

as claimed.

H.2 Calculations for Lemma 5

Recall that x′ = (d−c
D + α, a−b

D − α) and y′ = (d−b
D + β, a−c

D − β). Let (A□)
r
i denote the i-th row of A□ and (A□)

c
j

denote the j-th column of A□.

First, observe that ⟨y′, (A□)
r
1⟩ = d−b

D · a+ d−b
D ·□+ aβ +□β + a−c

D · b+ a−c
D ·□− bβ −□β = ad−bc

D +□+ (a− b)β.
Similarly, we have ⟨y′, (A□)

r
2⟩ = d−b

D · c− d−b
D ·□+ cβ −□β + a−c

D · d− a−c
D ·□− dβ +□β = ad−bc

D −□+ (c− d)β.

Next, observe that ⟨x′, (A□)
c
1⟩ = d−c

D ·a+
d−c
D ·□+aα+□α+ a−b

D · c−
a−b
D ·□− cα+□α = ad−bc

D + (d−c)−(a−b)
D □+

(a − c)α + 2□α. Similarly, we have ⟨x′, (A□)
c
2⟩ = d−c

D · b + d−c
D · □ + bα + □α + a−b

D · d − a−b
D · □ − dα + □α =

ad−bc
D + (d−c)−(a−b)

D □+ (b− d)α+ 2□α.

Now we present the following proposition.

Proposition 13. ⟨x′, A□y
′⟩ = ad−bc

D + (d−c)−(a−b)
D □+ 2□α+Dαβ

Proof. Let V1 = ⟨y′, (A□)
r
1⟩ and V2 = ⟨y′, (A□)

r
2⟩. Now observe that ⟨x′, A□y

′⟩ = ⟨x′, (V1, V2)⟩. Now we have the
following:

⟨x′, (V1, V2)⟩ =
〈
x′,

(
ad− bc

D
,
ad− bc

D

)〉
+

(
d− c

D
+ α

)
·□−

(
a− b

D
− α

)
·□

+

(
d− c

D
+ α

)
· (a− b)β −

(
a− b

D
− α

)
· (d− c)β

=
ad− bc

D
+

(d− c)− (a− b)

D
□+ 2□α

+
(d− b)(a− b)− (a− b)(d− c)

D
· β + (a− b− c+ d)αβ

=
ad− bc

D
+

(d− c)− (a− b)

D
□+ 2□α+Dαβ (as D = a− b− c+ d)

I Proof of n× 2 Matrix Upper Bound

We now establish the sample complexity and the correctness of the Algorithm 3 by proving the Theorem 8.

Proof of Theorem 8. Let Āij,t denote the empirical mean of Aij at time step t. Let us begin by defining two events:

G :=

T⋂
t=1

n⋂
i=1

2⋂
j=1

{|Aij − Āij,t| ≤
√

2 log(8nT/δ)
t }

E :=

n⋂
i=1

2⋂
j=1

{|Aij − Āij,T | ≤
√

2 log(8n/δ)
T }

A union bound and sub-Gaussian-tail bound demonstrates that P(Gc ∪Ec) ≤ P(Gc) + P(Ec) ≤ δ. Consequently, events
E and G hold simultaneously with probability at least 1− δ, so in what follows, assume they hold.

If A has a PSNE and if the condition in the line 6 of the algorithm 3 is satisfied, then we identify a PSNE in 800 log( 8nT
δ )

∆2
min

time steps due to Lemma 30 and Corollary 3. On the other hand, if A has a PSNE but the outer for loop completes after
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t = T iterations, then we identify an ε-good solution in T = 8 log(8n/δ)
ε2 time steps due to Lemma 1. Note that in this case,

T <
800 log( 8nT

δ )

∆2
min

due to Lemma 30.

Let us assume for the rest of the proof that A does not have a PSNE. If the outer for loop completes after t = T iterations,
then we identify an ε-good solution in T = 8 log(8n/δ)

ε2 time steps due to Lemma 1. Note that in this case, T <
800 log( 8nT

δ )

∆2
min

due to Lemma 30.

Now let us assume for the rest of the proof that the condition in the line 8 is satisfied. If the condition in the line 14 is
satisfied, then we identify an ε-Nash equilibrium in T = 8 log(8nT/δ)

ε2 time steps due to Lemma 1. Now observe that in this

case T ≤ max
{

800 log( 8nT
δ )

∆2
min

,
722 log( 8nT

δ )

∆2
g

}
due to Lemma 30 and Lemma 34. If the condition in the line 19 is satisfied,

then we identify Supp(x∗) and Supp(y∗) due to Lemma 33. In this case, let the number of times we are required to sample

each element be n0. Then n0 ≤ max
{

800 log( 8nT
δ )

∆2
min

,
722 log( 8nT

δ )

∆2
g

}
+ 1 due to Lemma 30 and Lemma 34.

