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Abstract

Dual encoder models are ubiquitous in modern
classification and retrieval. Crucial for training
such dual encoders is an accurate estimation of
gradients from the partition function of the soft-
max over the large output space; this requires
finding negative targets that contribute most sig-
nificantly (“hard negatives”). Since dual encoder
model parameters change during training, the use
of traditional static nearest neighbor indexes can
be sub-optimal. These static indexes (1) periodi-
cally require expensive re-building of the index,
which in turn requires (2) expensive re-encoding
of all targets using updated model parameters.
This paper addresses both of these challenges.
First, we introduce an algorithm that uses a tree
structure to approximate the softmax with prov-
able bounds and that dynamically maintains the
tree. Second, we approximate the effect of a gra-
dient update on target encodings with an efficient
Nyström low-rank approximation. In our empir-
ical study on datasets with over twenty million
targets, our approach cuts error by half in relation
to oracle brute-force negative mining. Further-
more, our method surpasses prior state-of-the-art
while using 150x less accelerator memory.

1 INTRODUCTION

Dual encoder models map input queries and output targets
to a common vector space in which inner products of query
and target vectors yield an accurate similarity function.
They are a highly effective, widely deployed solution for
classification and retrieval tasks such as passage retrieval
(Karpukhin et al., 2020), question answering (Qu et al.,
2021), recommendation systems (Wu et al., 2020), entity
linking (Gillick et al., 2019), and fine-grained classifica-
tion (Xiong et al., 2022). These tasks are characterized as
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having a large number of targets, often on the order of mil-
lions to billions. Dual encoders achieve scalability to this
large number of targets in two ways: weight sharing among
targets through a parametric encoder and an efficient inner
product-based scoring function. The encoder models are
often parameterized as deep neural networks, e.g., trans-
formers (Vaswani et al., 2017; Devlin et al., 2019), and
trained with the cross entropy loss between the model’s
softmax distribution and query’s true labeled target(s).

Training dual encoder models efficiently and effectively
poses two key challenges:

Computationally intensive loss function. Computing the
gradient of the softmax partition function becomes com-
putationally costly when the number of possible targets is
large (Bengio and Senécal, 2008; Daumé III et al., 2017;
Lindgren et al., 2021, inter alia), necessitating approxima-
tion. The common approach approximates the large sum
in the partition function gradient by sampling relatively
few of its largest terms originating from “hard” negative
targets, which are often found using an efficient nearest-
neighbor index (Guu et al., 2020; Agarwal et al., 2022).
However, the approximation introduces bias in gradient es-
timation affecting learning and resulting accuracy (Rawat
et al., 2019; Ajalloeian and Stich, 2020).

Moving embeddings. The embedded representations of
both queries and targets continuously change during train-
ing as the underlying encoder parameters are updated.
Since re-embedding all targets after each step of training
is computationally infeasible, prior work uses ‘stale’ rep-
resentations for negative mining, i.e., the vector represen-
tation from the encoder parameters from t steps ago. Re-
encoding and re-indexing even at moderately-sized inter-
vals remains an expensive operation (Izacard et al., 2022).

In this paper, we present a new dual-encoder training al-
gorithm, which we call DyNNIBAL, that addresses both of
the above challenges, and we provide both theoretical and
empirical analysis. To elaborate:

Efficient gradient bias reduction. The expensive term in
the exact gradient computation is the evaluation of an ex-
pectation with respect to the entire softmax distribution.
To approximate this expectation, we design a Metropolis-
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Hastings sampler that uses a tree-structured hierarchical
clustering of the targets to provide an efficient proposal dis-
tribution in §3. We then relate bias reduction to the granu-
larity of the clustering. We also present an efficient method
for dynamically updating this tree structure in response to
encoding parameter gradients.

Efficient re-embedding. Instead of frequently re-running
the updated (typically fairly large and expensive) target en-
coder model to produce up-to-date embeddings of targets,
we propose rather to approximate (with effective end-task
performance) the effect of a gradient update on the target
embeddings with an efficient Nyström low-rank approxi-
mation (generally using several orders of magnitude less
time and memory) in §4.

Theoretical analysis. We study the running time of our
algorithm under mild assumptions such as Lipschitz en-
coder functions and expansion rate, showing per-step cost
is a function of the number of clusters in our approxima-
tion, considerably smaller than the number of targets itself
(Prop. 2, Prop. 3). We also present a bound on the bias of
our softmax estimator, ensuring convergence with stochas-
tic gradient descent (Prop. 5).

Empirical performance. In §5, we evaluate our algorithm
on two passage retrieval task datasets, Natural Questions
(NQ) (Kwiatkowski et al., 2019) and MSMARCO (Bajaj
et al., 2016). On NQ, which has over twenty million tar-
gets, we find that our approach cuts error by half in relation
to a practically-infeasible oracle brute-force negative min-
ing. Previous state-of-the-art methods can incrementally in-
crease accuracy by increasing memory usage at training
time; yet we find that our method still surpasses previous
state-of-the-art when using 150x less accelerator memory.

2 BACKGROUND

Given a data point x P X (e.g., a query), we are tasked
with predicting a target y P Y (e.g., a passage answering
the question). In our experiments, the number of targets is
large, such as tens of millions. We assume that the targets
y are featurized. We use encoder models to represent both
the points and targets. These encoders, which map a point
or target’s features to a fixed dimensional embedding, are
often large parametric pre-trained models (such as trans-
formers (Vaswani et al., 2017; Devlin et al., 2019)). We
denote the encoder model for points as fθpxq P Rd and for
targets as fφpyq P Rd. The softmax distribution is:

P py|xq “
exppβxfθpxq, fφpyqyq

Z fi
ř

y1PY exppβxfθpxq, fφpy1qyq
, (1)

where β denotes the inverse temperature hyperparameter.

We train the parameters of the encoder models Θ “ tθ, φu,
given labeled training data pairs px1, y1q, . . . , pxN , yN q.
Our training objective is the cross entropy loss, which for a

given training pair is defined as:

Lpxi, yiq “ ´βxfθpxiq, fφpyiqy ` logZ. (2)

As mentioned by Rawat et al. (2019), most methods use
first order optimization, so we consider the gradient wrt Θ:

∇ΘLpxi, yiq “ ´∇Θβxfθpxiq, fφpyiqy `∇Θ logZ

∇Θ logZ “ Ey„P py|xiq∇Θβxfθpxiq, fφpyqy.

Training with cross-entropy loss is computationally chal-
lenging because computing the partition function, Z, or
its gradient requires |Y| inner-products. Furthermore, it re-
quires |Y| encoding calls to the target encoding model. This
latter challenge is unique to training dual encoders and is
not a challenge when targets have their own free parame-
ters (e.g., Daumé III et al. (2017); Sun et al. (2019)).

Many works replace the expensive full expectation com-
putation with a Monte Carlo estimate from a small con-
stant number of samples obtained in different ways (Hen-
derson et al., 2017; Reddi et al., 2019; Rawat et al., 2019;
Karpukhin et al., 2020; Lindgren et al., 2021). In our work,
we design a novel proposal distribution from which it is
efficient to sample, and which has bounded gradient bias,
to ensure faster convergence of SGD (Ajalloeian and Stich,
2020). We refer to our approximate loss as L̂.

Our work will use the same, mild assumptions of many pre-
vious works (Rawat et al., 2019; Lindgren et al., 2021).
Assumption 1. (Lipschitz Encoders) The dual encoders
are L-Lipschitz in parameters Θ, that is ||fθpxq ´
fθ1pxq|| ď L||Θ´Θ1|| and ||fφpyq´fφ1pyq|| ď L||Θ´Θ1||
for all x P X , y P Y .

Assumption 2. (Bounded Gradients) We assume that the
logits have bounded gradients, ||∇xfθpxq, fφpyqy|| ăM .

Assumption 3. (Unit Norm) Dual-encoders produce unit
normed vector embeddings1, @y P Y, ||fφpyq|| “ 1.

3 EFFICIENT AND ACCURATE
SAMPLES FROM THE SOFTMAX
DISTRIBUTION

In this section, we present our approach for maintaining
a dynamic tree-structured clustering that supports efficient
and provably accurate sampling from the softmax distri-
bution. In the next section (§4), we will show a novel use
of low-rank regression-based approximations to obviate the
need for using the encoder to produce updated embeddings
and describe the complete training algorithm. Proofs for all
statements are relegated to the Supplement. Given the prop-
erties of the proposed method, we refer to our approach
as DyNNIBAL, in reference to Dynamic Nearest Neighbor
Index for Bias-reduced Approximate Loss (Figure 1).

1We note that it is common practice to unit norm the represen-
tations from dual encoders, e.g., (Gillick et al., 2019; Rawat et al.,
2020; Lindgren et al., 2021)
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3.1 Accurate Samples from Softmax Distribution

We would like to accurately sample from the softmax dis-
tribution, without having to compute the computationally
intensive the partition function, Z. We consider familiar
methods: rejection sampling and Metropolis-Hastings.

To apply rejection sampling, we approximate the unnor-
malized softmax probability for each target y with an ap-
proximation ŷ such that:

e´εr ď
exppβxfθpxq, fφpŷqyq

exppβxfθpxq, fφpyqyq
ď eεr . (3)

Then, if we sample from:

y „
exppβxfθpxq, fφpŷqyq

ř

y1 exppβxfθpxq, fφpŷ1qyq
(4)

and accept with probability

e´εr
exppβxfθpxq, fφpyqyq

exppβxfθpxq, fφpŷqyq
, (5)

we will sample from the softmax, akin to past work on re-
jection sampling for mixture models (Zaheer et al., 2017).

