
Thresholded Linear Bandits

Nishant A. Mehta1, Junpei Komiyama2, Vamsi K. Potluru3, Andrea Nguyen1, Mica Grant-Hagen1

1University of Victoria 2New York University 3J.P. Morgan AI Research
nmehta@uvic.ca, junpei@komiyama.info, vamsi.k.potluru@jpmchase.com

trangn@uvic.ca, micag@uvic.ca

Abstract

We introduce the thresholded linear bandit prob-
lem, a novel sequential decision making prob-
lem at the interface of structured stochastic multi-
armed bandits and learning halfspaces. The set
of arms is [0, 1]d, the expected Bernoulli reward
is piecewise constant with a jump at a separating
hyperplane, and each arm is associated with a cost
that is a positive linear combination of the arm’s
components. This problem is motivated by sev-
eral practical applications. For instance, imagine
tuning the continuous features of an offer to a con-
sumer; higher values incur higher cost to the ven-
dor but result in a more attractive offer. At some
threshold, the offer is attractive enough for a ran-
dom consumer to accept at the higher probability
level. For the one-dimensional case, we present
Leftist, which enjoys log2 T problem-dependent
regret in favorable cases and has log(T)

√
T worst-

case regret; we also give a lower bound suggesting
this is unimprovable. We then present MD-Leftist,
our extension of Leftist to the multi-dimensional
case, which obtains similar regret bounds but with
d2.5 log d and d1.5 log d dependence on dimen-
sion for the two types of bounds respectively. Fi-
nally, we experimentally evaluate Leftist.

1 INTRODUCTION

Much is known about how to sequentially maximize cu-
mulative reward in stochastic sequential decision-making
problems when the problem structure is finite — as in multi-
armed bandit problems with finitely many arms — or contin-
uous — as in linear bandits, Lipschitz bandits, or unimodal
bandits. Simultaneously, the machine learning community

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

has a rich body of results for inherently discontinuous prob-
lems like learning halfspaces, an instance of classification.
Our work introduces a new problem, thresholded linear
bandits, that lies in the intersection of multi-armed bandits
and learning halfspaces. We introduce this problem via the
following practically-motivated example.

Vending with an Outside Option Suppose a vendor is
selling an essential good. Due to regulation or steep com-
petition, the price is fixed at $1. However, the vendor can
specialize the good a ∈ [0, 1]d by tuning each of d con-
tinuous features a1, a2, . . . , ad; each feature represents the
quality of the good along a dimension. Naturally, offering a
good a is associated with a (known) cost c(a) that is increas-
ing in each coordinate. In addition, there is an unknown,
nonnegative linear utility function a 7→ ⟨θ∗, a⟩ that maps a
good a ∈ [0, 1]d to a utility u ∈ R+.

When presented a good, a consumer buys the good if its
utility is the highest among the consumers’ options. The
consumers in the market of interest are of 3 unknown types:

(i) a 1− p1 fraction does not want the good;

(ii) a p0 fraction needs the good and the vendor is their only
option, so they always buy the good;

(iii) a ∆ = p1 − p0 fraction needs the good but also has an
outside option with utility τ = ⟨θ∗, a⟩, so they buy the
good if and only if its linear utility is at least τ .

When considering a random consumer, there is a jump in
the probability of buying the good as soon as the good is
in the positive halfspace {a ∈ [0, 1]d : ⟨θ∗, a⟩ ≥ τ}. This
type of discontinuous demand is known to be plausible
when a consumer makes choices from a finite consideration
set (Caplin et al., 2018); indeed, being the most attractive
item among the consideration set is a significant sell to the
consumer, which induces a discrete demand. What is the
vendor’s optimal strategy, the sequence of goods a ∈ [0, 1]d

to offer, in order to maximize expected cumulative profit?

The thresholded linear bandits problem can be viewed from
two rather different perspectives: structured bandits and
active learning (AL). We explore each perspective in turn.

The halfspace structure of the problem and the ability to

Thresholded Linear Bandits

decide which arm in all of [0, 1]d to pull in each round sug-
gests viewing the thresholded linear bandits problem as an
instance of pool-based AL (Lewis and Gale, 1994; McCal-
lum and Nigam, 1998); here, the pool is the entire input
space X = [0, 1]d. However, whereas in pool-based AL
querying any example’s label has the same cost, the queries
in our model vary according to our linear cost functional
a 7→ ⟨v, a⟩. The goals also differ: pool-based AL seeks to
to identify a separating hyperplane of minimum risk under
0-1 loss; in thresholded linear bandits, we wish to eventually
commit to a single arm (example) in either the negative or
positive halfspace whose cost is minimum (as we explain in
Section 2, such a point must either be arm 0 or a minimum
cost point on the separating hyperplane). It is plausible to
use AL strategies (Zhang et al., 2014) to try to first learn
(θ∗, τ) and, using this knowledge and a suitable estimate
of ∆, to commit to the optimal arm. Yet, we believe direct
estimation of (θ∗, τ) is not always necessary.

The thresholded linear bandits problem also can be viewed
as a structured multi-armed bandit problem. As opposed
to the classical stochastic bandit problem, in a structured
bandit problem reward observations for one arm can re-
veal some information about the expected rewards of other
arms (Van Parys and Golrezaei, 2020). Linear bandits
(Abbasi-Yadkori et al., 2011) are a typical parametric in-
stance, wherein each arm a is associated with a known
d-dimensional feature vector xa ∈ Rd, and the expected
reward of each arm is ⟨θ∗, xa⟩ for an unknown parameter
vector θ∗ ∈ Rd. More generally, we can consider nonlinear
models via the use of a nonlinearity σ : R → R, enabling
an extension of linear bandits to generalized linear bandits
(Filippi et al., 2010) by selecting σ to be the inverse link
function for a generalized linear model.

Generalized linear models have widespread appeal, espe-
cially in statistics, but they rely upon modeling assump-
tions such as the inverse link being differentiable and, of
course, invertible. These assumptions can be restrictive.
Indeed, from a classification perspective, we may wish
to take σ to (essentially) be a linear threshold function
xa 7→ 1 [⟨θ∗, xa⟩ ≥ τ] for unknown θ∗ as before and un-
known threshold τ ∈ R, in which case both invertibility
and differentiability (and even continuity!) are violated. As
a result, existing algorithms for generalized linear bandit,
such as GLM-UCB (Filippi et al., 2010) do not apply to
thresholded linear bandits. Also, critically, the lack of a cost
for pulling arms in generalized linear bandits means that
when there is a positive arm that is optimal, this arm does
not necessarily lie on the separating hyperplane. Yet, as
we show in Section 4, the structure of an optimal solution
for thresholded linear bandits is quite different from that of
generalized linear bandits.

To see our main idea, consider the one-dimensional case. If
we normalize v = 1, τ is the minimum arm in the region of
p1. Our main algorithm called Leftist first learns the scale

of ∆ := p1 − p0 compared with τ , with ∆ representing
the return on the investment. Interestingly, we do not seek
for a perfect identification because if τ > ∆, then arm
0 is optimal — the investment of going from p0 to p1 is
not worth it. If investing is worthwhile, then the algorithm
learns the minimum cost investment (i.e, optimal arm) by
using a robust binary search. For the multi-dimensional
case, we formulate a subproblem that boils down to the dual
formulation of the fractional knapsack problem, for which
there is a natural order of the coordinates in terms of the
return on investment. In summary, our algorithmic approach
to the problem comes with several novel ideas.

Our contributions are as follows:

• We introduce a novel structured bandit problem, thresh-
olded linear bandits, closing a gap in the literature on
structured bandits.

• For the one-dimensional case, we introduce two algo-
rithms that we call Explore-the-Gap and Leftist.

• We devise an algorithm that we called MultiDim-Leftist
(MD-Leftist) that extends the results of Leftist to the
multi-dimensional case.

• We give both problem-dependent and worst-case guar-
antees on the pseudo-regret for each algorithm.

• Finally, we evaluate Leftist with simulations.

The next section formally introduces the thresholded linear
bandits problem. We give algorithms and regret guarantees
for the one-dimensional case in Section 3 and for the multi-
dimensional case in Section 4. In Section 5, we present
some experimental results for the one-dimensional case.
Finally, Section 6 concludes the paper with a discussion.

2 PROBLEM SETTING

The thresholded linear bandits problem is a sequential game
that takes place over T rounds. In round t, a learning agent
(Learner) plays an action at from an action space [0, 1]d,
receives a stochastic Bernoulli revenue µt, and pays a cost
ct = ⟨v, at⟩ according to a known cost vector v ∈ (0,∞)d.
We assume that for each action a, the stochastic revenue
in each round is i.i.d. according to a Bernoulli distribu-
tion with mean µ(a); the Learner’s feedback is therefore
binary. Our key modeling assumption is that the behavior
of the expected revenue function µ is specified by a lin-
ear threshold function. Specifically, for a normal vector
θ∗ ∈ [0,∞)d \ {0}, threshold τ > 0, and probabilities p0
and p1 satisfying 0 ≤ p0 < p1 ≤ 1, we have

µ(a) = p0 + (p1 − p0) · 1 [⟨θ∗, a⟩ ≥ τ];

here, 1 [E] is the indicator function with respect to event E,
and we assume that all the problem parameters θ∗, τ , p0,
and p1 are unknown. The vector θ∗ is normal to the implicit
separating hyperplane; without loss of generality we can

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

and will assume that (θ∗, τ) are scaled such that ∥θ∗∥2 = 1.
Defining ∆ := p1 − p0, the expected reward of an action at
is now given as µc(at), which is defined as

µ(at)− ct = p0 +∆ · 1 [⟨θ∗, at⟩ ≥ τ]−⟨v, at⟩. (1)

Learner’s objective for this problem is to obtain low pseudo-
regret (hereafter “regret”), defined as

RT := max
a∈[0,1]d

T∑
t=1

µc(a)− E

[
T∑

t=1

µc(at)

]
.

To gain intuition, let us explore what an optimal arm looks
like. First, it is easy to see that the expected revenue function
is piecewise constant with two pieces, each piece being a
halfspace defined by the normal vector θ∗ and threshold
τ . Since the expected revenue function is constant within
each halfspace, the optimal arm within a halfspace is its
arm of minimum cost. We say an arm is positive if it is in
the positive halfspace and negative if it is in the negative
halfspace. Clearly, the negative arm of minimum cost is
arm 0. Next, suppose that a is a positive arm that does not
lie on the separating hyperplane H := Hθ∗,τ , defined as

Hθ∗,τ := {a ∈ Rd : ⟨θ∗, a⟩ = τ}

and that does not lie on the boundary of [0, 1]d. Then since
⟨v, θ∗⟩ > 0, we may move a infinitesimally in the direction
−θ∗ while simultaneously decreasing the cost. Therefore,
arms interior to [0, 1]d that lie in the positive halfspace can-
not be optimal unless they belong to H . This implies the
following characterization of the set of optimal arms.

Proposition 1. The optimal arm a∗ belongs to the
set (H ∩ [0, 1]d) ∪ {0}. In particular, a∗ ∈ H if
mina∈H∩[0,1]d⟨v, a⟩ ≤ ∆, and arm 0 is optimal otherwise.

The geometry of the problem is illustrated in Figure 1. In
the sequel, if a∗ ∈ H we say H is optimal.

Related Work As discussed earlier, thresholded linear
bandits has some relation to generalized linear bandits. Yu
and Mannor (2011) considered the unimodal bandit prob-
lem, where arms are associated with a graph and the mean
reward of the arms is unimodal. Kleinberg et al. (2008)
considered the Lipschitz bandit problem where the arms are
associated with a metric space and mean reward of the arms
are Lipschitz to the original metric. Compared with these
problems, the thresholded linear bandit problem is more
challenging in that the proximity to other arms does not give
much information on the mean reward: any arm in the same
halfspace has the same mean reward.

The thresholded linear bandit setting has some similarity
to dynamic pricing (Boer and Keskin, 2022), but the com-
parison is limited to the one-dimensional case due to core
differences between the two problems. The most similar

cost

0.3

0.2

0.1

OPT if
<latexit sha1_base64="jAVzTs02443lCTlUm4mv1jTKcqo=">AAAE/3icfVRLbxMxEHbbACU82sKRi0VUqa0gykYVcCwqKSBAhIj0oewSOc5sYsXeXWwvJDJ74HdwBXFDXPkn8G/wPkDJpmBpteP5vvlmdnbsQcSZ0o3Gr5XVtcqFi5fWL1evXL12fWNz68axCmNJoUtDHsrTAVHAWQBdzTSH00gCEQMOJ4PJYYqfvAOpWBi81rMIPEFGAfMZJdq6+psb7iPgmmCXw1vcqDv9zVqj3sgWXjacwqihYrX7W2s/3WFIYwGBppwo1XMakfYMkZpRDknVjRVEhE7ICHrWDIgA5Zms8gRvW88Q+6G0T6Bx5p2PMEQoNRMDyxREj1UZS53nYb1Y+w88w4Io1hDQPJEfc6xDnLYBD5kEqvnMGoRKZmvFdEwkodo2q7qN57Va3eetzuNOq/XsDsQc5EgCTDyjSJDnT+l/NtWqbajtg4QXdvcyAkl0KI2rdEjHtseJcbVkJBhx4OBr6zg3YM+4EYtAWfqHxGoG8J6GQpBgaFyQwrrHRBs/6Vs5mGpFTepNkkUmD1WqAJyXgKnKoJ7j5aS+qTkJvouLjf9mryyVRxCd9JrzMTu15u5iXOpZipVMTfJsLdzDhViW0ytxW7besGhCOirGzf6tb1pLX3eU5CAl3ByVwaeHBSqFsbYdALwDImLSTj7fxSywMyeyM2CHTkQcpkzPFiWyov+KdNJdKQk9myvhbAntzKGdJbQ9h7bLqD3CXBWEwWA5mgXDvJ8ZwTdO0qs53j9niciRYEFiivf/aGSa0+zb3gVO+eQvG8fNunOvvv9qv3bwsLgV1tEtdBvtIAfdRwfoCWqjLqIoRp/QZ/Sl8rHytfKt8j2nrq4UMTfRwqr8+A24gb/B</latexit>

�  0.1 OPT if
<latexit sha1_base64="Ho6lOXotXC+hX6o9uIXb21kWOKI=">AAAE/3icfVRLbxMxEHbbACU82sKRi0VUqa0gylYVcCwqKSBAhIj0oew2cpzZxIq9u7W9kMjsgd/BFcQNceWfwL/B+wAlm4Kl1Y7n++ab2dmx+xFnSjcav5aWVyqXLl9ZvVq9dv3GzbX1jVtHKowlhQ4NeShP+kQBZwF0NNMcTiIJRPQ5HPfHByl+/A6kYmHwVk8j8AQZBsxnlGjr6q2vuU+Aa4LdIZzjRt3prdca9Ua28KLhFEYNFavV21j56Q5CGgsINOVEqa7TiLRniNSMckiqbqwgInRMhtC1ZkAEKM9klSd403oG2A+lfQKNM+9shCFCqanoW6YgeqTKWOq8COvG2n/kGRZEsYaA5on8mGMd4rQNeMAkUM2n1iBUMlsrpiMiCdW2WdVNPKvV7Lxstp+2m80X9yDmIIcSYOwZRYI8f0r/s6lWbUNtHyS8srvXEUiiQ2lcpUM64nCeGFdLRoIhBw6+to4LA3aMG7EIlKV/SKxmAO9pKAQJBsYFKax7RLTxk56Vg4lW1KTeJJln8lClCsB5CZioDOo6Xk7qmZqT4Pu42PhnO2WpPILopLs7G7NV292ej0s9C7GSqXGerYm7uBDLcnolbtPWGxZNSEfFuNm/9U1z4esOkxykhJvDMvj8oEClMNa2A4C3QERM2snn25gFduZEdgbs0ImIw4Tp6bxEVvRfkXa6KyWhpzMlnC6g7Rm0vYC2ZtBWGbVHmKuC0O8vRrNgkPczI/jGSbo1x/vnLBE5FCxITPH+H41Mcpp927vAKZ/8ReNot+48qO+92avtPy5uhVV0B91FW8hBD9E+eoZaqIMoitEn9Bl9qXysfK18q3zPqctLRcxtNLcqP34Doay/vA==</latexit>

� � 0.1

<latexit sha1_base64="tL8b3zZQ9odRAHa1+Uhd+h/rtGw=">AAAE73icfVRLbxMxEHbbACW8WjhysYgqtRVU2aoCTqhSSQEBIo1IH8oukePMJlZs79Z2SiKzv4AriBviyj+Cf4P3AUo2gKWVZ+b75uHZsXsxZ9rU6z+Xllcqly5fWb1avXb9xs1ba+u3j3U0VhTaNOKROu0RDZxJaBtmOJzGCojocTjpjQ5S/OQClGaRfGumMQSCDCQLGSXGmY4uumu1+k49W3hR8AqhhorV7K6v/PD7ER0LkIZyonXHq8cmsEQZRjkkVX+sISZ0RAbQcaIkAnRgs0oTvOEsfRxGyn3S4Mw662GJ0Hoqeo4piBnqMpYa/4Z1xiZ8HFgm47EBSfNE4ZhjE+H02LjPFFDDp04gVDFXK6ZDogg1rjnVDTwbq9F+1Wg9azUaL+/DmIMaKIBRYDWRef6U/lupVv2n4Pqg4LXT3sSgiImU9bWJ6JDDeWJ9oxiRAw4cQuMMf3XYtn7MYtCO/iFxMSW8p5EQRPatD0o485AYGyZdFw4mRlObWpNknskjnUYAzkvARGdQxwtyUtfWvAQ/wIUSvtsuh8o9iEk6u7M+m7XdrXm/1LLgq5ge5dkauIOLYFnOoMRtuHqjognpqFg/+7ehbSyc7jDJQUq4PSyDLw4KVAnrZDcAeBNEzJSbdL6FmXQzJ7KZd0MnYg4TZqbzIbKi/wRppVopCT2bKeFsAW3NoK0FtDmDNsuou7JcF4Reb9GbyX7ez4wQWi/p1Lzgn7NE1EAwmdhi/x+NTHKa291b4JVv/qJwvLvjPdzZO9qr7T8pXoVVdBfdQ5vIQ4/QPnqOmqiNKAL0EX1CnyvnlS+Vr5VvOXV5qfC5g+ZW5fsvS4+6xA==</latexit>v

<latexit sha1_base64="FzaLRw8pQ/9zslN1g6o9Uc1VLIY=">AAAE9nicfVRZbxMxEHbbACVcLTzyYhFVaiuIdkN65AVVKikgQISItEXZbeQ4s4kV74HtQCKzf4JXEG+IV34O/Bu8R1GOFksrz8z3zeHZsbsRZ1JZ1p+l5ZXClavXVq8Xb9y8dfvO2vrdYxmOBIUWDXkoTrtEAmcBtBRTHE4jAcTvcjjpDg8T/OQjCMnC4J2aROD6pB8wj1GijOnUUQNQ5Gy7s1ayytZOrbpXwVZ5x7Jr1cdGqNX2q7s72C5b6SqhfDU66yu/nV5IRz4EinIiZdu2IuVqIhSjHOKiM5IQETokfWgbMSA+SFenBcd4w1h62AuF+QKFU+u0hya+lBO/a5g+UQM5jyXGi7D2SHn7rmZBNFIQ0CyRN+JYhTg5Pe4xAVTxiREIFczUiumACEKV6VFxA0/Hqrde1ZvPmvX6y4cw4iD6AmDoakmCLH9CP1eKRecpmD4IeG20NxEIokKhHalCOuDwIdaOEowEfQ4cPGUMFzpsaydiEUhD/xybmAF8oqHvk6CnHRC+MQ+I0l7cMeFgrCTViTWOZ5k8lEkE4HwOGMsUattuRurokh3jRzhXvLPt+VCZB1FxuzLts1mqbM36JZYFX8HkMMtWx22cB0tzunPcuqk3zJuQjIp20n/r6frC6Y7iDKSE66N58MVhjgpfG9kMAN4EP2LCDDzfwiwwM+eno2+Gzo84jJmazIZIi/4XpJloc0no+6kS3i+gzSm0uYA2ptDGPGpuLpc5odtd9GZBL+tnSvC0HbdLtnvpLBHR91kQ63z/H42MM5rZzVtwfuHx5cJxpWzvlqtvq6WDJ/mrsIruowdoE9loDx2g56iBWogijr6gr+hbYVz4XvhR+JlRl5dyn3toZhV+/QVvN73o</latexit>

✓⇤

Figure 1: A two-dimensional problem with cost level sets
shown by parallel black lines orthogonal to cost vector v.
The minimum-cost arm in the positive halfspace (blue point)
has cost 0.1 and is optimal if ∆ ≥ 0.1, while arm 0 (red
point) is optimal if ∆ ≤ 0.1.

dynamic pricing works are those of den Boer and Keskin
(2020) and Cesa-Bianchi et al. (2019); the latter also con-
sider a piecewise constant expected reward function as it
isolates the key difficulty of having a discontinuity. How-
ever, whereas in their case, the algorithm’s choice is a price
and hence is limited to a single dimension, in our case the
algorithm’s choice can be a collection of quality levels, mak-
ing a multi-dimensional version natural. In this sense, our
work transcends these dynamic pricing works. In both cases,
the feedback is binary, but the notion of cost is unique to
thresholded linear bandits and is always borne by the vendor,
reminiscent of the newsvendor problem (Arrow et al., 1951;
Choi, 2012).

We explore the one-dimensional version of the thresholded
linear bandits problem in the next section. Before we present
our algorithms, we mention that for simplicity and to keep
the focus on the key ideas, in the sequel we assume that
the failure probability δ is set as 1/T 2, so that applying
Hoeffding’s inequality once per time step (which is certainly
overcounting) still ensures that with probability at least
1 − 1/T , all the relevant upper/lower confidence bounds
simultaneously hold.

3 ONE-DIMENSIONAL CASE

We begin by considering the case of d = 1. Let us first
discuss the set of potentially optimal arms. Since d = 1
and ∥θ∗∥2 = 1, we implicitly have θ∗ = 1, and so the
hyperplane H is the arm {τ}. Proposition 1 therefore re-
duces to the following simple characterization of the set of
potentially arms.

Corollary 2. The optimal arm a∗ belongs to the set {0, τ}.
Arm τ is optimal if τ ≤ ∆

v and arm 0 is optimal if τ ≥ ∆
v .

