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Abstract

In recent years, maximization of DR-submodular
continuous functions became an important re-
search field, with many real-worlds applications
in the domains of machine learning, commu-
nication systems, operation research and eco-
nomics. Most of the works in this field study
maximization subject to down-closed convex set
constraints due to an inapproximability result by
Vondrák (2013). However, Dürr et al. (2021)
showed that one can bypass this inapproxima-
bility by proving approximation ratios that are
functions of m, the minimum ℓ∞-norm of any
feasible vector. Given this observation, it is
possible to get results for maximizing a DR-
submodular function subject to general convex
set constraints, which has led to multiple works
on this problem. The most recent of which is a
polynomial time 1

4 (1−m)-approximation offline
algorithm due to Du (2022). However, only a
sub-exponential time 1

3
√
3
(1−m)-approximation

algorithm is known for the corresponding online
problem. In this work, we present a polynomial
time online algorithm matching the 1

4 (1 − m)-
approximation of the state-of-the-art offline algo-
rithm. We also present an inapproximability re-
sult showing that our online algorithm and Du’s
offline algorithm are both optimal in a strong
sense. Finally, we study the empirical perfor-
mance of our algorithm and the algorithm of
Du (which was only theoretically studied pre-
viously), and show that they consistently out-
perform previously suggested algorithms on rev-
enue maximization, location summarization and
quadratic programming applications.
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1 INTRODUCTION

Optimization of continuous DR-submodular functions has
gained prominence in recent times. Such optimization is an
important tractable subclass of non-convex optimization,
and captures problems at the forefront of machine learn-
ing and statistics with many real-world applications (see,
e.g., (Bian et al., 2019; Hassani et al., 2017a; Mitra et al.,
2021; Soma and Yoshida, 2017)). The majority of the exist-
ing works on DR-submodular optimization (and submod-
ular optimization in general) have been focused either on
monotone objective functions, or optimization subject to a
down-closed convex set constraint.1 However, many real-
world problems are naturally captured as optimization of a
non-monotone DR-submodular function over a constraint
convex set that is not down-closed. For example, consider
a streaming service that would like to produce a summary
of recommended movies for a user. Often the design of the
user interface places strong bounds on the size of the sum-
mary displayed to the user, leading to a non-down-closed
constraint. Furthermore, the quality of the summary is of-
ten captured by a non-monotone objective since putting
very similar films in the summary is detrimental to both
its value and professional look.

Motivated by the above-mentioned situation, a few recent
works started to consider DR-submodular maximization
subject to a general (not necessarily down-closed) convex
set constraint K. In general, no constant approximation ra-
tio can be guaranteed for this problem in sub-exponential
time due to an hardness result by Vondrák (2013). How-
ever, Dürr et al. (2021) showed that this inapproxima-
bility result can be bypassed when the convex set con-
straint K includes points whose ℓ∞-norm is less than the
maximal value of 1. Specifically, Dürr et al. (2021) pre-
sented a sub-exponential time offline algorithm guarantee-
ing 1

3
√
3
(1 − m)-approximation for this problem, where

m is the minimal ℓ∞-norm of any vector in K. Later,
Th´̆ang and Srivastav (2021) showed how to obtain a sim-
ilar result in an online (regret minimization) setting, and

1A set K ⊆ [0, 1]n is down-closed if, for every two vectors
x,y ∈ [0, 1]n, x ∈ K whenever y ∈ K and y coordinate-wise
dominates x.
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an improved sub-exponential offline algorithm obtaining
1
4 (1−m)-approximation was suggested by Du et al. (2022).
Very recently, Du (2022) provided the first polynomial
time algorithm for this setting, obtaining the same offline
1
4 (1−m)-approximation as Du et al. (2022). Nevertheless,
and despite all the progress described above, there are still
important open questions left regarding this setting.

• What is the best approximation ratio that can be ob-
tained by a polynomial time offline algorithm? In par-
ticular, can such an algorithm guarantee a better than
1
4 (1−m)-approximation, and if not, how much slower
must be an algorithm that improves over this approxi-
mation ratio?

• Is there a polynomial time online algorithm guaran-
teeing any constant approximation ratio? Can such an
algorithm match the optimal approximation ratio ob-
tainable by an offline algorithm?

In this work we answer all the above questions, essentially
settling the problem of maximizing DR-submodular func-
tions over general convex sets in both the offline and online
settings. We also study the empirical performance of the
theoretically optimal offline and online algorithms, show-
ing that both algorithms consistently outperform previously
suggested algorithms. Below we describe our results in
more detail.