Similarly, we can use Metropolis-Hastings to produce a
sample from the true softmax distribution P py|xq by iter-
atively sampling (and accepting/rejecting) a state change
from a proposal distribution, denoted Q. The approxima-
tion error in terms of the total variation of the distribu-
tion given by Metropolis-Hastings, QMH, compared to the
true softmax distribution P using a s-length chain can be
bounded by (Mengersen and Tweedie, 1996; Cai, 2000;
Bachem et al., 2016):

||P ´QMH||TV ď exp

ˆ

´
s´ 1

γ

˙

γ “ max
yPY

P py|xq

Qpy|xq
. (6)

This means that s ą 1` γ log 1
ε gives ||P ´QMH||TV ď ε.

We achieve high quality samples if the proposal distribu-
tion Q is ‘close’ to the true softmax in terms of the ratio
P {Q. From high quality samples, we will see that bias is
minimized to aid convergence of SGD.

3.2 Clustering-based Approximations
The main idea of our approach is to build a clustering of
the targets that quantizes the true softmax distribution P
by assigning each target to a cluster such that targets in
the same cluster have the same probability. Ideally, these
clustering-based approximations would be efficient to con-
struct/maintain, and would minimize approximation error.

As an introduction, consider a flat-clustering based ap-
proach. We denote the clustering of targets as C. We denote
the cluster assignment of the target y as ypCq. Each clus-
ter in the clustering C P C, C Ď Y is associated with a
representative. We overload notation and use C and ypCq to
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Figure 1: Proposed Approach: DyNNIBAL. Our ap-
proach searches the tree structured index for a clustering
of the labels. This clustering is then used to provide an ap-
proximate softmax distribution used as a proposal distri-
bution for Metropolis-Hastings. The tree structure supports
efficient updates as parameters of the dual encoders change.

refer to both (1) the set of targets (when used in context of
clustering) as well as (2) the features of the cluster’s rep-
resentative (when used as input to a dual encoder model).

We define the distribution Q, by replacing each target with
a representative for its cluster.

Qpy|x;Cq “
exppβxfθpxq, fφpy

pCqqyq

Ẑ fi
ř

CPC |C| exppβxfθpxq, fφpCqyq
, (7)

The complexity of sampling from this distribution is a func-
tion of the number of clusters, or rather, we only need to
measure similarity between the datapoint x and each of
the cluster representatives, e.g., Op|C|q inner products to
compute the unnormalized probabilities and partition func-
tion. We investigate how to discover a clustering of targets
which provides efficient sampling while bounding the er-
ror of Metropolis-Hastings and increasing the probability
of acceptance for rejection sampling.

3.3 Hierarchical Clustering Structures
Our method for discovering such a clustering is to use hier-
archical clustering, in particular SG Trees (Zaheer et al.,
2019), an efficient variant of cover trees (Beygelzimer
et al., 2006). These efficient hierarchical approaches will
allow us to bound the approximation quality and discover
adaptive clustering of targets for each point.

Definition 1. (Hierarchical Clustering) A hierarchical
clustering T is a set of nested clusterings. For Cpar, ‘child’
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clusters are chpCparq s.t. @Ckid P chpCparq, Ckid Ĺ Cpar and
EC1 s.t. for some Ckid P chpCparq, Ckid Ă C1 Ă Cpar.

Cover trees, originally proposed as a nearest neighbor in-
dex, are highly scalable to hundreds of millions of targets
(Zaheer et al., 2017) and enjoy theoretical guarantees.
Definition 2. (Cover Tree (Beygelzimer et al., 2006)) A
cover tree with base b is a level-wise structure. Levels are
clusterings, Cp`q. The set of cluster representatives in a
level is Yp`q. A cover tree maintains the invariants:

1. Nesting. The cluster representatives at a parent level
are a subset of the child level, i.e., Yp`q Ď Yp`´1q.

2. Covering. For all y P Yp`´1q, there exists a parent node
ypar P Yp`q such that ||fφpyq ´ fφpyparq|| ď b`

3. Separation. All distinct nodes in a given y, y1 P Yp`q,
satisfy ||fφpyq ´ fφpy1q|| ě b`.

Closely related are SG Trees (Zaheer et al., 2019):
Definition 3. (Stable Greedy (SG) Tree (Zaheer et al.,
2019)) An SG tree is a cover tree, with separation defined to
only apply to siblings rather than nodes in the same level:

3. Separation. All distinct siblings, y, y1 P chpyparq, sat-
isfy ||fφpyq ´ fφpy1q|| ě b`.

Because SG trees are considerably more efficient to con-
struct (Zaheer et al., 2019), they are the focus of our work.
However, where possible, we will also describe how cover
trees could be used in our methods.

The cover tree and SG tree data structures are not new to
this paper. Their use to provide an approximation to the
softmax is novel and is the contribution of this section.

We make standard assumptions about the representations
(Beygelzimer et al., 2006; Zaheer et al., 2019, inter alia).
Definition 4. The expansion constant α for the encoded
targets Y “ tfφpyq : y P Yu is the smallest α ě 2 such
that |Bpp, 2rq| ď α|Bpp, rq| for all p P Y and r ě 0 where
Bpp, rq denotes a ball of radius r around p.

First, notice how a particular level of the tree structure can
serve as a clustering used in the approximate distribution.
Each cluster in the given level has bounded radius over its
descendants (cluster members). By bounding the approxi-
mation error of the unnormalized and normalized probabil-
ities for a selected clustering, we can determine the quality
of samples using Metropolis-Hastings as well as the accep-
tance probability for rejection sampling.
Proposition 1. Under Assumption 3, given the clustering
at level `, Cp`q, approximating y with the cluster represen-
tative, ypCp`qq, satisfies the following with εr “ β ¨ b`:

e´εr ď
exppβxfθpxq, fφpy

pCp`qqqyq

exppβxfθpxq, fφpyqyq
ď eεr . (8)

Similarly, to achieve a given bound on the total varia-
tion for Metropolis-Hastings, we would like to control γ,

the ratio of the true softmax to our proposal distribution,
maxyPY

P py|xq
Qpy|x;Cp`qq

“ γ, in terms of the level ` selected.

Proposition 2. Given Assumption 3, to achieve a maximum
ratio of true softmax to proposal distribution equal to γ i.e.,
maxyPY

P py|xq
Qpy|x;Cp`qq

“ γ, we need the clustering at level `,

where: ` fi maxt` P Z : b` ď 1
2β log γu.

Remark 1. Observe the relationship between γ and `. De-
scending one more level of the tree to level ` ´ 1, reduces
the ratio from γ (selecting level `) to γ

1
b .

The aforementioned results describe how to achieve a given
approximation error by selecting a level of the tree struc-
ture. Now, let’s consider methods which adaptively use the
hierarchical structure to produce a sample for a given data-
point. These approaches will start with a coarse clustering
(e.g., some level ` satisfying a minimal requirement on the
aforementioned sources of error).

First, let’s consider a theoretically motivated rejection sam-
pling approach based on the rejection sampling methods
for mixture models proposed by Zaheer et al. (2017). The
approach works by iteratively selecting a finer-grained set
of cluster representatives to sample from while still being
a valid rejection sampler for the softmax distribution. The
sampling is modified such that if a given cluster is accepted,
we return its representative. We start with the clusters at
level `. We perform one step of rejection sampling. If we
accept, we return the cluster representative itself. Other-
wise, we descend to that cluster’s children in level `´1 and
repeat the following procedure until the leaves of the tree.
We sample among the children of the node and one spe-
cially defined restart option, þ. If the restart option is sam-
pled, we begin the algorithm again at level `. If we sample
a child other the nested self-child and we accept the child’s
cluster, we return its representative with a given probabil-
ity. If we sample the nested-child or if we do not accept the
sampled child, we descend the tree and consider the chil-
dren of the sampled node. To be a valid rejection sampler,
we maintain running normalizers as shown in Algorithm 1.

Proposition 3. Algorithm 1 produces samples from the
softmax P py|xq in time Op|C`| ` α4eβb

``2

q for cover trees
and Op|C`| ` α3eβb

``2

q for SG trees.

Root log log |Y| log |Y|
Level

|Y|

log |Y|

Co
st

⟵  Poorer
approximation

More ⟶
computationIn Proposition 3, the

first term of the cost cor-
responds to computa-
tion and second term to
quality of the proposal.
If we pick ` to be too
close to the root, then
computation is cheaper
as cluster size |C`| will be small, but quality of the pro-
posal will be worse. As we descend down the down the
tree for picking ` the quality of proposal will keep improv-
ing but so will computation cost as |C`| grows. There is a
good trade-off point in between as illustrated in the figure.
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Algorithm 1 REJECTIONSAMPLING

1: Input: T : tree, x: point, `: initial level.
2: Output: A sample from P py|xq

3: Define NC Ð
|C|
|Y| for all tree nodes C P T .

4: Z` Ð eb
` ř

CPCi
NC exppβxfθpxq, fφpCqyq

5: Define δ`,C Ð Z`
´1eb

`

NC exppβxfθpxq, fφpCqyq
6: Sample C` from C` proportional to δ`,C`

7: Accept & return the representative of C` with prob:

π` Ð Z`
´1δi,Ci

´1
|Y|´1

exppβxfθpxq, fφpCiqyq
8: for k from `´ 1 down to ´8 do
9: Zk Ð δk`1p1´ πk`1q

10: δk,Ck
Ð Z´1

k eb
k

NCk
exppβxfθpxq, fφpCkqyq

11: δk,þ Ð 1´
ř

CPchpCk`1q
δk,C

12: Sample Ck from chpCk`1q
Ť

tþu prop. to δk,Ck
.