Thresholded Linear Bandits

Pull

<latexit sha1_base64="3UTrZFKJOmGAGZGi+egHxUvWUdY=">AAAE9HicfVRLbxMxEHbbACU82sKRi0VUqa2gylYVcKxUUkCACBHpQ9klcpzZxMT2LrZTEpn9D1xB3BBXfg/8G7wPULIpWFp5Zr5vHp4duxdzpk29/mtpeaVy6fKV1avVa9dv3Fxb37h1rKOxotCmEY/UaY9o4ExC2zDD4TRWQESPw0lvdJjiJ+egNIvkGzONIRBkIFnIKDHOdOw/Bm5Id71W361nCy8KXiHUULGa3Y2Vn34/omMB0lBOtO549dgElijDKIek6o81xISOyAA6TpREgA5sVm6CN52lj8NIuU8anFlnPSwRWk9FzzEFMUNdxlLjRVhnbMJHgWUyHhuQNE8Ujjk2EU7PjvtMATV86gRCFXO1YjokilDjOlTdxLOxGu0XjdaTVqPx/B6MOaiBAhgFVhOZ50/pf5Rq1fXR9UHBS6e9ikEREynraxPRIYf3ifWNYkQOOHAIjTNc6LBj/ZjFoB39Y+JiSvhAIyGI7FsflHDmITE2TLouHEyMpja1Jsk8k0c6jQCcl4CJzqCOF+Skrq15Cb6PCyV8u1MOlXsQk3T2Zn22anvb836pZcFXMT3KszVwBxfBspxBidtw9UZFE9JRsX72b0PbWDjdUZKDlHB7VAafHRaoEtbJbgDwFoiYKTfufBsz6WZOZIPvhk7EHCbMTOdDZEX/DdJKtVISejZTwtkC2ppBWwtocwZtllF3b7kuCL3eojeT/byfGSG0XtKpecE/Z4mogWAyscX+PxqZ5DS3u7fAK9/8ReF4b9d7sLv/er92cFC8CqvoDrqLtpCHHqID9BQ1URtR9A59Qp/Rl8p55WvlW+V7Tl1eKnxuo7lV+fEbVaK8yA==</latexit>

�
<latexit sha1_base64="sg66AuQ5ekKhlTNi0FCBjFOD6XQ=">AAAE8nicfVRLbxMxEHbbACW8WjhysYgqtRVU2aoCjpVKCggQISKlVXaJHGc2sWJ7F9sLicz+Ba4gbogrPwj+Dd4HKNkULK08M983D8+OPYg506bZ/LWyula7cPHS+uX6lavXrt/Y2Lx5oqNEUejSiEfqdEA0cCaha5jhcBorIGLA4c1gcpThb96D0iySr80shkCQkWQho8RkJt+QpL/RaO4184WXBa8UGqhc7f7m2k9/GNFEgDSUE617XjM2gSXKMMohrfuJhpjQCRlBz4mSCNCBzYtN8ZazDHEYKfdJg3PrvIclQuuZGDimIGasq1hmPA/rJSZ8GFgm48SApEWiMOHYRDg7OR4yBdTwmRMIVczViumYKEKN6099C8/HanWftzqPO63Ws7uQcFAjBTAJrCayyJ/R/yj1uv8IXB8UvHDayxgUMZGyvjYRHXN4l1rfKEbkiAOH0DjDuQ671o9ZDNrRP6YupoQPNBKCyKH1QQlnHhNjw7TvwsHUaGoza5ouMnmkswjAeQWY6hzqeUFB6tuGl+J7uFTCt7vVUIUHMWlvf95nu7G/s+iXWZZ8FdOTIlsL93AZLM8ZVLgtV29UNiEbFevn/za0raXTHacFSAm3x1Xw6VGJKmGd7AYAb4OImXLDzncwk27mRD72buhEzGHKzGwxRF703yCdTKskoWdzJZwtoZ05tLOEtufQdhV1t5brkjAYLHszOSz6mRNC66W9hhf8c5aIGgkmU1vu/6ORaUFzu3sLvOrNXxZO9ve8+3sHrw4ah4flq7CObqM7aBt56AE6RE9QG3URRWP0CX1GX2qm9rX2rfa9oK6ulD630MKq/fgNK7e8FA==</latexit>⌧ <latexit sha1_base64="nbowgYnxnOEMCvq+tCbw79aDPfs=">AAAE8XicfVRLbxMxEHbbACW8WjhysYgqtRVU2agCjpVKCggQIZA+lF0ix5lNrNjexXYgkdmfwBXEDXHlD8G/wfsAJZuCpZVn5vvm4dmx+zFn2tTrv1ZW1yoXLl5av1y9cvXa9RsbmzePdTRRFDo04pE67RMNnEnoGGY4nMYKiOhzOOmPD1P85D0ozSL5xsxiCAQZShYySowzvSa9em+jVt+rZwsvC14h1FCxWr3NtZ/+IKITAdJQTrTuevXYBJYowyiHpOpPNMSEjskQuk6URIAObFZrgrecZYDDSLlPGpxZ5z0sEVrPRN8xBTEjXcZS43lYd2LCh4FlMp4YkDRPFE44NhFOD44HTAE1fOYEQhVztWI6IopQ49pT3cLzsZqd583243az+ewuTDiooQIYB1YTmedP6X+UatV/BK4PCl447WUMiphIWV+biI44vEusbxQjcsiBQ2ic4VyHXevHLAbt6B8TF1PCBxoJQeTA+qCEM4+IsWHSc+FgajS1qTVJFpk80mkE4LwETHUGdb0gJ/VszUvwPVwo4dvdcqjcg5ik25j32a41dhb9UsuSr2J6nGdr4i4ugmU5gxK36eqNiiako2L97N+Gtrl0uqMkBynh9qgMPj0sUCWsk90A4G0QMVNu1vkOZtLNnMim3g2diDlMmZkthsiK/huknWqlJPRsroSzJbQ9h7aX0NYc2iqj7tJyXRD6/WVvJgd5PzNCaL2kW/OCf84SUUPBZGKL/X80Ms1pbndvgVe++cvCcWPPu7+3/2q/dnBQvArr6Da6g7aRhx6gA/QEtVAHUTREn9Bn9KWiK18r3yrfc+rqSuFzCy2syo/fx367VA==</latexit>a0

<latexit sha1_base64="DGUDO6qhd5qNFvCrIxUnyvfQpJ4=">AAAE8XicfVRLbxMxEHbbACW8WjhysYgqtRVU2agCjpVKCggQIZA+lF0ix5lNrNjexXYgkdmfwBXEDXHlD8G/wfsAJZuCpZVn5vvm4dmx+zFn2tTrv1ZW1yoXLl5av1y9cvXa9RsbmzePdTRRFDo04pE67RMNnEnoGGY4nMYKiOhzOOmPD1P85D0ozSL5xsxiCAQZShYySowzvSY9r7dRq+/Vs4WXBa8QaqhYrd7m2k9/ENGJAGkoJ1p3vXpsAkuUYZRDUvUnGmJCx2QIXSdKIkAHNqs1wVvOMsBhpNwnDc6s8x6WCK1nou+YgpiRLmOp8TysOzHhw8AyGU8MSJonCiccmwinB8cDpoAaPnMCoYq5WjEdEUWoce2pbuH5WM3O82b7cbvZfHYXJhzUUAGMA6uJzPOn9D9Kteo/AtcHBS+c9jIGRUykrK9NREcc3iXWN4oROeTAITTOcK7DrvVjFoN29I+JiynhA42EIHJgfVDCmUfE2DDpuXAwNZra1Joki0we6TQCcF4CpjqDul6Qk3q25iX4Hi6U8O1uOVTuQUzSbcz7bNcaO4t+qWXJVzE9zrM1cRcXwbKcQYnbdPVGRRPSUbF+9m9D21w63VGSg5Rwe1QGnx4WqBLWyW4A8DaImCk363wHM+lmTmRT74ZOxBymzMwWQ2RF/w3STrVSEno2V8LZEtqeQ9tLaGsObZVRd2m5Lgj9/rI3k4O8nxkhtF7SrXnBP2eJqKFgMrHF/j8ameY0t7u3wCvf/GXhuLHn3d/bf7VfOzgoXoV1dBvdQdvIQw/QAXqCWqiDKBqiT+gz+lLRla+Vb5XvOXV1pfC5hRZW5cdvzAm7VQ==</latexit>a1
<latexit sha1_base64="/+B4ylNDi0oHjQglSE1UeAbwPg4=">AAAE8XicfVRLbxMxEHbbACW8WjhysYgqtRVU2agCjpVKCggQIZA+lF0ix5lNrNjexXYgkdmfwBXEDXHlD8G/wfsAJZuCpZVn5vvm4dmx+zFn2tTrv1ZW1yoXLl5av1y9cvXa9RsbmzePdTRRFDo04pE67RMNnEnoGGY4nMYKiOhzOOmPD1P85D0ozSL5xsxiCAQZShYySowzvSa9Rm+jVt+rZwsvC14h1FCxWr3NtZ/+IKITAdJQTrTuevXYBJYowyiHpOpPNMSEjskQuk6URIAObFZrgrecZYDDSLlPGpxZ5z0sEVrPRN8xBTEjXcZS43lYd2LCh4FlMp4YkDRPFE44NhFOD44HTAE1fOYEQhVztWI6IopQ49pT3cLzsZqd583243az+ewuTDiooQIYB1YTmedP6X+UatV/BK4PCl447WUMiphIWV+biI44vEusbxQjcsiBQ2ic4VyHXevHLAbt6B8TF1PCBxoJQeTA+qCEM4+IsWHSc+FgajS1qTVJFpk80mkE4LwETHUGdb0gJ/VszUvwPVwo4dvdcqjcg5ik25j32a41dhb9UsuSr2J6nGdr4i4ugmU5gxK36eqNiiako2L97N+Gtrl0uqMkBynh9qgMPj0sUCWsk90A4G0QMVNu1vkOZtLNnMim3g2diDlMmZkthsiK/huknWqlJPRsroSzJbQ9h7aX0NYc2iqj7tJyXRD6/WVvJgd5PzNCaL2kW/OCf84SUUPBZGKL/X80Ms1pbndvgVe++cvCcWPPu7+3/2q/dnBQvArr6Da6g7aRhx6gA/QEtVAHUTREn9Bn9KWiK18r3yrfc+rqSuFzCy2syo/f0JS7Vg==</latexit>a2

<latexit sha1_base64="BKCTwtn7016pSm15FuTTsCJNUWA=">AAAE8XicfVRLbxMxEHbbACW8WjhysYgqtRVU2VIBx0olBQSIEEgfym4jx5lNrNjexXYgkdmfwBXEDXHlD8G/wfsAJZuCpZVn5vvm4dmxezFn2tTrv5aWVyoXLl5avVy9cvXa9Rtr6zePdDRWFNo04pE66RENnEloG2Y4nMQKiOhxOO6NDlL8+D0ozSL51kxjCAQZSBYySowzvSHd+921Wn2nni28KHiFUEPFanbXV376/YiOBUhDOdG649VjE1iiDKMckqo/1hATOiID6DhREgE6sFmtCd5wlj4OI+U+aXBmnfWwRGg9FT3HFMQMdRlLjedhnbEJHwWWyXhsQNI8UTjm2EQ4PTjuMwXU8KkTCFXM1YrpkChCjWtPdQPPxmq0XzRaT1qNxvO7MOagBgpgFFhNZJ4/pf9RqlX/Mbg+KHjptFcxKGIiZX1tIjrk8C6xvlGMyAEHDqFxhnMdtq0fsxi0o39MXEwJH2gkBJF964MSzjwkxoZJ14WDidHUptYkmWfySKcRgPMSMNEZ1PGCnNS1NS/B93ChhGfb5VC5BzFJZ3fWZ7O2uzXvl1oWfBXTozxbA3dwESzLGZS4DVdvVDQhHRXrZ/82tI2F0x0mOUgJt4dl8NlBgSphnewGAG+CiJlys863MJNu5kQ29W7oRMxhwsx0PkRW9N8grVQrJaGnMyWcLqCtGbS1gDZn0GYZdZeW64LQ6y16M9nP+5kRQuslnZoX/HOWiBoIJhNb7P+jkUlOc7t7C7zyzV8UjnZ3vAc7e6/3avv7xauwim6jO2gTeegh2kdPURO1EUUD9Al9Rl8quvK18q3yPacuLxU+t9Dcqvz4DdUfu1c=</latexit>a3
<latexit sha1_base64="+cppQyrdJvSHdJ/8HnRpVyNL2hs=">AAAE73icfVRLbxMxEHbbACU82sKRi0VUqa2gylYVcKxUUkCASCPSh7JL5DiziRXbu7UdSGT2F3AFcUNc+Ufwb/A+QMmmYGnlmfm+eXh27F7MmTb1+q+l5ZXKlavXVq9Xb9y8dXttfePOiY7GikKbRjxSZz2igTMJbcMMh7NYARE9Dqe90WGKn74HpVkk35ppDIEgA8lCRolxpuN6d71W361nCy8KXiHUULGa3Y2Vn34/omMB0lBOtO549dgElijDKIek6o81xISOyAA6TpREgA5sVmmCN52lj8NIuU8anFlnPSwRWk9FzzEFMUNdxlLjZVhnbMIngWUyHhuQNE8Ujjk2EU6PjftMATV86gRCFXO1YjokilDjmlPdxLOxGu1XjdazVqPx8gGMOaiBAhgFVhOZ50/pf5Rq1X8Krg8KXjvtTQyKmEhZX5uIDjlcJNY3ihE54MAhNM5wqcOO9WMWg3b0j4mLKeEDjYQgsm99UMKZh8TYMOm6cDAxmtrUmiTzTB7pNAJwXgImOoM6XpCTurbmJfghLpTw3U45VO5BTNLZm/XZqu1tz/ullgVfxfQoz9bAHVwEy3IGJW7D1RsVTUhHxfrZvw1tY+F0R0kOUsLtURl8cVigSlgnuwHAWyBiptyk823MpJs5kc28GzoRc5gwM50PkRX9N0gr1UpJ6PlMCecLaGsGbS2gzRm0WUbdleW6IPR6i95M9vN+ZoTQekmn5gX/nCWiBoLJxBb7/2hkktPc7t4Cr3zzF4WTvV3v0e7+8X7t4KB4FVbRPXQfbSEPPUYH6DlqojaiCNAn9Bl9qVxUvla+Vb7n1OWlwucumluVH78BDhi6gA==</latexit>

0

Figure 2: Leftist will pull geometrically decreasing arms until it identifies a lower bound on ∆ or ar is of order
O(log(T)/

√
T , in which case the algorithm will commit to pulling arm 0.

Even in the case of d = 1, the threshold bandit problem has
interesting structure. There are two challenges in thresh-
olded linear bandits. First, the feedback is very limited:
upon comparing two arms a1, a2, the learning algorithm
only receives (noisy) feedback about whether a1, a2 lie in
the same halfspace, and any explicit information regarding
the distance of these arms from the separating hyperplane
H (here, just the threshold τ) is unavailable. Second, each
arm a ∈ [0, 1] is associated with its own fixed cost v · a,
and thus we need to care about the exploration cost. Even
though this problem is an online optimization with bandit
(noisy partial) feedback, naive application of existing ban-
dit algorithms such as upper confidence bound (UCB, (Lai
et al., 1985; Auer et al., 2002)) or Thompson sampling (TS,
(Thompson, 1933)) does not make immediate sense. In
particular, a good algorithm must actively search for the
hyperplane H . However, a naive binary search with a fixed
number of comparisons does not work because the reward
gap ∆ is unknown, and the number of samples required to
differentiate a positive arm from a negative arm depends on
∆. Also, some of the arms can be more costly than others,
and naive exploration can result in O(T) regret.

3.1 Lower Bounds of the Regret

We start with a regret lower bound in the one-dimensional
thresholded linear bandit problem.

Theorem 3. For any algorithm, there exists a set of param-
eters such that the regret of the algorithm isRT = Ω(

√
T).

At a glance, achieving Ω̃(
√
T) regret1 seems reasonable as

it resembles the standard K-armed bandit problem where
the worst-case (minimax) regret is Θ(

√
T). In the standard

bandit problem, well-known algorithms such as UCB and
TS have Õ(

√
T) regret as well as a logarithmic regret.

3.2 Explore-the-Gap Algorithm

We first start with an algorithm that aims for a logarithmic
regret bound, which we call Explore-the-Gap (EG). Due to
space limitations, we only give a brief idea of EG and leave
the detailed algorithm to Appendix E. First, EG repeatedly
pulls each of arms 0 and 1 until it identifies the scale of ∆
up to a constant factor. It then tries to identify the threshold

1The notation Ω̃ ignores a polylogarithmic factor.

τ by using a robust version of binary search that we call
NoisyBinarySearch (Algorithm 2). After obtaining an esti-
mate τ̂ of τ , it runs UCB on arms 0 and τ̂ in order to obtain
low regret against the best of these two arms. The following
theorem shows that it has a logarithmic regret.

Theorem 4. The regret of EG is bounded as

RT = O

(
log2 T

∆2
+

log T

|∆− v · τ |

)
(2)

Theorem 4 states that Explore-the-Gap has a logarithmic re-
gret bound. The bound appears to be reasonable because we
are required to draw suboptimal arms at least O(log(T)/∆2)
times to identify the scale of ∆ and log T

|∆−v·τ |2 times to iden-
tify the better arm among arm 0 and τ .2

Interestingly, EG performs arbitrarily badly in the worst
case: in Appendix E.2, we explicitly construct an example
where EG suffers Ω(T) (linear) regret. The ineffectiveness
of EG comes from identifying the scale of ∆: it draws arms
0 and 1 for O(log T/∆2) times, which is inefficient when
∆ is very small. In such a case, exact identification of ∆ is
not necessary: it suffices to prove that ∆ is not very large to
conclude that arm τ is suboptimal. Moreover, if τ is small,
arm τ is more cost-effective than arm 1. The next section
proposes Leftist, which saves the cost of identifying ∆.

3.3 Leftist Algorithm

We now propose Leftist (Algorithm 1). Like EG, Left-
ist adopts an epoch-based approach. This algorithm in-
volves several variables that change geometrically with
epoch r, namely, εr = 2−r, ar = O(2−r/v), and nr =
O(log(T)4r). The largest innovation of Leftist compared
with EG is to progressively decrease the scale (as well as
cost-per-round) of arm ar that we compare with arm 0. See
Figure 2 for an illustration of Leftist in the case of v = 1.
In epoch r, Leftist (if still running) is able to restrict the
search space to the region [0, O(2−r/v)], and the regret
contribution per pull is O(2−r), which results in an im-
proved distribution-dependent regret of O(log(T)/∆) in
total. Once Leftist identifies the value of ∆ up to a constant

2Note that square in ∆2 is correctly placed. Each draw of arm
0 and 1 costs O(1) regret. After we obtain estimator τ̂ , the cost of
drawing arm 0 or τ̂ is O(|∆− v · τ |).

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

Algorithm 1: Leftist

Epoch r ← 0, a0 ← 1, ε0 ← 1/8
n0 ← log(2/δ)/(2ε20)

while εr ≥ log(T) · T−1/2 do
Make nr pulls of arm 0 to get empirical mean p̂0
Make nr pulls of arm ar to get empirical mean p̂1

∆̂r ← p̂1 − p̂0

if ∆̂r − εr ≥ εr then
τ̂ ← NoisyBinarySearch(εr, 0, ar)
Run UCB on {0, τ̂} until time T

else
if v · ar ≥ 8εr then ar+1 ← ar/2
else ar+1 ← ar
εr+1 ← εr/2, nr+1 ← 4 · nr

r ← r + 1
Commit to arm 0.

factor, Figure 2, it starts a noisy binary search to identify
the boundary. When arm 0 is optimal, it need not identify
a lower bound on ∆ as ar converges to an arm of order
O(log(T)/

√
T).

For the next two theorems, we make the very mild assump-
tion that the known value v satisfies v ≥ log(T) · T−1/2.
We first present a problem-dependent regret bound in the
case that arm τ is optimal and ∆ is suitably large.

Theorem 5. Take εNBS = 1/T and δ = 1/T 2. Suppose that
τ ≤ ∆/v. Then the regret of Leftist is bounded as

RT = O

(
log2 T

∆
+min

{√
T log T ,

log T

|∆− v · τ |

})
.

The next result applies generally; it is particularly useful for
handling the cases that arm 0 is optimal or ∆ is very small.

Theorem 6. Take εNBS = 1/T and δ = 1/T 2. Then the
regret of Leftist is bounded as

RT = O

(
log(T)

√
T +min

{√
T log T ,

log T

|∆− v · τ |

})
.

If it further holds that ∆ ≤ log(T) · T−1/2

2 , then the bound

can be improved toRT = O
(
log(T)

√
T
)

.

Remark 7. The bound in Theorem 6 is O(log(T)
√
T),

which is minimax optimal up to a logarithmic factor in
view of Theorem 3. Moreover, the distribution-dependent
regret of Leftist in Theorem 5, which holds when arm 1 is
optimal and ∆ is not too small, is

log T

∆
+

log T

|∆− v · τ | , (3)

which is better than EG in the sense that dependence on
∆ is improved from ∆2 to ∆. Theorems 5 and 6 imply
that when arm 0 is optimal and ∆ is small, Leftist does

Algorithm 2: NoisyBinarySearch
Input: Lower bound εr satisfying εr ≤ ∆, Left-most

arm L, Right-most arm R
N ← 4 log(1δ)/ε

2
r

Make N pulls of arm L to get empirical mean p̂left
Make N pulls of arm R to get empirical mean p̂right
while R− L ≥ εNBS do

m← L+R
2

Make N pulls of arm m to get empirical mean p̂mid

if p̂right − p̂mid ≥ εr
2 then L← m, p̂left ← p̂mid

else R← m, p̂right ← p̂mid

return R

not have a logarithmic regret bound. We consider this as
not suboptimality but a result of Leftist achieving minimax
regret: somewhat surprisingly, there is a case in which the
identification of the optimal arm results in large regret, and
Leftist successfully avoid this.

We exhibit the aforementioned case with a pair of interesting
models that involve a trade-off.
Theorem 8. Let η ∈ (0, 1/2) be arbitrary. There exists a
pair of models where any algorithm either (i) has Ω(T 1−η)
regret in one of the two models, or (ii) has Ω(

√
T) regret

and it draws arms of the suboptimal halfspace for Θ(T)
times in one of the two models.

Intuitively speaking, in the former case we identified the
optimal arm (by paying the cost of Ω(T 1−η), whereas in
the latter case we skip the identification of the optimal arm
and receives a smaller regret. Leftist chooses the latter and
has an Õ(

√
T) regret bound.

Before showing a proof sketch of Theorem 5, we introduce
some epoch-related concepts. First, we define ρ be the
stopping epoch of Leftist; this is either the epoch in which
NoisyBinarySearch (NBS) is called or, if the former is never
called, epoch rmax = O(log2

√
T/(log T)), which is the

largest possible epoch. Next, when arm τ is optimal, we
can show that with high probability, ρ is no greater than 3
epochs after the following critical epoch:

r∆ := argmax
r≥0

{εr > ∆} .

Lemma 9. If τ ≤ ∆/v, then ρ ≤ r∆ + 3.