I.1 Consequential lemmas of Algorithm 3’s conditional statements

Recall the definitions of events E and G. We first present few lemmas which deal with empirical estimates and instance
dependent parameters like ∆̃min, ∆̃g,∆min and ∆g . Whenever we fix a time step t ≤ T and discuss the parameters like
∆̃min, ∆̃g,∆

′ and ∆, we consider those values that have been assigned to these parameters during the time step t. We begin
with upper bounding |∆min − ∆̃min| in the following lemma.

Lemma 29. Fix a time step t ≤ T . If the event G holds, then we have the following:

|∆min − ∆̃min| ≤ 2∆

Proof. Let us assume that the event G holds. Then for every element (i, j), we have |Aij − Āij | ≤ ∆. Then we have∣∣|Aij −Ai′j′ | − |Āij − Āi′j′ |
∣∣ ≤ 2∆ for any i, j, i′, j′. By repeatedly applying the Lemma 18, we get |∆min − ∆̃min| ≤

2∆.

The following lemma upper bounds the number of time steps required to satisfy the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 .

Lemma 30. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then t ≤ 800 log( 8nT
δ )

∆2
min

.

Proof. Consider the time step t =
800 log( 8nT

δ )

∆2
min

. Let us assume that the event G holds. Then for every element (i, j), we

have |Aij − Āij | ≤ ∆ =

√
2 log( 8nT

δ )

t = ∆min

20 . Now observe that ∆̃min + 2∆ ≤ ∆min + 4∆ = 6∆min

5 . Similarly, we have

∆̃min − 2∆ ≥ ∆min − 4∆ ≥ 4∆min

5 . Hence, we have 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 .

The following lemma bounds the ratio ∆̃min

∆min
.

Lemma 31. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then 5
6 ≤

∆̃min

∆min
≤ 5

4 at the time step t.

Proof. Let us assume that the event G holds. Then for every element (i, j), we have |Aij−Āij | ≤ ∆. As ∆̃min+2∆
∆̃min−2∆

≤ 3
2 , we

have ∆ ≤ ∆̃min

10 . Now observe that ∆̃min

∆min
≤ ∆̃min

∆̃min−2∆
≤ ∆̃min

4∆̃min/5
= 5

4 . Next observe that ∆̃min

∆min
≥ ∆̃min

∆̃min+2∆
≥ ∆̃min

6∆̃min/5
=

5
6 .

Now let us define the notion of strong dominance.

Definition 4 (Strongly dominate). We say that a row i of a matrix A strongly dominates a row j of A if Ai1 > Aj1 and
Ai2 > Aj2
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The following lemma and the subsequent corollary relates the empirical matrix Ā to the input matrix A.

Lemma 32. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then at any time step t0 such that t ≤ t0 ≤ T , we have the following:

• If Aij1 > Aij2 , then Āij1 > Āij2

• If Ai1j > Ai1j , then Āi1j > Āi1j

• If Āij1 > Āij2 , then Aij1 > Aij2

• If Āi1j > Āi1j , then Ai1j > Ai1j

Proof. As ∆̃min+2∆
∆̃min−2∆

≤ 3
2 , we have ∆ ≤ ∆̃min

10 . Due to Lemma 31, we have ∆ ≤ ∆min

8 . As event G holds, for any element

(i, j), we have |Aij − Āij | ≤
√

2 log( 8nT
δ )

t0
≤ ∆.

If Aij1 > Aij2 , we have the following:

Āij1 ≥ Aij1 −∆

≥ Aij2 +∆min −∆ (as Aij1 −Aij2 ≥ ∆min)

> Aij2 +∆ (as ∆ ≤ ∆min

8 )
≥ Āij2 (as event G holds)

If Ai1j > Ai2j , we have the following:

Āi1j ≥ Ai1j −∆

≥ Ai2j +∆min −∆ (as Ai1j −Ai2j ≥ ∆min)

> Ai2j +∆ (as ∆ ≤ ∆min

8 )
≥ Āi2j (as event G holds)

If Āij1 > Āij2 , we have the following:

Aij1 ≥ Āij1 −∆

≥ Āij2 + ∆̃min −∆ (as Āij1 − Āij2 ≥ ∆̃min)

> Āij2 +∆ (as ∆ ≤ ∆̃min

10 )
≥ Aij2 (as event G holds)

If Āi1j > Āi1j , we have the following:

Ai1j ≥ Āi1j −∆

≥ Āi2j + ∆̃min −∆ (as Āi1j − Āi2j ≥ ∆̃min)

> Āi2j +∆ (as ∆ ≤ ∆̃min

10 )
≥ Ai2j (as event G holds)

Corollary 3. Let t be the time step when the condition 1 ≤ ∆̃min+2∆
∆̃min−2∆

≤ 3
2 holds true for the first time. If the event G holds,

then at any time step t0 such that t ≤ t0 ≤ T , we have the following:

• (i, j) is PSNE of A if and only if (i, j) is a PSNE of Ā.
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• A does not have a PSNE if and only if Ā does not have a PSNE.