13: if Ck “ þ then
14: REJECTIONSAMPLING(T , x, `)
15: else if the representative of Ck & Ck`1 differ then
16: Accept & return the rep. of Ck with prob πk:

πk Ð Z´1
k δk,Ck

´1
|Y|´1

exppβxfθpxq, fφpCkqyq

Next, we consider a more practical and simple adaptive ex-
tension for Metropolis-Hastings. Intuitively, we want to re-
duce approximation error for high probability targets. Our
approach splits a cluster if the radius is at least bm and if it
may contain a target y, such that ||fθpxq ´ fφpyq|| ă bm.
This follows the intuition that we would like to emphasize
the closest targets to a point. In other words, we descend the
tree from level ` to level m splitting clusters which might
contain a target that is within bm of fθpxq (Algorithm 2).

Proposition 4. Let C be the output of Algorithm 2, then
maxyPY

P py|xq
Qpy|x,Cq ď γ under Assumption 3.

Remark 2. While in the worst case, we select all clusters
in level m, e.g., Op|Cpmq|q clusters, in practice we expect
this to be much less and can limit to a specified number by
either limiting the size of the frontier or output partition.

To put our results in perspective, consider a simple alter-
native, uniform negative sampling. Let Qunif be a uniform
proposal distribution, for which maxyPY

P py|xq
Qunifpy|xq

ď |Y|.

Remark 3. (Uniform Negatives vs DyNNIBAL) Con-
sider the case where we have fixed compute budget for the
chain length. For a uniform distribution, the total varia-
tion is bounded by exp

´

´O
´

s
|Y|

¯¯

. Since our each sam-
ple is slightly more expensive, we can only afford to have
a chain of length s

|Cp`q|
for any selected clustering Cp`q.

But even this reduced length chain will yield a much bet-
ter total variation bound by Proposition 1. In particular,
if we pick a level just log log |Y| below the root, which is
not very deep, then we obtain the total variation bound as
exp

´

´O
´

s
| log Y|

¯¯

. Notice that this is marked improve-
ment because of the logarithmic term in the denominator.

Algorithm 2 FINDCLUSTERING

1: Input: T : tree, x: point, γ,m: allowed error
2: Output: A clustering C

3: `Ð maxt` P Z : b` ď 2
β log γ

1
2 u

4: F` Ð C` B Initialize frontier to be the `th level of T .
5: CÐ tu B The output clustering
6: for k from ` down to m do
7: F Ð tchpF q : F P Fku
8: Fk´1 Ð tu

9: for F in F do
10: if ||fθpxq ´ fφpF q|| ą bk ` bm then
11: CÐ CY tF u
12: else
13: Fk´1 Ð tF u
14: return CY Fm

3.4 Gradient Bias of Our Estimator
To ensure convergence in gradient descent, we need our
estimator to have bounded gradient bias (Ajalloeian and
Stich, 2020). We are interested in the bias of the gradient
estimate: ||Er∇ΘL̂s´∇ΘL||, where the expectation is over
the Metropolis-Hasting samples.

Proposition 5. Let P be the true softmax and QMH be
the Metropolis-Hastings approximation to the softmax. Un-
der Assumption 2, we have ||Er∇ΘL̂s ´∇ΘL|| ď 2εβM ,
where ||P ´QMH||TV ď ε.

3.5 Dynamic Maintenance of the Tree Structure
During training, the parameters of the dual encoder models,
fθ, fφ are updated. As a result the tree structure properties
may no longer be upheld. In this section, we analyze how
representations could change under standard assumptions
about the data. We then describe an algorithm for main-
taining an SG tree and a simple approximation in practice.

Finding the part of the SG tree that no longer maintains
its invariants after a parameter update depends on how the
distance between a pair of targets changes after w steps
of gradient descent. Let the learning rate be η. The dual
encoder parameters are updated at step t as Θt Ð Θt´1 ´

η∇ΘL̂pxt, ytq. We can bound the pairwise change:

Proposition 6. Under Assumptions 1,2,3, let φt and φt`w
refer to encoder parameters after w more steps of gradient
descent with learning rate η.
ˇ

ˇ||fφt
pyq ´ fφt

py1q||2 ´ ||fφt`w
pyq ´ fφt`w

py1q||2
ˇ

ˇ ď 4wηβLM. (9)

We can detect whether, for a given pair of tree nodes with
representatives y and y1, if the covering property with re-
spect to level `will be maintained after the gradient update:

||fφt`wpyq ´ fφt`wpy
1q||2 ` 4wηβLM ď b`, (10)

and similarly for separation:

||fφt`w
pyq ´ fφt`w

py1q||2 ´ 4wηβLM ě b`´1. (11)
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Algorithm 3 UPDATESGTREE

1: Input: C`: a subtree root at level `, Cr: an ancestor node
covering its descendants or H to indicate we are re-
building at the top level, 4wηβLM : bound on change

2: if b` ď 4wηβLM then
3: Rebuild the subtree C` under Cr.
4: else
5: MAXDpC`q is the max dist btw C` to a descendant.
6: MINDpC`q is the min dist btw children of C`.
7: cov Ð MAXDpC`q ` 4wηβLM ď b`

8: sep Ð MINDpC`q ´ 4wηβLM ě b`´1

9: if cov and sep then
10: for C`´1 P chpC`q do
11: UPDATESGTREE(C`´1, C`, 4wηβLM )
12: else
13: Rebuild the subtree C` under Cr.

This leads to a simple algorithm for detecting which parts
of the tree structure need to be re-arranged. We can main-
tain for each node, the distance to its farthest descendant,
denoted MAXDpCq, to detect if covering is maintained.
Similarly, we can maintain for each node, the distance be-
tween its closest pair of children nodes (SG tree), denoted
MINDpCq, to detect if separation is maintained. Notice how-
ever that even if an ancestor node maintains the properties,
a descendant may still violate them.

An algorithm for updating the SG tree is: delete and rebuild
the smallest subtrees such that levels above the subtree
root maintain covering and separation (checking MAXD
and MIND)). We notice that for SG Trees since the separa-
tion property is only maintained between siblings and not
all nodes in a given level, when we rebuild the structure we
can re-attach the rebuild subtree with the same root. This
is described in Algorithm 3. We observe that the selected
bound 4wηβLM is equivalent to picking a level at which
we rebuild, which can be easier in practice. Rebuilding sub-
trees can be empirically very efficient. The rebuilding can
be done independently in parallel. Each subtree contains
relatively far fewer targets than the tree as a whole.

4 EFFICIENT RE-ENCODING

We address further computational bottlenecks. First, the
running time (and space) is a function of the dimension-
ality of dual encoder embeddings. This dimensionality can
typically be quite large (d “ 768 (Devlin et al., 2019)).
Second, we previously implicitly described the representa-
tions of the targets stored in the tree, as fφpCq for some
cluster representative C. We do not re-apply the encoder
every time we compare a given data point’s embedding to
a cluster representative. Instead, we use a cached version
of the the target embedding. However, re-running the dual
encoder to re-encode and update this cache (say every w
steps of gradient descent) would be very time-consuming
and require use of hardware accelerators (GPU/TPU).

We present approaches for addressing each of these com-

putational burdens. The Nyström method is used to reduce
dimensionality. Then we use these low-dimensional rep-
resentations in a low-rank regression model that approxi-
mates the re-running of the encoder model to produce the
newest encoded representations (no accelerator required).

4.1 Reducing Dimensionality

The Nyström method factorizes a pairwise similarity ma-
trix by representing each row and column (e.g., targets
or datapoints) as a d1 dimensional vector (Williams and
Seeger, 2000; Kumar et al., 2012; Gittens and Mahoney,
2013, inter alia). Each dimension of a vector can be thought
of as the (scaled) pairwise similarity between the represen-
tations of the row/column and a landmark representative
associated with the particular dimension. Let K P Rnˆn
be the pairwise similarity matrix, S P t0, 1unˆd

1

,@j P
rd1s

ř

iPn Sij “ 1 is an indicator matrix corresponding
to the sampled landmarks, n “ |Y| ` |X |. The Nyström
approximation is then, KS

`

STKS
˘´1

STK. It is impor-
tant to note that we do not actually explicitly instantiate K.
We sample our landmarks, compute the pairwise similar-
ity between points/targets and the landmarks to compute
KS and the landmarks themselves pSTKSq´1. The low-
dimensional representation of a target is the corresponding
row in KS

`

STKS
˘´1

or STK. We can approximate all
of the pairwise distance computations needed with an inner
product of two d1 dimensional vectors, where d1 ! d.

4.2 Regression-based Approximation of Re-Encoding

Afterw steps of gradient descent, our model parameters Θt

have been updated to be Θt`w. We would like to approxi-
mate the re-encoding of targets fφt`w

pyq without having to
run the encoder model. Let Yt be the set of cached target
embeddings after t steps, where ~y represents the cached
vector for the target y. We want to build Yt`w and we
will do so by training a regression model, R to map each
~y P Yt to fφt`w

pyq. We build s1 training data pairs of the
form, p~y1, fφt`w

py1qq, . . . p ~ys1 , fφt`w
pys1qq. We then fit R

using kernel ridge regression for which we use the above
Nyström approximation to the kernel matrix.