Lemma 9 states that the algorithm stops in a proper round
when τ is the optimal arm. The next lemma is instrumental
in proving the previous claim.
Lemma 10. Let r∗ = r∆ + 3. If τ ≤ ∆/v, then for all
epochs r ≤ min{r∗, ρ}, arm ar is positive. Also, with
probability at least 1− 1/T , the lower confidence bound of
∆ at epoch r∗ satisfies ∆/2 ≤ ∆̂r∗ − εr∗ .

The interpretation of the above lemma is that either arm τ
is optimal, in which case the algorithm collects informative

Thresholded Linear Bandits

samples (ar is positive), or a lower bound on ∆ has been
identified (which is how Lemma 9 upper bounds the stop-
ping epoch ρ). Note that if arm 0 is optimal, arm ar can
be negative, but it will then converge to an arm of order
O(1/

√
T); this case is handled by Theorem 6.

Proof Sketch (of Theorem 5). Leftist (Algorithm 1) tries to
find τ that is optimal by assumption. We split the rounds
into (A) before and (B) after entering NoisyBinarySearch,
and decompose the proof into the following steps.

Regret in Rounds (A): At each epoch r, Leftist compares
arm 0 and ar. With high-probability, we have τ ∈ [0, ar]
for all epochs r. The cost of exploration for each epoch r
is upper-bounded by v · ar · nr = O((log T) · 2r), and thus
the total cost is on the order of

2ρ = O
(
log(T)min

{√
T

log T ,
1
∆

})
.

Regret in Rounds (B): If ∆ = Ω(2−r), then Leftist en-
ters NBS. NBS requires O(log T) pairwise comparisons,
and each pairwise comparison costs O((log T) · 2r). This
suffices to find a point τ̂ : |τ̂ − τ | = O(T−1) with a high
probability. As a result, the total cost of NBS is

O ((log T) · (log T) · 2r) = O
(

(log T)2

∆

)
.

Finally, running UCB on arms 0 and τ̂ picks up regret at
most O

(
log T

|∆−v·τ |

)
.

4 MULTI-DIMENSIONAL CASE

We now begin generalizing Leftist to the multi-dimensional
setting; since d > 1, there is an unknown vector θ∗ that is
normal to the hyperplane. The multi-dimensional setting in-
troduces several new challenges. We develop our algorithm
for this setting, MultiDimLeftist (MD-Leftist, Algorithm 3),
in the course of discussing these challenges.

First, our approach in the one-dimensional setting involved
an exploration phase that achieved the following goal: if
an arm on the separating hyperplane (there, the threshold
τ) is optimal, then Leftist identified a positive arm whose
cost is of order ∆. Because there was only a single dimen-
sion, all arms pulled by Leftist were along the line segment
[0, 1]. The first challenge in MD-Leftist is to scale down
arm ar in the multi-dimensional setting. As the set of arms
is now [0, 1]d, it no longer is clear if there is a single line
segment along which MD-Leftist can explore while keeping
the regret under control.

As it turns out, there is such a single line segment. For
an axis-parallel rectangle A, let R(A) be the vertex for
which all coordinates are maximized. This is the multi-
dimensional analogue of the “right-most” point of a closed

interval (a one-dimensional axis-parallel rectangle). Cen-
tral to MD-Leftist’s operation is the following type of
axis-parallel rectangle. Let Ar be the axis-parallel rect-
angle whose j th side is 2−r · vmin · [0, 1

vj
], for vmin =

min{minj vj , 1}. We remark that A0 is obtained by start-
ing with a rectangle whose sides are 1

vj
and scaling down

this rectangle (if needed) until it is contained within the unit
cube. Notice that the cost of R(Ar) is equal to

⟨v,R(Ar)⟩ = d · 2−r · vmin, (4)

which, in the case of v = 1, reduces to d · 2−r. Arms of the
type R(Ar) satisfy an important property.

Proposition 11. For any r ≥ 0, if R(Ar) is negative, then
any arm with cost at most 2−r · vmin also must be negative.

Considering the contrapositive form of the above proposi-
tion, we have that if there is a positive arm with cost at most
2−r · vmin, then arm R(Ar) must be positive. To make this
algorithmic, suppose that we have discovered that ∆ is at
most 2−r · vmin for some r, with high probability. Then it
suffices to pull arm R(Ar) to determine whether any arm on
the hyperplane can be optimal. Moreover, the cost of a pull
of this arm is d times our believed upper bound on ∆. This
intuition essentially captures the behavior of MD-Leftist.

The second challenge is to find a point on the boundary
H . If and when we find a first positive arm by searching
along the line segment described above, we can still use
NoisyBinarySearch (NBS) to find a positive arm af that
is arbitrarily close to the separating hyperplane H (using
O(log(1/εNBS)) rounds of NBS; by searching along the
same direction as MD-Leftist, the contribution to the re-
gret per round of NBS will be essentially the same as the
contribution from the pulls from MD-Leftist.

Before discussing the next key challenge, recall that either
arm 0 is optimal or the minimum cost arm on H is opti-
mal. Hence, we next consider how to go from our low-cost
positive arm af that approximately is on H , to an arm ap-
proximately on H that also is approximately of minimum
cost among all arms on H . For this, we consider a char-
acterization of the optimal solution aH to the problem of
finding an arm a ∈ [0, 1]d that minimizes the cost ⟨v, a⟩
subject to the constraint that ⟨θ∗, a⟩ = τ . The constraint
is feasible since we assume that arm 0 is negative and arm
1 is positive. The above problem is a dual formulation of
the fractional knapsack problem, for which the following
greedy strategy is known to be optimal: put the coordinates
[d] in non-increasing order of the leverage score θ∗j /vj , and
then, one coordinate a time, increase the coordinate from 0
up to 1 until the constraint is satisfied; if the constraint is
not satisfied, move on to the next coordinate (keeping all
previous coordinates in the ordering set to 1). Namely, the
following proposition holds.3

3For a permutation σ of (1, 2, . . . , d), let σ(i) denote the i th

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

Proposition 12. Let σ(j) be a permutation of [d] such that

θ∗σ(j)

vσ(j)
≥

θ∗σ(k)

vσ(k)
(5)

if j < k. Then, there exists an optimal arm in the hyperplane
aH ∈ argmina∈H⟨v, a⟩ such that, for some l ∈ [d],

(aHσ(1), a
H
σ(2), . . . , a

H
σ(d)) = (1, . . . , 1, aHσ(l), 0, . . . , 0).

The third challenge is how to go from the aforementioned
arm af to the ideal aH . Using the greedy paradigm, we
seek to find an ordering (permutation) of the coordinates σ
such that for all j, k ∈ [d], we have

θ∗
σ(j)

vσ(j)
≥ θ∗

σ(k)

vσ(k)
if j < k.

However, since θ∗ is unknown, we need a way of using 1-bit
feedback to determine an optimal ordering. Because of our
feedback model, if two coordinates have leverage scores that
are very close, it becomes more expensive to determine their
order. Our approach is therefore to recover an approximate
order such that, for some tunable parameter γ′, we find a
permutation σ such that, for all j, k ∈ [d] satisfying j < k,

we have
θ∗
σ(j)

vσ(j)
≥ θ∗

σ(k)

vσ(k)
−γ′. Formally, we call such an order-

ing a γ′-insensitive ordering. We achieve such an ordering
using PAC-MergeSort (PAC for “probability approximately
correct”), whose key innovation is MultiCoordinateCom-
pare (see Algorithm 5) to approximately compare coordi-
nates. In more detail, MultiCoordinateCompare satisfies
the contract that if two coordinates differ by γ, then with
high probability it correctly identifies their order; otherwise,
it is allowed to output “∗”, indicating “I don’t know”. In
this sense, MultiCoordinateCompare is an implementation
of what we call a PAC comparison oracle. For brevity, we
leave a description of PAC-MergeSort to Appendix B, but in
short, it operates like standard MergeSort with a simple rule
of joining elements when their comparison returns “∗”. Our
(likely loose) analysis shows that given a γ-PAC comparison
oracle, PAC-MergeSort produces with high probability a
γ′-insensitive ordering for γ′ = (d− 1) · γ.

Once we have a γ′-insensitive ordering, the final challenge
is how to go from this ordering to an approximately opti-
mal solution. Suppose that we could directly map a given
ordering σ to the output aσ of the greedy algorithm when
instantiated with this ordering. We still need to ensure that
aσ has cost that is not much larger than aH , the output of
the greedy algorithm when given an optimal ordering. For
this, our analysis requires an assumption that any non-zero
coordinate of θ∗ is bounded away from zero (see Assump-
tion 13 and its discussion below). Next, given an approx-
imately optimal ordering (for which greedy would output
an approximately optimal solution), we need a way to actu-
ally implement the greedy algorithm using 1-bit feedback.
We accomplish this using MultiGreedy (see Algorithm 6),

element in the permutation. This may be non-standard use of
permutation notation, but our convention is more convenient here.

which builds up a solution in a greedy fashion as described
above, using sparring between a “smaller” arm L and a
“larger” arm R in each iteration until it detects that the larger
arm is positive, after which NoisyBinarySearch is used to
set the value for the last non-zero coordinate in the ordering.
We mention the value u in Algorithm 6 is there to ensure
that we do not pull arms of very high cost relative to ∆.

We leave to the appendix a full discussion of the algorithms,
along with the theoretical developments and regret analysis.
Let us now consider the regret bounds for MD-Leftist.

Regret Guarantees We focus primarily on the regime
where vmin is a positive constant. Due to the complexity of
the problem, we leave consideration of very small values of
vmin (like vmin = Θ(T−1/2)) to future work. As mentioned
above, we require an assumption on θ∗ to control the regret
in the situation when the algorithm calls MultiGreedy.
Assumption 13 (Regularity of θ∗). There exists a known
positive constant θmin > 0 such that, for any coordinate j
for which θ∗ is non-zero, we have θ∗j ≥ θmin.

This assumption has practical merit. Consider the vending
example from the beginning of this paper. Each component
of the vector θ∗ reflects how much attention the consumer
pays to a given feature. From human psychology, it is
unlikely that someone would pay a very small, positive
amount of attention 0 < θ∗j ≪ 1). Rather, they are more
likely to simply ignore a feature (θ∗j = 0).

We have the following problem-dependent guarantee in the
case that H is optimal and ∆ is not too small.
Theorem 14. Let Assumption 13 be satisfied and take
εNBS = θmin/(d

3T 2) and δ = 1/T 2. Suppose that H is
optimal. If 16T−1/2 < ∆ ≤ vmin/16, then the regret of
MD-Leftist is bounded as

O

log(T) ·
(

∆+∥v∥1

v2
min

+
max{d log(1/εNBS),d

2 log d}
∆

)
+min

{√
T log T , log T

|∆−v∗|

}
 ,

where v∗ is the cost of the minimum-cost positive arm.

The next result parallels Theorem 6; it is particularly useful
to handle the cases that arm 0 is optimal or ∆ is small.
Theorem 15. Let Assumption 13 be satisfied and take
εNBS = θmin/(d

3T 2) and δ = 1/T 2. If ∆ ≤ vmin/16,
then the regret of MD-Leftist is bounded as

O

log(T) · ∆+∥v∥1

v2
min

+max
{√

d log 1
εNBS

, d1.5 log d
}√

T

+min
{√

T log T , log T
|∆−v∗|

}  .

where v∗ is the cost of the minimum-cost positive arm.

If we further have ∆ ≤ 1
2 log(T)

√
d
T , then

RT = O

(
log(T) ·

(
1

v2min

· (∆ + ∥v∥1) +
√
Td

))
.

Thresholded Linear Bandits

Algorithm 3: MultiDimLeftist (MD-Leftist)

ϕ = 1 // start in Phase 1
r ← 0, a0 ← 1, ε0 ← 1

8

n0 ← log 2
δ

2ε20

while εr ≥ log(T)
√

d
T do

Make nr pulls of arm 0 to get empirical mean p̂0
Make nr pulls of arm ar to get empirical mean p̂ar

∆̂r ← p̂ar
− p̂0

if ∆̂r − εr ≥ εr then
af ←MultiEstTau(εr, ar)
Run UCB on {0, af} until time T

else
if ϕ = 2 then ar+1 ← 1

2 · ar
else if ⟨v,R(A0)⟩ ≥ d · 8εr then

ar+1 ← R(A1) , ϕ = 2 // Phase 2
else ar+1 ← ar
εr+1 ← εr/2, nr+1 ← 4 · nr

r ← r + 1
Commit to arm 0

Algorithm 4: MultiEstTau
Input: Lower bound εr ≤ ∆, Right-most arm R
ac ← NoisyBinarySearch(εr, 0, R)
Use PAC-MergeSort with PAC comparison oracle

MCC(·, ·, εr, ac) to obtain ordering σ̂
return MultiGreedy(εr, σ̂)

Algorithm 5: MultiCoordinateCompare (MCC)
Input: Two coordinates j, k. Lower bound εr satisfying

εr ≤ ∆, arm a
Assume ⟨θ∗, a⟩ ≥ τ and ∥a− π(a)∥ ≤ εNBS

γ ← θmin/(d
2T)

β ← εNBS/γ, N ← log 1
δ

ε2r

a(j) ← a+ β ·
(

ej

vj
− ek

vk

)
a(k) ← a− β ·

(
ej

vj
− ek

vk

)
Make N pulls of each of arms 0, a(j), and a(k), giving p̂0,
p̂j and p̂k

if p̂k − p̂0 < εr/2 then return “>”
else if p̂j − p̂0 < εr/2 then return “<”
else return “∗”

Algorithm 6: MultiGreedy
Input: Lower bound εr satisfying εr ≤ ∆, Ordering σ̂
u← 2d · 2−r + 1/T

N ← log 1
δ

ε2r
, L← 0

for i = 1, 2, . . . , d do
R← L+min

{
1

vσ̂(i)

(
u−∑i−1

j=1 vσ̂(j)

)
, 1
}
· eσ̂(i)

Make N pulls of each of arms L and R
if p̂right − p̂left ≥ εr/2 then

return NoisyBinarySearch(εr, L, R)
else L← L+ eσ̂(i)

Remark 16. Theorem 14 and Theorem 15 correspond to
the distribution-dependent and the distribution-independent
bounds, respectively. If aH is optimal and some assump-
tions are satisfied, we have a logarithmic bound of Theo-
rem 14. Note that, as discussed in Remark 7, for some pa-
rameters where arm 0 is optimal, Leftist does not have a log-
arithmic regret bound, but still we have a Õ(d1.5 log(d)

√
T)

bound of Theorem 15.

5 EXPERIMENTS

In this section, we evaluate Leftist’s practical performance
via several experiments in the one-dimensional case (d = 1)
with v = 1. We use pseudo-regret to evaluate the algo-
rithm’s empirical performance. Every parameter variant
was run for m = 25 trials to obtain the average cumulative
pseudo-regret. For two experiments either τ or ∆ was varied
while the other remained static. These two experiments con-
sisted of a fixed number of pulls (T = 106) and p0 = 0.25.
In a later experiment, we tested the performance of Leftist
with varying time horizon T . In all three experiments, Left-
ist was compared Grid-UCB which is a modified version
of UCB run on a grid of

√
T arms. Grid-UCB serves as a

reasonably strong baseline because, as we sketch in the ap-
pendix, we believe it is minimax (i.e., has an Õ(

√
T) regret

bound) like Leftist. Note also that the performance of EG,
which is generally outperformed by Leftist, is also shown in
the appendix.

Overall, Leftist consistently outperformed Grid-UCB. When
τ ≤ ∆, the regret for pulling arm 0 is ∆− τ . Thus, when
τ is close to zero, in Figure 3 (left), Leftist suffers a re-
gret close to ∆ for pulling arm 0. Furthermore, as the
gap between ∆ and τ decreases, the regret incurred for
pulling arm 0 decreases, as observed when τ = [0.01, 0.1].
From τ = [0.26, 0.40], arm ar drops below log(T)/

√
T ,

Leftist therefore correctly commits to arm 0, the optimal
arm. We observed that the region from approximately
τ = [0.10, 0.24) is where NBS incurs the most regret. Here,
as τ increases, NBS (which is searching for τ) tends to pull
larger arms, hence accumulating more regret.

In Figure 3 (middle), within the region where ∆ =
[0.005, 0.1) Leftist commits to arm 0 without running NBS
for the same reason as mentioned earlier. Similarly, the re-
gion for ∆ = [0.03, 0.1) that spikes is where NBS is called
and incurs the most regret. Once ∆ ≥ τ , the regret from
Leftist drops as ∆ becomes large.

We also compared the performance of both algorithms at
varying values of T and found Leftist to be significantly

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

0.0 0.1 0.2 0.3 0.4

τ

0

1

2

3

4

5

6

7

8

P
se

ud
o-

re
gr

et
·10

4

Leftist

Grid UCB

∆

10−2 10−1

∆

0

2

4

6

8

P
se

ud
o-

re
gr

et
·10

4

Leftist

Grid UCB

τ

0 25 50 75 100 125 150

T·105

0

1

2

3

4

5

6

P
se

ud
o-

re
gr

et
·10

5

τ > ∆

Leftist: ∆ > τ

τ > ∆

∆ > τ

Leftist:

Grid UCB:
Grid UCB:

Figure 3: Average cumulative pseudo-regret (m = 25) of Leftist and Grid UCB per τ and ∆ variant. (Right) Average
pseudo-regret (m = 25) of Leftist and Grid UCB for a geometrically increasing number of pulls, T = [5e5, 16e6].

better (see Figure 3 (right)). Though both are minimax (they
behave similarly in the worst case), in many cases Leftist
outperforms the Grid-UCB.

6 DISCUSSION

The thresholded linear bandits problem introduces new chal-
lenges not present in seemingly related problems like gen-
eralized linear bandits. We developed an algorithm for the
one-dimensional setting, Leftist, which enjoys logarithmic
regret when ∆ and |∆−τ | are not too small as well as a min-
imax Õ(

√
T) bound up to a polylog factor. Our MD-Leftist

algorithm for the multi-dimensional setting also enjoy loga-
rithmic and worst-case Õ(d1.5 log(d)

√
T) regret.

We close with some directions for future work. Beyond
investigating whether we can obtain improved regret in the
multi-dimensional setting with respect to d, we also would
like to consider more advanced models of expected reward
such as a union of halfspaces model. Another direction of
extending model is a combination of (generalized) linear
bandit and discontinuity. Such a combination is observed in
many regulatory domains. For example, wage is discontinu-
ous around the minimum wage (Blisard et al., 2004).

Acknowledgements

NM, AN, and MG were supported by a JP Morgan Fac-
ulty Research Award and NSERC Discovery Grant RGPIN-
2018-03942.

Disclaimer. This paper was prepared for informational
purposes by the Artificial Intelligence Research group of
JPMorgan Chase & Co and its affiliates (“J.P. Morgan”),
and is not a product of the Research Department of J.P.
Morgan. J.P. Morgan makes no representation and warranty
whatsoever and disclaims all liability, for the completeness,
accuracy or reliability of the information contained herein.

References

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári.
Improved algorithms for linear stochastic bandits. In

Advances in Neural Information Processing Systems 24,
pages 2312–2320, 2011.

Kenneth J Arrow, Theodore Harris, and Jacob Marschak.
Optimal inventory policy. Econometrica (pre-1986), 19
(3):250, 1951.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-
time analysis of the multiarmed bandit problem. Machine
learning, 47(2):235–256, 2002.

Noel Blisard, Hayden Stewart, and Dean Jolliffe. Low-
income households’ expenditures on fruits and vegeta-
bles. USDA Economic Research Service. Agricultural
Economic Report No. 833, 02 2004.

Arnoud V den Boer and Nuri Bora Keskin. Dynamic pricing
with demand learning: Emerging topics and state of the
art. The Elements of Joint Learning and Optimization in
Operations Management, pages 79–101, 2022.

Andrew Caplin, Mark Dean, and John Leahy. Rational
Inattention, Optimal Consideration Sets, and Stochastic
Choice. The Review of Economic Studies, 86(3):1061–
1094, 07 2018. ISSN 0034-6527. doi: 10.1093/restud/
rdy037.

Nicolo Cesa-Bianchi, Tommaso Cesari, and Vianney
Perchet. Dynamic pricing with finitely many unknown
valuations. In Algorithmic Learning Theory, pages 247–
273. PMLR, 2019.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial
multi-armed bandit: General framework, results and ap-
plications. In Proceedings of the 30th International Con-
ference on International Conference on Machine Learn-
ing - Volume 28, ICML’13, page I–151–I–159. JMLR.org,
2013.

Tsan-Ming Choi. Handbook of Newsvendor problems: Mod-
els, extensions and applications, volume 176. Springer,
2012.

Arnoud V. den Boer and N. Bora Keskin. Discontinuous
demand functions: Estimation and pricing. Management
Science, 66(10):4516–4534, 2020. doi: 10.1287/mnsc.
2019.3446.

Thresholded Linear Bandits

Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba
Szepesvári. Parametric bandits: The generalized linear
case. In NIPS, volume 23, pages 586–594, 2010.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On
the complexity of best-arm identification in multi-armed
bandit models. Journal of Machine Learning Research,
17(1):1–42, jan 2016. ISSN 1532-4435.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-
armed bandits in metric spaces. In Proceedings of the
Fortieth Annual ACM Symposium on Theory of Comput-
ing, STOC ’08, page 681–690. Association for Com-
puting Machinery, 2008. ISBN 9781605580470. doi:
10.1145/1374376.1374475.

Tze Leung Lai, Herbert Robbins, et al. Asymptotically
efficient adaptive allocation rules. Advances in applied
mathematics, 6(1):4–22, 1985.

David D Lewis and William A Gale. A sequential algorithm
for training text classifiers. In SIGIR’94, pages 3–12.
Springer, 1994.

Andrew McCallum and Kamal Nigam. Employing em and
pool-based active learning for text classification. In Pro-
ceedings of the Fifteenth International Conference on
Machine Learning, pages 350–358, 1998.

William R Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3-4):285–294, 1933.

Bart PG Van Parys and Negin Golrezaei. Optimal learning
for structured bandits. arXiv preprint arXiv:2007.07302,
2020.

Jia Yuan Yu and Shie Mannor. Unimodal bandits. In Pro-
ceedings of the 28th International Conference on Inter-
national Conference on Machine Learning, pages 41–48,
2011.

