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Abstract

We consider the problem of finding the match-
ing map between two sets of d-dimensional noisy
feature-vectors. The distinctive feature of our set-
ting is that we do not assume that all the vectors
of the first set have their corresponding vector in
the second set. If n and m are the sizes of these
two sets, we assume that the matching map that
should be recovered is defined on a subset of un-
known cardinality k∗ ≤ min(n,m). We show
that, in the high-dimensional setting, if the signal-
to-noise ratio is larger than 5(d log(4nm/α))1/4,
then the true matching map can be recovered
with probability 1− α. Interestingly, this thresh-
old does not depend on k∗ and is the same as
the one obtained in prior work in the case of
k = min(n,m). The procedure for which the
aforementioned property is proved is obtained
by a data-driven selection among candidate map-
pings {π̂k : k ∈ [min(n,m)]}. Each π̂k mini-
mizes the sum of squares of distances between
two sets of size k. The resulting optimization
problem can be formulated as a minimum-cost
flow problem, and thus solved efficiently. Finally,
we report the results of numerical experiments on
both synthetic and real-world data that illustrate
our theoretical results and provide further insight
into the properties of the algorithms studied in
this work.

1 INTRODUCTION

The problem of finding the best matching between two point
clouds has been extensively studied, both theoretically and
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experimentally. The matching problem arises in various
applications, for instance in computer vision and natural
language processing. In computer vision, finding the corre-
spondence between two sets of local descriptors extracted
from two images of the same scene is a well-known exam-
ple of a matching problem. In natural language processing,
in particular, in machine translation, the correspondence
between vector representations of the same text in two dif-
ferent languages is another example of a matching problem.
Clearly, in these problems, not all the points have their
matching point and one can hardly know in advance how
many points have their corresponding matching points. The
goal of the present work is to focus on this setting and to
gain a theoretical understanding of the statistical limitations
of the matching problem.

To formulate the problem and to state the main result, let
X = (X1, . . . , Xn) and X# = (X#

1 , . . . , X
#
m) be two

sequences of feature vectors of sizes n and m such that
m ≥ n ≥ 2. We assume that these sequences are noisy
versions of some feature-vectors, i.e.,

{
Xi = θi + σξi ,

X#
j = θ#j + σ#ξ#j ,

i ∈ [n] and j ∈ [m], (1)

where θ = (θ1, . . . , θn) and θ# = (θ#1 , . . . , θ
#
m) are two

sequences of deterministic vectors from Rd, corresponding
to the original feature-vectors. The noise components of X
and X# are two independent sequences of i.i.d. isotropic
Gaussian random vectors. Formally,

ξ1, . . . , ξn, ξ
#
1 , . . . , ξ

#
m

i.i.d.∼ N (0, Id),

where Id is the identity matrix of size d × d. We assume
that for some S∗ ⊂ [n] of cardinality k∗, there exists an
injective mapping π∗ : S∗ → [m] such that θi = θ#π∗(i)

holds for all i ∈ S∗. We call the observations (Xi : i ∈ S∗)
and (X#

π∗(i) : i ∈ S∗) inliers, while the other vectors from
the sequences X and X# are considered to be outliers. The
ultimate goal is to recover π∗ based on the observations X
and X# only.

Various versions of this problem have been studied in the
literature. Collier and Dalalyan [2013, 2016] considered the
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Figure 1: Matching as a Minimum Cost Flow (MCF) prob-
lem. The idea is to augment the graph with two nodes,
source and sink, and n+m edges. The capacities of orange
edges should be set to 1, while the cost should be set to
0. Setting the total flow sent through the graph to k, the
solution of the MCF becomes a matching of size k.

outlier-free case with equal sizes of sequences X and X#

(i.e., m = n and S∗ = [n]), whereas Galstyan et al. [2022]
investigated the case with outliers in one of the sequences
only (i.e., m ≥ n and S∗ = [n]). Other variations of the
matching problem under Hamming loss have been studied
by Wang et al. [2022], Chen et al. [2022b], Kunisky and
Niles-Weed [2022]. These papers obtain minimax-optimal
separation rates and, in most cases, despite the discrete
nature of the matching problem, provide computationally
tractable procedures to achieve these rates.

When S∗ is an arbitrary subset of [n], which is the setting we
focus on in this work, one can wonder whether the minimax
separation rate is the same as in the case of known S∗. Since
the absence of knowledge on S∗ brings additional combi-
natorial complexity to the problem, one can also wonder
whether it is still possible to conciliate statistical optimality
and computational tractability. We show in this work that
the answers to these questions are affirmative.

To explain our result, let us introduce the quantity

κi,j = ∥θi − θ#j ∥2/(σ2 + σ#2)1/2,

which is the signal-to-noise ratio of the difference Xi −X#
j

of a pair of feature-vectors. Clearly, for matching pairs this
difference vanishes. Furthermore, if κi,j vanishes or is very
small for a non-matching pair, then there is an identifiability
issue and consistent recovery of underlying true matching
is impossible. Therefore, a natural condition for making
consistent recovery possible is to assume that the quantity

κ̄all ≜ min
i∈[n]

min
j∈[m]\{π∗(i)}

κi,j

is bounded away from zero. A recovery procedure π̂ is con-
sidered to be good, if the threshold λ such that π̂ recovers
π∗ with high probability as soon as κ̄all ≥ λ is as small as

possible. It was proved in [Collier and Dalalyan, 2016] that
when k∗ = n = m, one can recover π∗ with probability
1 − α for λ = 4

{(
d log(4n

2
/α)

)1/4 ∨
(
8 log(4n

2
/α)

)1/2}
.

Furthermore, it was proved that this threshold is minimax
optimal, i.e., optimal in the family of all possible recovery
procedures. This implies that there are two regimes. In the
low dimensional regime d ≲ log n, the separation rate is
dimension independent. In contrast with this, the separa-
tion rate scales roughly as d1/4 in the (moderately) high
dimensional regime d ≳ log n.

Let us set

λn,m,d,α = 4
{(

d log( 4nmα )
)1/4 ∨

(
8 log(4nmα )

)1/2}
. (2)

The main contributions of this work are the following.

• For any given k ∈ [min(n,m)], we show that the k
Least Sum of Squares (k-LSS) procedure, based on
maximizing profile likelihood among matching maps
between two sets of size k, can be efficiently computed
using the minimum cost flow problem. We denote the
matching obtained using k-LSS by π̂LSS

k .

• If the value k turns out to be smaller than k∗ and κ̄all ≥
λn,m,d,α, we prove that π̂LSS

k makes no mistake with
probability 1− α.

• We design a data-driven model selection algorithm
that adaptively chooses k̂ such that with probability
1 − α, we have k̂ = k∗ and π̂LSS

k̂
= π∗ as soon as

κ̄all ≥ (5/4)λn,m,d,α.