To update the cached target representations, we apply the
regression model R to every cached target in Yt, creating
the new cache of target representations Yt`w. This provides
an extreme speedup in re-encoding time. Instead of Op|Y|q
calls to the encoder, we have Ops1q encoder calls where
s1 is the number of training examples for R and s1 ! |Y|
along with one application of R to each target, effectively
a multiply of an d1 ˆ d1 matrix.

Further details can be found in Appendix B. The method-
ological techniques of Nyström and low-rank regression
are not new, of course; our contribution is the use of these
techniques to facilitate efficient re-encoding, which is a
costly and time consuming step in dual encoder training.
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4.3 Complete Training Algorithm

In Algorithm 4, we summarize DyNNIBAL. Initially, we are
given a set of targets Y . We select (randomly) landmarks
to apply Nyström. We encode and reduce the dimension-
ality of the targets. We construct an SG tree T over these
targets. For a given training example xt with label yt, we
use Algorithm 2 (with inputs of T , the datapoint x and a
given γ allowable error) to find a clustering of the labels
C. From this clustering, we can define the proposal distri-
bution Qpy|x,Cq (Equation 7). Then, we use this proposal
distribution to run a given number of Metropolis-Hastings
steps to provide samples from the softmax distribution. The
resulting samples are used to compute a loss for the given
example, L̂px, y‹q, and the result in a gradient step for the
dual-encoder parameters. After every w steps, we update
the tree using Algorithm 3. We describe the algorithm as
SGD for simplicity; a minibatch version is used in practice.

Algorithm 4 DyNNIBAL Training Algorithm
1: Input: Y: Targets, Xtrain “ tpx1, y1q, . . . , u: Training,
γ,m: allowed error, fθ, fφ: encoders, k: num samples,
η: learning rate, U : update upper-bound

2: INITIALIZETARGETENCODING() B Algorithm 6
3: Construct T B Algorithm from Zaheer et al. (2019)
4: for t from 0 to NumSteps do
5: Sample pxt, ytq from Xtrain

6: CÐ FINDCLUSTERINGpT , xt, γ,mq B Alg. 2
7: Qpy|x;Cq “ 1

Ẑ
exppβxfθpxq, fφpy

pCqqyq B Eq. 7
8: Sample Ns “ tysi : i P rksu via ysi QMH, i P rks.
9: Ẑ Ð expβxfθpxtq, fφpytqy `

ř

iPrks expβxfθpxtq, fφpysiqy

10: L̂Ð ´βxfθpxtq, fφpytqy ` logpẐq.
11: θ Ð θ ´ η∇ΘL̂, φÐ φ´ η∇φL̂
12: if t mod w “ 0 then
13: APPROXIMATEREENCODE() B Algorithm 5
14: T Ð UPDATESGTREEpT ,H, UqB Algorithm 3
15: return fθ, fφ

5 EXPERIMENTS

We compare our proposed approach, DyNNIBAL, to multi-
ple state-of-the-art methods for training dual encoders. We
evaluate on two retrieval datasets and also the entity linking
dataset, Zeshel (Logeswaran et al., 2019), in §D.

Natural Questions (NQ) (Kwiatkowski et al., 2019) is
a dataset for passage retrieval. The data points are nat-
ural language questions. The targets are passages from
Wikipedia. There are over 21 million targets and about
60K training examples. We report results using the string-
match-based recall evaluation that is used by previous work
(Karpukhin et al., 2020; Lindgren et al., 2021).

MSMARCO (Bajaj et al., 2016) contains 8.8 million tar-
gets and 500K training examples. Data points are natural
language questions and targets are passages extracted from
web documents. The task is to provide the correct passage

(target) for a given question (datapoint). Following previ-
ous work, we report the mean reciprocal rank.

We compare the following methods with dual encoders
as transformer (Vaswani et al., 2017) initialized from pre-
trained RoBERTa base (Liu et al., 2019). See details in §C.

In-batch Negatives. We approximate the softmax distribu-
tion by only using the positive target labels from within the
batch as in previous work (e.g., Henderson et al. (2017))

Uniform Negatives. Sample targets uniformly at random
from the collection of targets and use this to approximate
the softmax distribution (e.g., Karpukhin et al. (2020)).

Stochastic Negative Mining (Reddi et al., 2019). A large
number of targets is sampled uniformly at random. These
targets are stored with their stale representations on the ac-
celerator device. From this large number of targets, we ap-
proximate the softmax distribution with k sampled nega-
tives. We periodically, e.g. every 100 or 500 steps refresh
and change the negatives stored on the accelerator device.
The performance of this method depends on how many tar-
gets are stored on the accelerator device. In most settings,
memory becomes a bottleneck before the computational
burden of computing pairwise similarities on the acceler-
ator. We report performance in terms of this memory bot-
tleneck, relative to the overall dataset size.

Negative Cache (Lindgren et al., 2021). A recent approach
that keeps track of a collection of targets in a cache on ac-
celerator similar to Stochastic Negative Mining. However,
rather than randomly refreshing, negatives are added and
removed the targets in a streaming manner, FIFO or LRU.
We report results directly from the published paper.

Oracle Exhaustive Brute-Force. We exhaustively com-
pute all logits and exhaustively find the top-k closest tar-
gets for training. Including this method provides insights
into upper-bound empirical results, but it is impractical in
practice since it is extremely expensive in computation and
accelerator memory, and thus also financial cost. While we
obtain results from this “oracle” method on the datasets
above, running on meaningfully larger data would not have
been possible even if computation/budget were no object.

DyNNIBAL. This paper’s proposed cluster and approximate
re-encoding approach. We note that the only portion of
our training method sitting on accelerator memory is the
low-rank regression-based approximate re-encoding model
(§4.2), the landmark points, and regression training data.
Our use of lower dimensional (64 or 128) Nyström embed-
dings along with scalable and relatively lightweight index
structures stored in cheap CPU memory would allow our
approach to scale to billions of targets, and further scale to
many billions by leveraging the tree structure for additional
targeted truncations and cluster-based approximations.

Empirically, we find that the Metropolis-Hasting-based
sampling outperforms rejection sampling. We find using
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Performance Mem. % R@1 R@5 R@10 R@20 R@100

In-batch Negatives 0.0% 0.356 0.613 0.695 0.757 0.843
Uniform Negatives 0.0% 0.386 0.644 0.723 0.775 0.848
DyNNIBAL (This Paper) 0.3% 0.485 0.695 0.754 0.801 0.862
Stochastic Negative Mining 1.0% 0.444 0.672 0.739 0.785 0.855

Stochastic Negative Mining 3% 0.461 0.689 0.750 0.794 0.860
Negative Cache 6.3% - - - 0.784 0.856
Stochastic Negative Mining 10% 0.468 0.690 0.758 0.798 0.862

Exhaustive Brute Force 100% 0.500 0.700 0.765 0.804 0.866

Table 1: Natural Questions. We report the performance on the test set using the answer string retrieval recall (Karpukhin
et al., 2020). Methods are listed in ascending order of required accelerator memory (as % of Exhaustive Brute Force
memory). Scaling to many targets requires an approach that does not need accelerator memory, since storing such targets on
the accelerator will become a limiting bottleneck in terms of memory. DyNNIBAL uses lower dimensional representations
in CPU memory, an efficient tree update, and approximate re-encoding during training. DyNNIBAL performs significantly
better than the practical approaches with ď 1.0% memory. Error with respect to the Exhaustive Brute Force method is cut
by half in terms of R@1 with respect to all methods other than the impractical 10% memory Stochastic Negative Mining.
In more detail, DyNNIBAL (0.485 R@1) cuts error to 1.5 points compared to Exhaustive Brute Force (0.500), compared
to Stochastic Negative Mining 3% (0.461) cuts error to 3.9 points. Compared to Stochastic Negative Mining 10% (0.468)
which cuts error to 3.2, DyNNIBAL cuts error by over 2x more. In terms of R@5, DyNNIBAL also observes a strong 2 point
gain over the low-memory variant of Stochastic Negative Mining (1.0% Mem.)

MRR Mem. % @1 @10 @100

In-batch Negatives 0 0.140 0.242 0.254
Uniform Negatives 0 0.196 0.305 0.316
Negative Cache 0.06% - 0.310 -
Negative Cache 0.24% - 0.315 -
DyNNIBAL 0.76% 0.223 0.334 0.345
Negative Cache 0.96% - 0.323 -
Stochastic Neg. 1.0% 0.200 0.309 0.320

Stochastic Neg. 3.0% 0.216 0.331 0.342
Negative Cache 3.8% - 0.322 -
Negative Cache 15.15% - 0.331 -

Exhaustive 100% 0.228 0.345 0.356

Table 2: MSMarco Results. DyNNIBAL again outper-
forms competing methods that use similar low percent-
age memory requirements. In particular, DyNNIBAL out-
performs 1% memory Stochastic Negative Mining in terms
of MRR@1 by more than 2 points. Furthermore, we see
that even when Negative Cache uses 15.15% memory, a
150x increase compared to our approach, DyNNIBAL still
produces a higher MRR@10 result.

lower temperature and approximating the sampling proce-
dure to ensure that “harder” negatives are selected is bene-
ficial to end task performance. Rather than considering the
entire partition of targets, C, returned by Algorithm 2, we
consider the top-k closest clusters. We set m “ ´11 (MS-
MARCO) and m “ ´14 (NQ) as the deepest level of clus-
ters and restrict the size of frontier in Algorithm 2 to be
100. We run chains of length 2. Finally, as another empir-
ical approximation, we select the top scoring targets from
all the chains. We discuss these choices further in §C.