Lijun Zhang, Jinfeng Yi, and Rong Jin. Efficient algo-
rithms for robust one-bit compressive sensing. In Interna-
tional Conference on Machine Learning, pages 820–828.
PMLR, 2014.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

Contents

1 INTRODUCTION 1

2 PROBLEM SETTING 2

3 ONE-DIMENSIONAL CASE 3

3.1 Lower Bounds of the Regret . 4

3.2 Explore-the-Gap Algorithm . 4

3.3 Leftist Algorithm . 4

4 MULTI-DIMENSIONAL CASE 6

5 EXPERIMENTS 8

6 DISCUSSION 9

Overview of the appendix 13

A Analysis for one-dimensional case 14

A.1 Regret bounds for one-dimensional case . 14

A.2 Analysis for Leftist . 15

A.2.1 Preliminaries . 15

A.2.2 Correctness analysis . 15

A.3 Regret analysis for pulls from Leftist . 17

A.3.1 Case 1: ∆ ≤ v/16, arm τ is optimal, and EL happened . 17

A.3.2 Case 2: ∆ > v/16, arm τ is optimal, and EL happened . 19

A.3.3 Case 3: Arm 0 is optimal and EL happened . 19

A.4 Correctness analysis for NoisyBinarySearch . 20

A.5 Complete regret analysis for one-dimensional case . 22

A.5.1 Overview of total regret analysis . 22

A.5.2 Regret of NoisyBinarySearch . 22

A.5.3 Regret of UCB on two-arm problem . 23

A.5.4 Proofs of Theorems 17 and 18 . 23

B Analysis for multi-dimensional case 25

B.1 Regret bounds for multi-dimensional case . 25

B.2 Preliminaries . 25

B.3 Analysis for MD-Leftist . 26

B.3.1 Preliminaries . 26

B.3.2 Correctness analysis . 27

Thresholded Linear Bandits

B.4 Regret analysis for pulls from MD-Leftist . 28

B.4.1 Case 1: ∆ ≤ vmin/16, H is optimal, and EMD-L happened . 28

B.4.2 Case 2: ∆ ≤ vmin/16, arm 0 is optimal, and EMD-L happened . 30

B.5 Correctness Analysis for MultiEstTau, MultiCoordinateCompare, and MultiGreedy 31

B.5.1 Correctness analysis for NoisyBinarySearch . 31

B.5.2 Analysis of MultiCoordinateCompare . 31

B.5.3 PAC-MergeSort . 34

B.5.4 Analysis of MultiGreedy . 36

B.6 Complete regret analysis for multi-dimensional case . 40

B.6.1 Overview of total regret analysis . 40

B.6.2 Regret analysis for first four pieces . 41

B.6.3 Regret of UCB on two-arm problem . 42

B.6.4 Proofs of Theorems 34 and 35 . 43

C Each event holds with high probability 45

D Lower bounds 47

D.1 Minimax lower bound . 47

D.2 Trade-off between minimax regret and identifiability . 47

E Proofs on Explore-the-Gap 49

E.1 Proof of Theorem 4 . 49

E.2 Proof that EG can get linear regret . 50

F Additional motivating examples 50

G Experiments 51

G.1 Experimental details and results with EG . 51

G.2 On the worst-case regret of Grid-UCB . 52

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

Overview of the appendix

In our analysis of the one-dimensional and multi-dimensional settings, we introduce several events. As we show in
Appendix C, all these events hold with high probability (1−O(1/T)). Hence, the regret in the situation that the events do
not hold only contributes an additive constant to our regret analysis.

Thresholded Linear Bandits

A Analysis for one-dimensional case

For convenience, we first re-present Leftist. This version is identical to version appearing in Algorithm 1 of the main text.

Algorithm 7: Leftist

1 Epoch r ← 0, a0 ← 1, ε0 ← 1
8 // start in Phase 1

2 n0 ← log 2
δ

2ε20

3 while εr ≥ log(T) · T−1/2 do
4 Make nr pulls of arm 0 to get empirical mean p̂0
5 Make nr pulls of arm ar to get empirical mean p̂1

6 ∆̂r ← p̂1 − p̂0

7 if ∆̂r − εr ≥ εr then
8 τ̂ ← NoisyBinarySearch(εr, 0, ar)
9 Run UCB on {0, τ̂} until time T

10 else
11 if v · ar ≥ 8εr then
12 ar+1 ← 1

2 · ar // switch to Phase 2
13 else
14 ar+1 ← ar
15 εr+1 ← εr/2
16 nr+1 ← 4 · nr

17 r ← r + 1

18 Commit to arm 0.

A.1 Regret bounds for one-dimensional case

Recall that we assume v ≥ log(T) · T−1/2.

For the convenience of the reader, we begin by re-presenting Theorems 5 and 6, our regret bounds for the one-dimensional
case. First, we present a problem-dependent regret bound in the case that Leftist stops in Phase 2.

Theorem 17 (Theorem 5 from the main text). Take εNBS = 1/T and δ = 1/T 2. Suppose that τ ≤ ∆/v. Then the regret of
Leftist is bounded as

RT = O

(
log2 T

∆
+min

{√
T log T ,

log T

|∆− v · τ |

})
.

The next theorem applies more generally. It is particularly useful for handling the case that arm 0 is optimal or the case
when ∆ is small.

Theorem 18 (Theorem 6 from the main text). Take εNBS = 1/T and δ = 1/T 2. Then the regret of Leftist is bounded as

RT = O

(
log(T)

√
T +min

{√
T log T ,

log T

|∆− v · τ |

})
.

If it further holds that ∆ ≤ log(T) · T−1/2

2 , then the bound can be improved to

RT = O
(
log(T)

√
T
)
.

We present proofs of the above theorems in Section A.5.4.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

A.2 Analysis for Leftist

A.2.1 Preliminaries

In the sequel, we introduce a special epoch rI which is the last round of Phase 1. More precisely:

rI := argmin
r≥0

{v ≥ 8εr} .

In Phase 2, arm ar will halve until Leftist believes it has a satisfactory upper confidence bound on arm τ or it commits to arm
0. In the case where ∆

v ≥ τ , to ensure that it does not pull an arm less τ , Leftist will use a halting condition, ∆̂r − εr ≥ εr.

We define ρ to be the stopping epoch of Leftist; this is either the epoch in which NoisyBinarySearch is called or, if the
former is never called, the largest possible epoch rmax := ⌊log2

√
T

log T ⌋ − 3. When τ is optimal, we can show that with high
probability, Leftist’s stopping epoch ρ is no greater than 3 epochs after the critical epoch r∆, defined as

r∆ := argmax
r≥0

{εr > ∆} . (6)

For later use, it will be convenient to note the explicit value of the critical epoch:

r∆ =

⌈
log2

1

∆

⌉
− 4. (7)

Before beginning the main analysis, it will be useful to introduce an event. Let EL be the event that both of the following are
true:

• In Leftist, for all epochs r ≤ ρ such that arm ar is positive, |∆̂r −∆| ≤ εr;

• In Leftist, for all epochs r ≤ ρ, it holds that ∆̂r − εr ≤ ∆.

A.2.2 Correctness analysis

We first state a lemma that will be useful later.

Lemma 19. If r∆ exists, then for all epochs r∆ + 1 + i where i ≥ 0,

∆

2i
≥ εr∆+1+i

Proof. From the definition of r∆, at epoch r∆ + 1 we have ∆ ≥ εr∆+1. Since εr is halved after every epoch, the claim
follows.

We need to ensure that the lower confidence bound used by Leftist is not too large.

Lemma 20. Let r = r∆ + 3. If τ ≤ ∆
v , then on event EL, the lower confidence bound of ∆ is lower bounded as

∆

2
≤ ∆̂r − εr.

Proof. We want to know if the following inequality holds

∆

2
≤ ∆̂r − εr. (8)

It is true that (8) is equivalent to

∆

2
+ 2εr ≤ ∆̂r + εr. (9)

Thresholded Linear Bandits

We will lower bound the right-hand side by ∆ and then upper bound the left-hand side by ∆, after which the above inequality
follows. Beginning with the right-hand side, we know that ∆ < εr∆ by definition of r∆ which gives us the following
inequality,

τ ≤ ∆

v
<

εr∆
v

. (10)

Next, we will show that ar ≥ τ . First, consider the case where r ≤ rI. In this case, we have ar = 1 ≥ τ . Next, suppose that
r > rI. Then εr∆ = 8εr ≤ v · ar, where the second inequality is where we used r > rI. Combining this with the above
inequality, it must mean that

τ < ar.

Hence, regardless of the case, every arm ar pulled is positive and hence provides useful information. Therefore, the fact that
event EL happened implies that ∆̂r + εr in (9) is an upper confidence bound for ∆ giving us

∆ ≤ ∆̂r + εr. (11)

As for the left-hand side, we have εr = εr∆+3, which, by Lemma 19, is at most ∆
4 , giving us

∆

2
+ 2εr ≤

∆

2
+

∆

2
= ∆. (12)

Combining the left- and right-hand sides we get that

∆

2
+ 2εr ≤ ∆ ≤ ∆̂r + εr

holds and therefore (8) holds.

Lemma 21. If τ ≤ ∆
v , then on event EL, Leftist will stop no later than epoch r∆ + 3.

Proof. It suffices to show that if Leftist reaches epoch r∆ +3, then the algorithm stops. Let r = r∆ +3 and assume τ ≤ ∆
v .

Suppose Leftist reaches epoch r but does not stop. That must mean ∆̂r − εr < εr happened. As we assume event EL

happened, Lemma 20 gives us a lower bound on ∆̂r − εr, giving us

∆

2
≤ ∆̂r − εr < εr.

By Lemma 19, εr∆+3 < ∆
4 , and so

∆

2
≤ ∆̂r − εr <

∆

4
,

which is a contradiction.

Corollary 22. If τ ≤ ∆
v , then on event EL, for any epoch r, either τ ≤ ar or Leftist has stopped before this epoch (i.e.,

ρ < r).

Proof. Assume τ ≤ ∆
v .

We first consider what happens when r∆ does not exist. Then, for all r ≥ 0, we have ∆ ≤ εr. But then τ ≤ ∆
v implies that

τ = 0, and hence τ ≤ ar holds for all epochs from the positivity of ar.

We now move on to the more interesting situation in which r∆ exists. As we assume event EL happened, from Lemma 21,
we know that Leftist will stop no later than epoch r∆+3. Since ar is non-increasing, it suffices to show that τ ≤ ar∆+3. We
consider two cases. First, suppose that r∆+3 ≤ rI. Then we trivially have τ ≤ ar∆+3 = 1. Next, suppose that r∆+3 > rI,
so that we have 8εr∆+3 ≤ v · ar∆+3. We also know that τ ≤ ∆

v <
εr∆
v = 8 · εr∆+3

v ≤ v·ar∆+3

v = ar∆+3. Therefore, in this
case, we have τ ≤ ar for all r ≤ r∆ + 3.

If the halting condition is not satisfied, then eventually a terminating condition, εr < T−1/2, will happen and Leftist will
commit to arm 0 thereafter.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

A.3 Regret analysis for pulls from Leftist

This section bounds the regret contribution from the pulls made by Leftist.

Below, we heavily use the fact that r∗ := r∆ + 3 =
⌈
log2

1
∆

⌉
− 1 and hence r∗ ≤ log2

1
∆ . Recall that ρ is the stopping

epoch. Intuitively speaking, we show that ρ is close to r∗ with a high probability.

In the following, we derive the regret bound in several different cases. In particular, we consider whether ∆ ≤ v/16 or not4

as well as whether ∆ > vτ or not5.

A.3.1 Case 1: ∆ ≤ v/16, arm τ is optimal, and EL happened

When arm τ is optimal, there are 2 regimes of interest6:

1. ρ ≤ rmax

2. ρ = rmax

Due to our assumption that v ≥ log(T) · T−1/2, the last possible epoch is after Phase 1.

Recall that ρ is the stopping epoch for Leftist. In the below, we use the fact that from Lemma 21, we have ρ ≤ r∆ + 3.

Regime 1: ρ ≤ rmax Since EL happened and ∆ ≤ v/16, a reasoning that is essentially identical to that for Corollary 67
(for the multi-dimensional case) implies that ρ ≥ rI + 1 (i.e., the algorithm completes Phase 1). We begin by bounding the
regret contribution from Phase 1. Leftist runs for at most r∆ + 3 =

⌈
log2

1
∆

⌉
− 1 epochs. In each epoch, we pull arms 0

and 1.

• The regret from pulling arm 0 in all rounds is at most

O

(
log

(
1

δ

)
∆ · 1

v2

)
= O

(
log

(
1

δ

)
1

v

)
.

• The regret from pulling arm 1 in all rounds is of order at most

log

(
1

δ

)
v · 1

v2
= log

(
1

δ

)
1

v
.

From the above and using δ = 1/T 2, the regret is of order at most

log(T) · 1
v
. (13)

To bound the regret contribution from Phase 2, we first observe that for r ≥ rI + 1, we have ar = 2rI−r. Therefore, the

4The condition ∆ ≤ v/16 implies that the halving of ar begins (i.e., the algorithm completes Phase 1).
5The condition ∆ > vτ states that the arm 1 is optimal.
6It may seem odd that the regimes overlap; our point is that we will develop regret bounds for each regime, and it so happens that in

the second regime of ρ = rmax we also can apply the regret bound for the first regime if desired.

Thresholded Linear Bandits

regret contribution from Phase 2 can be bounded as

r∆+3∑
r=rI+1

nr ·

 ∆︸︷︷︸
arm 0

+ v · ar︸ ︷︷ ︸
arm ar

 =

r∆+3∑
r=rI+1

nr ·
(
∆+ v · 2rI−r

)

=

r∆+3∑
r=rI+1

nr ·
(
∆+ 2log2⌈ 1

v ⌉ · v · 2−r
)

≤ 2

r∆+3∑
r=rI+1

nr ·
(
∆+ 2−r

)
(14)

≤ 2

r∆+3∑
r=0

nr ·
(
∆+ 2−r

)
≤ 26(log(1/δ) ·

(
1

∆
+

1

∆

)
,

which is of order at most

(log T) · 1
∆
. (15)

Hence, in this regime, the regret is bounded as

O

(
log(T) ·

(
1

v
+

1

∆

))
= O

(
log T

∆

)
. (16)

We have just proved the following lemma.

Lemma 23. Take δ = 1/T 2. If ∆ ≤ v/16 and τ is optimal, then on event EL, the pulls of Leftist contribute regret of order
at most log T

∆ .

Regime 2: ∆ ≤ 16 log (T) · T−1/2 Recall that the last possible epoch is rmax = ⌊log2
√
T

log T ⌋ − 3.

The analysis is like Regime 1, except we truncate the summation as:

rmax∑
r=rI+1

nr ·

 ∆︸︷︷︸
arm 0

+ v · ar︸ ︷︷ ︸
arm ar

 ≤ 2

rmax∑
r=0

nr ·
(
∆+ 2−r

)
= O

(
log(1/δ) · (log−2(T) · T ·∆+ log−1(T) ·

√
T)
)

(17)

= O
(√

T
)
,

where the second equality uses ∆ = O(log(T) · T−1/2).

Hence, we get regret at most (using v ≥ log(T) · T−1/2)

O

(
log(T) · 1

v
+
√
T

)
= O

(√
T
)
. (18)

We have just proved the following lemma.

Lemma 24. Take δ = 1/T 2. If ∆ ≤ 16 log(T) · T−1/2 and τ is optimal, then on event EL, the pulls of Leftist contribute
regret of order at most

√
T .

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

A.3.2 Case 2: ∆ > v/16, arm τ is optimal, and EL happened

We give a direct analysis. Since many steps are similar to the previous analyses, we go more quickly. First, note that we still
have from Lemma 21 that ρ ≤ r∆ + 3. The regret contribution is at most

min{rI,r
∗}∑

r=0

nr (∆ + v · ar) +
r∗∑

r=rI+1

nr (∆ + v · ar)

≤ (∆ + v)

min{rI,r
∗}∑

r=0

nr + 2

r∗∑
r=rI+1

nr

(
∆+ 2−r

)
= O

(
log(T) · (∆ + v)min

{
22rI , 22r

∗
}
+ 1 [rI < r∗] · log(T) ·

(
22r

∗
∆+ 2r

∗
))

(19)

= O

(
log(T) · (∆ + v)min

{
22rI , 22r

∗
}
+ 1 [rI < r∗] · log(T) · 1

∆

)
. (20)

Next, we consider two sub-cases.

First, suppose that rI < r∗. Then, then by unpacking the explicit value of each of rI and r∗, it follows that ∆ < v
8 and hence

v
16 < ∆ < v

8 . Hence, in this case, the regret is at most

O

(
log(T) ·∆ · 22rI +

log T

∆

)
= O

(
∆ log T

v2
+

log T

∆

)
= O

(
log T

∆

)
.

Suppose instead that rI ≥ r∗. Then we can drop the second term in the summation in (20) to get regret at most

O
(
log(T) · (∆ + v) · 22r∗

)
= O

(
log(T) · (∆ + v) · 1

∆2

)
= O

(
log T

∆

)
.

Hence, in this regime, the regret is bounded as

O

(
log T

∆

)
. (21)

We have just proved the following lemma.
Lemma 25. Take δ = 1/T 2. If ∆ > v/16 and τ is optimal, then on event EL, the pulls of Leftist contribute regret of order
at most log T

∆ .

A.3.3 Case 3: Arm 0 is optimal and EL happened

The analysis in this case is simpler for two reasons. First, any pull of arm 0 gives no pseudoregret. Second, we do not
provide any sort of guarantee that for any epoch r ≤ ρ it holds that arm ar is positive, and we therefore also do not provide
any sort of guarantee that ρ ≤ r∗. Indeed, it can happen that arm τ has cost that is much greater than ∆, and in this situation
the algorithm is likely to run for many epochs r for which ar is negative, thereby preventing the algorithm for having
informative estimates ∆̂r of ∆. Therefore, we only consider the all-encompassing regime that ρ ≤ rmax by bounding the
regret as if the algorithm ran until epoch rmax, which may be overcounting. The analysis is similar to Regime 2 from Case 1
above; for completeness, we describe how to modify the analysis and giving the corresponding regret bound.

We first consider the contribution from Phase 1. We only need consider the regret contribution from arm 1, but this still
leads to the same order as (13), giving a regret contribution of order at most

log(T) · 1
v
.

In this regime, we get a regret bound whose order is the same as Regime 2 from Case 1 except that we can and do drop the
contribution from arm 0 in the step (17), giving regret of order at most (using v ≥ log(T) · T−1/2)

log(T) · 1
v
+
√
T =

√
T . (22)

Thresholded Linear Bandits

Note that being able to drop the aforementioned term is vital, as here we have no guarantee that ∆ = O(log(T) · T−1/2).

We have just proved the following lemma.

Lemma 26. Take δ = 1/T 2. If arm 0 is optimal, then on event EL, the pulls of Leftist contribute regret of order at most
√
T .

Combining the above lemmas yields the following, general regret bound for the pulls of Leftist.

Theorem 27. Take δ = 1/T 2. On event EL, the pulls of Leftist contribute regret of order at most
√
T .

Proof (of Theorem 27). We begin by bounding the contribution to the regret from Leftist’s pulls. We then consider the
contribution from the other algorithms.

We consider several cases.

First, if arm 0 is optimal, the bound follows from Lemma 26.

Next, suppose that arm τ is optimal and ∆ ≤ v/16. Then on the one hand, from Lemma 23, we have a bound of order at
most

log T

∆
;

when ∆ ≥ 16 log(T) · T−1/2, the above bound is of order at most the bound in the theorem. On the other hand, if
∆ < 16 log(T) · T−1/2, then Lemma 24 implies the worst-case bound

√
T .

Finally, if arm τ is optimal and ∆ > v/16, then from Lemma 25, we have the bound

O

(
log T

∆

)
= O

(
log T

v

)
,

which is of order at most
√
T since v ≥ log(T) · T−1/2.

Hence, the result follows.

A.4 Correctness analysis for NoisyBinarySearch

We analyze the correctness of NoisyBinarySearch, re-presented below for convenience.

Algorithm 8: NoisyBinarySearch
Input: Lower bound εr satisfying εr ≤ ∆, Left-most arm L, Right-most arm R

1 N ← 4 log 1
δ

ε2r

2 Make N pulls of arm L to get empirical mean p̂left
3 Make N pulls of arm R to get empirical mean p̂right
4 while R− L ≥ εNBS do
5 m← L+R

2
6 Make N pulls of arm m to get empirical mean p̂mid

7 if p̂right − p̂mid ≥ εr/2 then
8 L← m, p̂left ← p̂mid

9 else
10 R← m, p̂right ← p̂mid

11 return R

In NoisyBinarySearch (NBS), we are passed two parameters. The first is εr, which is a lower bound on a lower confidence
bound for the probability gap ∆. The other parameter, ar, is the right-most arm that will be used in NBS, R.

Lemma 28. NBS runs for at most ⌊log2(2/εNBS)⌋ iterations.

Proof. Initially, R− L ≤ 1. After iteration i, we have R− L ≤ 2−i. We seek the smallest integer i such that 2−i < εNBS,
which is equivalent to i > log2

1
εNBS

. Hence, the number of iterations is at most ⌊log2(1/εNBS)⌋+ 1 = ⌊log2(2/εNBS)⌋.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

Each time the if statement on line 7 is reached, there is a possibility of making a mistake by incorrectly predicting the label
of m. If this mistake does not happen, then upon the subsequent update of L or R, we have the L is negative and R is
positive, as desired. The next lemma bounds the probability of such a mistake.
Lemma 29. Consider a given iteration i of NBS. Suppose that in this iteration, arm R is positive. Then on event EL, the
probability that NBS incorrectly predicts the label of m on line 7 is at most δ.

Proof. To better match the notation of the algorithm, we use r := ρ, where we recall that ρ is the stopping epoch for Leftist.
Each time the if statement on line 7 is reached, we have the possibility of two mistakes occurring. Let X̄ = p̂right − p̂mid.
We have the case where X̄ ≥ ε

2 , but E[X̄] = 0. In words, this means that we think that m and R have different labels, but in
actuality, they have the same label. The other case is where X̄ < εr

2 , but E[X̄] = ∆. In words, this means that we think that
m and R have the same label, but in actuality, they have different labels.

Using Hoeffding’s inequality with appropriate conditioning on E[X̄] (since m and R are fixed, conditional on the samples
drawn from the previous iterations of NBS), we bound the probability of each type of mistake in turn.

We have7

Pr
(
X̄ ≥ εr

2
| E[X̄] = 0

)
= Pr

(
X̄ − E[X̄] ≥ εr

2
| E[X̄] = 0

)
≤ e−2(2N)(εr/2)

2/22

= e−Nε2r/4

and

Pr
(
X̄ <

εr
2
| E[X̄] = ∆

)
= Pr

(
X̄ − E[X̄] <

εr
2
−∆ | E[X̄] = ∆

)
≤ Pr

(
X̄ − E[X̄] <

εr
2
− εr | E[X̄] = ∆

)
= Pr

(
X̄ − E[X̄] < −εr

2
| E[X̄] = ∆

)
≤ e−2(2N)(−εr/2)

2/22

≤ e−Nε2r/4,

where the first inequality uses the fact that εr ≤ ∆̂r − ε ≤ ∆ under event EL.

We will only be concerned with one of these probabilities of an error occurring for each iteration, and since the two bounds
are equal, the probability of a mistake occurring during a single iteration is at most e−Nε2r = δ.