• The row i of A strongly dominates the row j of A if and only if the row i of A strongly dominates the row j of Ā.

We now present the main lemma that establishes the correctness of the algorithm 1 when the input matrix A does not have a
PSNE.

Lemma 33. Let (x∗, y∗) be the Nash equilibrium of A. If the condition in the line 19 of the algorithm 3 holds true and
event G holds, then {i1, i2} = Supp(x∗) and {1, 2} = Supp(y∗).

Proof. As condition in the line 19 of the algorithm 3 holds true and event G holds, Ā does not have a PSNE. Due to
Corollary 3, A does not have a PSNE. Hence {1, 2} = Supp(y∗). Moreover, |Supp(x∗)| = 2 as A has a unique Nash
equilibrium.

As Ā has no row that strongly dominates any other row, A does not have a row that strongly dominates any other row due
to Corollary 3. As ∆̃min+2∆

∆̃min−2∆
≤ 3

2 , we have ∆ ≤ ∆̃min

10 . Due to Lemma 31, we have ∆′ ≤ ∆ ≤ ∆min

8 . Therefore, for any

i, j, k ∈ [n], 6∆′

|Ai1−Ai2|+|Aj1−Aj2|+|Ak1−Ak2| ≤
6∆′

3∆min
≤ 1

4 . Hence, we can apply the lemmas in the Section I.2.

Now let us assume that {i1, i2} ≠ Supp(x∗). Let B = [Ai11, Ai12;Ai21, Ai22] and (xB , yB) is the Nash equilibrium of B.
Then due to Lemma 37, ∃i ∈ Supp(x∗) \ {i1, i2} such that V ∗

B − ⟨yB , (Ai1, Ai2)⟩ < 0. Now we have the following:

∆̃g ≤
(|Āi11 − Āi12|+ |Āi21 − Āi22|)(V ∗

Ā
− ⟨y′, (Āi1, Āi2)⟩)

|Āi11 − Āi12|+ |Āi21 − Āi22|+ |Āi1 − Āi2|

≤ (|Ai11 −Ai12|+ |Ai21 −Ai22|)(V ∗
B − ⟨yB , (Ai1, Ai2)⟩)

|Ai11 −Ai12|+ |Ai21 −Ai22|+ |Ai1 −Ai2|
+ 4∆′ (due to Lemma 36)

< 4∆′ (as V ∗
B − ⟨yB , (Ai1, Ai2)⟩ < 0)

This contradicts the fact that the condition in the line 19 of the algorithm 3 holds true. Hence {i1, i2} = Supp(x∗).

The following lemma upper bounds the number of time steps required to return the support of the Nash equilibrium when
the input matrix A does not have a PSNE.

Lemma 34. Let the condition in the line 8 of the algorithm 3 hold true. Let t′ be the time step when both the conditions
| Supp(x′)| = 2 and ∆̃g ≥ 4∆′ hold true simultaneously for the first time. If the event G holds, then t′ ≤ 722 log( 8nT

δ )

∆2
g

.

Proof. Consider the time step t′ =
722 log( 8nT

δ )

∆2
g

. Let us assume that the event G holds. Then ∆′ =
√
2 log(8nTδ )/(t′) =

∆g

19 .

Let (x∗, y∗) be the Nash equilibrium of A. Let Supp(x∗) = (i∗, j∗). Let A∗ = [Ai∗1, Ai∗2;Aj∗1, Aj∗2] and Ā∗ =
[Āi∗1, Āi∗2; Āj∗1, Āj∗2]. Let (x′′, y′′) be the Nash equilibrium of Ā∗. Then for any i /∈ Supp(x∗), we have the following
due to Lemma 36.

(|Āi∗1 − Āi∗2|+ |Āj∗1 − Āj∗2|)(V ∗
Ā∗
− ⟨y′′, (Āi1, Āi2)⟩)

|Āi∗1 − Āi∗2|+ |Āj∗1 − Āj∗2|+ |Āi1 − Āi2|

≥
(|Ai∗1 −Ai∗2|+ |Aj∗1 −Aj∗2|)(V ∗

A∗
− ⟨y∗, (Ai1, Ai2)⟩)

|Ai∗1 −Ai∗2|+ |Aj∗1 −Aj∗2|+ |Ai1 −Ai2|
− 15∆′

≥ ∆g − 15∆′

= 19∆′ − 15∆′

= 4∆′ > 0

Hence, due to Lemma 38, (x′, y′) is the unique Nash equilibrium of Ā and Supp(x′) = {i∗, j∗}. This implies that
∆̃g ≥ ∆g − 15∆′ = 19∆′ − 15∆′ = 4∆′.
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I.2 Technical Lemmas for upper bound

In this section, we present few technical lemmas that are used to establish the upper bound on the sample complexity of
finding the support of the Nash equilibrium in n× 2 matrix games.