5.1 Empirical Results
We report the performance of each method in terms of
each dataset’s given evaluation metric. Alongside the per-
formance, we report the accelerator (GPU/TPU) memory
requirement as a percentage with respect to the Oracle
Exhaustive Brute-Force approach (storing all targets as
full dimensional embeddings). As noted when describing
Stochastic Negative Mining, we find that the main bottle-
neck for our competitors is the memory required to store
target embeddings on the accelerators (along with the trans-
former encoders), not the computation of logits. Thus of
crucial importance are DyNNIBAL’s advantages over base-
lines with respect to reduced need for accelerator memory.

Table 1 shows the results on the test set for NQ. We
observe that DyNNIBAL outperforms In-batch Negatives,
Uniform Negatives, and Stochastic Negative Mining us-
ing 1.0% memory in all recall metrics. In terms of recall
at 1, DyNNIBAL cuts the performance gap with respect to
exhaustive brute force by more than half compared to all
methods except 10% memory Stochastic Negative Mining.
Even using 10% memory with Stochastic Negative Min-
ing compared to 0.03% for DyNNIBAL leaves large per-
formance gaps in terms of recall at 1. Stochastic Negative
Mining achieves 0.468 versus DyNNIBAL’s 0.485.

Table 2 reports performance for all methods on MS-
MARCO in terms of mean reciprocal rank. Following past
work (Lindgren et al., 2021), we evaluate on the develop-
ment set. We find that performance on MSMARCO follows
a similar trend as NQ in that DyNNIBAL outperforms all
of the other low-memory approaches. In fact, even using
150x more memory Negative Cache still does not perform
as well as DyNNIBAL. DyNNIBAL sees a multiple point im-
provement in MRR@1 compared to competing methods.
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We consider the time needed to maintain the SG tree struc-
ture during training. We find on MSMARCO that, given
a collection of updated target embeddings, our dynamic
method (§3.5) is about 4x faster than the traditional ap-
proaches that rebuild the entire structure. Furthermore, we
find that our regression-based approximate re-encoding is
about 8x faster than running the encoder model on MS-
MARCO, and requires much less accelerator expense. In
terms of training steps-per-second efficiency between in-
dex maintenance, our approach does involve more compu-
tation: it is about four times slower than Stochastic Nega-
tive Mining’s simple logit-proportional sampling on a small
subset of targets; however, some of that is balanced by
faster index updates, and we expect that additional engi-
neering design could significantly speed up our method;
in any case, running Stochastic Negative Mining for more
training steps did not increase its accuracy.

6 RELATED WORK

Per-Target Free Parameters. A large body of work trains
classifiers with a massive number of targets. In much of this
work, the targets are directly parameterized with a d dimen-
sional vector, rather an embedding produced by an encoder
(Bengio and Senécal, 2008; Choromanska and Langford,
2015; Jernite et al., 2017; Daumé III et al., 2017; Sun et al.,
2019; Yu et al., 2022). Most closely related to our work
are methods that adaptively re-arrange tree-structured clas-
sifiers (Sun et al., 2019; Jasinska-Kobus et al., 2021, in-
ter alia). Blanc and Rendle (2018); Rawat et al. (2019) use
kernel-based approximations of the softmax, which gives
strong theoretical guarantees. Future work could consider
how to extend these methods to the dual-encoder setting.

Partition Functions & Probabilistic Models. MCMC
methods are widely used for posterior inference (Neal,
1993, 2000; Chang and Fisher III, 2013; Zaheer et al., 2016,
2017, inter alia). Unlike our setting, these methods are con-
cerned with finding a high quality estimate of the distribu-
tion as the end task. In our setting, we need an estimate
for every training point in each step of training. Most sim-
ilar (and the inspiration for our approach) is the Canopy-
sampler (Zaheer et al., 2017), uses a cover tree to derive an
efficient rejection sampler/Metropolis-Hastings algorithm
for exponential family mixture models. Unlike that work,
we consider approximation of the softmax, moving embed-
ded representations during training, and the relationship be-
tween the approximation quality and the gradient bias of
our estimator. Vembu et al. (2009) use MCMC-based ap-
proximations of distributions with large output spaces, but
does not use the clustering-based approximations presented
here nor does it consider the dual-encoder setting.

Reparameterization, discrete distributions. OS* sam-
pling, the Gumbel-Max trick and Perturb-and-MAP, are al-
ternative methods for sampling from distributions such as
the softmax (Dymetman et al., 2012; Tucker et al., 2017;

Maddison et al., 2016; Paulus et al., 2020; Jang et al., 2016;
Huijben et al., 2022). Future work could consider combin-
ing such reparameterization methods and our approach.

Nearest Neighbor Search, Clustering, Dynamic Struc-
tures. Cover Trees (Beygelzimer et al., 2006) and SG Trees
(Zaheer et al., 2019) were originally used as nearest neigh-
bor indexes. There are many tree and DAG-based index
structures that support addition and deletion of items such
as Navigating Nets (Krauthgamer and Lee, 2004), HNSW
(Malkov et al., 2014), and NN-Descent (Dong et al., 2011).
Also, closely related is work on maintaining dynamic hash-
based indexes (Jain et al., 2008; Zhang et al., 2020). Apart
from nearest neighbor index structures, scalable methods
for hierarchical clustering organize large datasets into tree
structures (Bateni et al., 2017; Moseley et al., 2019; Dhuli-
pala et al.). Other work builds these clusterings in an in-
cremental or dynamic setting (Liberty et al., 2016; Choro-
manska and Monteleoni, 2012; Kobren et al., 2017; Menon
et al., 2019). Maintaining structures in a dynamic setting is
studied in graph algorithms (e.g., minimum spanning tree).
Efficient and parallelizable dynamic graph algorithms exist
(Sleator and Tarjan, 1981; Holm et al., 2001; Tseng et al.,
2019; Dhulipala et al., 2020, inter alia).

Cover Trees. New algorithms and extensions of cover trees
have been developed (Curtin et al., 2013, 2015; Izbicki and
Shelton, 2015; Zaheer et al., 2019; Elkin and Kurlin, 2021;
Gu et al., 2022, inter alia). Cover trees are also widely used
in other settings such as k-means clustering (Curtin, 2017)
and Gaussian processes (Terenin et al., 2022).

Task Specific Related Work. Learned models for pas-
sage retrieval and entity linking are extensively studied (Wu
et al., 2019; Karpukhin et al., 2020; Bhowmik et al., 2021;
Qu et al., 2021; Thakur et al., 2021; Ren et al., 2021; Ni
et al., 2021; FitzGerald et al., 2021; Gao and Callan, 2021;
Dai et al., 2022; Izacard et al., 2022, inter alia). Most sim-
ilar to our work is ANCE (Xiong et al., 2020), which uses
a nearest neighbor index for a contrastive objective. Other
work includes alternative architectures to dual encoders
(Khattab and Zaharia, 2020; Qian et al., 2022; Santhanam
et al., 2021) and learning efficient hashing-based represen-
tations (Yamada et al., 2021).

7 CONCLUSION

We present DyNNIBAL, a dynamic tree structure for
clustering-based approximations of the softmax distribu-
tion. Our algorithm efficiently gives provably accurate sam-
ples for training dual-encoders with cross-entropy loss.
Empirically, DyNNIBAL outperforms state-of-the-art on
datasets with over twenty million targets, reducing error
by half compared to an exhaustive oracle. We find that
our dynamic maintenance of the tree structure can be 8x
faster than exhaustive re-indexing. Furthermore, our ap-
proach outperforms state-of-the-art while using 150x less
accelerator memory.



Improving Dual-Encoder Training through Dynamic Indexes for Negative Mining

References

Dhruv Agarwal, Rico Angell, Nicholas Monath, and An-
drew McCallum. Entity linking via explicit mention-
mention coreference modeling. In Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies
(NAACL-HLT), 2022.

Ahmad Ajalloeian and Sebastian U Stich. On the con-
vergence of sgd with biased gradients. arXiv preprint
arXiv:2008.00051, 2020.

Olivier Bachem, Mario Lucic, Hamed Hassani, and An-
dreas Krause. Fast and provably good seedings for k-
means. Advances in neural information processing sys-
tems (NeurIPS), 2016.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms
marco: A human generated machine reading comprehen-
sion dataset. arXiv preprint arXiv:1611.09268, 2016.

Mohammadhossein Bateni, Soheil Behnezhad, Mahsa
Derakhshan, MohammadTaghi Hajiaghayi, Raimondas
Kiveris, Silvio Lattanzi, and Vahab Mirrokni. Affinity
clustering: Hierarchical clustering at scale. Advances
in Neural Information Processing Systems (NeurIPS),
2017.
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Supplemental Material: Improving Dual-Encoder Training through Dynamic
Indexes for Negative Mining

A EFFICIENT AND ACCURATE SAMPLES FROM THE SOFTMAX DISTRIBUTION

A.1 Rejection Sampling

Rejection sampling for the softmax distribution follows closely the proof in Zaheer et al. (2017) for mixture models.

We sample from:

y „
exppβxfθpxq, fφpŷqyq

ř

y1 exppβxfθpxq, fφpŷ1qyq

and accept with probability

e´εr
exppβxfθpxq, fφpyqyq

exppβxfθpxq, fφpŷqyq
.

If we have

e´εr ď
exppβxfθpxq, fφpŷqyq

exppβxfθpxq, fφpyqyq
ď eεr . (12)

Then, if we want determine the probability of sampling a particular target, y, denoted Prpyq. Producing y can be done by
sampling and accepting y or and sampling and rejecting another target y1 and then accepting y in one of the subsequent
rounds of sampling.