Because the lemma below will also find use in our multi-dimensional analysis, we make its presentation more general by
using a projection onto the separating hyperplane (which, in the one-dimensional case, is simply {τ}). To this end, for any
arm a, let π(a) be the Euclidean projection of a onto the hyperplane; that is,

π(a) = argmin
a′∈H∩[0,1]d

∥a′ − a∥2.

Lemma 30. On event EL, with probability at least 1−T ·δ, NBS will return a positive arm af satisfying ∥af−π(af)∥2 < εNBS.

Proof. First, suppose that NBS did not make a mistake in any iteration. Then since L is negative and R is positive at the end
of the last iteration of NBS, the closed line segment

[L,R] := {a = αL+ (1− α)R : α ∈ [0, 1]}
must contain an arm on the hyperplane. Since, at the end of its final iteration, NBS returns R and we have ∥R−L∥2 < εNBS,
it follows that arm af is positive and ∥af − π(af)∥2 < εNBS, as desired.

It remains to control the probability that NBS did not make a mistake in any iteration. First, observe that if NBS did not
make a mistake in any iteration prior to iteration i, then arm R is positive in iteration i and we hence can apply Lemma 29.
Now, we use a union bound over the per-iteration failure probability upper bound given by Lemma 29, where we take a
union bound over the (by grossly overcounting!) at most T iterations.

7Note that X̄ is twice the empirical average of 2N samples since each empirical mean p̂right and p̂mid is divided by only N . This
leads to the extra division by 22 in the exponent below.

Thresholded Linear Bandits

A.5 Complete regret analysis for one-dimensional case

The regret bounds in Section A.1 depend on several pieces: the regret incurred by the pulls from Leftist and, in case they are
called, the regret incurred from the pulls of NoisyBinarySearch and from UCB. We now give a detailed analysis to show
how each piece contributes to the regret.

A.5.1 Overview of total regret analysis

We use the abbreviation NBS (NoisyBinarySearch). There are two situations. Either Leftist calls NBS, or it does not. The
former case is more complicated; we consider it first.

We begin with a description of the places where regret can be accumulated (in addition to regret from the pulls of Leftist):

1. Leftist calls NBS after detecting a lower bound on ∆. The result is τ̂ .

2. Leftist calls UCB.

We begin by bounding the regret of NBS and UCB.

Recall that ρ is the stopping epoch for Leftist; this is the epoch in which Leftist calls NBS (if at all such a call happens).

A.5.2 Regret of NoisyBinarySearch

On event EL, we have εr ≤ ∆ and hence ar ≤ 16εr
v ≤ 16∆

v (we note that if r belongs to Phase 1, then the factor of 16 can
be improved to 8).

Lemma 31. On event EL, the instantaneous regret for any arm pulled in NBS is always upper bounded by 16∆.

Proof. Let us look at the case of line 6 of NBS. For this, we will only be looking at the instantaneous regret of m, which
provides us with four different cases to analyze and bound.

• Case 1: m ≥ τ and arm 0 is optimal:

(p0)− (p1 −m) = m−∆ ≤ v · ar ≤ 16∆;

• Case 2: m ≥ τ and arm τ is optimal:

(p1 − τ)− (p1 −m) = m− τ ≤ v · ar ≤ 16∆;

• Case 3: m < τ and arm 0 is optimal:

(p0)− (p0 −m) = m ≤ v · ar ≤ 16∆;

• Case 4: m < τ and arm τ is optimal:

(p1 − τ)− (p0 −m) = ∆− τ +m ≤ ∆.

Although m changes each round, we can just keep using the upper bound of ar for m. This is because of the scenario where
τ is very close to R, in which case m keeps replacing L each round and moving to the right (and hence is approaching ar).

From Lemma 31, the total regret for each arm that is pulled during NBS is upper bounded by N · (v · ar) ≤ 16N∆. This
means that for each iteration of the while loop, we accumulate at most 16N∆ regret due to line 6 of NBS.

Lemma 32. On event EL, the regret of NBS is at most

O

(
log(1/δ) log(1/εNBS)

∆

)
.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

Proof. Noting that r in NBS will be equal to the stopping epoch ρ, the number of pulls in each iteration of NBS is
O(log(1/δ) · 1

∆2) since N = O(nρ) = O(log(1/δ) · 22ρ) and we have from Lemma 21 that ρ ≍ r∆ ≍ log2
1
∆ .

From Lemma 28, the number of iterations of NBS is at most log(1/εNBS). Hence, each call to NBS results in
O
(

log(1/δ)·log(1/εNBS)
∆2

)
pulls.

From Lemma 31, it follows that on event EL, the regret contribution from NBS is at most

O

(
log(1/δ) · log(1/εNBS)

∆2

)
· 16∆ = O

(
log(1/δ) · log(1/εNBS)

∆

)
.

A.5.3 Regret of UCB on two-arm problem

Before bounding the regret of UCB in our setting, we introduce one more event.

Let event ENBS-L be the event that NoisyBinarySearch, when called from Leftist, returns a positive arm satisfying |τ̂ − τ | ≤
εNBS.
Lemma 33 (Regret of UCB). On the event EL ∩ ENBS-L, the regret of UCB is at most

O

(
min

{
log T

|∆− τ · v| ,
√
T log T

})
.

Proof. UCB is run on arms 0 and τ̂ , where τ̂ is the arm returned by NoisyBinarySearch. We therefore first study the
expected reward of arm â. Since event ENBS-L happened, arm τ̂ is positive and satisfies |τ − τ̂ | ≤ εNBS =

1
T .

Recalling our notation, µc(0) = p0 is the expected reward of arm 0 and µc(τ̂) is the expected reward of arm τ̂ . We may now
conclude that |µc(τ̂)− µc(0)| ≥ min {|∆− v · τ |, |∆− v · τ − 1/T |}.
We have from Auer et al. (2002) that the regret of UCB with respect to the set of arms {0, τ̂} is

O

(
min

{
log T

|µc(0)− µc(τ̂)|
,
√
T log T

})
= O

(
min

{
log T

min {|∆− v · τ |, |∆− v · τ − 1/T |} ,
√
T log T

})
.

Note that in the above bound, whenever the 1
T has a nontrivial effect on the second term in the inner minimum, the

√
T log T

term must be the smaller term. Hence, we fortunately can present the simplified bound:

O

(
min

{
log T

|∆− v · τ | ,
√
T log T

})
.

Finally, as we instead want the regret with respect to the set of arms {0, τ}, we account for the difference between the
expected reward of τ and τ̂ . But this is at most 1

T and hence can contribute only a constant to the regret.

A.5.4 Proofs of Theorems 17 and 18

Proof (of Theorem 17). From Lemma 65, event EL happens with probability at least 1− 1/T . In the sequel, consider the
case that EL happens (if it does not happen, we pick up a regret contribution of at most T · 1/T = 1).

To bound the regret due to the pulls of Leftist, we use Lemma 23 in the case that ∆ ≤ v/16 and Lemma 25 in the case that
∆ > v/16; both lemmas give the same bound. In addition, Lemmas 32 and 33 respectively imply that the regret is at most

[Leftist] + [NBS] + [UCB]

= O

(
log T

∆

)
+O

(
log2 T

∆

)
+O

(
min

{√
T log T ,

log T

|∆− v · τ |

})
= O

(
log2 T

∆

)
+O

(
min

{√
T log T ,

log T

|∆− v · τ |

})
.

Thresholded Linear Bandits

Proof (of Theorem 18). For both results, we use Theorem 27 to bound the regret due to the pulls of Leftist.

We now consider the remaining analysis for each regret bound in turn.

Beginning with the first regret bound, note that NoisyBinarySearch and UCB can be called only if ∆ = Ω(log(T) · T−1/2).
To see this, observe from Lemma 66 that ρ ≥ r∆ + 1. Hence, NoisyBinarySearch can be called only if r∆ + 1 ≤ rmax, a
condition which implies that ∆ = Ω(log(T) · T−1/2). We may then take the regret bounds for other algorithms directly
from the proof of Theorem 17 together with the substitution ∆ = Ω(log(T) · T−1/2) (except for the part for UCB, where
the substitution is unnecessary) to get:

[Leftist] + [NBS] + [UCB]

= O
(√

T
)
+O

(
log(T)

√
T
)
+O

(
min

{√
T log T ,

log T

|∆− v · τ |

})
= O

(
log(T)

√
T
)
+O

(
min

{√
T log T ,

log T

|∆− v · τ |

})
.

We now turn to the second regret bound, for which we assume that ∆ ≤ log(T) · T−1/2

2 . We claim that with probability at
least 1− 1/T , NoisyBinarySearch will not be called and hence Leftist will commit to arm 0. From Lemma 66, it holds on
event EL that ρ ≥ r∆ + 1. Moreover, the condition ∆ ≤ log(T) · T−1/2

2 implies that r∆ + 1 > rmax. Finally, observe that
from Lemma 65, event EL happens with probability at least 1− 1/T .

Consequently, the regret is at most

[Leftist] + [commit]

= O
(√

T
)
+O(log(T) ·

√
T)

= O
(
log(T) ·

√
T
)
.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

B Analysis for multi-dimensional case

B.1 Regret bounds for multi-dimensional case

For the convenience of the reader, we begin by re-presenting Theorems 14 and 15, our regret bounds for the multi-dimensional
case.

First, we present a problem-dependent regret bound in the case that MD-Leftist stops in Phase 2.
Theorem 34 (Theorem 14 from the main text). Let Assumption 57 be satisfied and take εNBS = θmin/(d

3T 2) and δ = 1/T 2.
Suppose that H is optimal. If 16T−1/2 < ∆ ≤ vmin/16, then the regret of MD-Leftist is bounded as

RT = O

(
log(T) ·

(
∆+ ∥v∥1

v2min

+
max

{
d log(1/εNBS), d

2 log d
}

∆

)
+min

{√
T log T ,

log T

|∆− v∗|

})
,

where v∗ is the cost of the minimum-cost positive arm.

Note that the condition 16T−1/2 ≤ ∆ is not necessary for the proof of Theorem 14; on the other hand, for small enough ∆,
it is more sensible to use the next theorem.

This next theorem applies more generally. It is particularly useful for handling the case that arm 0 is optimal or the case
when ∆ is small.
Theorem 35 (Theorem 15 from the main text). Let Assumption 57 be satisfied and take εNBS = θmin/(d

3T 2) and δ = 1/T 2.
If ∆ ≤ vmin/16, then the regret of MD-Leftist is bounded as

RT = O

(
log(T) · ∆+ ∥v∥1

v2min

+max
{√

d log(1/εNBS), d
1.5 log d

}√
T +min

{√
T log T ,

log T

|∆− v∗|

})
.

where v∗ is the cost of the minimum-cost positive arm.

If it further holds that ∆ ≤ 1
2 log(T)

√
d
T , then the bound can be improved to

RT = O

(
log(T) ·

(
1

v2min

· (∆ + ∥v∥1) +
√
Td

))
.

We present proofs of the above theorems in Section B.6.4.

B.2 Preliminaries

For an axis-parallel rectangle A, let R(A) be the vertex for which all coordinates are maximized. This is the multi-
dimensional analogue of the “right-most” point of a closed interval (a one-dimensional axis-parallel rectangle).

Central to Multi-dim Leftist’s operation is the following type of axis-parallel hyperrectangle. Let Ar be the axis-parallel
hyperrectangle whose j th side is 2−r · vmin · [0, 1

vj
], for vmin = min{minj vj , 1}. We remark that A0 is obtained by starting

with a hyperrectangle whose sides are 1
vj

and scaling down this rectangle (if needed) until it is contained within the unit
hypercube. Notice that the cost of R(Ar) is equal to

⟨v,R(Ar)⟩ = vmin · d · 2−r, (23)

which, in the case of v = 1, reduces to d · 2−r.

We first establish an important property.
Proposition 36. For any r ≥ 0, if R(Ar) is negative, then any arm with cost at most 2−r · vmin also must be negative.

Proof. We will show that R(Ar) coordinate-wise dominates any arm with cost 2−r ·vmin, after which the claim immediately
follows. Suppose for a contradiction that there is an arm a with cost 2−r · vmin such that, for a dimension j ∈ [d], we have
aj > [R(Ar)]j = 2−r · vmin

vj
. But this implies that ⟨v, aj⟩ ≥ vj · aj > 2−r · vmin, a contradiction.

Without loss of generality, we may assume that θ∗ is a unit vector. Since ⟨θ∗,1⟩ ≥ τ , it follows that ∥θ∗∥1 ≥ τ . Therefore,
τ ≤
√
d. Moreover, since ⟨θ∗,0⟩ < τ , we have that τ > 0.

Thresholded Linear Bandits

B.3 Analysis for MD-Leftist

We first re-present MultiDimLeftist (MD-Leftist). Although the presentation looks different, functionally the algorithm is
the same as Algorithm 3 from the main text. Also, the pseudocode contains some helpful comments.

Algorithm 9: MultiDimLeftist (MD-Leftist)

1 ϕ = 1 // start in Phase 1
2 r ← 0

3 a0 ← 1 // ones vector, 1 ∈ Rd

4 ε0 ← 1
8

5 n0 ← log 2
δ

2ε20

6 while εr ≥ log(T)
√

d
T do

7 Make nr pulls of arm 0 to get empirical mean p̂0 // zeros vector, 0 ∈ Rd

8 Make nr pulls of arm ar to get empirical mean p̂ar

9 ∆̂r ← p̂ar
− p̂0

10 if ∆̂r − εr ≥ εr then
11 af ←MultiEstTau(εr, ar)
12 For remaining rounds, run UCB on arms 0 and af

13 else
14 if ϕ = 2 then
15 ar+1 ← 1

2 · ar
16 else
17 if ⟨v,R(A0)⟩ ≥ d · 8εr // Note: ⟨v,R(A0)⟩ ≥ d · 8εr ⇔ vmin ≥ 2−r ⇔ r ≥ ℓ
18 then
19 ar+1 ← R(A1)
20 ϕ = 2 // switch to Phase 2
21 else
22 ar+1 ← ar
23 εr+1 ← εr/2

24 nr+1 ← log 2
δ

2ε2r+1

25 r ← r + 1

26 Commit to arm 0

B.3.1 Preliminaries

Recall that by definition of vmin, we always have vmin ≤ 1. Define the quantity ℓ := ⌈log2 1
vmin
⌉; note that epoch ℓ is the

last epoch of Phase 1. For the convenience of the reader, we mention that we also have −ℓ = ⌊log2 vmin⌋; we will use this
form of ℓ in the proof of Lemma 37 below.

Recall that we say H is optimal if there exists an arm on the separating hyperplane that is optimal; if H is not optimal, then
arm 0 is optimal.

We define ρ to be the stopping epoch of MultiDimLeftist (MD-Leftist); this is either the epoch in which MultiTauEst is
called or, if the former is never called, the largest possible epoch rmax :=

⌊
log2

√
T

log(T)
√
d

⌋
− 3. When H is optimal, we can

show that with high probability, ρ is no greater than 3 epochs after the critical epoch r∆ (which we recall from Appendix A
is defined as r∆ = maxr≥0{εr > ∆}) .

Before beginning the main analysis, it will be useful to introduce two events. First, let EMD-L be the event that both of the
following are true:

• In MD-Leftist, for all epochs r ≤ ρ such that arm ar is positive, |∆̂r −∆| ≤ εr;

• In MD-Leftist, for all epochs r ≤ ρ, it holds that ∆̂r − εr ≤ ∆.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

Next, let Estop be the event that ℓ+ 1 ≤ ρ ≤ r∆ + 3. Informally, event Estop corresponds to the situation that MD-Leftist
stops in Phase 2 but not much later than epoch

⌈
log2

1
∆

⌉
.

B.3.2 Correctness analysis

We need to ensure that the lower confidence bound used by MD-Leftist is not too large.

Lemma 37. Let r∗ = r∆ + 3 and assume H is optimal. Then for all epochs r ≤ min{r∗, ρ}, arm ar is positive. Also, on
event EMD-L, the lower confidence bound of ∆ is lower bounded as

∆

2
≤ ∆̂r∗ − εr∗ . (24)

Proof. We first establish that in epoch r∗ = r∆ + 3, arm ar∗ is positive. Note that establishing this claim implies that ar is
positive for any r ≤ r∗ since any arm from an epoch previous to epoch r∗ coordinate-wise dominates arm ar∗ .

First, consider the case where r∗ ≤ ℓ. In this case, we have ar∗ = 1, which is positive by assumption. Next, suppose that
r∗ ≥ ℓ+ 1. Observe that in epoch r∆, we have ∆ < εr∆ = 2−r∆−3 = 2−(r∆+3), which can be upper bounded as

vmin · 2−(r∆+3+log2 vmin) ≤ vmin · 2−(r∆+3+⌊log2 vmin⌋).

Since H is optimal, we therefore have that there is a positive arm with cost at most vmin · 2−r̄ for

r̄ := r∆ + 3 + ⌊log2 vmin⌋.

Therefore, from the contrapositive8 of Proposition 36, R(Ar̄) must be positive. But this means that if we pull arm R(Ar̄) (or
larger) in epoch r∆ + 3, then we are pulling a positive arm in this epoch and hence are done. Therefore, it suffices to ensure
that arm ar∗ is equal to R(Ar′) for some r′ ≤ r∗ + ⌊log2 vmin⌋ = r∗ − ℓ. But this is true by definition of the algorithm
since epoch ℓ+ 1 is the first epoch of Phase 2, and in this epoch we have aℓ+1 = R(A1); moreover, again by definition of
the algorithm, for any epoch r∗ ≥ ℓ+ 1, we have that ar∗ = R(Ar∗−ℓ).

Hence, in either case, arm ar∗ is positive. This fact will be used in proving the second part of the lemma, which we now do.
Note that (24) is equivalent to

∆

2
+ 2ϵr∗ ≤ ∆̂r∗ + ϵr∗ . (25)

We will show that

∆

2
+ 2ϵr∗ ≤ ∆ ≤ ∆̂r∗ + ϵr∗ , (26)

after which (25) follows.

We first establish the right inequality of (26) by noting that the RHS of (26) is an upper confidence bound for ∆; indeed, since
we have shown that ar∗ is positive, then the fact that event EMD-L happened implies that ∆̂r∗ + ϵr∗ is an upper confidence
bound for ∆, as desired.

As for the left inequality of (26), we know that εr∗ = εr∆+3 which, by Lemma 19, is at most ∆
4 , giving us

∆

2
+ 2ϵr∗ ≤

∆

2
+

∆

2
= ∆. (27)

We have thus proved (26).

Lemma 38. If H is optimal, then on event EMD-L, MD-Leftist will stop no later than epoch r∆ + 3.

Proof. It suffices to show that if MD-Leftist reaches epoch r∆ + 3, then the algorithm stops. Let r = r∆ + 3 and assume
that H is optimal. Suppose MD-Leftist reaches epoch r but does not stop. That must mean ∆̂r − ϵr < εr happened. As we
assume event EMD-L happened, Lemma 37 gives us a lower bound on ∆̂r − ϵr, so that

∆

2
≤ ∆̂r − ϵr < εr.

8For convenience, we state the contrapositive form of Proposition 36: “Suppose that there is a positive arm with cost at most
∆ ≤ 2−r · vmin. Then arm R(Ar) is positive.”

Thresholded Linear Bandits

By Lemma 19, εr∆+3 < ∆
4 , and so

∆

2
≤ ∆̂r − εr <

∆

4
,

which is a contradiction.

Corollary 39. If H is optimal, then on event EMD-L, for any epoch r, either arm ar is positive or MD-Leftist stopped before
this epoch (i.e., ρ < r).

Proof. The proof is a direct consequence of the first part of Lemma 37 together with Lemma 38. From the first part of
Lemma 37, if the algorithm is in an epoch r ≤ r∗ := r∆ + 3, then arm ar is positive. Next, Lemma 38 implies that if the
algorithm reaches epoch r∗, then on event EMD-L, it stops in that epoch.

Finally, if r∆ is not defined, then eventually MD-Leftist’s terminating condition, εr < T−1/2 will be satisfied, after which
MD-Leftist will commit to arm 0.

B.4 Regret analysis for pulls from MD-Leftist

This section bounds the regret contribution from the pulls made by MD-Leftist. The regret due to the other algorithms is
handled in Section B.6.

Below, we heavily use the fact that r∗ := r∆ + 3 =
⌈
log2

1
∆

⌉
− 1 and hence r∗ ≤ log2

1
∆ .

Recall that ρ is the stopping epoch.

B.4.1 Case 1: ∆ ≤ vmin/16, H is optimal, and EMD-L happened

When H is optimal and event Estop happened, there are 2 regimes of interest:

1. ρ ≤ rmax

2. ρ = rmax

We assume that vmin ≥ T−1/2, so that the last possible epoch is after Phase 1.

Recall that ρ is the stopping epoch for MD-Leftist. In the below, we use the fact that from Lemma 38, with probability at
least 1− 1/T , we have ρ ≤ r∆ + 3.

Regime 1: ρ ≤ rmax Corollary 67 implies that event Estop occurs and hence ρ ≥ ℓ+ 1 (i.e., the algorithm completes
Phase 1). We begin by bounding the regret contribution from Phase 1. MD-Leftist runs for at most r∆ + 3 =

⌈
log2

1
∆

⌉
− 1

epochs. In each epoch, we pull arms 0 and 1.

• The regret from pulling arm 0 in all rounds is of order at most(
log

1

δ

)
∆ · 1

v2min

.

• The regret from pulling arm 1 in all rounds is of order at most(
log

1

δ

)
∥v∥1 ·

1

v2min

.

From the above and using δ = 1/T 2, the regret is of order at most

log(T) · ∆+ ∥v∥1
v2min

. (28)

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

To bound the regret contribution from Phase 2, we first observe that for r ≥ ℓ+ 1, we have ar = R(Ar−ℓ), and hence from
(23), it follows that ⟨v, ar⟩ = vmin · d · 2ℓ−r. Therefore, the regret contribution from Phase 2 can be bounded as

r∆+3∑
r=ℓ+1

nr ·

 ∆︸︷︷︸
arm 0

+ ⟨v, ar⟩︸ ︷︷ ︸
arm ar

 =

r∆+3∑
r=ℓ+1

nr ·
(
∆+ vmin · d · 2ℓ−r

)

=

r∆+3∑
r=ℓ+1

nr ·
(
∆+ 2

log2

⌈
1

vmin

⌉
· vmin · d · 2−r

)

≤ 2

r∆+3∑
r=ℓ+1

nr ·
(
∆+ d · 2−r

)
(29)

≤ 2

r∆+3∑
r=0

nr ·
(
∆+ d · 2−r

)
≤ 26(log(1/δ) ·

(
1

∆
+

d

∆

)
,

which is of order at most

(log T) · d
∆
. (30)

Hence, in this regime, we get regret of order at most

log(T) ·
(
∆+ ∥v∥1

v2min

+
d

∆

)
. (31)

We have just proved the following lemma.