The last item above implies that our data-driven algorithm
π̂LSS
k̂

achieves the minimax separation rate. More surpris-
ingly, this shows that there is no gap in statistical complexi-
ties between the problems of recovering matching maps in
outlier-free and outliers-present-on-both-sides settings.

2 RELATED WORK

In statistical hypothesis testing, the separation rates became
key objects for measuring the quality of statistical proce-
dures, see the seminal papers [Burnashev, 1979, Ingster,
1982] as well as the monographs [Ingster and Suslina, 2003,
Juditsky and Nemirovski, 2020]. Currently, this approach is
widely adopted in machine learning literature [Xing et al.,
2020, Wolfer and Kontorovich, 2020, Blanchard et al., 2018,
Ramdas et al., 2016, Wei et al., 2019, Collier, 2012]. Beyond
the classical setting of two hypotheses, it can also be ap-
plied to multiple testing frameworks, for instance, variable
selection [Ndaoud and Tsybakov, 2020, Azaïs and de Cas-
tro, 2020, Comminges and Dalalyan, 2012, 2013] or the
matching problem considered here.

In computer vision, feature matching is a well-studied prob-
lem. One of the main directions is to accelerate matching
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algorithms, based on fast approximate methods (see e.g.
Malkov and Yashunin [2020], Wang et al. [2018], Harwood
and Drummond [2016], Jiang et al. [2016]). Another di-
rection is to improve the matching quality by considering
alternative local descriptors [Rublee et al., 2011, Chen et al.,
2010, Calonder et al., 2010] for given keypoints. The choice
of keypoints is considered in Tian et al. [2020], Bai et al.
[2020].

The minimum cost flow problem was first studied in the
context of the Hungarian algorithm [Kuhn, 2012] and the
assignment problem, which is a special case of minimum
cost flow on bipartite graphs with all edges having unit ca-
pacity. Generalization of Hungarian algorithm for graphs
with arbitrary edge costs guarantees O((n + F )m) time
complexity, where n is the number of nodes in the graph, m
is the number of edges and F is the total flow sent through
the graph. There have also been other algorithms with sim-
ilar complexity guarantees [Fulkerson, 1961, Ahuja et al.,
1992]. Since then many algorithms have been proposed for
solving minimum cost flow problems in strongly polynomial
time [Orlin et al., 1993, Orlin, 1993, 1996, Goldberg and
Tarjan, 1989, Galil and Tardos, 1988] with the fastest run-
time of around O(nm). Recent advances for solving MCF
problems have been proposed in Goldberg et al. [2015] and
Chen et al. [2022a]. The latter proposes an algorithm with
an almost-linear computational time.

Permutation estimation and related problems have been re-
cently investigated in different contexts such as statistical
seriation [Flammarion et al., 2019, Giraud et al., 2021, Cai
and Ma, 2022], noisy sorting [Mao et al., 2018], regression
with shuffled data [Pananjady et al., 2017, Slawski and Ben-
David, 2019], isotonic regression and matrices [Mao et al.,
2020, Pananjady and Samworth, 2020, Ma et al., 2020],
crowd labeling [Shah et al., 2021], recovery of general dis-
crete structure [Gao and Zhang, 2019], and multitarget track-
ing [Chertkov et al., 2010, Kunisky and Niles-Weed, 2022].

3 MAIN THEORETICAL RESULT

This section contains the main theoretical contribution of
the present work. In order to be able to recover S∗ and the
matching map π∗, the key ingredient we use is the max-
imization of the profile likelihood. This corresponds to
looking for the least sum of squares (LSS) of errors over
all injective mappings defined on a subset of [n] of size k.
Formally, if we define

Pk :=

{
π : S → [m] such that

S ⊂ [n], |S| = k,
π is injective

}

to be the set of all k-matching maps, we can define the
procedure k-LSS as a solution to the optimization problem

π̂LSS
k ∈ argmin

π∈Pk

∑

i∈Sπ

∥Xi −X#
π(i)∥

2
2, (3)

where Sπ denotes the support of function π. In the particular
case of k∗ = n, the optimization above is conducted over
all the injective mappings from [n] to [m]. This coincides
with the LSS method from [Galstyan et al., 2022].

Let Φ̂(k) be the error of π̂LSS
k , that is

Φ̂(k) = min
π∈Pk

∑
i∈Sπ

∥Xi −X#
π(i)∥

2
2.

For some values of tuning parameters λ > 0 and γ > 0, as
well as for some kmin ∈ [n], initialize k ← kmin and

1. Compute Φ̂(k) and Φ̂(k + 1).

2. Set σ̄2
k = Φ̂(k)/(kd).

3. If k = n or Φ̂(k + 1)− Φ̂(k) > d+λ
1−γ σ̄

2
k,

then output (k, σ̄k, π̂
LSS
k ).

4. Otherwise, increase k ← k + 1 and go to Step 1.

In the sequel, we denote by (k̂, σ̄k̂, π̂
LSS
k̂

) the output of this
procedure. Notice that we start with the value of k = kmin,
which in the absence of any information on the number of
inliers might be set to k = 1. However, using a higher
value of kmin might considerably speed up the procedure
and improve its quality.

For appropriately chosen values of γ and λ, as stated in the
next theorem, the described procedure outputs the correct
values of k∗ and π∗ with high probability.

Theorem 1. Let α ∈ (0, 1) and λn,m,d,α be defined by
(2). If κ̄all > (5/4)λn,m,d,α, then the output (k̂, π̂LSS

k̂
)

of the model selection algorithm with parameters λ =
(1/4)λ2

n,m,d,α, γ = λ/d satisfies P(π̂LSS
k̂

= π∗) ≥ 1− α.

Since the condition on the separation distance κ̄all compared
to the case of known k∗ is different by only a slightly larger
constant, from the perspective of statistical accuracy, the
case of unknown k∗ is not more challenging than that of the
known k∗.

In the sequel, without much loss of generality, we assume
that the sizes of X and X# are equal, i.e., n = m. Indeed,
in the case, m > n one can add m− n points arbitrarily far
from the rest of the points to the smaller set X obtaining
equal size sets X+ and X#.

Notice that in the optimization problem (3) the domain of
π is a finite set of injective functions. For a given value
of k, the number of such functions is k!

(
n
k

)2
making thus

an exhaustive search computationally infeasible. Instead,
we show in Section 5 that the optimization problem formu-
lated in (3) can indeed be solved efficiently with complexity
Õ(
√
k n2), where the notation Õ hides polylogarithmic fac-

tors, i.e., up to polylogarithmic factors, the computational
cost is of order

√
kn2.
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4 INTERMEDIATE RESULTS AND
PROOF OF THEOREM 1

This section is devoted to the proof of our main result. Along
the way, we establish some intermediate results which are of
interest on their own. The proofs of some technical lemmas
are deferred to Appendix A.