Prpyq “
exppβxfθpxq, fφpŷqyq

ř

y2 exppβxfθpxq, fφpŷ2qyq
e´εr

exppβxfθpxq, fφpyqyq

exppβxfθpxq, fφpŷqyq
` Prpyq

ÿ

y1PY

˜

1´ e´εr
exppβxfθpxq, fφpy

1qyq

exppβxfθpxq, fφpŷ1qyq

¸

exppβxfθpxq, fφpŷ1qyq
ř

y2 exppβxfθpxq, fφpŷ2qyq

“ e´εr
exppβxfθpxq, fφpyqyq

ř

y2 exppβxfθpxq, fφpŷ2qyq
`

Prpyq
ř

y2 exppβxfθpxq, fφpŷ2qyq

ÿ

y1PY

˜

1´ e´εr
exppβxfθpxq, fφpy

1qyq

exppβxfθpxq, fφpŷ1qyq

¸

exppβxfθpxq, fφpŷ1qyq

“ e´εr
exppβxfθpxq, fφpyqyq

ř

y2 exppβxfθpxq, fφpŷ2qyq
`

Prpyq
ř

y2 exppβxfθpxq, fφpŷ2qyq

ÿ

y1PY

´

exppβxfθpxq, fφpŷ1qyq ´ e
´εrexppβxfθpxq, fφpy

1qyq

¯

“ e´εr
exppβxfθpxq, fφpyqyq

ř

y2 exppβxfθpxq, fφpŷ2qyq
`

Prpyq
ř

y2 exppβxfθpxq, fφpŷ2qyq

˜

ÿ

y1PY
exppβxfθpxq, fφpŷ1qyq ´ e

´εr
ÿ

y1PY
exppβxfθpxq, fφpy

1qyq

¸

“ e´εr
exppβxfθpxq, fφpyqyq

ř

y2 exppβxfθpxq, fφpŷ2qyq
` Prpyq ´

Prpyq
ř

y2 exppβxfθpxq, fφpŷ2qyq
e´εrZ

Prpyq “
1

Z
exppβxfθpxq, fφpyqyq

(13)
And so the rejection sampling strategy will sample from the true softmax distribution.

A.2 Metropolis-Hastings Approximate Softmax

A common approach for providing samples from a distribution that is difficult to sample from is the Metropolis-Hastings
algorithm. Recall that Metropolis-Hastings produces a sample from P py|xq by iteratively sampling a state change from a
proposal distribution, denoted Q, and determines whether or not to ‘accept’ the state change based on an acceptance ratio.
In particular, we will use an independent Metropolis-Hastings method. That is the proposal distribution Q is independent
of the current state of the Markov chain. For the t-state in the chain we have a proposal distribution of the form yptq „
Qpy|x, ypt´1qq “ Qpy|xq. The acceptance ratio is defined as:

Apypt´1q, yptqq “ min

ˆ

1,
P pyptq|xq

P pypt´1q|xq

Qpypt´1q|xq

Qpyptq|xq

˙

(14)
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A.3 Proofs

Proposition 1. Under Assumption 3, given the clustering at level `, Cp`q, approximating y with the cluster representative,
ypCp`qq, satisfies the following with εr “ β ¨ b`:

e´εr ď
exppβxfθpxq, fφpy

pCp`qqqyq

exppβxfθpxq, fφpyqyq
ď eεr . (8)

Proof.

exppβxfθpxq, fφpy
pCqyq

exppβxfθpxq, fφpyqyq
ď exppβxfθpxq, fφpy

pCqq ´ fφpyqyq (15)

ď exppβ||fθpxq||2||fφpy
pCqq ´ fφpyq||2q B Cauchy-Schwartz (16)

(17)

ď exppβ||fφpy
pCqq ´ fφpyq||2q B Assumption 3 (18)

ď exppβb`q B Covering Property. (19)

Proposition 2. Given Assumption 3, to achieve a maximum ratio of true softmax to proposal distribution equal to γ i.e.,
maxyPY

P py|xq
Qpy|x;Cp`qq

“ γ, we need the clustering at level `, where: ` fi maxt` P Z : b` ď 1
2β log γu.

Proof. Let ` be the level of the clustering C used.

max
yPY

P py|xq

Qpy|x;Cp`qq
“ max

yPY

exppβxfθpxq, fφpyyq

exppβxfθpxq, fφpy
pCp`qqqy

¨
Ẑ

Z
(20)

ď max
yPY

exppβxfθpxq, fφpyyq

exppβxfθpxq, fφpy
pCp`qqqy

¨max
y1PY

exppβxfθpxq, fφpy
1pCp`qqqyq

exppβxfθpxq, fφpy1yq
(21)

The above inequality follows by property of mediant. Now define:

R1 fi max
yPY

exppβxfθpxq, fφpyqyq

exppβxfθpxq, fφpy
pCp`qqqyq

(22)

R2 fi max
y1PY

exppβxfθpxq, fφpy
1pCp`qqqyq

exppβxfθpxq, fφpy1qyqq
. (23)

Observe for R1:

max
yPY

exppβxfθpxq, fφpyqyq

exppβxfθpxq, fφpy
pCp`qqqyq

“ max
yPY

exppβxfθpxq, fφpyqy ´ βxfθpxq, fφpy
pCp`qqqyq (24)

“ max
yPY

exppβxfθpxq, fφpyq ´ fφpy
pCp`qqqyq (25)

ď max
yPY

exppβ||fθpxq||2||fφpyq ´ fφpy
pCp`qqq||2q (26)

ď max
yPY

exppβ||fφpyq ´ fφpy
pCp`qqq||2q ď exppβb`q (27)

Similarly for R2:

max
yPY

exppβxfθpxq, fφpy
pCp`qqyq

exppβxfθpxq, fφpyqy
ď max

yPY
exppβ||fφpy

pCp`qqq ´ fφpyq||2q ď exppβb`q (28)
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Combining above two:

max
yPY

P py|xq

Qpy|x;Cq
ď R1 ˆR2 ď exppβb`q exppβb`q “ expp2βb`q (29)

Thus, to maintain maximum ratio γ, we need to select ` such that:

expp2βb`q ď γ (30)

b` ď
1

2β
log γ (31)

which is as stated in the proposition.

Remark 1. Observe the relationship between γ and `. Descending one more level of the tree to level ` ´ 1, reduces the
ratio from γ (selecting level `) to γ

1
b .

Proof. Let,

b` ď
1

2β
log γ (32)

b`´1 ď
1

2β
log γ1, (33)

then,

1

b
b` ď

1

b

1

2β
log γ (34)

b`´1 ď
1

2β
log γ

1
b , (35)

and so γ1 ď γ
1
b .

Proposition 3. Algorithm 1 produces samples from the softmax P py|xq in time Op|C`| ` α4eβb
``2

q for cover trees and
Op|C`| ` α3eβb

``2

q for SG trees.

Proof. We want to show two properties of the rejection sampling algorithm, its running time and its correctness (e.g., that
it samples from the true posterior).

The proof follows very closely to the analogous algorithm for mixture models by Zaheer et al. (2017).

First, we want to show that the running time is Op|Cp`q| ` BFeb
`

q where BF is the branching factor for cover/SG trees
(Opα4q and Opα3q respectively). We begin by considering the expected number of rejections from the first level `. Based
on our definition of Q, the number of samples is upper bounded by eβb

``2

, therefore the number of rejections eβb
``2

´ 1.
If we consider the next level down, there would be eβb

``1

´ 1 rejections, the level after that eβb
`

´ 1, eβb
`´1

´ 1, etc. We
can use the branching factor BF to give a bound on how expensive the sampling step is at every level. We are interested
therefore in:

BF
8
ÿ

k“1

´

eβb
`´k

´ 1
¯

. (36)

We have that ex ´ 1 ď xea for x P r0, as and
ř8

k“1 b
´k “ 1 and so:

BF
8
ÿ

k“1

´

eβb
`´k

´ 1
¯

ď BF ¨ eβb
`
8
ÿ

k“1

b´k “ BF ¨ eβb
`

(37)

We then need to consider the cost of the initial sampling step, which is not BF, but rather depends on the number of
clusters in the partition |Cp`q|, leading to Op|Cp`q| ` BF ¨ eβb

`

q. It is important to note here that while the running time
of the algorithm depends only on the branching factor of the trees, the depth of the SG tree differs from that of the cover
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tree. The depth of the SG tree is Oplogpdmax
dmin
qq where dmax is the largest pairwise distance and dmin the minimum pairwise

distance (this ratio also know as the aspect ratio), whereas the depth of the cover tree is Opα2 log |Y|q.