We first define matrices A1, A2, A3 and A4 as follows:

A1 =

a b
c d
e f

A2 =

a+∆11 b+∆12

c+∆21 d+∆22

e+∆31 f +∆32

A3 =

[
a b
c d

]
A4 =

[
a+∆11 b+∆12

c+∆21 d+∆22

]

Let us assume that |∆ij | ≤ ∆ for all i, j. Let us assume that a > b, a > c, d > b, d > c. Let us also assume that
e ̸= f, e ̸= a, e ̸= c, f ̸= b, f ̸= d. Let us also assume that a + ∆11 > b + ∆12, a + ∆11 > c + ∆21, d + ∆22 >
b+∆12, d+∆22 > c+∆21. Let us also assume that no row of A1 strongly dominates any other row. Now we present the
following lemma that would be useful to compute the parameter ∆g .

Lemma 35. Let (x∗, y∗) be the Nash equilibrium of A3. Then we have the following:

V ∗
A3
− ⟨y∗, (e, f)⟩ = (ad− bc)− (af − be) + (cf − de)

a− b− c+ d

Proof. First observe that V ∗
A3

= ad−bc
a−b−c+d and y∗ = ( d−b

a−b−c+d ,
a−c

a−b−c+d ). Next we have the following:

V ∗
A3
− ⟨y∗, (e, f)⟩ = ad− bc

a− b− c+ d
− e · d− b

a− b− c+ d
− f · a− c

a− b− c+ d

=
(ad− bc)− (af − be) + (cf − de)

a− b− c+ d

Next we present the following two propositions that would be useful to prove other technical lemmas in this section.

Proposition 14. |d−f |+|c−e|+|b−f |+|a−e|+|b−d|+|c−a|
|a−b|+|c−d|+|e−f | ≤ 3

Proof. W.l.o.g let us assume that e < f . As no row of A1 strongly dominates any other row, we have a > e and b < f . Now
observe that |a−c|+|b−d| = a−b−c+d = |a−b|+|c−d| and |a−e|+|b−f | = a−b−e+f = |a−b|+|e−f |. If c > e
and d < f , then a > c > e and b < d < f . Hence, we have |c−e|+ |d−f | < |a−e|+ |b−f | = |a−b|+ |e−f |. Similarly,
if e > c and f < d, then a > e > c and b < f < d. Hence, we have |c− e|+ |d− f | < |a− c|+ |b− d| = |a− b|+ |c− d|.
Therefore, we have |d−f |+|c−e|+|b−f |+|a−e|+|b−d|+|c−a|

|a−b|+|c−d|+|e−f | ≤ 3.

Proposition 15. |(ad−bc)−(af−be)+(cf−de)|
(|a−b|+|c−d|+|e−f |)2 ≤ 2

Proof. W.l.o.g let us assume that e < f . As no row of A1 strongly dominates any other row, we have a > e and b < f .
We have (ad − bc) − (af − be) + (cf − de) = (d − b)(a − b − e − f) − (f − b)(a − b − c + d). Now observe that
|a−c|+ |b−d| = |a−b|+ |c−d| and |a−e|+ |b−f | = |a−b|+ |e−f |. This implies that |d−b| ≤ |a−b|+ |c−d|+ |e−f |,
|f−b| ≤ |a−b|+ |c−d|+ |e−f |, |a−b−c+d| ≤ |a−b|+ |c−d|+ |e−f | and |a−b−e+f | ≤ |a−b|+ |c−d|+ |e−f |.
Hence, we have |(ad−bc)−(af−be)+(cf−de)|

(|a−b|+|c−d|+|e−f |)2 ≤ |d−b||a−b−e−f |+|f−b||a−b−c+d|
(|a−b|+|c−d|+|e−f |)2 ≤ 2

We present the following lemma that serves as a concentration inequality for the empirical estimate of ∆g .