Online setting. As mentioned above, the state-of-the-art
online (regret minimization) algorithm of Th´̆ang and Sri-
vastav (2021) achieves 1

3
√
3
(1−m)-approximation, which

it does with sub-exponential running time and roughly
O(
√
T )-regret, where T is the number of time steps.2

In this paper, we describe a new online algorithm im-
proving both the approximation ratio and the time com-
plexity. Specifically, our algorithm achieves 1

4 (1 − m)-
approximation in polynomial time and roughly O(

√
T )-

regret. The approximation guarantee of our algorithm
matches an inapproximability that we prove for the offline
setting (see below), and is thus, optimal. We also study the
empirical performance of our algorithm, and show that it
outperforms the algorithm of Th´̆ang and Srivastav (2021)
on two applications of revenue maximization and location
summarization.

Offline setting. Recall that the state-of-the-art offline al-
gorithm is a recent polynomial time 1

4 (1 − m)-approx-
imation algorithm due to Du (2022). Our first contribution
to the offline setting is an inapproximability result show-
ing that this algorithm is optimal in a very strong sense.

2By changing parameter values, it is possible to reduce the
time complexity of the algorithm of Th´̆ang and Srivastav (2021)
to be polynomial. However, this comes at the cost of a regret that
is nearly-linear in T and an error term in the approximation ratio
that diminishes very slowly (linearly in log T ).

Specifically, we show that no sub-exponential time algo-
rithm can significantly improve over this approximation ra-
tio, even when m is fixed to any particular value in [0, 1].
Furthermore, since Du (2022) analyzed only the theoretical
performance of his algorithm, it is interesting to study the
empirical performance of this algorithm, which we do by
considering revenue maximization and quadratic program-
ming applications.

Coding the algorithm of Du (2022) for the empirical study
is somewhat non-trivial because Du (2022) presented his
algorithm as part of a general mathematical framework for
designing algorithms for various submodular optimization
problems. Therefore, our empirical study is based on an
explicit version of this algorithm that we give in this paper,
which is not fully identical to the algorithm of Du (2022).
Beside being explicit, our version of the algorithm also has
the advantage of being more tuned towards practical per-
formance. For completeness, we include a full analysis of
our version of the algorithm of Du (2022). This full anal-
ysis is also used as a warm-up towards the analysis of our
own online algorithm.

1.1 Related work

Next, we provide a brief summary of the most relevant re-
sults on DR-submodular maximization. Recently, this field
has become the work-horse of numerous applications in the
fields of statistics and machine learning, which has lead to
a dramatic increase in the number of studies related to it.

Offline DR-submodular optimization. The problem of
maximizing monotone DR-functions subject to a down-
closed convex set was considered by Bian et al. (2017a),
who showed a variant of the Frank-Wolfe algorithm (based
on the greedy method proposed by Calinescu et al. (2011)
for set functions) that guarantees (1 − 1/e)-approximation
for this problem, which is optimal (Nemhauser and Wolsey,
1978). Later, Hassani et al. (2017a) showed that the al-
gorithm of Bian et al. (2017a) is not robust in stochastic
settings (i.e., when only an unbiased estimator of gradi-
ents is available), and proved that gradient methods are ro-
bust in such setting while still achieving 1/2-approximation.
When the objective DR-submodular function is not neces-
sarily monotone, the problem becomes harder to approxi-
mate. Bian et al. (2019) and Niazadeh et al. (2020) inde-
pendently provided two algorithms with the same approx-
imation guarantee of 1/2 for maximizing non-monotone
DR-submodular functions over a hypercube, which is op-
timal (Feige et al., 2011) (the algorithm of Niazadeh et al.
(2020) applies also to non-DR submodular functions). For
general down-closed convex sets, Bian et al. (2018) pro-
vided a 1/e-approximation algorithm based on the greedy
method of Feldman et al. (2011) for set functions. Us-
ing the concept of monotonicity ratio, Mualem and Feld-
man (2022) were able to smoothly interpolate between the
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last result and the (1 − 1/e)-approximation obtainable for
monotone objectives.

Online DR-submodular optimization. Online optimi-
zation of monotone DR-submodular functions over general
convex sets (for monotone objective functions, there is no
difference between optimization subject to down-closed or
general convex sets) was first considered by Chen et al.
(2018), who provided two algorithms. One guaranteeing
(1− 1/e)-approximation using roughly O(

√
T )-regret, and

another algorithm which is robust to stochastic settings
but guarantees only 1/2-approximation up to the same re-
gret. Later, Chen et al. (2019) presented an algorithm that
combines (1 − 1/e)-approximation with roughly O(

√
T )-

regret and robustness, and Zhang et al. (2019) showed how
one can reduce the number of gradient calculations per
time step to one, at the cost of increasing the regret to
roughly O(T 4/5). Such a reduction is important for ban-
dit versions of the same problem. Online optimization of
DR-submodular functions that are not necessarily mono-
tone was studied by Th´̆ang and Srivastav (2021), who pro-
vided three algorithms for it. One of these algorithms ap-
plies to general convex set constraints, and was already dis-
cussed above. Another algorithm applies to maximization
over the entire hypercube, and achieves 1/2-approximation
with roughly O(

√
T )-regret; and the last algorithm applies

to online maximization of non-monotone DR-submodular
functions over down-closed convex sets, and achieves 1/e-
approximation with roughly O(T 3/4)-regret.