Next, let’s consider the correctness of the method. We want to determine the probability of sampling a particular target
y, denoted Prpyq. Recall that to sample y, we need to follow the path in the tree from level ` to the level in which y first
appears as a cluster representative and accept that cluster. We will refer to this level in which y first appears as k. There is a
path of selected nodes C`, C`´1, . . . , Ck. Let Apyq be the probability of accepting y. To reduce the complexity of notation,
define:

wC “ exppβxfθpxq, fφpCqyq (38)

We can write Apyq as:

Apyq “ 1

Z`
eβb

`

NC`
wC`

B Sample at top level (39)

ˆ

«

ź̀

j“k`1

˜

1´

1
|Y|wCj

eβbjNCj
wCj

¸

eβb
j´1

NCj´1
wCj´1

eβbjNCj
wCj

´ 1
|Y|wCj

ff

B Rejecting and selecting path to Ck (40)

ˆ

1
|Y|wCk

eβb
kNCk

wCk

B Accepting the given cluster Ck (41)

“
1

Z`
eβb

`

NC`
wC`

«

ź̀

j“k`1

eβb
j´1

NCj´1wCj´1

eβbjNCjwCj

ff

1
|Y|wCk

eβbkNCk
wCk

(42)

“
1

Z`
eβb

`

NC`
wC`

«

eβb
j

NCjwCj

eβbjNCjwCj

ff

1
|Y|wCk

eβbkNCk
wCk

(43)

“
1

Z`

1

|Y|
wCk

(44)

Now, we have to consider the probability R of restarting the sampler, e.g.,

R “ 1´
ÿ

y1

Apy1q “ 1´
ÿ

y1

1

Z`

1

|Y|
wCk

“ 1´
1

|Y|
Z

Z`
(45)

Finally, consider Prpyq:

Prpyq “ Apyq ` Prpyq ¨R (46)

“
1

Z`

1

|Y|
wy ` Prpyq ´ Prpyq

1

|Y|
Z

Z`
(47)

Prpyq “
1

Z
wy (48)

Therefore, the algorithm samples from the true softmax.

Proposition 4. Let C be the output of Algorithm 2, then maxyPY
P py|xq
Qpy|x,Cq ď γ under Assumption 3.

Proof. Recall that Proposition 2 ensures that the initial partition achieves maxyPY
P py|xq

Qpy|x;Cp`qq
“ γ. For any cluster in the

partition discovered by the algorithm, C P C, let k ă ` be level of the cluster. We therefore have:

max
yPC

P py|xq

Qpy|x;Cq
ď exppβbkq ď exppβb`q. (49)

The covering property and triangle inequality ensures that if ||fθpxq ´ fφpCq||2 ą bk ` bm, then every target in C at least
bm from fθpxq.
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A.4 Gradient-Bias

Proposition 5. Let P be the true softmax and QMH be the Metropolis-Hastings approximation to the softmax. Under
Assumption 2, we have ||Er∇ΘL̂s ´∇ΘL|| ď 2εβM , where ||P ´QMH||TV ď ε.

Proof. Observe that:

∇ΘLpxi, yiq “ ´β∇Θxfθpxiq, fφpyiqy ` βEP r∇Θxfθpxiq, fφpyqys (50)

Er∇ΘL̂pxi, yiqs “ ´β∇Θxfθpxiq, fφpyiqy ` βEQMHr∇Θxfθpxiq, fφpyqys (51)

Er∇ΘL̂pxi, yiqs ´∇ΘLpxi, yiq “ βEQMHr∇Θxfθpxiq, fφpyqys ´ βEP r∇Θxfθpxiq, fφpyqys (52)

Er∇ΘL̂pxi, yiqs ´∇ΘLpxi, yiq “ β
ÿ

y

∇Θxfθpxiq, fφpyqypP py|xq ´QMHpy|xqq (53)

Now using the bound on the total variation:

||Er∇ΘL̂pxi, yiqs ´∇ΘLpxi, yiq|| “
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

β
ÿ

y

∇Θxfθpxiq, fφpyqypP py|xq ´QMHpy|xqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(54)

“ β
ÿ

y

||∇Θxfθpxiq, fφpyqy|| ¨ |pP py|xq ´QMHpy|xq| (55)

ď β
ÿ

y

M |pP py|xq ´QMHpy|xq| (56)

“ βM}P ´QMH}1 (57)
“ 2βM}P ´QMH}TV (58)
ď 2βMε (59)

A.5 Dynamic Maintenance of the Tree Structure

Proposition 6 Under Assumptions 1,2,3, let φt and φt`w refer to the model parameters and model parameters after w
more steps of gradient descent with learning rate η.

ˇ

ˇ||fφt
pyq ´ fφt

py1q||2 ´ ||fφt`w
pyq ´ fφt`w

py1q||2
ˇ

ˇ ď 4wηβLM. (60)

Proof. We analyze this with similar techniques and assumptions as Lindgren et al. (2021). First consider a bound on the
gradient norm. Let k by the number of negative samples where the negative samples are given by Ns “ tysj : j P rksu

||∇ΘL̂pxi, yiq|| “
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´ β∇Θxfθpxiq, fφpyiqy ` β
1

k

k
ÿ

j“1

∇Θxfθpxiq, fφpyysj qy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(61)

ď β||∇Θxfθpxiq, fφpyiqy|| ` β
1

k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

j“1

∇Θxfθpxiq, fφpyysj qy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(62)

ď β||∇Θxfθpxiq, fφpyiqy|| ` β
1

k

k
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∇Θxfθpxiq, fφpyysj qy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(63)

ď 2βM (64)
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Now, consider the difference of the dual encoder parameters at timestep, t, Θt and at timestep, t` w, Θt`w.

Θt ´Θt`w “

t`w
ÿ

i“t

η∇ΘL̂pxi, yiq (65)

||Θt ´Θt`w|| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t`w
ÿ

i“t

η∇ΘL̂pxi, yiq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(66)

ď

t`w
ÿ

i“t

η

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

∇ΘL̂pxi, yiq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(67)

“ wη2βM (68)

Applying the triangle inequality
ˇ

ˇ||fφtpyq ´ fφtpy
1q|| ´ ||fφt`wpyq ´ fφt`wpy

1q||
ˇ

ˇ (69)

ď
ˇ

ˇ||fφtpyq ´ fφt`wpyq|| ` ||fφt`wpyq ´ fφtpy
1q|| ´ ||fφt`wpyq ´ fφt`wpy

1q||
ˇ

ˇ (70)

ď
ˇ

ˇ||fφt
pyq ´ fφt`w

pyq|| ` ||fφt`w
py1q ´ fφt

py1q|| ` ||fφt`w
pyq ´ fφt`w

py1q|| ´ ||fφt`w
pyq ´ fφt`w

py1q||
ˇ

ˇ (71)

“
ˇ

ˇ||fφt
pyq ´ fφt`w

pyq|| ` ||fφt
py1q ´ fφt`w

py1q||
ˇ

ˇ (72)

Recall that the dual encoders satifies the Lipschitz assumption (Assumption 1):

||fφt
pyq ´ fφt`w

pyq|| ď L||Θ´Θ1|| ď wη2βLM @y (73)

And so:
ˇ

ˇ||fφt
pyq ´ fφt

py1q|| ` ||fφt`w
pyq ´ fφt`w

py1q||
ˇ

ˇ ď 4wηβLM. (74)

B EFFICIENT RE-ENCODING OF TARGETS

In this section, we describe in more detail the re-encoding part of DyNNIBAL. Let’s recap the structure of the re-encoding
model. Recall that we keep a cached, low-dimensional version of each encoded target. We denote this cache as Y 1t Ă Rd1

where d1 is the number of landmarks used in Nyström / the reduced dimensionality and t represents the number of gradient
steps. Note that while we denote separate caches for each time step, we need not physically store multiple such caches.
The cache from the previous time step can be overwritten during the update.

We refer to Yt as the set of target embeddings in their full dimensional space. This set Yt is never fully instantiated. We
have a set of d1 landmark points, which are kept fixed during training and which were sampled uniformly at random. We
will store these landmarks in their full dimensional form. We denote the set of landmarks as S. We also have a set of
training points used to fit the regression model, R, which maps target embeddings in Yt to form Yt`w. Each time we fit
R, we sample s1 targets uniformly at random and build a training dataset for the regressor using the updated dual encoder,
fφt`w

, specifically, p~y1, fφt`w
py1qq, . . . p ~ys1 , fφt`w

pys1qq. We only need to store the regression training dataset points and
the landmarks in their full dimension form. For all other targets, we can compute their approximate full dimensional
representation using R and then immediately project into lower dimensional space d1 using the landmarks/Nyström. We
define the regression model R to be a low-rank, Nyström, regression model with the same landmarks S. Therefore, the
input to the regression model can be the low-dimensional representations.

In summary, the approximate re-encoding procedure would, re-encode s1 points using the new encoder model, fφt`w , build
a training dataset for the regression model R, fit the regression model R, use R to update the landmark point representation
S, use R and S to build the low-dimensional embeddings for all targets in Y 1t as well as the corresponding pSTKSq´1

projection matrix. This is summarized in Algorithm 5 (with initialization in Algorithm 6), which is called as a subroutine
of the overall training algorithm (Algorithm 4).

It is important to note that we do not use these approximate re-encoded targets at evaluation time. We only use these
dimensionality reduced targets at training time.

Lastly, we note that while we sample the landmark points from only the targets empirically, one could (in a more principled
way) sample from all datapoints and targets.
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Algorithm 5 Approximate Re-Encode
1: Let S refer to the set of landmark points
2: Sample s1 targets uniformly at random from the collection of targets to form S1t.
3: Let Y 1S1t be the low dimensional representations of the training points.
4: Build regression training dataset p~y1, fφt`w

py1qq, . . . p ~ys1 , fφt`w
pys1qq using the updated encoder model.

5: Train R on p~y1, fφt`w
py1qq, . . . p ~ys1 , fφt`w

pys1qq B R is a low-rank regression model using the same landmarks S.
6: Update the embedding of landmark representatives S using R. Update Nyström projection matrix pSTKSq´1

7: Produce new low-dimensional embeddings for all targets Y 1t`w using R.