4.1 Sub-mapping Recovery by LSS for k ≤ k∗

The first question we address in this section is under which
conditions the LSS estimator π̂LSS

k from (3) recovers correct
matches. Of course, the only way of correctly estimating
the true matching is to choose k = k∗. However, it turns
out that even if we overestimate the number of outliers and
choose a value k which is smaller than the true value k∗,
with high probability the k-LSS estimator makes no wrong
matches. Naturally, this result, stated in the next theorem,
is valid under the condition that the relative signal-to-noise
ratio of all incorrect pairs of original features is larger than
some threshold.

Theorem 2 (Quality of k-LSS when k ≤ k∗). Let Ŝ =
supp(π̂) for π̂ = π̂LSS

k defined by (3), α ∈ (0, 1) and

λn,d,α = 4
((

d log(4n
2
/α)

)1/4 ∨
(
8 log(4n

2
/α)

)1/2)
. (4)

If k ≤ k∗ and the signal-to-noise ratio satisfies the condition
κ̄all ≥ λn,d,α then, with probability at least 1 − α, the
support of the estimator π̂ is included in S∗ and π̂ coincides
with π∗ on the set Ŝ. Formally,

P
(
Ŝ ⊂ S∗ and π̂(i) = π∗(i),∀i ∈ Ŝ

)
≥ 1− α.

Proof of Theorem 2. Note that the random vectors

ηij = (σξi − σ#ξ#j )/
√
σ2 + σ#2

are standard Gaussian and define the following quantities

ζ1 ≜ max
i,j ̸=π∗(i)

|(θi − θ#j )
⊤ηij |

∥θi − θ#j ∥2
,

ζ2 ≜ d−1/2 max
i,j

∣∣∥ηij∥22 − d
∣∣.

(5)

For the ease of notation, for any matching map π we also
define L(π) as follows

L(π) =
∑

i∈Sπ

∥Xi −X#
π(i)∥

2
2

σ2 + σ#2
.

We start with two auxiliary lemmas that will be used in other
proofs as well. The proofs of these lemmas are deferred to
the appendix.

Lemma 1. Let π be any matching map that can not be
obtained as a restriction of π∗ on a subset of [n]. Let S0 ⊂
S∗ be an arbitrary set satisfying |S0| ≤ |Sπ| and {i ∈

Sπ ∩ S∗ : π(i) = π∗(i)} ⊂ S0 and let π0 be the restriction
of π∗ to S0. On the event Ω0 = {8ζ1 ≤ κ̄all; 4

√
d ζ2 ≤ κ̄2

all},
we have

L(π)− L(π0) ≥ (1/4)κ̄2
all + d(|Sπ| − |S0|).

Let π be any matching map from Pk that is not a restriction
of π∗. Since |Sπ| = k ≤ k∗, there exists necessarily a
π0 as in Lemma 1 such that |S0| = |Sπ|. For this π0, we
have L(π) − L(π0) ≥ (1/4)κ̄2

all > 0. This implies that π
cannot be a minimizer of L(·) over Pk. As a consequence,
on Ω0, any minimizer of L(·) over Pk is a restriction of
π∗. Therefore, on Ω0, we have Ŝ ⊂ S∗ and π̂k = π∗|Ŝ . It
remains to prove that P(Ω0) ≥ 1− α.

Lemma 2. Let Ω0,x = {8ζ1 ≤ x} ∩ {4
√
dζ2 ≤ x2} with

ζ1, ζ2 defined as in (5). Then, for every x > 0, P(Ω∁
0,x) is

upper bounded by

2n2
(
exp

{
− x2

128

}
+ exp

{
− x2

128d

(
x2 ∧ 4d

)})
.

We apply Lemma 2 with x = κ̄all to show that P(Ω0) ≥
1− α. Clearly, a sufficient condition for the latter is




2n2 exp

{
−κ̄2

all/128
}
≤ α/2,

2n2 exp

{
− (κ̄all/16)

2

d

(
2κ̄2

all ∧ 8d
)}
≤ α/2.

This system is equivalent to

κ̄all ≥ 8
(
2 log

4n2

α

)1/2

and κ̄all ≥ 4
(d
2
log

4n2

α

)1/4

.

Therefore, if the signal-to-noise ratio satisfies

κ̄all ≥ 4
((

d log(4n
2
/α)

)1/4 ∨
(
8 log(4n

2
/α)

)1/2)
,

we have P(Ω0) ≥ 1− α.

4.2 Matching Map Recovery for Unknown k∗

If no information on k∗ is available, and the goal is to
recover the entire mapping π∗, one can proceed by model
selection. More precisely, one can compute the collection of
estimators {π̂LSS

k : k ∈ [n]} and select one of those using a
suitable criterion. To define the selection criterion proposed
in this paper, let us remark that

Φ̂(k) = min
π∈Pk

∑
i∈Sπ

∥Xi −X#
π(i)∥

2
2

is an increasing function. The increments of this function for
k ≤ k∗ are not large, since they essentially correspond to the
squared norm of a pure noise vector distributed according
to a scaled χ2 distribution with d degrees of freedom. The
main idea behind the criterion we propose below is that the
increment of Φ̂ at k∗ is significantly larger than the previous
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ones and the gap is of order κ̄2
all. Therefore, if κ̄2

all is larger
than the deviations of the χ2

d distribution, we are able to
detect the value of k∗ and to estimate the true matching.

Based on these considerations, for any tolerance level α ∈
(0, 1), we set σ2

0 = σ2 + σ#2 and define the estimator1

k̂ = 1 +max
{
k ∈ {0, . . . , n− 1} : Φ̂(k + 1)− Φ̂(k)

≤ σ2
0(d+ λ2

n,d,α/4)
}

with λn,d,α as in (4).

Theorem 3 (Model selection accuracy). Let α ∈ (0, 1).
If κ̄all > λn,d,α, then it holds that P

(
k̂ = k∗ and π̂k̂ =

π∗) ≥ 1 − α. Therefore, λn,d,α is an upper bound on the
separation distance in the case of unknown k∗.

A remarkable feature put forward by this result is that a
data-driven selection of k based on the increments of the test
statistics Φ̂ leads to the recovery of π∗, with high probability,
under the same constraint on the separation rate as in the
case of known k∗. It is however important to underline
that this criterion requires the knowledge of the noise level.
Therefore, from the point of view of statistical accuracy,
the case of unknown k∗ is not more difficult than the case
of known k∗, provided the noise levels are known. It is
also worth mentioning that our procedure requires only
σ2
0 = σ2 + σ#2, not σ and σ# separately.

Proof of Theorem 3. The main parts of the proof will be
done in the following two lemmas, the proofs of which are
postponed to the appendix. For the known value of σ2

0 it is
more convenient to work with the normalized version of test
statistics Φ̂(·), denoted by L̂(·) and defined by

L̂(k) = min
π∈Pk

∑
i∈Sπ

∥Xi −X#
π(i)∥

2
2

σ2 + σ#2
≡ Φ̂(k)

σ2
0

.