Lemma 40. Take δ = 1/T 2. If ∆ ≤ vmin/16 and H is optimal, then on event EMD-L, the pulls of MD-Leftist contribute
regret of order at most

log(T) ·
(
∆+ ∥v∥1

v2min

+
d

∆

)
.

Regime 2: ∆ ≤ 16 log (T) ·
√

d
T

Recall that the last possible epoch is rmax =
⌊
log2

√
T

log(T)
√
d

⌋
− 3.

The analysis is like Regime 1, except we truncate the summation as:

rmax∑
r=ℓ+1

nr ·

 ∆︸︷︷︸
arm 0

+ ⟨v, ar⟩︸ ︷︷ ︸
arm ar

 ≤ 2

rmax∑
r=0

nr ·
(
∆+ d · 2−r

)
= O

(
log(1/δ) · (log−2(T) · (T/d) ·∆+ d log−1(T) ·

√
T/d)

)
(32)

= O
(
log(1/δ) · (log−1(T) ·

√
T/d+ log−1(T) ·

√
Td)

)
= O

(√
Td
)
,

where the second equality uses ∆ = O
(
log(T) ·

√
d/T

)
.

Hence, we get regret of order at most

log(T) · ∆+ ∥v∥1
v2min

+
√
Td.

We have just proved the following lemma.

Thresholded Linear Bandits

Lemma 41. Take δ = 1/T 2. If ∆ ≤ 16 log(T)
√

d
T and H is optimal, then on event EMD-L, the pulls of MD-Leftist contribute

regret of order at most

log(T) · ∆+ ∥v∥1
v2min

+
√
Td.

B.4.2 Case 2: ∆ ≤ vmin/16, arm 0 is optimal, and EMD-L happened

The analysis in this case is simpler for two reasons. First, any pull of arm 0 gives no pseudoregret. Second, we do not
provide any sort of guarantee that for any epoch r ≤ ρ it holds that arm ar is positive, and we therefore also do not provide
any sort of guarantee that ρ ≤ r∗. Indeed, it can happen that the minimum cost arm on the separating hyperplane H has
cost that is much greater than ∆, and in this situation the algorithm is likely to run for many epochs r for which ar is
negative, thereby preventing the algorithm for having informative estimates ∆̂r of ∆. Therefore, we only consider the
all-encompassing regime that ρ ≤ rmax by bounding the regret as if the algorithm ran until epoch rmax, which may be
overcounting. The analysis is similar to regime 2 above; for completeness, we describe how to modify the analysis and
giving the corresponding regret bound.

We first consider the contribution from Phase 1. As we only need consider the regret contribution from arm 1, we only need
the second term of the sum in (28), giving a regret contribution of order at most

log(T) · ∥v∥1
v2min

.

In this regime, we get a regret bound whose order is the same as Regime 2 from Case 1 except that we can and do drop the
contribution from arm 0 in the step (32), giving regret of order at most

log(T) · ∥v∥1
v2min

+
√
Td. (33)

Note that being able to drop the aforementioned term is vital, as here we have no guarantee that ∆ = O(log(T)
√

d/T).

We have just proved the following lemma.

Lemma 42. Take δ = 1/T 2. If ∆ ≤ vmin/16 and arm 0 is optimal, then on event EMD-L, the pulls of MD-Leftist contribute
regret of order at most

log(T) · ∥v∥1
v2min

+
√
Td.

Combining the above lemmas yields the following, general regret bound for the pulls of MD-Leftist.

Theorem 43. Take δ = 1/T 2. If ∆ ≤ vmin/16, then on event EMD-L, the pulls of MD-Leftist contribute regret of order at
most

log(T) · ∆+ ∥v∥1
v2min

+
√
Td.

Proof (of Theorem 43). We begin by bounding the contribution to the regret from MD-Leftist’s pulls. We then consider the
contribution from the other algorithms.

We consider several cases.

First, if arm 0 is optimal, the bound follows from Lemma 42.

Next, suppose that H is optimal. Then from Lemma 40, we have the bound

log(T) ·
(
∆+ ∥v∥1

v2min

+
d

∆

)
;

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

when ∆ ≥ 16 log(T)
√

d
T , the above bound is of order at most the bound in the theorem. On the other hand, if ∆ <

16 log(T)
√

d
T , then Lemma 41 implies the worst-case bound

log(T) · ∆+ ∥v∥1
v2min

+
√
Td.

Hence, the result follows.

B.5 Correctness Analysis for MultiEstTau, MultiCoordinateCompare, and MultiGreedy

Preliminaries. Let H be the separating hyperplane, defined as

H := {a ∈ Rd : ⟨θ∗, a⟩ = τ}.

For any arm a, let π(a) be the Euclidean projection of a onto the hyperplane; that is,

π(a) = argmin
a′∈H∩[0,1]d

∥a′ − a∥2.

B.5.1 Correctness analysis for NoisyBinarySearch

For the analysis of NoisyBinarySearch, our analysis from Section A.4 carries over almost entirely without modification.
We only need to adapt each of Lemmas 29 and 30 to use event EMD-L rather than EL. To this end, we state the following
two adaptations without proof; for the proof of each, one need only replace “Leftist” and EL with “MD-Leftist” and EMD-L

respectively.

Lemma 44 (Adaptation of Lemma 29). Consider a given iteration i of NBS. Suppose that in this iteration, arm R is positive.
Then on event EMD-L, the probability that NBS incorrectly predicts the label of m on line 7 is at most δ.

Lemma 45 (Adaptation of Lemma 30). On event EMD-L, with probability at least 1− T · δ, NBS will return a positive arm
af satisfying ∥af − π(af)∥2 < εNBS.

B.5.2 Analysis of MultiCoordinateCompare

We first re-present MultiCoordinateCompare (Algorithm 5 from the main text) in a more space-abundant format, along with
a brief English description.

Algorithm 10: MultiCoordinateCompare
Input: Two coordinates j, k. Lower bound εr satisfying εr ≤ ∆, arm a

1 Assume ⟨θ∗, a⟩ ≥ τ and ∥a− π(a)∥ ≤ εNBS

2 γ ← θmin/(d
2T)

3 β ← εNBS/γ

4 N ← log 1
δ

ε2r

5 a(j) ← a+ β ·
(

ej

vj
− ek

vk

)
6 a(k) ← a− β ·

(
ej

vj
− ek

vk

)
7 Make N pulls of each of arms 0, a(j), and a(k), giving p̂0, p̂j and p̂k
8 if p̂k − p̂0 < εr/2 then return “>” // arm a(k) is negative

9 else if p̂j − p̂0 < εr/2 then return “<” // arm a(j) is negative

10 else return “∗” // arms a(j) and a(k) both are positive

In words, MultiCoordinateCompare does the following:

Thresholded Linear Bandits

For a positive constant β,9 create the following two arms:

a(j) ← a+ β ·
(
ej
vj
− ek

vk

)
a(k) ← a− β ·

(
ej
vj
− ek

vk

)
.

Make N pulls of arms a(j), a(k), and 0 to identify the label of a(j) and a(k) with high probability.

If a(k) is negative, output “>”.

If a(j) is negative, output “<”.

If both a(j) and a(k) are positive, output “∗”, meaning “I don’t know”.

We will show that MultiCoordinateCompare is an implementation of what we call a PAC comparison oracle.
Definition 46 (PAC comparison oracle). Let I be a finite set and let f : I → R. Let A be an algorithm that takes as input
two distinct elements of I and outputs a symbol from the set {“>”, “<”, “*”}. We say that A is a (γ, δ)-PAC comparison
oracle for (I, f) if A satisfies the following guarantee:

Suppose A is given two distinct elements j, k ∈ I as input; then with probability at least 1− δ:
if A outputs “>” then f(j) > f(k);

if A outputs “<” then f(j) < f(k);

if A outputs “∗” then |f(j)− f(k)| ≤ γ.

In particular, we will show that MultiCoordinateCompare is a PAC comparison oracle for ([d], s), where we recall that the
leverage score function is defined as s : j 7→ θ∗

j

vj
. We first require some initial setup.

Assumptions. For the analysis of MultiCoordinateCompare, we currently require some additional assumptions. Some
truly are assumptions, while others can be satisfied by appropriate parameter settings for other algorithms on which
MultiCoordinateCompare depends.

MultiCoordinateCompare is called by MultiEstTau with an arm ac as input; this arm comes from a call to NoisyBinarySearch.
Within MultiCoordinateCompare, we refer to this arm as a.

Assumptions:

• ∥a− π(a)∥2 ≤ εmax

• a is in the κ-interior of [0, 1]d according to the ℓ∞-metric, for some κ > 0.

The first assumption can be satisfied for εmax > 0 as small as desired by decreasing the termination threshold of NoisyBina-
rySearch. The second assumption is truly an assumption. We will discuss κ in more detail later.

The following lemma does most of the work for showing that MultiCoordinateCompare is a PAC comparison oracle for
([d], s).

In the sequel, we adopt the following notation for brevity:

Djk := s(j)− s(k) =
θ∗j
vj
− θ∗k

vk
.

Lemma 47. Let εa = ∥a− π(a)∥. Assume that β ≤ min{vj , vk} · κ. With probability at least 1− 2δ, MultiCoordinate-
Compare behaves as follows: it outputs 

“>” if Djk > εa
β ;

“<” if Djk < − εa
β ;

“∗” if − εa
β ≤ Djk ≤ εa

β .
9We cannot choose β to be too large as we need both of the above arms to lie in [0, 1]d, but we also need β to be large enough to be

meaningful. To satisfy the former restriction, it suffices to require that β ≤ min{vj , vk} ·κ. We will discuss how large β needs to be later.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

Proof. The upper bound on β guarantees that both arms are in [0, 1]d.

Observe that on the one hand,

⟨θ∗, a(j)⟩ = ⟨θ∗, π(a)⟩+ ⟨θ∗, a− π(a)⟩+ β ·
(
θj
vj
− θk

vk

)
= τ + εa + β ·Djk,

while on the other hand,

⟨θ∗, a(k)⟩ = τ + εa − β ·Djk.

We first establish whether each of arms a(j) and a(k) has a true label that is positive or negative. We then show that the
algorithm correctly predicts their labels. Suppose that Djk > εa

β . Then from the formula for ⟨θ∗, a(k)⟩ above, we see
that a(k) is negative. Similarly, suppose that Djk < − εa

β . Then from the formula for ⟨θ∗, a(j)⟩ above, we see that a(j) is
negative. Finally, suppose that − εa

β ≤ Djk ≤ εa
β . Then it is easy to verify from the above formulas that both a(j) and a(k)

are positive.

Next, we consider the algorithm’s predicted labels for arms a(j) and a(k). From Lemma 44, line 8 of MultiCoordinateCom-
pare correctly predicts the label of a(k) with probability at least 1 − δ. Similarly, the same lemma implies that line 9 of
MultiCoordinateCompare correctly predicts the label of a(j) with probability at least 1− δ.

Consequently, with probability at least 1− 2δ, the following statements hold simultaneously:

• if Djk > εa
β , the algorithm correctly predicts that a(k) is negative and hence indeed outputs “>”;

• if Djk < − εa
β , the algorithm correctly predicts that a(j) is negative and hence indeed outputs “<”;

• if − εa
β ≤ Djk ≤ εa

β , the algorithm correctly predicts that both a(j) and a(k) are positive and hence outputs “∗”.

Next, we present a simple corollary to Lemma 47. This corollary shows that an appropriate parameterization of Multi-
CoordinateCompare is a (γ, δ)-PAC comparison oracle provided that εa = ∥a − π(a)∥ can be guaranteed to be small
enough.

Corollary 48. Take the setting of Lemma 47, assume that εa ≤ εmax for some positive constant εmax ≤ γ ·min{vj , vk} · κ,
and set β as β = εmax

γ for a positive constant γ.

Then, with probability at least 1− 2δ:

MultiCoordinateCompare is trustworthy in the sense that:
if it outputs “>” then Djk > 0;

if it outputs “<” then Djk < 0;

if it outputs “∗” then − γ ≤ Djk ≤ γ.

MultiCoordinateCompare is γ-accurate in the sense that:{
if Djk > γ then it outputs “>”
if Djk < −γ then it outputs “<”.

In particular, MultiCoordinateCompare is a (γ, 2δ)-PAC comparison oracle.

Proof. The upper bound on εmax ensures that β ≤ min{vj , vk} · κ, thereby guaranteeing that both arms are in [0, 1]d.

We first show that MultiCoordinateCompare is trustworthy. The first two claims are trivial, as from Lemma 47, with
probability at least 1− 2δ, outputting “>” implies that Djk > εa

β > 0 while outputting “<” implies that Djk < − εa
β < 0.

Thresholded Linear Bandits

For the last claim, observe from Lemma 47 that (with probability at least 1−2δ) outputting “∗” implies that− εa
β ≤ Djk ≤ εa

β ,
after which we use γ = εmax

β ≥ εa
β and likewise −γ ≤ εa

β .

The claim that MultiCoordinateCompare is γ-accurate straightforward to verify using Lemma 47 and the fact that γ ≥ εa
β .

The fact that MultiCoordinateCompare is a (γ, δ)-PAC comparison oracle follows immediately from the algorithm being
trustworthy with probability at least 1− δ.

B.5.3 PAC-MergeSort

In this section, we present PAC-MergeSort, a method for probably, approximately correctly sorting elements given access
to a PAC comparison oracle. We will use PAC-MergeSort to obtain an ordering of the coordinates that is approximately
optimal in a sense that we now define.

For a permutation σ of (1, 2, . . . , d), let σ(i) denote the i th element in the permutation.10

Definition 49 (γ-insensitivity (general version)). We say that a permutation σ of I is γ-insensitive with respect to f : I → R
if, for all j and k satisfying 1 ≤ j < k ≤ |I|, we have

f(σ(j)) ≥ f(σ(k))− γ.

Definition 50 (γ-insensitivity). We say that a permutation σ is γ-insensitive if, for all j and k satisfying 1 ≤ j < k ≤ d, we
have

θ∗σ(j)

vσ(j)
≥

θ∗σ(k)

vσ(k)
− γ.

We remark that a 0-insensitive permutation corresponds to correctly placing the elements in non-increasing order. In our
setting, we wish to obtain a γ-insensitive permutation over [d] with respect to s : j 7→ θ∗

j

vj
. As we show in Section B.5.4,

such a permutation is approximately optimal and enables the greedy algorithm (when run with this permutation) to output
an arm on the hyperplane that approximately minimizes the cost over all arms on the hyperplane.

We now present PAC-MergeSort, an extension of MergeSort that handles approximate comparisons. For γ-approximately
correct comparisons, PAC-MergeSort also approximately places the elements in decreasing order.

Algorithm Sketch 51 (PAC-MergeSort). First, recall that MergeSort only makes comparisons in the merge step. In the
merge step, we have two lists, each in order, and traversing each list from left to right we perform comparisons to get a
single, merged list that is in order. In PAC-MergeSort, we run MergeSort as usual with the following modification: whenever
two elements are compared and we receive response “∗”, we join the elements into a single element by arbitrarily selecting
one of them as the representative. Since the elements are joined, we just pick this single element for the next item in the
merged list currently being constructed. The result is a list of representatives that is strictly decreasing. To get an ordering of
all the elements, we traverse the list of representatives from left to right, outputting each representative followed by the
elements it represents before going to the next representative.

Pictorially, PAC-MergeSort can be thought of as initially placing each element in its own bucket. When we receive a “∗”
from comparing two buckets (by comparing their representatives), we union the two buckets into a single bucket whose
representative is arbitrarily selected to be one of the representatives of the two buckets. In the end, the algorithm returns an
ordering that begins with the elements of the first bucket (in arbitrary order), then the elements of the second bucket (in
arbitrary order), and so on.

How bad an ordering σ′ could PAC-MergeSort produce? As we now show, given comparison tolerance γ, PAC-MergeSort
delivers γ′-sensitivity for γ′ at most a (|I| − 1)-amplification of γ.

Theorem 52. Given a (γ, δ)-PAC comparison oracle for (I, f), PAC-MergeSort returns an ordering that, with probability
at least 1− (2|I| log2 |I|) · δ, is (|I| − 1)γ-insensitive.

Proof. Define n := |I|. First, we use the fact that standard MergeSort makes at most (overcounting a bit) 2n log2 n
comparisons. Hence, taking a union bound over all the comparisons, we have with probability at least 1− (2n log2 n) · δ
that the PAC comparison oracle’s guarantees hold for every comparison made.

10We recognize that this is non-standard use of permutation notation, but our convention is more convenient here.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

With the “high probability” part out of the way, we proceed with the rest of the proof. Let distinct positions ij , ik ∈ [n] be
arbitrary except that ij > ik. We adopt the notation j := σ(ij) and k := σ(ik); note that ij and ik will be used to indicate
positions of permutation σ′, while j and k are the corresponding elements in those positions.

How bad an ordering σ′ could PAC-MergeSort produce? If f(j) ≤ f(k), then the coordinates were sorted correctly. The
out of order case is when f(j) > f(k), but fortunately, we must have f(j)− f(k) ≤ (n− 1)γ. To see this, we consider
two cases.

In the first case, elements j and k are out of order and belong to the same bucket B ⊆ I at the end of the execution
of PAC-MergeSort. Therefore, the diameter of a bucket diam(B) := maxm,m′∈[B] f(m) − f(m′) is an upper bound
on f(j) − f(k). But in PAC-MergeSort, each bucket initially has diameter zero, and the diameter of a bucket increases
only when it is unioned with another bucket; specifically, if bucket B1 is unioned with bucket B2, then the diameter of
the resulting bucket is at most diam(B1) + diam(B2) + γ. The diameter of B is maximized when B was formed by
successively unioning with |B| − 1 singleton buckets, giving diameter at most (|B| − 1)γ ≤ (n− 1)γ.

In the second case, elements j and k are out of order but belong to different buckets at the end of the execution of
PAC-MergeSort. Before analyzing this case, we need some preliminary setup:

• We define the range of a bucket A to be [minA,maxA].

• For a bucket A, let q(A) be its representative.

Let A and B be distinct buckets with q(A) > q(B) + γ. Suppose A and B overlap (i.e., range(A) ∩ range(B) ̸= ∅). Then
we must have q(A)− q(B) ≤ diam(A) + diam(B).

Suppose two elements k ∈ A and j ∈ B are out of order in σ′ (so f(j) > f(k)). Then we must have f(k) ∈ range(B) and
f(j) ∈ range(A). Now, we claim that f(j)−f(k) ≤ min{diam(A),diam(B)}. Indeed, if instead f(j)−f(k) > diam(A),
then f(j) cannot belong to range(A). Similarly, if f(j)− f(k) > diam(B), then f(k) cannot belong to range(B).

Hence, the final ordering satisfies (n− 1) · γ-sensitivity.

The following corollary is immediate.

Corollary 53. Given a (γ, δ)-PAC comparison oracle for ([d], s), PAC-MergeSort returns an ordering that, with probability
at least 1− (2d log2 d) · δ, is (d− 1)γ-insensitive.

Thresholded Linear Bandits

B.5.4 Analysis of MultiGreedy

We first re-present MultiGreedy for the convenience of the reader.

Algorithm 11: MultiGreedy
Input: Lower bound εr satisfying εr ≤ ∆, Ordering σ̂

1 u← 2d · 2−r + 1/T

2 N ← log 1
δ

ε2r

3 L← 0
4 for i = 1, 2, . . . , d do
5 R← L+min

{
1

vσ̂(i)

(
u−∑i−1

j=1 vσ̂(j)

)
, 1
}
· eσ̂(i)

6 Make N pulls of each of arms L and R
7 if p̂right − p̂left ≥ εr/2 then
8 return NoisyBinarySearch(εr, L, R)
9 else L← L+ eσ̂(i)

In this section, we show that MultiGreedy returns an arm in the positive halfspace that is approximately of minimum cost
among all arms in the positive halfspace.

Prior to analyzing MultiGreedy, we set up some notation and introduce two events. Let aH be the minimum cost arm on the
separating hyperplane. In addition, let aσ be the minimum cost arm on the hyperplane that abides11 by the ordering σ, and
let âσ be the arm returned by MultiGreedy when given ordering σ. Finally, define vmax := maxj∈[d] vj .

The idea of MultiGreedy relies on the following permutation-based characterization of a minimum cost arm in H .
Proposition 54. Let σ(j) be a permutation of [d] such that

θ∗σ(j)

vσ(j)
≥

θ∗σ(k)

vσ(k)
(34)

if j < k. Then, there exists an optimal arm in the hyperplane aH ∈ argmina∈H⟨v, a⟩ such that, for some l ∈ [d],

(aHσ(1), a
H
σ(2), . . . , a

H
σ(d)) = (1, . . . , 1, aHσ(l), 0, . . . , 0).

Proof of Proposition 54. For the ease of discussion, we assume the coordinates are re-indexed as

θ∗1
v1
≥ θ∗2

v2
≥ . . . ≥ θ∗d

vd
. (35)

We show that

agrdy := (1, 1, . . . , al, 0, . . . , 0) :
∑
m<l

θ∗m + alθ
∗
l = τ

is an optimal solution of the optimization problem

argmin
a∈[0,1]d

d∑
m=1

vmam

s.t. θ∗mam = τ.

(36)

Suppose that there exists an optimal solution a′ of problem (36) such that a′i > 0 for some i > l. Then, by definition
there exists j ≤ l such that agrdyj > a′j . In this case, we can transform a′ as follows: Namely, we reduce a′i by
∆′ = min{a′i, (agrdyj − a′j)(θ

∗
j /θ

∗
i)} and increase a′j by ∆′(θ∗i /θ

∗
j). This operation (a) does not modify

∑d
m=1 θ

∗
ma′m

(i.e., the resultant arm stays on the separating hyperplane) and (b) does not increase
∑d

m=1 vma′m by (35). Moreover, this
operation (c) increases

∑d
m=1 1

[
agrdym = a′m

]
by at least one. Repeating this procedure at most d times transforms a′ into

agrdy (by (c)) without increasing the objective value (by (a) and (b)).
11By this, we mean that greedy fills the coordinates in the order given by σ.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

Let EMG be the event that MultiGreedy, over all of the at most d iterations of its for loop, correctly predicts the label of arm
R on line 7. Lemma 69 in Appendix C shows that this event holds with suitably high probability. In addition, we define two
events related to NoisyBinarySearch as they will be useful in this section’s analysis. Let event ENBS-MET (event ENBS-MG) be
the event that NoisyBinarySearch, when called from MultiEstTau (when called from MultiGreedy), returns a positive arm
within distance εNBS of H ∩ [0, 1]d.

Lemma 55. Given a γ-insensitive permutation σ, on event Estop ∩ EMG ∩ ENBS-MG, MultiGreedy returns an arm âσ in the
positive halfspace that satisfies

⟨v, âσ − aH⟩ ≤ vmax · εNBS + εγ ,

where εγ =
(
d
2

)
· γ · v

2
max

θmin
.

The proof of this lemma follows easily from Lemmas 56 and 59 below.