Lemma 36. Let (x∗, y∗) be the Nash equilibrium of A3 and (x′, y′) be the Nash equilibrium of A4. Let ∆A1
=

(a−b−c+d)(V ∗
A3

−⟨y∗,(e,f)⟩)
|a−b|+|c−d|+|e−f | and ∆A2 =

(a′−b′−c′+d′)(V ∗
A4

−⟨y′,(e′,f ′)⟩)
|a′−b′|+|c′−d′|+|e′−f ′| where a′ = a+∆11, b

′ = b+∆12, c
′ = c+∆21, d

′ =

d+∆22, e
′ = e+∆31 and f ′ = f +∆32. Then we have the following:

∆A2
≥ ∆A1

− 15∆

Moreover, if 6∆
|a−b|+|c−d|+|e−f | ≤

1
4 and ∆A1 ≤ 0, then we have the following:

∆A2
≤ ∆A1

+ 4∆
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Proof. Due to Lemma 35, we have ∆A1 = (ad−bc)−(af−be)+(cf−de)
|a−b|+|c−d|+|e−f | and ∆A2 = (a′d′−b′c′)−(a′f ′−b′e′)+(c′f ′−d′e′)

|a′−b′|+|c′−d′|+|e′−f ′| where
a′ = a + ∆11, b

′ = b + ∆12, c
′ = c + ∆21, d

′ = d + ∆22, e
′ = e + ∆31 and f ′ = f + ∆32. Let N = (ad − bc) −

(af − be) + (cf − de) and M = |a− b|+ |c− d|+ |e− f |. Let N ′ = (a′d′ − b′c′)− (a′f ′ − b′e′) + (c′f ′ − d′e′) and
M ′ = |a′ − b′|+ |c′ − d′|+ |e′ − f ′|. Observe that N ′ = N + (d− f)∆11 + (e− c)∆12 + (f − b)∆21 + (a− e)∆22 +
(b− d)∆31 + (c− a)∆32. Now we have the following:

N ′

M ′ ≥
N − (|d− f |+ |e− c|+ |f − b|+ |a− e|+ |b− d|+ |c− a|)∆

M(1 + 6∆
M )

≥
(
N

M
− 3∆

)(
1 +

6∆

M

)−1

(due to Proposition 14)

=

(
N

M
− 3∆

)(
1−

6∆
M

1 + 6∆
M

)
(as (1 + x)−1 = 1− x

1+x )

=
N

M
− 3∆− N

M
·

6∆
M

1 + 6∆
M

+ 3∆ ·
6∆
M

1 + 6∆
M

≥ N

M
− 3∆− |N |

M2
· 6∆ (as 6∆

M ≥ 0)

≥ N

M
− 3∆− 2 · 6∆ (due to Proposition 15)

=
N

M
− 15∆

If N
M ≤ 0, then we have the following:

N ′

M ′ ≤
N + (|d− f |+ |e− c|+ |f − b|+ |a− e|+ |b− d|+ |c− a|)∆

M(1− 6∆
M )

≤
(
N

M
+ 3∆

)(
1− 6∆

M

)−1

(due to Proposition 14)

=

(
N

M
+ 3∆

)(
1 +

6∆
M

1− 6∆
M

)
(as (1− x)−1 = 1 + x

1−x )

=
N

M
+ 3∆+

N

M
·

6∆
M

1− 6∆
M

+ 3∆ ·
6∆
M

1− 6∆
M

≤ N

M
+ 3∆+ 3∆ · 1

3
(as 6∆

M ≤ 1
4 and N

M ≤ 0)

=
N

M
+ 4∆

Next we define matrix B as follows:

B =


a b
c d
e f
g h


Let us assume that a > b, d > c, e > f, h > g. Let us also assume that a > c and d > c. Now we present the following
lemma where we establish important properties of the optimal rows (rows that are in the support of the Nash equilibrium).

Lemma 37. Let (x1, y1) be the Nash equilibrium of B1 = [a, b; g, h], (x2, y2) be the Nash equilibrium of B2 = [e, f ; c, d]
and (x3, y3) be the Nash equilibrium of B3 = [e, f ; g, h]. Let us assume that B1, B2 and B3 have unique Nash Equilibria
which are not PSNE. If B has a unique Nash equilibrium (x∗, y∗) such that | Supp(x∗)| = | Supp(y∗)| = {1, 2}, then we
have the following:

• V ∗
B1
− ⟨y1, (c, d)⟩ < 0

• V ∗
B2
− ⟨y2, (a, b)⟩ < 0
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• V ∗
B3
−max{⟨y3, (a, b)⟩, ⟨y3, (c, d)⟩} < 0

Proof. Due to Lemma 35, we have V ∗
B1
− ⟨y1, (c, d)⟩ = (ah−bg)−(ad−bc)+(gd−hc)

a−b−g+h . Due to Lemma 35 and the fact that

Supp(x∗) = {1, 2}, we have V ∗
B − ⟨y∗, (g, h)⟩ =

(ad−bc)−(ah−bg)+(ch−dg)
a−b−c+d > 0. Hence, we have V ∗

B1
− ⟨y1, (c, d)⟩ < 0.