Lemma 3. On the event, Ω0 = {8ζ1 ≤ κ̄all; 4
√
d ζ2 ≤ κ̄2

all},
we have L̂(k∗ + 1)− L̂(k∗) ≥ d+ κ̄2

all/4.

Lemma 4. On the event, Ω0 = {8ζ1 ≤ κ̄all; 4
√
d ζ2 ≤ κ̄2

all},
for every k < k∗, we have L̂(k + 1)− L̂(k) ≤ d+

√
d ζ2.

Lemma 2 implies that the probability of the event Ω1 =
{8ζ1 ≤ λn,d,α; 4

√
d ζ2 ≤ λ2

n,d,α} is at least 1 − α. Since
Ω1 is included in Ω0, in view of Lemma 4, on Ω1 we have
L̂(k + 1) − L̂(k) ≤ d + λ2

n,d,α/4 for any k < k∗. On the
other hand, in view of Lemma 3, on the same event we have
L̂(k∗ + 1) − L̂(k∗) ≥ d + κ̄2

all/4 > d + λ2
n,d,α/4. This

implies that k̂ = k∗ and, therefore, π̂k̂ = π̂k∗ . Thanks to
Theorem 2, on the same event Ω1, we have π̂k∗ = π∗.

1We use the convention Φ̂(0) = 0.

4.3 Matching Map Recovery for Unknown k∗ and
Unknown Noise Level

In the previous subsection, we considered the case of un-
known k∗ with known noise levels σ and σ#. Notice that
we do not need to estimate parameters σ, σ# separately, it
is sufficient to estimate only their squared sum, which is
denoted by σ2

0 . In the definition of k̂, we use the value of σ2
0

in the threshold for Φ̂(k + 1) − Φ̂(k). When both k∗ and
σ2
0 are unknown, we first estimate σ2

0 and then plug it in the
selection criterion of k.

Thus, we define “candidate” estimators of σ2
0

{
σ̄2
k =

Φ̂(k)

kd
, k ∈ [n]

}
. (6)

The rationale for this definition is that for small values of k,
π̂LSS
k contains only correct matches and, therefore, Φ̂(k)/σ2

0

is merely a sum of k independent random variables drawn
from the χ2 distribution with d degrees of freedom. Hence,
after division by kd, we obtain an estimator of σ2

0 . However,
from the perspective of testing the values of k, we need
to slightly overestimate the noise variance. This is done
through the multiplication by the inflation factor 1/(1− γ).

We are now ready to proceed with the proof of our main
result stated in Theorem 1.

Proof of Theorem 1. We will provide the proof only in the
high dimensional setting, that is we assume throughout the
proof that d ≥ 800 log(2n/

√
α) . First, we show that for

every k < k∗ the condition from Φ̂(k+1)−Φ̂(k) ≤ d+λ
1−γ σ̄

2
k

is satisfied on an event of high probability. Second, we prove
that for k = k∗ this condition is violated on the same event
of high probability. Therefore, the combination of these two
results concludes the proof.

Using the first part of the proof of Lemma 4, for all k < k∗

on the event Ω0 = {8ζ1 ≤ λ; 4
√
dζ2 ≤ λ2}, we have

Φ̂(k + 1)− Φ̂(k)

Φ̂(k)
=

∑
Ŝk+1
∥ηi,π∗(i)∥22 −

∑
Ŝk
∥ηi,π∗(i)∥22∑

i∈Ŝk
∥ηi,π∗(i)∥22

≤ d+
√
dζ2

kd+ k
√
d ·min1≤i≤n

∥ηi,π∗(i)∥2
2−d√

d

≤ d+
√
dζ2

k(d−
√
dζ2)+

.

Using the second part of the proof of Lemma 2, we can
further upper bound the expression from the last display as
follows

Φ̂(k + 1)− Φ̂(k)

Φ̂(k)
≤ d+ λ2/4

k(d− λ2/4)+
.

Now we show that for k = k∗ the relative difference of
function Φ̂(·) at points k∗+1 and k∗ is large enough. Indeed,
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we have

Φ̂(k∗ + 1)− Φ̂(k∗)

Φ̂(k∗)
≥ Φ̂(k∗ + 1)− Φ̂(k∗)∑

i∈S∗ ∥Xi −X#
π∗(i)∥

2
2

≥
mini ̸=π∗(j) ∥Xi −X#

j ∥22
σ2
0

∑
i∈S∗ ∥ηi,π∗(i)∥22

≥ κ̄2
all − 2ζ1κ̄all + d−

√
dζ2

k(d+
√
dζ2)

,

where the first inequality follows from the definition of
function Φ̂(·), while second and third inequalities are conse-
quences of the definitions introduced earlier in this section.
Then, on the event Ω0 we bound the quantities ζ1 and ζ2
from the last display along with using the condition on
κ̄all. One can now check that if d ≥ 800 log(2n/

√
α) then

λ2 ≤ 4/5 d, which in turn implies

Φ̂(k∗ + 1)− Φ̂(k∗)

Φ̂(k∗)
≥ κ̄2

all − κ̄allλ/4 + d− λ2/4

k(d+ λ2/4)

≥ d+ λ2/4

kd(1− λ2/4d)
.

Thus, we have shown that on the event Ω0 our model selec-
tion procedure will select k∗, i.e., k̂ = k∗. The last equality
implies that π̂k̂ = π̂k∗ . Moreover, in view of Theorem 2
on the same event Ω0 we have π̂k∗ = π∗. Finally, using
Lemma 2, we get that the event Ω0 occurs with probability
at least 1− α. Therefore, the desired result follows.

4.4 Lower Bounds

Theorem 2 and Theorem 3 imply that the minimax rate of
separation in the problem of recovering π∗ is at most of the
order of λn,m,d,α defined in (2). An interesting and natural
question is whether this rate is optimal. In the literature,
the lower bounds for similar models have been proved, see
[Collier and Dalalyan, 2016, Theorem 2] for the case of n =
m and [Galstyan et al., 2022, Theorem 5] for the general
rectangular case m ≥ n. Our model is more general2 than
those of these two references, the same lower bound applies
to our model. Therefore, combining the results of Theorem 3
and [Collier and Dalalyan, 2016, Theorem 2] along with the
fact that the separation distance has the same rate in both
theorems implies that λn,m,d,α is the optimal separation
rate.

5 COMPUTATIONAL ASPECTS AND
NUMERICAL EXPERIMENTS

In this section, we address computational aspects of the
optimization problem from (3). We show that it can be
cast into a minimum cost flow problem. The latter is also
known as an imperfect matching problem and, to the best

2Indeed, it involves an additional (unknown) parameter k∗.

of our knowledge, the fastest algorithm with complexity
O(
√
k∗ n2 log(k∗)) is proposed in [Goldberg et al., 2015].