Algorithm 6 Initial Target Encoding
1: Sample landmarks S uniformly at random
2: Encode landmarks, fit Nyström.
3: Encode all of the targets with the encoder model fφ and use Nyström to produce low dimensional representations Y 10

B.1 Building SG Trees with Nyström Representations

When we use our Nyström-based lower dimensional representations, the unit norm assumptions about the targets no longer
apply. At query time, for a given point x, we can think about it as corresponding to some row i in the KS matrix. Similarly
each target y to some column j in pSTKSq´1STK. This corresponds to using the pSTKSq´1STK representations as the
target cluster representatives in the tree structure. However, when building (or re-building) the tree structure, we need to be
able to measure the similarity between two targets, i.e., using both KS and pSTKSq´1STK. We only need to use the KS
representations during construction / re-building time however and if memory is a concern, we could only store a single
representation and use the pSTKSq´1 when measuring (dis)similarity.

Finally, we need to be able to use the SG Tree despite using inner product similarities (rather than a proper dis-
tance measure). Rather than the approach presented by Zaheer et al. (2019), we find that converting to distance by
expp´KSpSTKSq´1STKq is more effective. We find that setting the base of the SG tree to be 1.05 seems to work
well with this conversion of similarities to distances. Note that these modifications mean that even running the exact near-
est neighbor search algorithm may result in approximations. However, we find empirically that this structure is sufficient
for training dual encoders.

C ADDITIONAL EMPIRICAL DETAILS

The dual encoder models used in all experiments are transformers, initialized with the Roberta base model (Liu et al.,
2019). We use the hyperparameters presented in Table 3. We note that the changes unique for Zeshel were done to account
for the longer data point input length.

All models unit-norm the output embedding that is produced by the dual encoder. All models perform score-scaling as in
Lindgren et al. (2021) with a scaling factor of 20.0. All models share sampled negative examples across all positives in the
same batch. In-batch negatives are used by all models. Stochastic Negative mining and DyNNIBAL use uniform negatives
in addition to the sampled hard negatives.

We first train models using uniform negatives and then apply DyNNIBAL. Note that this mimics the hypothesis that the
softmax distribution would be closer to uniform in the beginning of training. We perform 4000 steps of uniform negatives
for NQ and 8000 MSMARCO.

We use 128 landmarks in Nyström/regression model for all datasets. For Natural Questions and MSMARCO we use 8192
training examples for the regression model. For Zeshel we use 256 training examples for the regression model. For NQ,
we perform a full refresh of all embeddings (re-initializing Nyström/regression model) once during training at step 7500.

We find that changing the number of landmarks used does not dramatically change the performance of the method. For in-
stance, on Natural Questions (NQ), we find that in terms of R@1, 256 landmarks achieves 0.488 while with 128 landmarks
gets 0.481 and 64 landmarks gets 0.479 and R@100 with 256 landmarks is 0.862 and 128 landmarks gets 0.859 and 64
landmarks gets 0.859.
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Name Value

Train Batch Size 128 total
Uniform Negatives 64 per training example (32 for Zeshel)
Sampled Negatives 64 per training example
Initial Warmup Learning Rate 1e-5
End Warmup Learning Rate 1e-7
Warmup Steps 10,000
Warmup Decay Type Linear
Optimizer Adam
Optimizer Beta1 0.9
Optimizer Beta2 0.999
Optimizer Epsilon 1e-8
Score Scaling 20.0
Max Data Point Feature Length 128 (256 for Zeshel)
Max Target Feature Length 256
Encoder Embedding Dimension 768

Table 3: Hyperparameters used for training dual encoder models.

Recall Mem. % R@1 R@10 R@100

In-batch Negatives 0% 0.388 0.726 0.861
Uniform Negatives 0% 0.393 0.713 0.851
Stochastic Neg 6.59% 0.413 0.737 0.865
DyNNIBAL 0.064% 0.421 0.742 0.870

Exhaustive 100% 0.444 0.756 0.880

Table 4: Zeshel (Dev) Results. We measure the recall performance on the entity linking dataset. We note that this dataset is
considerably smaller than the other datasets in terms of number of targets. Still, we find that DyNNIBAL can achieve better
performance than baseline methods while approaching the performance of the brute force oracle. DyNNIBAL achieves
better performance that a Stochastic Negative Sampling baseline which uses more memory.

C.1 SG Tree Details

We use the Nyström-modified SG Tree that is described in §B.1. We notice that the tree construction and sampling proce-
dure can be done much more efficiently on smaller trees. And so, rather than constructing one tree over all the targets, we
construct a forest of 100 trees of roughly equal size. We construct and build samples from this forest independently and
aggregate samples (by taking the max unnormalized probability).

D ZESHEL EXPERIMENTAL RESULTS

Zeshel (Logeswaran et al., 2019) is a dataset for classifying (linking) ambiguous mentions of entities to their unambigu-
ous entity pages in Fandom Wikias. The original dataset separates individual Fandom Wikia into separate domains, which
severely limits the number of targets. To make the task more challenging and better suited for evaluation of models approx-
imating the softmax loss, we combine all Wikias together, resulting in a collection of 492K targets. We evaluate in terms
of recall of the correct entity.

Tables 4 and 5 report the dev and test scores for the Zeshel dataset. Recall that the number of targets in this dataset
is significantly less than the other two datasets („500K compared to 21M (Natural Questions), 8.8M (MSMARCO)). We
find that the performance of DyNNIBAL improves upon baselines of Stochastic Negative Sampling and Uniform Negatives.

Because of the reduced size of the dataset, we use only 256 training points for the regression model. We also use a
relatively small number of examples for stochastic negative mining (32768 in total), though this accounts for a larger
memory percentage overall because of the reduced number of targets.
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Recall Mem. % R@1 R@10 R@100

In-batch Negatives 0% 0.344 0.627 0.778
Uniform Negatives 0% 0.323 0.593 0.747
Stochastic Neg 6.59% 0.330 0.609 0.756
DyNNIBAL 0.064% 0.348 0.623 0.766

Exhaustive 100% 0.348 0.617 0.767

Table 5: Zeshel (Test) Results. We measure the recall performance on the entity linking dataset. While the dataset has
considerably fewer targets, DyNNIBAL achieves nearly the same result as the exhaustive brute force method and better
results than Stochastic Negative Mining and Uniform Negatives. In this setting, In-Batch Negatives performs very well,
perhaps because of the relatively small number of targets.

E LIMITATIONS

The focus of this work is on improving the approximation of the cross entropy loss and the quality of the samples from
the softmax distribution. For some tasks, it may be the case that different objectives, including multi-task, pretraining, con-
trastive, and others may lead to models that generalize better. After applying Nyström, approximate re-encoding step, and
the sampling approximations, we lose theoretical properties. Future work could investigate both why these approximations
work well and how to bound the approximation quality.

F ETHICAL CONSIDERATIONS

The proposed approach is subject to the same biases and ethical considerations as the dual encoders used as the base model.
The reduction in error cannot be assumed to reduce or exacerbate the potentially negative aspects of such an encoder model.
The biases and considerations of any such retrieval/classification task need to be carefully considered as with any model.
The implications of negative sampling via uniform vs. hard methods will likely impact the decision boundary of the model
(as observed in our empirical experiments). Understanding how the training method relates to biases in the data, labels,
targets, would be an important consideration.
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Symbol Definition

x A data point / the features of a data point, e.g. input to the data dual encoder.
X Space of data points
y A target / the features of a target, e.g. input to the dual encoder.
Y Set of all targets
L Loss function, in particular cross entropy
L̂ Our approximate, sampling based loss function
L Lipschitz value, Assumption 1
M Bound on gradient of logits, Assumption 2
fθ The data point dual encoder
fφ The target dual encoder

Z The partition function for the softmax. Eq 1.
Ẑ The approximated partition function using the clustering-based approach. Eq 7.
Zk The normalizer constant when descending to level k in the rejection sampling approach.
Θ The parameters of both the data and target dual encoders.
P , P py|xq True, exact softmax distribution
Q The proposal distribution for Metropolis-Hastings. Eq 7.
QMH The distribution over labels given by Metropolis Hastings sampling procedure. See Appendix A.2.
e´εr Used for unnormalized probability error term in rejection sampling
d Dimensionality of dual encoder output.

C A clustering of the targets.
ypCq The cluster assignment of target y. Overloaded to also be the cluster’s representative (or its features).
C A cluster of targets, e.g. C Ď Y .
fφpy

pCqq,fφpCq The encoded representation of the cluster’s representative.
T A hierarchical clustering / cover or SG Tree of the targets
b The base parameter of the cover / SG tree
chpCq The children of a node in the hierarchical clustering/cover tree.
Cp`q The partition associated with level ` of the cover tree.
Yp`q The set of cluster representatives for the partition associated with level ` of the cover tree.
α The expansion constant used in our theoretical analysis 4
MAXDpCq The maximum distance between the cluster representative of C and one of its descendants in an SG Tree.
MINDpCq The minimum distance between one of the pairs of children of C in an SG Tree.

γ The upper bound on the ratio of the true softmax distribution, maxy
P py|xq
Qpy|x;Cq ď γ

ρ Used as γρ to trade off between importance of R1 and R2.
w Number of steps of gradient descent.
s The Metropolis Hastings chain length
η Gradient descent learning rate
dmax Maximum pairwise distance among all pairs in a cover tree
dmin Minimum pairwise distance among all pairs in a cover tree

S Binary matrix representing landmarks for Nyström
S Set of landmarks for Nyström
K Pairwise similarity matrix for Nyström
R Low-rank (Nyström) regression model to approximately re-encode the targets
Y 1S1t

The low dimensional representations of the training points for R. Not to be confused
with Yp`q, the representatives in a level of the cover tree.

Table 6: Summary of Notation Used
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