Due to Lemma 35, we have V ∗
B2
− ⟨y2, (a, b)⟩ = (ed−fc)−(eb−fa)+(cb−da)

e−f−c+d . Due to Lemma 35 and the fact that Supp(x∗) =

{1, 2}, we have V ∗
B − ⟨y∗, (e, f)⟩ =

(ad−bc)−(af−be)+(cf−de)
a−b−c+d > 0. Hence, we have V ∗

B2
− ⟨y2, (a, b)⟩ < 0.

Let y∗ = (y∗1 , y
∗
2) and y3 = (y3,1, y3,2). As Supp(x∗) = {1, 2}, we have ⟨y∗, (e, f)⟩ < V ∗

B and ⟨y∗, (g, h)⟩ < V ∗
B .

If y3,1 ≤ y∗1 , we have V ∗
B3

= ⟨y3,1, (e, f)⟩ ≤ ⟨y∗, (e, f)⟩ < V ∗
B ≤ ⟨y3,1, (c, d)⟩. Similarly, if y3,1 > y∗1 , we have

V ∗
B3

= ⟨y3,1, (g, h)⟩ < ⟨y∗, (g, h)⟩ < V ∗
B < ⟨y3,1, (a, b)⟩. Hence, V ∗

B3
−max{⟨y3, (a, b)⟩, ⟨y3, (c, d)⟩} < 0.

Let A be a n× 2 matrix with no PSNE. Let us assume that ∀i ∈ [n], Ai1 ̸= Ai2. Now we present the following lemma that
relates the nash equilibrium of a submatrix of A to the nash equilibrium of A.

Lemma 38. Consider two distinct row indices i1, i2 such that Ai11 > Ai12, Ai21 < Ai22. Let (x∗, y∗) be the Nash
equilibrium of C = [Ai11, Ai12;Ai21, Ai22]. If Ai11 > Ai21, Ai12 < Ai22 and V ∗

C − ⟨y∗, (Aj1, Aj2)⟩ > 0 for all
j ∈ [n] \ {i1, i2}, then A has a unique Nash equilibrium (x′, y′) such that Supp(x′) = {i1, i2}.

Proof. Let (x, y) be a Nash equilibrium of A. Let x = (x1, x2, . . . , xn), y = (y1, y2) and y∗ = (y∗1 , y
∗
2).

If y1 < y∗1 , then ⟨y, (Ai21, Ai22)⟩ > V ∗
C . Consider j ∈ Supp(x) such that Aj1 > Aj2. In this case, we have

⟨y, (Aj1, Aj2)⟩ < ⟨y∗, (Aj1, Aj2)⟩ ≤ V ∗
C < ⟨y, (Ai21, Ai22)⟩. This contradicts the fact that j ∈ Supp(x). Hence

y1 ≥ y∗1 .

If y1 > y∗1 , then ⟨y, (Ai11, Ai12)⟩ > V ∗
C . Consider j ∈ Supp(x) such that Aj1 < Aj2. In this case, we have

⟨y, (Aj1, Aj2)⟩ < ⟨y∗, (Aj1, Aj2)⟩ ≤ V ∗
C < ⟨y, (Ai11, Ai12)⟩. This contradicts the fact that j ∈ Supp(x). Hence

y1 ≤ y∗1 .

As y1 ≥ y∗1 and y1 ≤ y∗1 , we have y1 = y∗1 . This implies that V ∗
A = maxj∈[n]⟨y∗, (Aj1, Aj2)⟩ = V ∗

C .

As V ∗
A − ⟨y∗, (Aj1, Aj2)⟩ > 0 for all j ∈ [n] \ {i1, i2} and V ∗

A = ⟨y∗, (Aj1, Aj2)⟩ for all j ∈ {i1, i2}, we have
Supp(x) = {i1, i2}. Now observe that C has a unique Nash Equilibirum which is not a PSNE and ((xi1 , xi2), y) is also
a Nash Equilibrium of C. This implies that (x, y) is the unique Nash equilibrium of A such that Supp(x) = {i1, i2} and
((xi1 , xi2), y) = (x∗, y∗).

J Proof of Lower Bound with respect to ∆g

Before finishing the proof of the theorem 7, we begin with the proof of Lemma 6

Proof. Let c′ = c − ∆, d′ = d − ∆, e′ = e + ∆ and f ′ = f + ∆. Let V ∗ = ad′−bc′

D1
. It can be shown that

V ∗
A0

= V ∗+ (a−b)∆
D1

, V ∗
A∆

= V ∗ and V ∗
A2∆
≥ V ∗+ (a−b)∆

D2
. For any α, β ∈ [0, 1] such that α+β ≤ 1 and γ ∈ [ b−d′

D1
, a−c′

D1
],

let x′ = (1− α− β, α, β) and y′ = (d
′−b
D1

+ γ, a−c′

D1
− γ). Note that this parameterization ensures the range of x′ is equal

to 3 and the range of y′ is equal to 2. Let k = (1− α− β)(a− b)γ + α(c′ − d′)γ + β(e′ − f ′)γ. It can be shown that
⟨x′, A∆y

′⟩ = V ∗ + k. It can also be shown that ⟨x′, A0y
′⟩ = V ∗ + k+ (α− β)∆ and ⟨x′, A2∆y

′⟩ = V ∗ + k− (α− β)∆.
We refer the reader to the Appendix J.2 for the detailed calculations.