We then report the results of numerical experiments con-
ducted on both synthetic and real data and highlight their
relation to the aforementioned theorems stated and proved
in Sections 3 and 4, respectively. Our reproducible codes
are provided in the supplementary material.

5.1 Relation to Minimum Cost Flow Problem

Let dij = ∥Xi−X#
j ∥22, for (i, j) ∈ [n]×[m], be the squared

distances between observed feature-vectors. Consider the
following linear program

minimize
n∑

i=1

m∑

j=1

dijwij (7)

subject to w = (wij)(i,j)∈[n]×[m] ∈ [0, 1]n×m satisfying

n∑

i=1

wi· ≤ 1,

m∑

j=1

w·j ≤ 1,

n∑

i=1

m∑

j=1

wij = k, (8)

known as the minimum cost flow problem. Above, the
notation

∑n
i=1 wi· ≤ 1 means that

∑n
i=1 wij ≤ 1 for all

j ∈ [m], and similar convention is used for
∑m

j=1 w·j ≤ 1.

The formulation as an MCF problem is obtained by adding
two auxiliary nodes to the graph, called source and sink
(see Fig. 1). We are interested in the flow of the minimal
cost, where the cost of each edge except those adjacent
to source and sink is assigned from the distance matrix
{dij}n,mi,j=1. The cost of the rest of the edges is equal to 0.
The capacity that can be sent through each edge is equal to
1. The supply of source and sink are k and −k, respectively.
The solution of (7) given the constraints (8) provides the
weights {wij}n,mi,j=1, from which the matching π̂LSS

k can be
recovered. Indeed, if wij = 1 then Xi and X#

j are matched.
The last constraint in (8) implies that the matching size
(number of wij that are equal to 1) will be k. Though the
algorithm provided in [Goldberg et al., 2015] has the fastest
known asymptotic complexity, the implementation of their
algorithm is out of the scope of this paper. Therefore, in
our experiments, we used SimpleMinCostFlow solver
from OR-tools library [Perron and Furnon, 2022].

5.2 Numerical Experiments on Synthetic Data

In this part, we conducted several experiments on synthetic
data to support our theoretical findings. In these experi-
ments, we constructed two sets of sizes n = m = 100
consisting of d = 100-dimensional data points. The under-
lying matching size k∗ was set to 60. In other words, in
each point cloud, we had 60 inliers and 40 outliers. We also
fixed the confidence level at 1%, i.e., α = 0.01. The proce-
dure for generating synthetic data was as follows. We set
S∗ = [k∗] and chose an additional parameter τ used to con-
trol κ̄all throughout the experiments. Then, each coordinate
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of θ and θ# was independently sampled from a Gaussian
distribution with 0 mean and standard deviation τ . Addi-
tionally, for every i /∈ S∗, we incremented every coordinate
of θi by τ , i.e., θi ← θi+ τ1 and, for every j /∈ Im(π∗), we
incremented every coordinate of θ#j by 2τ . This allows the
outliers of each point cloud to be sufficiently far from each
other, hence a pair of outliers is less likely to be confused as
a pair of inliers. Notice also that such a choice of generating
outliers fits within the conditions of Theorem 1. Finally, the
sequences X and X# were generated according to (1) with
π∗(i) = i, for all i ∈ S∗. We measured the performance of
our estimator π̂LSS

k∗ by its precision, which is the number of
correctly matched inliers divided by k = k∗.

Figure 2: Left: the dependence of the matching precision of
π̂LSS
k∗ on κ̄all for σ = σ# = 1 (blue triangles) and σ = σ# =

2 (orange circles). Right: the accuracy of subset recovery
for a known k ≤ k∗. In both plots, for κ̄all large enough we
observe that the estimated matching π̂LSS

k∗ indeed coincides
with π∗ or yields a subset of it (right plot).

Let us now comment on the results obtained in Fig. 2. On
the left plot, given that κ̄all is large enough we observe that
π̂LSS
k∗ = π∗ holds. Another interesting feature that can be in-

ferred from Fig. 2 is that the precision is independent of the
noise levels σ, σ#, which is also consistent with Theorem 1
through the definition of λn,m,d,α which is independent of
σ, σ#. The right plot supports the findings of Theorem 2,
that is, if one computes π̂LSS

k for some k ≤ k∗ it guarantees
that the support of π̂LSS

k will be included in the support of π∗,
and moreover on this support the values of π̂LSS

k and π∗ co-
incide. Moreover, plugging in the values of this experiment
into (4) we have λn,d,α ≈ 44, which means that the results
proved in Theorems 1 and 2 hold whenever κ̄all ≥ 5/4λn,d,α

and κ̄all ≥ λn,d,α, respectively. The results reported in Fig.
2 are the average over 200 independent trials of the same
experiment.

In the previous experiment, we focused on the case of known
k∗ and noise levels. We first consider the case of known
noise levels and apply the estimator proposed in Section 4.2.
In Fig. 3 we illustrate how the unknown value of k∗ is
estimated for two different settings of known noise levels.
Namely, given that κ̄all is “small” (κ̄all < 15) all the pairs are
considered as inliers and k̂ = 100 as opposed to k∗ = 60.
However, given that the value of κ̄all is large enough we see
that the algorithm starts to differentiate inliers from outliers,
hence we have k̂ = 60 starting from κ̄all ≈ 22, which

0 10 20 30 40

κ̄all

60

70

80

90

100

k̂ σ = σ# = 1

σ = σ# = 2

Figure 3: Dependence of the estimate of k∗ on κ̄all when the
noise levels σ and σ# are known. Observe that given that
the value of κ̄all is large enough our procedure recovers the
true value of k∗ = 60 while failing to identify the outliers
when the signal-to-noise ratio is small and hence estimating
k̂ = 100.

confirms the result of Theorem 3. Recall that the result of
Theorem 3 holds whenever κ̄all ≥ λn,d,α ≈ 44. Moreover,
similarly to the left plot of Fig. 2, the threshold after which
the estimation becomes exact does not depend on noise
levels. The results reported in Fig. 3 are the average over
200 independent trials of the same experiment.

Finally, we consider the case when no additional informa-
tion is available neither about k∗ nor about σ2

0 , which cor-
responds to the most generic setting of Theorem 1. Recall
the sequential procedure from Section 3 of estimating the
triplet (k∗, σ2

0 , π
∗). In Fig. 4, we plot the dependencies of

estimates of k∗ and σ2
0 on κ̄all. There are several key fea-

tures that are worth noticing. First, for small values of κ̄all it
is impossible to distinguish inliers from outliers, hence all
points are treated as inliers and k̂ = 100. As a consequence
σ2
0 is overestimated. Second, for large enough values of κ̄all

both k∗ and σ2
0 are accurately estimated, therefore the preci-

sion of π̂LSS
k̂

is (close to) 1. To make a link with Theorem 1
we also include the theoretical value of threshold λn,m,d,α

in the plots.