Lemma 56. For any γ-insensitive permutation σ, we have

⟨v, aσ⟩ ≤ ⟨v, aH⟩+ εγ

where εγ =
(
d
2

)
· γ · v

2
max

θmin
.

The next lemma relies on the following regularity assumption on θ∗.

Assumption 57 (Regularity of θ∗). There exists a known, positive constant θmin such that, for any coordinate j for which
θ∗ is non-zero, we have θ∗j ≥ θmin.

Lemma 58. Let σ be a permutation of (1, 2, . . . , d), and let σ′ be equal to σ except that an adjacent pair of indices
(j, k) := (σ(i), σ(i+ 1)) is swapped, so that σ′(i) = σ(i+ 1) and σ′(i+ 1) = σ(i).

If coordinates j and k satisfy Djk > 0 and are γ-close, i.e.,

θ∗k
vk

<
θ∗j
vj
≤ θ∗k

vk
+ γ,

then the cost of aσ′ can be upper bounded as

⟨v, aσ′⟩ ≤ ⟨v, aσ⟩+ γ · v
2
max

θmin
.

Proof. For convenience, we first state some facts related to γ-insensitivity. The condition

θ∗j
vj
≤ θ∗k

vk
+ γ (37)

is equivalent to each of the following

θ∗j
θ∗k
· vk − vj ≤ γ · vjvk

θ∗k
; (38)

and

vk −
θ∗k
θ∗j
· vj ≤ γ · vjvk

θ∗j
. (39)

From the premise of the lemma, we assume that coordinates j and k satisfy Djk > 0 and are γ-close in the sense of (37).
We consider the impact of running the greedy algorithm with the ordering σ′ instead of the ordering σ. Let a := aσ be the
arm greedy returns when using ordering σ, and let a′ := aσ′ be the arm greedy returns when using ordering σ′.

We consider a few cases to establish that the cost of arm a′ is not much larger than the cost of arm a.

Case 0: Both coordinates j and k are unused under σ (aj = ak = 0); then swapping the coordinates clearly has no effect.

Thresholded Linear Bandits

Case 1: Both coordinates are saturated under σ (aj = ak = 1)); then swapping the coordinates clearly has no effect.

Case 2: The arm a returned under σ satisfies 0 < aj ≤ 1 and 0 ≤ ak < 1.

We split this case into two sub-cases.

Case 2A: a′k = 1. We need

ajθ
∗
j + akθ

∗
k = a′kθ

∗
k + a′jθ

∗
j ,

and so under our current assumptions

a′j =
ajθ

∗
j + akθ

∗
k − θ∗k

θ∗j

= aj − (1− ak) ·
θ∗k
θ∗j

.

The difference in cost is

a′kvk + a′jvj − ajvj − akvk

= vk +

(
aj − (1− ak) ·

θ∗k
θ∗j

)
· vj − ajvj − akvk

= (1− ak) · vk − (1− ak) ·
θ∗k
θ∗j
· vj

= (1− ak) ·
(
vk −

θ∗k
θ∗j
· vj
)

≤ (1− ak) · γ ·
vjvk
θ∗j

≤ (1− ak) · γ ·
vjvk
θmin

,

where the first inequality is from (39) and the last inequality uses the fact that Djk > 0 implies that θ∗j > 0, allowing us to
invoke Assumption 57.

Case 2B: a′k < 1 (so a′j = 0). We need

ajθ
∗
j + akθ

∗
k = a′kθ

∗
k + a′jθ

∗
j ,

and so under our current assumptions

a′k =
ajθ

∗
j + akθ

∗
k

θ∗k
= ak + aj ·

θ∗j
θ∗k

.

The difference in cost is then

a′kvk − ajvj − akvk

=

(
ak + aj ·

θ∗j
θ∗k

)
· vk − ajvj − akvk

= aj ·
(
θ∗j
θ∗k
· vk − vj

)
≤ aj · γ ·

vjvk
θ∗k

≤ aj · γ ·
vjvk
θ∗min

,

where the first inequality is from (38) and the last inequality uses the fact that a′k < 1 implies that θ∗k > 0 and hence
θ∗k ≥ θmin from Assumption 57.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

Lemma 56 is a simple consequence of Lemma 58, as we now show.

Proof (of Lemma 56). Recall that σ is a γ-insensitive permutation. We will show how to convert σ into an optimal
permutation σ∗, i.e., a permutation for which Dσ(i)σ(i+1) ≥ 0 for all i ∈ [d], without decreasing the cost of the corresponding
greedy arm by much.

Let us first recall the notion of an inversion. We say that the pair of positions (i, i′) is an inversion in σ if i > i′ but
Dσ(i)σ(i′) > 0; this may seem counterintuitive, so we remind the reader that we wish to sort in decreasing order, meaning
that if Dσ(i)σ(i′) > 0, then we wish to have i < i′.

If there is an inversion in σ, then there is an adjacent pair (i+ 1, i) that is an inversion in σ. We can swap such a pair using
Lemma 58, giving a new permutation which has one less inversion and whose cost has been reduced by at most γ · v

2
max

θmin
. By

successively applying this exchange argument, each time removing one inversion, we finally arrive at an optimal permutation
σ∗. As there can be at most

(
d
2

)
inversions, the cost of ⟨v, aσ⟩ could have larger than the cost of aσ∗ by at most

(
d
2

)
· γ · v

2
max

θmin ,
as desired.

Lemma 59. Given a γ-insensitive permutation σ, on event Estop ∩ EMG ∩ ENBS-MG, MultiGreedy returns an arm âσ in the
positive halfspace satisfying

⟨v, âσ⟩ ≤ ⟨v, aσ⟩+ εNBS · vmin.

Proof. We begin by studying aσ . Recall that aσ ∈ H .

For an arm a and a permutation σ′, we adopt the notation [a]σ′[d] = (aσ′(1), aσ′(2), . . . , aσ′(d)). Let [aσ]σ([d]) be of the form
(1, . . . , 1, b︸︷︷︸

position j

, 0, . . . , 0). It is without loss of generality that we take b > 0, as 0 is negative and aσ is positive.

Let a(−)
σ = aσ − b · eσ(j), and let a(+)

σ = aσ except at position j, where [a(+)
σ]σ(j) = u′ for

u′ := min

{
1

vj

(
2d · 2−r + εγ −

j−1∑
i=1

vi

)
, 1

}
;

here, r = ρ is the epoch in which Multi-dim Leftist called MultiEstTau. Therefore, we have:

[a(−)
σ]σ([d]) = (1, . . . , 1, 0, 0, . . . , 0)

[aσ]σ([d]) = (1, . . . , 1, b, 0, . . . , 0)

[a(+)
σ]σ([d]) = (1, . . . , 1, u′, 0, . . . , 0)

Since aσ is on the hyperplane, it is positive. Also, a(−)
σ is negative. To see this, suppose for a contradiction that a(−)

σ is
positive. Then since vj > 0 by assumption, a(−)

σ is a lower cost positive point than aσ .

In addition, as we now show, we must have u′ ≥ b, implying that a(+)
σ also is positive. It trivially holds that u′ ≥ b when

u′ = 1, so we consider the case that u′ < 1; to see why u′ ≥ b in this case, we first note that it is equivalent to show that
⟨v, aσ⟩ ≤ ⟨v, a(+)

σ ⟩. To see why the latter inequality is true, observe that:

⟨v, aσ⟩ ≤ ⟨v, aH⟩+ εγ

≤ ⟨v, ac⟩+ εγ

≤ ⟨v,R(Ar−ℓ)⟩+ εγ

= d · 2ℓ−r · vmin + εγ

= d · 2−r · vmin ·
⌈
log2

1

vmin

⌉
+ εγ

≤ 2d · 2−r + εγ

= ⟨v, a(+)

σ ⟩,

where the first inequality is from Lemma 56; the second inequality is from the optimality of aH among arms in the positive
halfspace; the third inequality is because by virtue of NoisyBinarySearch and the fact (from Estop) that r = ρ ≥ ℓ+ 1, it

Thresholded Linear Bandits

follows that ac is entrywise upper bounded by R(Ar−ℓ); and the final equality is from direct verification since u is equal to
the first term of the minimum in its definition.

Now, for any iteration i < j, both arms considered by MultiGreedy are negative. We first show that the algorithm makes it
to iteration j. Indeed, in iteration 1, arm L = 0 is known to be negative, and so the algorithm need only predict the label of
arm R (which it does, on line 7 of MultiGreedy). Since we assume event EMG happened, the algorithm correctly predicts the
label. In each successive iteration up to and including iteration j − 1, from event EMG the algorithm again correctly predicts
the label of arm R to be negative. Therefore, the algorithm makes it to iteration j. In iteration j, again from event EMG, the
algorithm will detect a difference between arms a(−)

σ and a(+)
σ , triggering NoisyBinarySearch between these two arms.

The result of NoisyBinarySearch, which is correct as we assume event ENBS-MG, will be a positive arm âσ (this is by virtue
of NoisyBinarySearch returning a “rightmost” arm along the line segment it searches). Moreover, along the line segment
searched, the returned arm will be within some distance εNBS of the hyperplane when measured along coordinate direction
ej . Therefore, the additional cost of âσ compared to aσ is at most vj · εNBS.

For completeness, we give a brief proof of Lemma 55.

Proof (of Lemma 55). That âσ is in the positive halfspace is immediate from Lemma 59. Also, from Lemmas 56 and 59,

⟨v, âσ − aH⟩ = ⟨v, âσ − aσ⟩+ ⟨v, aσ − aH⟩
≤ vmax · εNBS + εγ .

B.6 Complete regret analysis for multi-dimensional case

We now give a detailed analysis that considers each of the pieces that contributes to the regret.

B.6.1 Overview of total regret analysis

We use the abbreviations MD-Leftist (MultiDimLeftist), MCC (MultiCoordinateCompare), and NBS (NoisyBinarySearch).
There are two situations. Either MD-Leftist calls MultiEstTau, or it does not. The former case is much more complicated;
we consider it first. The diagram below shows the algorithms that are called. To interpret the diagram, we start at the root
note (MD-Leftist) and do an in-order traversal. With the exception of the node for MD-Leftist, pulls (and hence regret
contribution) happen only in leaf nodes.

MD-Leftist

MultiEstTau
(no pulls) UCB

NBS MCC: O(d log d) times MultiGreedy

pull 3 arms Spar arms: d times NBS

We begin with a description of the places where regret can be accumulated (in addition to regret from the pulls of MD-Leftist):

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

1. MultiEstTau calls NBS once after MD-Leftist detects a lower bound on ∆. The result is ac.

2. MultiEstTau then calls MultiCoordinateCompare O(d log d) times. For each call, we do a batch pull of arms 0, a(j),
and a(k). The latter two arms are guaranteed to be very close to ac, which is why we should be able to use the same
regret contribution from ac when we consider pulls of a(j) and a(k). The regret contribution of arm 0 should be even
lower.

3. MultiGreedy has at most d iterations in which it spars two extreme points (arms) of [0, 1]d. By design, the cost of the
arms considered should be no more than the cost of ac.

4. MultiGreedy calls NBS once after identifying two extreme points of [0, 1]d to interpolate along one dimension.

5. MD-Leftist calls UCB.

We begin by bounding the regret of the first four pieces in the order of piece 1, piece 4, piece 2, and piece 3. We only sketch
the analysis as the complete details are similar to the regret analysis already done for MD-Leftist in Section B.4 and NBS in
Section A.4. We then bound the regret of UCB.

Recall that ρ is the stopping epoch for MD-Leftist; this is the epoch in which MD-Leftist calls MultiEstTau (if at all such a
call happens).

B.6.2 Regret analysis for first four pieces

Lemma 60 (Regret of NBS from MultiEstTau (Piece 1)). On the event Estop ∩ ENBS-MET, the pulls from MultiEstTau’s call to
NBS contribute regret of order at most

log(T) · log(1/εNBS) ·
d

∆
.

Proof. The number of pulls in each round of NBS will be of order O(log(T) · 1
∆2) since nρ = O(log(1/δ) · 22ρ), we have

ρ ≍ r∆ ≍ log2
1
∆ , and we take δ = 1/T 2. The number of rounds of NBS is of order O(log(1/εNBS)). Hence, each call to

NBS results in O(log(T) · log(1/εNBS)/∆
2) pulls.

Upon being called, NBS’s initial setting for arms L and R are arm 0 and aρ respectively. The instantaneous regret per pull
is at most ∆ for arm 0 and at most d ·∆ for arm aρ (see (29)), and the instantaneous regret of intermediate arms can be
bounded by summing these two terms. Hence, the total regret in this case is of order at most

log(T) · log(1/εNBS) ·
d

∆
.

Lemma 61 (Regret of NBS from MultiGreedy (Piece 4)). On the event Estop ∩ ENBS-MET ∩ EMG ∩ ENBS-MG, the pulls from
MultiGreedy’s call to NBS contribute regret of order at most

log(T) · log(1/εNBS) ·
d

∆
.

Proof. By the design of MultiGreedy, the cost of the “right-most” arm R in any iteration is at most 2d · 2−ρ + 1/T . The
regret can now be bounded by the same amount as in the case of NBS from MultiEstTau as the 1/T term contributes a
negligible amount to the regret when using big-O notation.

Lemma 62 (Regret of MultiCoordinateCompare (Piece 2)). On the event Estop ∩ ENBS-MET, the contribution to the regret
from all pulls from all calls to MultiCoordinateCompare is of order at most

log(T) · d
2 log d

∆
.

Proof. For each of the Θ(d log d) calls to MultiCoordinateCompare, we pull 3 arms: arm a(j), arm a(k), and arm 0. The
former two arms are guaranteed to be within distance β = 1

T of ac. Hence, the order of the contribution to the regret is the
same as the order of the regret from MD-Leftist’s pulls while it is in epoch ρ; from (30), this latter amount is of order at
most (log T) · d

∆ . Considering the amplification by d log d, the result follows.

Thresholded Linear Bandits

Lemma 63 (Regret of MultiGreedy’s sparring (Piece 3)). On the event Estop ∩ ENBS-MET, the contribution to the regret from
all pulls from MultiGreedy is of order at most

log(T) · d
2

∆
.

Proof. There can be at most d sparring rounds. By the design of MultiGreedy, the cost of the larger arm in each sparring is
at most 2d · 2−ρ + εγ , where we recall that εγ ≤ 1

T and hence contributes a negligible amount to the regret when using
big-O notation. Since nρ = O(22ρ) and ρ ≍ r∆ ≍ log2

1
∆ , the result follows.

B.6.3 Regret of UCB on two-arm problem

Before bounding the regret of UCB in our setting, we introduce one more event. Next, let Esort be the event that PAC-
MergeSort produces a γ-insensitive ordering for γ = θmin

d2T . Lemma 68 in Appendix C shows that this event holds with
suitably high probability.

Denote by E the event E := EMD-L ∩ Estop ∩ ENBS-MET ∩ Esort ∩ EMG ∩ ENBS-MG.

Lemma 64 (Regret of UCB). Let v∗ = ⟨v, aH⟩. On the event E , the regret of UCB is at most

O

(
min

{
log T

|∆− v∗| ,
√
T log T

})
.

Proof. UCB is run on arms 0 and â, where â is the arm returned by MultiGreedy. We therefore first study the expected
reward of arm â. Lemma 55 implies that arm âσ is positive and satisfies

⟨v, â⟩ ≤ ⟨v, aH⟩+ vmax · εNBS + εγ

= v∗ + vmax · εNBS +

(
d

2

)
· γ · v

2
max

θmin

≤ v∗ + εNBS +

(
d

2

)
· γ · 1

θmin
.

Since we assume event Esort happened, we have that MultiGreedy was given a γ-insensitive ordering for γ ≤ θmin

d2T .
Therefore,

⟨v, â⟩ ≤ v∗ + εNBS +
1

T

≤ v∗ +
2

T
,

where we use the very loose bound εNBS ≤ 1
T .

Recalling our notation, µc(0) = p0 is the expected reward of arm 0 and µc(â) is the expected reward of arm â. We may
now conclude that |µc(â)− µc(0)| ≥ min {|∆− v∗|, |∆− v∗ − 2/T |}.
We have from Auer et al. (2002) that the regret of UCB with respect to the set of arms {0, â} is

O

(
min

{
log T

|µc(0)− µc(â)|
,
√
T log T

})
= O

(
min

{
log T

min {|∆− v∗|, |∆− v∗ − 2/T |} ,
√
T log T

})
.

Note that in the above bound, whenever the 2
T has a nontrivial effect on the second term in the inner minimum, the

√
T log T

term must be the smaller term. Hence, we fortunately can present the simplified bound:

O

(
min

{
log T

|∆− v∗| ,
√
T log T

})
.

Finally, as we instead want the regret with respect to the set of arms {0, aH}, we account for the difference between the
expected reward of aH and â. But this is at most 2

T and hence can contribute only a constant to the regret.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

B.6.4 Proofs of Theorems 34 and 35

Proof (of Theorem 34). From Lemma 65, event EMD-L happens with probability at least 1− 1/T . In the sequel, consider the
case that EMD-L happens (if it does not happen, we pick up a regret contribution of at most T · 1/T = 1). Since H is optimal
and we assume ∆ ≤ vmin

16 , Corollary 67 implies that event Estop happens.

The regret due to the pulls of MD-Leftist is bounded by Lemma 40. In addition, since Estop happens, Lemmas 60, 61, 62,
63, and 64 respectively imply that the regret is at most

[MD-Leftist] + [NBS from MultiEstTau and MultiGreedy]
+ [all calls of MCC] + [MultiGreedy sparring pulls] + [UCB]

= O

(
log(T) · (∆ + ∥v∥1)

v2min

+
d log T

∆

)
+O

(
log(T) · log(1/εNBS) ·

d

∆

)
+O

(
log(T) · d

2 log d

∆

)
+O

(
log(T) · d

2

∆

)
+O

(
min

{√
T log T ,

log T

|∆− v∗|

})
= O

(
log(T) · (∆ + ∥v∥1)

v2min

+ log(T) · log(1/εNBS) ·
d

∆
+ log(T) · d

2 log d

∆

)
+O

(
min

{√
T log T ,

log T

|∆− v∗|

})
= O

(
log(T) ·

(
∆+ ∥v∥1

v2min

+
max

{
d log(1/εNBS), d

2 log d
}

∆

))
+O

(
min

{√
T log T ,

log T

|∆− v∗|

})
.

Proof (of Theorem 35). For both results, we use Theorem 43 to bound the regret due to the pulls of MD-Leftist.

We now consider the remaining analysis for each regret bound in turn.

We begin with the first regret bound. For the other algorithms, note that they can be called only if ∆ = O(log(T)
√
d/T).

To see this, observe from Lemma 66 that ρ ≥ r∆ + 1. Hence, MultiEstTau can be called only if r∆ + 1 ≤ rmax, a condition
which implies that ∆ = O(log(T)

√
d/T). We may then take the regret bounds for other algorithms directly from the proof

of Theorem 34 together with the substitution ∆ = O(log(T)
√
d/T) (except for the part for UCB, where the substitution is

unnecessary) to get:

[MD-Leftist] + [NBS from MultiEstTau and MultiGreedy]
+ [all calls of MCC] + [MultiGreedy sparring pulls] + [UCB]

= O

(
log(T) · ∆+ ∥v∥1

v2min

+
√
Td

)
+O

(
log(T) · log(1/εNBS) · log(T)−1

√
Td
)

+O
(
log(T) · d2 log(d) log−1(T)

√
T/d

)
+O

(
log(T) · d2 log−1(T)

√
T/d

)
+O

(
min

{√
T log T ,

log T

|∆− v∗|

})
= O

(
log(T) · ∆+ ∥v∥1

v2min

+ log(1/εNBS) ·
√
Td+ d1.5 log(d)

√
T

)
+O

(
min

{√
T log T ,

log T

|∆− v∗|

})
= O

(
log(T) · ∆+ ∥v∥1

v2min

+max
{√

d log(1/εNBS), d
1.5 log d

}√
T

)
+O

(
min

{√
T log T ,

log T

|∆− v∗|

})
.

We now turn to the second regret bound, for which we assume that ∆ ≤ 1
2 log(T)

√
d
T . We claim that with probability at

least 1− 1/T , MultiEstTau will not be called and hence MD-Leftist will commit to arm 0. From Lemma 66, it holds on

event EMD-L that ρ ≥ r∆ + 1. Moreover, the condition ∆ ≤ 1
2 log(T)

√
d
T implies that r∆ + 1 > rmax. Finally, observe that

from Lemma 65, event EMD-L happens with probability at least 1− 1/T .

Thresholded Linear Bandits

Consequently, the regret is at most

[MD-Leftist] + [commit]

= O

(
log(T) · 1

v2min

· (∆ + ∥v∥1) +
√
Td

)
+O(log(T)

√
Td)

= O

(
log(T) ·

(
1

v2min

· (∆ + ∥v∥1) +
√
Td

))
.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

C Each event holds with high probability

In this section, we show that the following events happen with suitably high probability:

• one-dimensional setting: EL and ENBS-L;

• multi-dimensional setting: EMD-L, Estop, ENBS-MET, ENBS-MG, Esort, and EMG.

Events EL and EMD-L

Lemma 65. For each event among EL and EMD-L separately, the event holds with probability at least 1− 1/T .

Proof. The analysis is the same for either event, and so let us arbitrarily pick EL. For any epoch r ≤ ρ for which arm ar is
positive, direct verification via Hoeffding’s inequality gives that |∆̂r −∆| ≤ εr with probability at least 1− δ = 1− 1/T 2.
More trivially, if arm ar is not positive, then both arms are negative and hence the mean of ∆̂r is equal to zero; hence,
Hoeffding’s inequality implies that ∆̂r − εr ≤ 0 ≤ ∆. As the number of epochs is loosely upper bounded by T , a union
bound over all such epochs implies the result.

Event Estop

We next show that if ∆ is not too large, then event Estop holds with high probability. The main step to show this is the
following lemma.

Lemma 66. If ∆ ≤ vmin

16 , then on event EMD-L, we have ρ ≥ max{ℓ+ 1, r∆ + 1}.

Proof. We first establish that

ρ ≥ r∆ + 1. (40)

We then show that the assumption ∆ ≤ vmin

16 further implies that

r∆ + 1 ≥ ℓ+ 1, (41)

which gives the lemma.

Let us establish (40). For any epoch r, observe that if εr > ∆ is satisfied, then the stopping condition inequality ∆̂r−εr ≥ εr
must be false since this latter inequality would imply that

∆ ≥ ∆̂r − εr ≥ εr > ∆;

here, the first inequality holds on the event EMD-L. Therefore, let us look for the largest r such that εr > ∆. But by definition
this r is equal to r∆ which, from (7), is equal to

⌈
log2

1
∆

⌉
− 4. Inequality (40) now follows.