If |k| > λ/4, then |V ∗
A∆
−⟨x′, A∆y

′⟩| = |k| > λ/4. If |k| ≤ λ/4 and (α−β)∆ ≥ 0, then V ∗
A2∆
−⟨x′, A2∆y

′⟩ ≥ (a−b)∆
D2

−
k + (α− β)∆ ≥ 3λ

4 . Similarly, If |k| ≤ λ/4 and (α− β)∆ < 0, then V ∗
A0
− ⟨x′, A0y

′⟩ = (a−b)∆
D1

− k − (α− β)∆ ≥ 3λ
4 .

Hence, we proved that there exists a matrix B ∈ {A0, A∆, A2∆} such that the following holds:

|V ∗
B − ⟨x′, By′⟩| > λ

4
> ε
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J.1 Proof of Theorem 7

Let νAi,j = N (Aij , 1) be the distribution of an observation when playing pair (i, j) with matrix A. Let PA denote the
probability law of the internal randomness of the algorithm and random observations. If an algorithm is (ε, δ)-PAC-good and
outputs a solution (x̂, ŷ) then minA PA(|V ∗

A − ⟨x̂, Aŷ⟩| ≤ ε) ≥ 1− δ. We will show that if an algorithm is (ε, δ)-PAC-good
then it can also accomplish a particular hypothesis. We will conclude by noting that any procedure that can accomplish the
hypothesis test must take the claimed sample complexity.

For any pair of mixed strategies (x̂, ŷ) output by the procedure at the stopping time τ , define

ϕ = {A0, A∆, A2∆} \ arg max
B∈{A0,A∆,A2∆}

|V ∗
B − ⟨x̂, Bŷ⟩|,

breaking ties arbitrarily in the maximum so that ϕ ∈ {A2∆, A0} ∪ {A2∆, A∆} ∪ {A0, A∆}. Note that

PA0
(A0 ∈ ϕ) ≥ PA0

(A0 ∈ ϕ, |V ∗
A0
− ⟨x̂, A0ŷ⟩| ≤ ε) = PA0

(|V ∗
A0
− ⟨x̂, A0ŷ⟩| ≤ ε) ≥ 1− δ (6)

where the equality follows from the Lemma 6: at least one of the three matrices must have a loss of more than ε, but A0 has
a loss of at most ε, thus A0 ∈ ϕ. Now because

2max{PA0
(ϕ = {A0, A2∆}),PA0

(ϕ = {A0, A∆})} ≥ PA0
(ϕ = {A0, A2∆}) + PA0

(ϕ = {A0, A∆})
= PA0

(A0 ∈ ϕ) ≥ 1− δ

we have that PA0(ϕ = {A0, A∆}) ≥ 1−δ
2 or PA0(ϕ = {A0, A2∆}) ≥ 1−δ

2 . Let’s assume the former (the latter case is
handled identically). By the same argument as (6) we have that PA2∆

(ϕ = {A0, A∆}) ≤ δ.

For a stopping time τ , let Ni,j(τ) denote the number of times (i, j) is sampled. Recalling that νAi,j = N (Aij , 1), we have
by Lemma 1 of Kaufmann et al. (2016) that

3∑
i=2

2∑
j=1

EA0
[Ni,j(τ)]KL(νA0

i,j , ν
A2∆
i,j ) ≥ d(PA0

(ϕ = {A0, A∆}),PA2∆
(ϕ = {A0, A∆}))

where KL(νA0
2,1, ν

A2∆
1,1 ) = KL(νA0

2,2, ν
A2∆
2,2 ) = KL(νA0

3,1, ν
A2∆
3,1 ) = KL(νA0

3,2, ν
A2∆
3,2 ) = 2∆2 and d(p, q) = p log(pq ) + (1−

p) log( 1−p
1−q ). Since

d(PA0
(ϕ = {A0, A∆}),PA2∆

(ϕ = {A0, A∆})) ≥ d( 1−δ
2 , δ)

= 1−δ
2 log( 1−δ

2δ ) + 1+δ
2 log( 1+δ

2(1−δ) )

= 1
2 log(

1+δ
4δ )− δ

2 log(
(1−δ)2

δ(1+δ) )

≥ 1
2 log(

1+δ
4δ )− 1/8 > 1

2 log(1/30δ)

and τ =
∑3

i=1

∑2
j=1 Ni,j(τ) we conclude that

EA0
[τ ] ≥ log(1/30δ)

4∆2
>

log(1/30δ)

4∆2
g

as claimed. We get the last inequality as 0 < ∆ < ∆g (see Appendix J.2 for more details).