There are several takeaways that we would like to highlight.
In the theoretical part, we proved that provided κ̄all is large
than the given threshold, it is possible to recover π∗ and
to estimate k∗. The threshold provided in theorems is rate
optimal, however, it is not sharp. We observe that for differ-
ent tasks the sharp threshold might differ up to a constant
factor. For instance, in the case of known k∗ and σ2

0 we
see that the threshold seems close to 7 (see Fig. 2), while
it is around 32 in the more difficult setting of unknown k∗

and σ2
0 , as it is shown in Fig. 4. The setting of Fig. 3 is

somewhat in between, since σ2
0 is assumed to be known but

k∗ is unknown, hence the “change point” occurs around 22,
which is between 7 and 32. In practice, one could replace
the theoretical quantiles of χ2

d distribution with the empiri-
cal counterparts of the squared distances between matching
pairs Xi and Xπ̂(i) for a given estimator π̂.
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Figure 4: Two settings were considered: σ, σ# = 1 (blue
triangles) and σ, σ# = 2 (orange circles). The top plot
shows the dependence of the estimate of k∗ on κ̄all, while
the bottom one—the dependence of the estimate (6) of σ2

0

on κ̄all.

5.3 Estimation of k∗ for Real Data

In what follows we carry out experiments on real data. In
this experiment, we only focus on the estimation of the
matching size in the setting of matching the keypoints (SIFT
descriptors [Lowe, 2004]) of two different images of the
same scene. The goal is to be able to match the same key-
points considering the noise present in the images, and not
match the keypoints that are present in only one of the two
images. We refer to Appendix B for more description and
additional experiments in the keypoint matching problem.

Experiments on real data were conducted using IMC-PT
2020 dataset [Jin et al., 2020] consisting of 16 scenes with
corresponding image sets and 3D point clouds. We used
images from the “Reichstag” scene to illustrate how the pro-
cedure from Section 4.3 can be used to estimate the match-
ing size. To construct the dataset, we randomly chose 1000
distinct image pairs of the same scene. Then, a scene point
cloud is used to obtain pseudo-ground-truth matching be-
tween keypoints on different images of the same scene. Us-
ing these pseudo-ground-truth matching keypoints we then
choose k∗ = 60 keypoints that are present in both images
and add to each of them 40 outlier keypoints. Hence, we
have n = m = 100 with k∗ = 60 and d = 128-dimensional
SIFT descriptors. Notice that in the case of images, no in-
formation on σ and σ# is available. Moreover, noise levels
might not be homoscedastic. In Fig. 5, we present the
histogram of the estimated value k̂ and observe that the pro-
cedure described in Section 4.3 provides a reasonably good
estimate of k∗ = 60.

Recall that at each iteration of estimating k∗ we solve an
MCF problem, which can be computationally costly given
the sample sizes are large. However, there are several as-
pects where we can speed up this procedure. First, using

0 20 40 60 80 100
k̂

0.00

0.01

0.02

0.03

0.04

Figure 5: The histogram of estimates values k̂ computed on
1000 distinct image pairs. In each image, a set of keypoints
of sizes n = m = 100 were chosen, with only k∗ = 60
inlier keypoints. Each keypoint is represented by its 128-
dimensional SIFT descriptor.

the Greedy algorithm to match the feature vectors (as done
in OpenCV) will allow us to compute only one distance
per iteration instead of solving MCF from scratch. Second,
the stepsize from the second step of the procedure from
Section 4.3 can be increased by considering the difference
Φ̂(k + 10) − Φ̂(k), then with a proper adjustment to the
threshold, we will obtain a 10 times speedup in the number
of iterations.

5.4 Experiments on Biomedical Data

First, we tested our estimator π̂LSS
k from (3) in the setting of

[Chen et al., 2022b][Sec. 5.1]. The setting considered there
is to recover the matching between two datasets3 collected
from human pancreatic islets using technologies (CEL-seq2
[Hashimshony et al., 2016] and Smart-seq2 [Picelli et al.,
2013]). CEL-seq2 data contain measurements on 34363
RNAs in 2285 cells, and Smart-seq2 data contain mea-
surements on 34363 RNAs in 2394 cells. After applying
standard pre-processing procedures using Python package
scanpy [Wolf et al., 2018], we select 5000 most active
RNAs for each dataset. 2808 distinct RNAs appeared in
both datasets’ top-5000, so we leave out the rest obtaining
two datasets of sizes 2808× 2285 and 2808× 2394. Each
cell in both datasets has a human-annotated type (out of
13 cell types). We randomly downsample cells to get an
equal number of cells-per-type in both datasets, eventually
getting two datasets of size 2808 × 1935. We match cells
in two datasets using π̂LSS

k from (3). However, we have
no information on the ground truth matching, therefore as
suggested in Chen et al. [2022b] the accuracy is calculated
on the cell-type level. This means that a single match is
considered correct if it matches two cells of the same type.
Our matching estimator achieves 97.88% cell-type level ac-

3SeuratData R package [Hao et al., 2021].
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Figure 6: Cell-type level confusion matrix of π̂LSS
n on Cel-

seq2 and Smart-seq2 datasets of the same size n = 1935.

curacy, which is almost the same as the result of 97.93%
of [Chen et al., 2022b] without any dimensionality reduc-
tion and using a simpler approach. The resulting confusion
matrix is shown in Fig. 6.

To demonstrate the result of Theorem 1, we design the
following experiment. After performing the same pre-
processing and balancing steps from the previous experi-
ment, we proceed to remove cells of one fixed type from the
CEL-seq2 dataset and cells of another fixed type from the
Smart-seq2 dataset. This way, we can ensure the presence of
outliers in both sets. Number of cells-per-type are shown in
Fig. 7. We only experiment with types beta, gamma, delta,
ductal, and acinar because cells of type alpha constitute
almost half of the whole dataset and other types have very
few cells for the results to be significant. Then we fix a pair
of different cell types, remove each from the correspond-
ing dataset, and estimate the real number of inliers (here
meaning the number of cells of a type that appears in both
datasets) using the algorithm described in Section 3. The
results are reported in Table 1. We observe that in most
cases the estimated value k̂ is slightly underestimated but is
an extremely accurate estimate of the true matching size k∗.

β γ δ duct. aci.
β 1517 / 1593 1500 / 1592 1370 / 1362 1439 / 1421

γ 1517 / 1594 1698 / 1777 1568 / 1557 1637 / 1618

δ 1500 / 1594 1698 / 1772 1551 / 1540 1620 / 1602

duct. 1370 / 1362 1568 / 1559 1551 / 1544 1490 / 1557

aci. 1439 / 1434 1637 / 1631 1620 / 1614 1490 / 1592

Table 1: Each row corresponds to the experiment where the
particular type has been removed from the CEL-seq2 dataset
and each column—to the type removed from Smart-seq2.
Each cell has two numbers; the true number of inliers / its
estimate by the algorithm described in Section 3.