Next, we establish (41). Observe that the inequality ∆ ≤ vmin

16 is equivalent to

1

vmin
≤ 1

16∆
,

which implies from the monotonicity of the binary logarithm and the ceiling function that⌈
log2

1

vmin

⌉
≤
⌈
log2

1

16∆

⌉
=

⌈
log2

1

∆

⌉
− 4.

Inequality (41) now follows since the LHS of the above inequality is ℓ and, from (7) the RHS is r∆.

The following corollary is immediate from Lemmas 66 and 38.

Corollary 67. Suppose that H is optimal and ∆ ≤ vmin

16 . If event EMD-L holds, then event Estop also holds, i.e.,

ℓ+ 1 ≤ ρ ≤ r∆ + 3.

Thresholded Linear Bandits

Events ENBS-L, ENBS-MET and ENBS-MG

We have from Lemma 30 that event ENBS-L happens with probability at least 1− 1/T (since we take δ = 1/T 2). Also, from
Lemma 45, for each of the events ENBS-MET and ENBS-MG separately, the event holds with probability at least 1− 1/T .

Event Esort

Lemma 68. Event Esort holds with probability at least 1− (4d log2 d) · δ.

Proof. Since we set εNBS =
θmin

d3T 2 in NBS and β = 1
T in MultiCoordinateCompare, Corollary 48 implies that MultiCoordi-

nateCompare is a (γ′, 2δ)-PAC comparison oracle for

γ′ =
εNBS

β
=

θmin

d3T
.

Consequently, from Corollary 53, PAC-MergeSort produces, with probability at least 1− (4d log2 d) · δ, a γ-insensitive
ordering for

γ = (d− 1)γ′ ≤ θmin

d2T
.

Event EMG

Lemma 69. Event EMG holds with probability at least 1− d · δ.

Proof. Line 7 of MultiGreedy is used to predict the label of arm R. For each such execution, Lemma 44 implies that, with
probability at least 1− δ, the label is correctly predicted. As there can be at most d such executions, the result follows from
a union bound.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

D Lower bounds

D.1 Minimax lower bound

In this section, we use the word model to represent the set of parameter θ = (p0, p1, τ). Let d(p, q) = p log(p/q) + (1−
p) log((1− p)/(1− q)) be the KL divergence between two Bernoulli distributions with parameters p, q.

The following lemma is in parallel to Lemma 19 in Kaufmann et al. (2016).

Lemma 70. Let θ0, θ1 be two models. Let Eθ0 ,Eθ1 be the corresponding expectations and Prθ0 ,Prθ1 be the corresponding
probabilities, respectively. Likewise, let µθ0 , µθ1 be the revenue functions under these models. Then, the following inequality
holds for any event E .

Eθ0

[
T∑

t=1

d(µθ0(at), µθ1(at))

]
≥ d(Prθ0(E),Prθ1(E)). (42)

We omit the proof of Lemma 70 because it is very similar to Lemma 1912 in Kaufmann et al. (2016). The following results
uses Lemma 70.

In the following, we derive an example in which we have an Ω(
√
T) regret bound.13

Proof of Theorem 3. Assume that v = 1. Consider the following two models.

• Model θ0: p0 = 1/2, p1 = 1/2 + T−1/2, τ = 2T−1/2. Arm 0 is the optimal arm in this model.

• Model θ1: p0 = 1/2, p1 = 1/2 + 3T−1/2, τ = 2T−1/2. Arm τ is the optimal arm in this model.

We have

d(µθ0(at), µθ1(at)) ≤ d

(
1

2
+ T− 1

2 ,
1

2
+ 3T− 1

2

)
= Θ

(
T−1

)
(43)

for any at. Therefore, Lemma 70 applied for these two models states that:

C = T · C
T
≥ Eθ0

[
T∑

t=1

d(µθ0(at), µθ1(at))

]
≥ d(Prθ0(E),Prθ1(E)) (44)

for all T ≥ T0 for some constants T0 and C > 0.

Eq. (44) essentially states that the two models are not identifiable. Let E =
{∑T

t=1 1
[
at ≤ T−1/2

]
≥ T/2

}
be the event

that the algorithm spends at least half of the rounds pulling arms near arm 0. If Prθ0(E) < 1/2, then the algorithm suffers
regret of T · T−1/2 = T 1/2 on model θ0. Otherwise, (44) implies that Prθ1(E) = Ω(1), which implies that the algorithm
suffers regret of T · T−1/2 · Ω(1) = Ω(T 1/2) on model θ1. In summary, the algorithm suffers regret of Ω(T−1/2) either on
model θ0 or θ1.

D.2 Trade-off between minimax regret and identifiability

Proof of Theorem 8. Assume that v = 1 and η ∈ (0, 1/2). Consider the following pair of models.

• Model θ0: p0 = 1/2, p1 = 1/2 + T−(1−η)/2, τ = 1. Arm 0 is the optimal arm in this model.

• Model θ1: p0 = 1/2, p1 = 1/2 + 2T−1/2, τ = T−1/2. Arm τ is the optimal arm in this model.

Let N1(t) be the number of draws on arm 1. We have

d(µθ0(at), µθ1(at)) ≤ d

(
1

2
,
1

2
+ 2T− 1

2

)
= O

(
T−1

)
(45)

12Essentially, the lemma utilizes the convexity of KL divergence and careful argument of adaptive sequences, which is not specific to
K-armed bandit structure.

13Note that the instance of Theorem 8 also implies the Ω(
√
T) regret bound. However, the example here is much simpler.

Thresholded Linear Bandits

for at ̸= 1 and

d(µθ0(at), µθ1(at)) = d

(
1

2
+ T− 1−η

2 ,
1

2
+ 2T−1/2

)
= Θ

(
T−(1−η)

)
(46)

for at = 1. Therefore, Lemma 70 applied for these two models states that:

Eθ0

[
T∑

t=1

d(µθ0(at), µθ1(at))

]
= C(Eθ0 [N1(T)]T

−(1−η) + 1) ≥ d(Prθ0(E),Prθ1(E)) (47)

for some C > 0. We consider the case Eθ0 [N1(T) ≥ T 1−η] and Eθ0 [N1(T) < T 1−η] separately.

Case 1: Eθ0 [N1(T)] ≥ T 1−η . This implies the algorithm has Ω(T 1−η) regret in model θ0.

Case 2: Eθ0 [N1(T)] < T 1−η . In this case, we have

d(Prθ0(E),Prθ1(E)) < 2C. (48)

Let an event

E =

{∑
t

1
[
at < T−1/2

]
≥ T/2

}
.

If Prθ0(E) < 1/2, then the algorithm suffers regret of O(
√
T) on model θ0. Otherwise, (48) implies that Prθ1(E) = Ω(1),

which implies that the algorithm suffers regret of Ω(
√
T) on model θ1. In summary, the algorithm suffers the regret of

Ω(T 1/2) either on model θ0 or θ1, and it draws suboptimal arm for O(T) rounds.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

E Proofs on Explore-the-Gap

We first present the Explore-the-Gap algorithm in detail.

Algorithm 12: Explore-the-Gap Algorithm

1 Epoch r ← 0, ε0 ← 1
8

2 n0 ← log 2
δ

2ε20

3 while true do
4 Make nr pulls of arm 0 to get empirical mean p̂0
5 Make nr pulls of arm 1 to get empirical mean p̂1

6 ∆̂r ← p̂1 − p̂0

7 if ∆̂r − εr ≥ εr then
8 τ̂ ← NoisyBinarySearch(εr, 0, ar)
9 Run UCB on {0, τ̂} until time T

10 else
11 εr+1 ← εr/2, nr+1 ← 4 · nr

12 r ← r + 1

Let ER be the event that for all r, |∆̂r −∆| ≤ εr.
Lemma 71. Event ER holds with probability at least 1− 1/T .

Proof. For any epoch r, Hoeffding’s inequality gives that |∆̂r −∆| ≤ εr with probability at least 1− δ = 1− 1/T 2, and
the union bound over all applications yields ER.

E.1 Proof of Theorem 4

This section derives a (poly)-logarithmic distribution-dependent regret bound of EG.

Proof of Theorem 4. We decompose the regret into three components, namely: the regret generated by EG, NoisyBinary-
Search (NBS), and UCB.

The following assumes event EL that holds with probability at least 1− 1/T by Lemma 71.

Lemma 72. Let r∆ := argmaxr≥0 {εr > ∆}. Assuming event ER, EG will stop no later than epoch r∆ + 3 and invokes
NBS.

Proof of Lemma 72. It suffices to show that if EG reaches epoch r∆ +3, then the algorithm stops. Let r = r∆ +3. Suppose
Leftist reaches epoch r but does not stop. Under event ER, we have

∆̂r − εr ≥ ∆− 2εr ≥ 2εr

which implies EG stops.

Since EG stops in epoch r∆ + 3 or before, the regret incurred by EG is

2

r∆+3∑
r=1

nr ≤ O

(
log T

(εr∆)
2

)
= O

(
log T

∆2

)
. (49)

We next consider NBS. We define ρ to be the stopping epoch of EG. NBS runs for at most ⌊log2(2/εNBS)⌋ iterations, and at
each iteration it compares two arms L and R for Nρ times. Since ρ ≤ r∆ + 3, the regret due to this component is

⌊log2(2/εNBS)⌋ ·O
(
log T

∆2

)
= O(log T) ·O

(
log T

∆2

)
= O

(
log2 T

∆2

)
. (50)

Before analysing UCB, we use the guarantee of the arm that NBS outputs. Note that under ER, the assumption of NBS (i.e.,
εr ≤ ∆) is satisfied.

Thresholded Linear Bandits

Lemma 73. On event ER, with probability at least 1− T · δ, NBS will return a positive arm τ̂ satisfying τ̂ − τ < εNBS.

Proof. First, suppose that NBS did not make a mistake in any iteration. Then since L is negative and R is positive at the
end of the last iteration of NBS, NBS returns R and we have ∥R − L∥2 < εNBS, it follows that arm af is positive and
τ̂ − τ < εNBS, as desired.

It remains to control the probability that NBS did not make a mistake in any iteration. First, observe that if NBS did not
make a mistake in any iteration prior to iteration i, then arm L is negative and R is positive in iteration i. In this case,
∆ ≥ εr and Hoeffding’s inequality implies that R − L < εr/2 with probability at most δ. Taking a union bound over at
most T iterations of binary search bounds the mistake probability by δT .

Since δT ≤ 1/T is negligible, we assume τ̂ − τ < εNBS in the analysis of UCB. Let ∆τ̂ = p1 − p0 − vτ̂ . We have
∆τ̂ ≤ ∆τ − εNBS. it is well-known that the regret of UCB is

O

(
log(T)

∆τ̂

)
= O

(
log(T)

∆τ − εNBS

)
= O

(
log(T)

|∆− vτ − 1/T |

)
= O

(
log(T)

|∆− vτ |

)
, (51)

where we assume |∆− vτ | to be a positive constant in the last transformation.

E.2 Proof that EG can get linear regret

This section shows the Ω(T) regret of EG in the worst-case.
Theorem 74. The worst-case regret of EG isRT = Ω(T).

Proof of Theorem 74. Consider the model where p0 = 1/2, p1 = 1/2 + 1/T, τ = 1, and v = 1. In this model, ∆ is
extremely small. As a result, with a high probability, EG spends all T rounds comparing arm 0 and arm 1 alternately.

For any r we have ε2rnr = ε21n1 = log(2/δ)/2 ≥ log(2)/2. Since nr is at most T , εr > (log(2)/2)T−1/2 ≥ 1/T holds
and for T ≥ 2. With probability 1− 1/T , ER holds, and thus

∆̂r − εr < 1/T − εr + εr (52)
= 1/T (53)
≤ εr (54)

holds, and thus EG never invokes NBS. Since drawing arm 1 incurs a regret of 1 − 1/T = Θ(1), this implies a Θ(T)
regret.

F Additional motivating examples

In the main paper, we have discussed the example of credit card offer, where some portion of the customers make a decision
based on the comparison with other offers can show a discontinuous behavior. Although we agree that the thresholded linear
bandits is a stylized model, we can discuss several works that demonstrate the discontinuity of customer behaviors.

• The utility of an item for a person is dependent on their wages Blisard et al. (2004), and wage is usually discontinuous
around the minimum wage. This induces the point mass on the utility. Since a user buys an item when their utility
exceeds the price, the demand is discontinuous.

• In many marketplaces, a typical consumer defines the consideration set from which the consumer chooses Caplin et al.
(2018). Being the most attractive item among the consideration set is a significant sell to the consumer, which induces
a discrete demand. This effect is even more pronounced under recommendation effects (ex: the consideration set is
defined by recommender systems).

• In marketing on social media, a slight change in the configuration can result in a drastic difference. Sales of an item
can be amplified when the attention of consumers reaches some thresholds. One can create a graph-based bandit model
of influence maximization Chen et al. (2013) where a slight change is magnified through cascading on a graph. If we
consider such a social graph as a black-box, then that boils down to our thresholded linear bandits.

We can find several other examples in several articles, such as den Boer and Keskin (2020).

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

G Experiments

G.1 Experimental details and results with EG

In this section, we give more details about how we ran the experiments appearing in the main text, and we also include
experimental results for EG.

To evaluate Leftist, we ran three different experiments. For each, we obtained the average cumulative pseudo-regret for
m = 25 repetitions and compared the algorithm’s relative performance against EG and Grid UCB as benchmarks.

We first describe some modifications made to Leftist (and EG) for our experimental results. First, knowing that NBS was
the major contributor to the regret, we attempted to reduce the regret incurred by relaxing NBS’s precision for finding τ̂

by a factor of 2 log2 T
εr

, giving 2 log2 T
εr

· 1
T . This changed is motivated by the fact that the induced additional cumulative

regret picked up by Leftist and NBS is at most O
(

log2 T
∆

)
, which is not greater than the first term in the regret bound of

Theorem 5; we note that we did initially experiment with using log2 T
εr
· 1
T and found that the additional factor of 2 led to a

slight improvement in performance. Second, we relaxed δ to 1
T log T for all three experiments because there can be at most

O(log T) applications of Hoeffding’s inequality throughout the course of Leftist (or EG) and NBS. The final algorithmic
modification was to use log T to update the upper confidence bound for both Grid UCB and Leftist/EG’s UCB as opposed to
log t, the overall number of pulls done so far. Although log t and log T give the same regret bound, the latter would not
require us to update every index in each round, thereby simplifying and speeding up the algorithm.

In the first experiment (Figure 4 top left), linear increments of 0.01 were selected for τ from [0.01, 0.4] while keeping
∆ = 0.01 and T = 1 × 106. This gave us 40 different settings. The second experiment, shown in Figure 4 top right,
tested 30 values of ∆ within [5 × 10−3, 0.55] where ∆ geometrically increases by a factor of 1.176. Here, τ = 0.1 and
T = 1 × 106. Given that δ and the number of pulls, N , for Leftist was dependent on the time horizon T , we decided to

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

5

10

15

20

Ps
eu

do
-re

gr
et

 1
04

Leftist
Grid UCB
EG

10 2 10 1

0.0

0.1

0.2

0.3

0.4

0.5

Ps
eu

do
-re

gr
et

 1
06

Leftist
Grid UCB
EG

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
T 1e7

0

1

2

3

4

5

6

7

Ps
eu

do
-re

gr
et

 1
05

Leftist (>)
Leftist (>)
Grid UCB (>)
Grid UCB (>)
EG (>)
EG (>)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
T 1e7

0

1

2

3

4

5

6

7

Ps
eu

do
-re

gr
et

 1
05

Leftist (>)
Leftist (>)
Grid UCB (>)
Grid UCB (>)
EG (>)
EG (>)

Figure 4: Top: Average cumulative pseudo-regret (m = 25) of Leftist, Grid UCB, and EG in experiments varying τ (top
left) and varying ∆ (top right). Bottom: (Left) Average cumulative pseudo-regret (m = 25) for varying time horizon, T .
The repeat of experiment 3 with a smaller ∆ = 0.1 and τ = 0.075 for the ∆ > τ is shown in the bottom right figure.

Thresholded Linear Bandits

evaluate the algorithm’s performance on 6 values of T , where T was increasing geometrically within [5× 105, 1.6× 107]
by a factor of 2. For this experiment, the algorithms were tested for both cases ∆ > τ with ∆ = 0.1 and τ = 0.075, and
τ > ∆ with τ = 0.1 and ∆ = 0.05, see Figure 4 bottom left. To clearly demonstrate the difference between Leftist and EG,
we repeated experiment 3 but with a smaller ∆ = 0.1 and τ = 0.075 for the ∆ > τ , shown in Figure 4 bottom right. In all
experiments, we observed that EG was generally outperformed by Leftist.

G.2 On the worst-case regret of Grid-UCB

For completeness, we also sketch our argument for why Grid-UCB (run with grid resolution ε = 1/
√
T) should have

worst-case Õ(
√
T) regret. We do not give a complete proof of this fact for two reasons:

1. Grid-UCB is not a contribution of our work.

2. Our purpose is merely to show that on an instance that intentionally is constructed to be hard for Grid-UCB — one
in which we try to maximize the number of arms (in the grid) for which the gap is close to 1/

√
T — Grid-UCB still

obtains Õ(
√
T) regret. Since it’s worst-case regret appears to be good, Grid-UCB seems a worthy competitor for

Leftist.

Lemma 75 (Regret bound of UCB, Theorem 1 in Auer et al. (2002)). The regret UCB1 when we run it on a Bernoulli
K-armed bandit problem with parameters (µ1, µ2, . . . , µK) is bounded as

∑
i≥2

8 log T

∆i
+

(
1 +

π2

3

)∑
i≥2

∆i,

where we assume µ1 = maxi µi and ∆i = µ1 − µi > 0.

We give a construction which intuitively captures the worst case for Grid-UCB. We take τ to be optimal, as in this case
Grid-UCB (which naturally always includes arm 0) is likely to suffer some approximation error due to not exactly including
arm τ . Specifically, we take14 τ = 1/2 and ∆ = τ + T−1/2.

Proposition 76. On the problem instance above, Grid-UCB with ε = 1/
√
T has regret at most

RT = O
(
log2(T)

√
T
)
.

Proof. To bound the regret of Grid-UCB, it suffices to apply the regret bound in Lemma 75 and to further add an
approximation error term to account for the closest grid point greater than or equal to τ ; the contribution of the latter is at
most T · ε in the worst case.

The structure of the thresholded linear bandits problem means the instantaneous pseudo-regret (gap) of the arms, when
going from left to right (from arm 0 to arm 1) linearly increases up to and excluding arm τ , drops to zero at arm τ , and then
linearly increases again up to arm 1. Hence, we split the above regret bound into the summation over Grid-UCB’s arms that
are strictly less than τ and its arms that are strictly greater than τ ; we refer to these two sets as A0 and A1 respectively. To
be clear, for fixed ε, we have the definitions

A0 := {0, ε, 2ε, . . . , k0ε} A1 := {(k0 + 1)ε, (k0 + 2)ε, . . . , k1ε} ,

where k0 is the largest integer such that k0ε < τ and k1 is the largest integer such that k1ε ≤ 1.

14This particular choice of 1/2 is unimportant: any suitably small positive constant (e.g. τ = 0.1) would be fine as well.

Nishant A. Mehta, Junpei Komiyama, Vamsi K. Potluru, Andrea Nguyen, Mica Grant-Hagen

Bounding regret from arms in A0.

The logarithmic term (the one involving log T) in Lemma 75 can be bounded as

∑
i∈A0

log T

∆i
≤ (log T)

τ/ε∑
j=0

1

T−1/2 + j · ε

≤ (log T)

(
√
T +

∫ τ/ε

0

1

T−1/2 + εx
dx

)
= (log T)

(√
T + log(T−1/2 + τ)− log(T−1/2

)
= O

(
(log T)

√
T
)
.

The constant term (which is the other term) can be bounded as

∑
i∈A0

∆i ≤
τ/ε∑
j=0

(
T−1/2 + j · ε

)
= O

(τ
ε
·
(
T−1/2 +

τ

ε
· ε
))

= O

(
1

ε

)
.

Bounding regret from arms in A1.

The logarithmic term can be bounded as

∑
i∈A1

log T

∆i
≤ (log T)

1/ε∑
j=1

1

j · ε

≤ (log T)

(
1

ε
+

∫ 1/ε

1

1

εx
dx

)

= (log T)

(
1

ε
+

1

ε
log

1

ε

)
=

log T

ε
·
(
1 + log

1

ε

)
.

The constant term can be bounded as

∑
i∈A1

∆i ≤
1/ε∑
j=1

j · ε

≤ 1

ε
·
(
1

ε
· ε
)

=
1

ε
.

Total regret bound for Grid-UCB.

Considering the above four terms, and adding in the approximation error price of Tε, gives that the total regret of Grid-UCB
on this problem instance is of order at most

(log T)
√
T +

log T

ε
·
(
1 + log

1

ε

)
+

1

ε
+ T · ε.

Setting ε = 1/
√
T yields O

(
log2(T)

√
T
)

regret.

	INTRODUCTION
	PROBLEM SETTING
	ONE-DIMENSIONAL CASE
	Lower Bounds of the Regret
	Explore-the-Gap Algorithm
	Leftist Algorithm

	MULTI-DIMENSIONAL CASE
	EXPERIMENTS
	DISCUSSION
	Overview of the appendix
	Analysis for one-dimensional case
	Regret bounds for one-dimensional case
	Analysis for Leftist
	Preliminaries
	Correctness analysis

	Regret analysis for pulls from Leftist
	Case 1: v/16, arm is optimal, and El happened
	Case 2: > v/16, arm is optimal, and El happened
	Case 3: Arm 0 is optimal and El happened

	Correctness analysis for NoisyBinarySearch
	Complete regret analysis for one-dimensional case
	Overview of total regret analysis
	Regret of NoisyBinarySearch
	Regret of UCB on two-arm problem
	Proofs of Theorems 17 and 18

	Analysis for multi-dimensional case
	Regret bounds for multi-dimensional case
	Preliminaries
	Analysis for MD-Leftist
	Preliminaries
	Correctness analysis

	Regret analysis for pulls from MD-Leftist
	Case 1: vmin/16, H is optimal, and Emd-l happened
	Case 2: vmin/16, arm 0 is optimal, and Emd-l happened

	Correctness Analysis for MultiEstTau, MultiCoordinateCompare, and MultiGreedy
	Correctness analysis for NoisyBinarySearch
	Analysis of MultiCoordinateCompare
	PAC-MergeSort
	Analysis of MultiGreedy

	Complete regret analysis for multi-dimensional case
	Overview of total regret analysis
	Regret analysis for first four pieces
	Regret of UCB on two-arm problem
	Proofs of Theorems 34 and 35

	Each event holds with high probability
	Lower bounds
	Minimax lower bound
	Trade-off between minimax regret and identifiability

	Proofs on Explore-the-Gap
	Proof of Theorem 4
	Proof that EG can get linear regret

	Additional motivating examples
	Experiments
	Experimental details and results with EG
	On the worst-case regret of Grid-UCB