J.2 Calculations for Lemma 6

Recall that ∆ := (d−b)D2−(f−b)D1

D1+D2
. Let c′ = c − ∆, d′ = d − ∆, e′ = e + ∆ and f ′ = f + ∆. Observe that

D1 = a− b− c+ d = a− b− c′ + d′ and D2 = a− b− e+ f = a− b− e′ + f ′. Let V ∗ = ad′−bc′

D1
.

First, observe that □ = (d−b)D2−(f−b)D1

D1+D2
satisfies the equality d−b−□

D1
= f−b+□

D2
. Next, observe that 0 < d−b−∆

D1
< 1 as

d−b−∆
D1

= (d−b)+(f−b)
D1+D2

.

Hence, we have (d
′−b
D1

, a−c′

D1
) = ( f

′−b
D2

, a−e′

D2
) and (d

′−b
D1

, a−c′

D1
) ∈ 2. Therefore, we have V ∗

A∆
= d′−b

D1
· a + a−c′

D1
· b =

ad′−bc′

D1
= V ∗. Next, observe that V ∗

A0
= d′−b+∆

D1
· a+ a−c′−∆

D1
· b = ad′−bc′

D1
+ (a−b)∆

D1
= V ∗ + (a−b)∆

D1
.
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If a−e′ > ∆, then V ∗
A2∆

= f ′−b+∆
D2

·a+ a−e′−∆
D2

·b = ad′−bc′

D1
+ (a−b)∆

D2
= V ∗+ (a−b)∆

D2
. We get f ′−b

D2
·a+ a−e′

D2
·b = ad′−bc′

D1

as (d
′−b
D1

, a−c′

D1
) = ( f

′−b
D2

, a−e′

D2
). Note that the second row is sub-optimal for A2∆ as f ′−b+∆

D2
·(c′−∆)+ a−e′−∆

D2
·(d′−∆) <

V ∗.

If a − e′ ≤ ∆, then the element in the third row and the first column of A2∆ is a PSNE. Hence, V ∗
A2∆

= e′ + ∆. Let
g = e′ +∆− a. Observe that a− b < D2. Now we have V ∗ + (a−b)∆

D2
= f ′−b+∆

D2
· a+ a−e′−∆

D2
· b = (1 + g

D2
)a− gb

D2
=

a+ (a−b)g
D2

≤ a+ g = e′ +∆. Hence V ∗
A2∆
≥ V ∗ + (a−b)∆

D2
.

Now we define a class of matrices B□ as follows:

B□ =

 a b
c′ +□ d′ +□
e′ −□ f ′ −□


Now observe that B∆ = A0, B0 = A∆ and B−∆ = A2∆.

Recall that x′ = (1− α− β, α, β) and y′ = (d
′−b
D1

+ γ, a−c′

D1
+ γ). Let V1 = ⟨y′, (a, b)⟩, V2 = ⟨y′, (c′ +□, d′ +□)⟩ and

V3 = ⟨y′, (e′−□, f ′−□)⟩. First, we have V1 = (d
′−b
D1

+γ)·a+(a−c′

D1
−γ)·b = ad′−bc′

D1
+(a−b)γ = V ∗+(a−b)γ. Next, we

have V2 = (d
′−b
D1

+γ)·(c′+□)+(a−c′

D1
−γ)·(d′+□) = ad′−bc′

D1
+(c′−d′)γ+(d

′−b
D1

+γ+ a−c′

D1
−γ)□ = V ∗+□+(c′−d′)γ.

Similarly, we have V3 = (d
′−b
D1

+γ) · (e′−□)+(a−c′

D1
−γ) · (f ′−□) = ad′−bc′

D1
+(e′−f ′)γ− (d

′−b
D1

+γ+ a−c′

D1
−γ)□ =

V ∗ −□+ (e′ − f ′)γ.

Let k = (1 − α − β)(a − b)γ + α(c′ − d′)γ + β(e′ − f ′)γ. Now observe that ⟨x′, B□y
′⟩ = ⟨x′, (V1, V2, V3)⟩ =

V ∗ + k + (α− β)□.

Now we present the following proposition.

Proposition 16. ∆ < ∆g

Proof. Observe that ∆ = (d−b)D2−(f−b)D1

D1+D2
= (ad−bc)−(af−be)+(cf−de)

D1+D2
. Due to Lemma 35, we have ∆g =

(ad−bc)−(af−be)+(cf−de)
|a−b|+|c−d|+|e−f | > 0. Hence, 0 < ∆ < ∆g . Note that ∆g > 0 as the third row of A is sub-optimal.