Figure 7: Cell-type frequencies after type-balancing Cel-
seq2 and Smart-seq2 datasets of size n = 1935 with 13
cell-types.

6 CONCLUSION AND DISCUSSION

We have analyzed the problem of matching map recovery
between two sets of feature-vectors, when the number k∗

of true matches is unknown. We focused on two practically
relevant settings of this problem. Assuming a lower bound
k on k∗ is available, we proved—under the weakest possi-
ble condition on the signal-to-noise ratio—that the k-LSS
procedure makes no mistake with high probability. More
precisely, k-LSS provides an estimated map the support of
which is included in the support of the true matching map
and the values of these two maps coincide on this subset.
More importantly, we proposed a procedure for estimating
the unknown matching size k∗ and proved that it finds the
correct value of k∗ and the true matching map π∗ with high
probability. Once again, this holds under the minimal as-
sumption that the signal-to-noise ratio exceeds the minimax
separation rate.

Interestingly, our results demonstrate that the minimax rate
of separation does not depend on k∗ and, more surprisingly,
that the absence of the knowledge of k∗ has no impact on
the minimax rate. These rates are attained by computation-
ally tractable algorithms solving the minimum cost flow
problem. Our results are limited to Gaussian noise and to
noise levels that are equal across observations. Furthermore,
we only tackled the recovery problem, leaving the problem
of estimation to future work.
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Appendix
The purpose of this appendix is twofold: to present the proofs of the lemmas used in the main paper and to provide additional
experimental evidence showing that it is indeed possible to obtain an accurate estimator for unknown k∗ even when the
noise levels are unknown and potentially heterogeneous. The reproducible code of all the experiments can be found in the
supplementary material.

A Proofs of Lemmas from Section 4

We start by presenting the definitions that we use in this supplementary material. Recall the definitions of the test statistics
Φ̂(·) and its normalized version L̂(·), which depends on the quantity σ2

0

Φ̂(k) = min
π∈Pk

∑

i∈Sπ

∥Xi −X#
π(i)∥

2
2, L̂(k) = min

π∈Pk

∑

i∈Sπ

∥Xi −X#
π(i)∥

2
2

σ2 + σ#2
≡ Φ̂(k)

σ2
0

.

For completeness, we also recall the definition of the standard Gaussian random vectors ηij

ηij =
σξi − σ#ξ#j√
σ2 + σ#2

.

The quantities associated with ηij which will be used in the proofs are ζ1 and ζ2, which are defined as follows

ζ1 ≜ max
i ̸=j

|(θi − θ#j )
⊤ηij |

∥θi − θ#j ∥2
, ζ2 ≜ d−1/2 max

i,j

∣∣∥ηij∥22 − d
∣∣.

Recall also that for any matching map π we define L(π) as follows

L(π) =
∑

i∈Sπ

∥Xi −X#
π(i)∥

2
2

σ2 + σ#2
.

In this section, we present the proofs of lemmas used in Section 3 for proving Theorem 2 and Theorem 3. For the reader’s
convenience, we include the statements of the lemmas as well.

Lemma 1. Let π be any matching map that can not be obtained as a restriction of π∗ on a subset of [n]. Let S0 ⊂ S∗ be an
arbitrary set satisfying |S0| ≤ |Sπ| and {i ∈ Sπ ∩ S∗ : π(i) = π∗(i)} ⊂ S0 and let π0 be the restriction of π∗ to S0. On
the event Ω0 = {8ζ1 ≤ κ̄all; 4

√
d ζ2 ≤ κ̄2

all}, we have

L(π)− L(π0) ≥ (1/4)κ̄2
all + d(|Sπ| − |S0|).

Proof of Lemma 1. Let us recall the definition of the individual signal-to-noise ratios κi,j ≜
∥θi−θ#j∥2√
σ2+σ#2 . For any matching

map π and for any i ∈ Sπ , we have

∥Xi −X#
π(i)∥

2
2

σ2 + σ#2
=
∥θi − θ#π(i)∥

2
2

σ2 + σ#2
+ 2

(θi − θ#π(i))
⊤ηi,π(i)

√
σ2 + σ#2

+ ∥ηi,π(i)∥22

≥
∥θi − θ#π(i)∥

2
2

σ2 + σ#2
− 2ζ1

∥θi − θ#π(i)∥2√
σ2 + σ#2

+ ∥ηi,π(i)∥22

= κ2
i,π(i) − 2ζ1κi,π(i) + ∥ηi,π(i)∥22. (9)

Note that if i ∈ Sπ is such that π∗(i) = π(i) (correct matching), then κi,π(i) = 0. For all the other i ∈ Sπ, we have
κi,π(i) ≥ κ̄all. Therefore, denoting S+

π = {i ∈ Sπ ∩ Sπ∗ : π(i) = π∗(i)} and S−
π = Sπ \ S+

π , Eq. (9) implies that on the
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event {κ̄all ≥ ζ1} ⊃ Ω0, we have

L(π) ≥
∑

i∈S−
π

(
κ2
i,π(i) − 2ζ1κi,π(i)

)
+

∑

i∈Sπ

∥ηi,π(i)∥22

≥ |S−
π |

(
κ̄2

all − 2ζ1κ̄all
)
+

∑

i∈Sπ

∥ηi,π(i)∥22.

Let us choose any S0 such that S+
π ⊂ S0 ⊂ S∗ and |S0| ≤ |Sπ|. We define π0 as the restriction of π∗ on S0. If, in addition,

we set S−
0 = S0 \ S+

π , we can infer from the last display that

L(π)− L(π0) ≥ |S−
π |

(
κ̄2

all − 2ζ1κ̄all
)
+

∑

i∈S−
π

∥ηi,π(i)∥22 −
∑

i∈S−
0

∥ηi,π∗(i)∥22

≥ |S−
π |

(
κ̄2

all − 2ζ1κ̄all
)
+ d(|S−

π | − |S−
0 |)−

√
d ζ2(|S−

π |+ |S−
0 |)

≥ |S−
π |

(
κ̄2

all − 2ζ1κ̄all − 2
√
d ζ2

)
+ d(|S−

π | − |S−
0 |)

= |S−
π |

(
κ̄2

all − 2ζ1κ̄all − 2
√
d ζ2

)
+ d(|Sπ| − |S0|). (10)

On the event Ω0, we have κ̄2
all − 2ζ1κ̄all − 2

√
d ζ2 ≥ κ̄2

all/4. Moreover, since π ̸= π∗
Sπ

, we have |S−
π | ≥ 1. These two

inequalities combined with (10) complete the proof of the lemma.

Lemma 2. Let Ω0,x = {8ζ1 ≤ x} ∩ {4
√
dζ2 ≤ x2} with ζ1, ζ2 defined as in (5). Then, for every x > 0, P(Ω∁

0,x) is upper
bounded by

2n2
(
exp

{
− x2

128

}
+ exp

{
− x2

128d

(
x2 ∧ 4d

)})
.

Proof of Lemma 2. The union bound implies that

P(Ω∁
0,x) ≤ P

(
8ζ1 ≥ x

)
+P(4

√
d ζ2 ≥ x2)

= P
(
ζ1 ≥ 1

8 x
)
+P

(
ζ2 ≥ 1

4
√
d
x2

)
. (11)

Notice that ζ1 can be represented as the maximum of absolute values of standard Gaussian random variables, i.e., ζ1 =
maxi̸=j |ζi,j |. Applying the well-known Gaussian tail bounds together with the union bound yields

P
(
ζ1 ≥ 1

8 x
)
≤

∑

i ̸=j

P
(
|ζi,j | ≥ 1

8 x
)
≤ 2n2 exp

(
− x2/128

)
. (12)

To bound the second term of (11), we use Lemma 1 from Galstyan et al. [2022] which bounds the tails of a random variable
ζ2. Thus, combining it with a union bound we arrive at the following inequality

P

(
ζ2 ≥

x2

4
√
d

)
≤ 2n2 exp

{
− x2

32
√
d

(
x2

4
√
d
∧
√
d

)}

= 2n2 exp

{
− (x/16)2

d

(
2x2 ∧ 8d

)}
. (13)

Then, plugging the bounds obtained in (12) and (13) into (11) concludes the proof of the lemma.

Lemma 3. On the event, Ω0 = {8ζ1 ≤ κ̄all; 4
√
d ζ2 ≤ κ̄2

all}, we have L̂(k∗ + 1)− L̂(k∗) ≥ d+ κ̄2
all/4.

Proof of Lemma 3. This claim is a consequence of Lemma 1. We have already seen in the proof of Theorem 2 that π̂k∗ = π∗

on Ω0. Therefore,

L̂(k∗ + 1)− L̂(k∗) = L(π̂k∗+1)− L(π∗).

If we apply Lemma 1 to π = π̂k∗+1, it is clear that we can choose as π0 the true matching map π∗. The claim of Lemma 1
then yields

L(π̂k∗+1)− L(π∗) ≥ 1

4
κ̄2

all + d(k∗ + 1− k∗) =
1

4
κ̄2

all + d

and the claim of the lemma follows.
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Lemma 4. On the event, Ω0 = {8ζ1 ≤ κ̄all; 4
√
d ζ2 ≤ κ̄2

all}, for every k < k∗, we have L̂(k + 1)− L̂(k) ≤ d+
√
d ζ2.

Proof of Lemma 4. Let π̂k be a matching map from Pk minimizing L(·), i.e., such that L(π̂k) = L̂(k). According to
Lemma 1, we have π̂k(i) = π∗(i) for every i ∈ Ŝk ≜ Sπ̂k

. One easily checks that there exists a set Ŝk+1 ⊂ S∗ of
cardinality k + 1 such that Ŝk ⊂ Ŝk+1 and L̂(k + 1) = L(π̂k+1) where π̂k+1 is the restriction of π∗ to Ŝk+1. Indeed, if π
is any element of Pk+1 minimizing L(·), we know that it is defined as a restriction of π∗ on some set S of cardinality k + 1.
If we replace arbitrary k elements of S by those of Ŝk, and modify π accordingly, then we will get a new mapping from
Pk+1, for which the value of L(·) is less than or equal to L(π). Therefore, we have found a mapping map that minimizes
L(·) over Pk+1 and has a support that is obtained by adding one point to Ŝk. This implies that

L̂(k + 1)− L̂(k) = L(π̂k+1)− L(π̂k) =
∑

i∈Ŝk+1

∥ηi,π∗(i)∥22 −
∑

i∈Ŝk

∥ηi,π∗(i)∥22

=
∑

i∈Ŝk+1\Ŝk

∥ηi,π∗(i)∥22 ≤ d+
√
d ζ2.

This completes the proof of the lemma.

B Additional experiments on real data

In this section, we perform experiments on a pair of images and respectively choose keypoints on each of them to showcase
the behavior of the proposed procedure. In Fig. 5 of the main manuscript, we show the histogram of the choice of matching
size k∗ for 1000 distinct image pairs from “Reichstag” scene of IMC-PT 2020 dataset [Jin et al., 2020]. In this dataset, we
only have the pseudo ground truths, and sometimes these ground truths are incorrect (different points are matched), which
makes the results unreliable. Therefore, to have a more controlled experiment we take one image of Sacré Coeur of Paris and
crop it in half on each axis. Then, we add noise into the cropped image by interpolating the pixels such that both images have
the same resolution. This procedure is in line with the studied model, presented in (1). Afterward, we detect and compute
SIFT descriptors of m = 2n− k∗ keypoints from the cropped image and translate them into the original image. Then, we
fix k∗ inlier keypoints in both images and add n− k∗ distinct points to each image, which will be considered as outliers.

We then run our procedure for the estimation of the matching size k∗ and the recovery of the matching map π∗ with the
tuning parameters chosen as shown in Theorem 1. The results for different values of n and k∗ are summarized in the figure
below. The estimated value k̂ is close to k∗ and is slightly underestimated in all cases. Slight underestimation is not a
problem, whereas slight overestimation would surely cause more incorrect matching pairs.

For all the plots, we see that the value of k∗ is estimated accurately and is slightly underestimated (as shown also in Fig. 5).
The accuracy of the estimation of π∗ (number of green lines) is also very high with only a few mistakes. It is worth
mentioning that the estimation of k∗ is a procedure that can be of interest by itself because after having an accurate estimator
for k∗ one is free to apply any matching algorithm to circumvent other purposes. For example, one can use fast approximate
methods to accelerate matching algorithms (see e.g. Malkov and Yashunin [2020], Harwood and Drummond [2016], Jiang
et al. [2016]). Another possible direction is to consider wider or narrower classes of mappings, e.g. 1-to-many matching
maps.
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Figure 8: We fixed the tolerance level α = 0.001. For illustration purposes, we have selected 3 different scenarios to
demonstrate the quality of the model selection and the matching recovery. In the uppermost plot n = 50 and k∗ = 25. The
procedure from Section 3 outputs k̂ = 22 and π̂LSS

k̂
= π∗ (perfect matching). In the middle plot n = 100 and k∗ = 50,

the estimated value of k∗ is k̂ = 44. In the bottom plot we selected n = 350 keypoints from which k∗ = 250 were inliers
(k̂ = 213). In last two cases matching map contained only few mistakes.
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