1.2 Paper organization

In Section 2, we provide some definitions and important
properties of DR-submodular functions. Section 3 de-
scribes our explicit version of the offline algorithm of Du
(2022), which also serves as warm up for our novel online
algorithm described in Section 4. Our inapproximability
result, showing that the above offline and online algorithms
are both optimal, is proved in Section 5. Finally, in Sec-
tion 6, we study the empirical performance and robustness
of our online algorithm and our version of the algorithm of
Du (2022) by comparing them with previously suggested
algorithms on multiple machine learning applications.

2 PRELIMINARIES

DR-submodularity (first defined by Bian et al. (2017b)) is
an extension of the submodularity notion from set func-
tions to continuous functions. Formally speaking, given a
domain X =

∏n
i=1 Xi, where Xi is a closed range in R for

every i ∈ [n], a function F : X → R is DR-submodular
if for every two vectors a,b ∈ X , positive value k and
coordinate i ∈ [n], the inequality F (a + kei) − F (a) ≥
F (b+kei)−F (b) holds whenever a ≤ b and b+kei ∈ X
(here and throughout the paper, ei denotes the standard i-th

basis vector, and comparison between two vectors should
be understood to hold coordinate-wise). Note that if func-
tion F is continuously differentiable, then the above defini-
tion of DR-submodulrity is equivalent to

∇F (x) ≤ ∇F (y) ∀ x,y ∈ X ,x ≥ y .

Furthermore, when F is twice differentiable, it is DR-
submodular if and only if its Hessian is non-positive at ev-
ery vector x ∈ X .

In this work, we study the problem of maximizing a non-
negative DR-submodular function F : 2N → R≥0 sub-
ject to a general convex body K ⊆ X (usually polytope)
constraint. For simplicity, we assume that X = [0, 1]n.
Note that this assumption is without loss of generality
since there is a natural mapping from X to [0, 1]n. Ad-
ditionally, as is standard in the field, we assume that F
is β-smooth for some parameter β > 0. Recall that F
is β-smooth if it is continuously differentiable, and for
every two vectors x,y ∈ [0, 1]n, the function F obeys
∥∇F (x)−∇F (y)∥2 ≤ β∥x− y∥2.

In the online (regret minimization) version of the above
problem, there are T time steps. In every time step t ∈
[T ], the adversary selects a non-negative β-smooth DR-
submodular function Ft, and then the algorithm should se-
lect a vector y(t) ∈ K without knowing Ft (the function Ft

is revealed to the algorithm only after y(t) is selected). The
objective of the algorithm is to maximize

∑T
i=1 Ft(y

(t)),
and its success in doing so is measured compared to the
best fixed vector x ∈ K. More formally, we say that the
algorithm achieves an approximation ratio of c ≥ 0 with
regretR(T ) if

E

[
T∑

t=1

Ft(y
(t))

]
≥ c ·max

x∈K
E

[
T∑

t=1

Ft(x)

]
−R(T ) .

The nature of the access that the algorithm has to Ft varies
between different versions of the above problem. Some
previous works assume access to the exact gradient of F .
However, our algorithm applies also to a stochastic version
of the problem in which only access to an unbiased estima-
tor of this gradient is available.

We conclude this section by introducing some additional
notation and two known lemmata that are useful in our
proofs. Given two vectors x,y ∈ [0, 1]n, we denote by
x ∨ y and x ∧ y their coordinate-wise maximum and min-
imum, respectively. Using this notation, we can now state
the first known lemma, which can be traced back to Hassani
et al. (2017a) (see Inequality 7.5 in the arXiv version (Has-
sani et al., 2017b) of Hassani et al. (2017a)), and is also
explicitly stated and proved in (Dürr et al., 2021).

Lemma 2.1 (Lemma 1 of Dürr et al. (2021)). For ev-
ery two vectors x,y ∈ [0, 1]n and any continuously
differentiable DR-submodular function F : [0, 1]n → R,
⟨∇F (x), y − x⟩ ≥ F (x ∨ y) + F (x ∧ y)− 2F (x).
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The following lemma originates from a lemma proved
by Feldman et al. (2011) for set functions. Extensions of
this lemma to continuous domains have appeared in (Bian
et al., 2017a; Chekuri et al., 2015), but for completeness,
we prove our exact version of the lemma in Appendix A.

Lemma 2.2. For every two vectors x,y ∈ [0, 1]n and any
continuously differentiable non-negative DR-submodular
function F : [0, 1]n → R≥0, F (x∨y) ≥ (1−∥x∥∞)F (y).

3 OFFILINE MAXIMIZATION

In this section, we present and analyze an explicit variant of
the offline algorithm of Du (2022) for maximizing a non-
negative DR-submodular function F over a general convex
setK. Since the algorithm of Du (2022) is related to Frank-
Wolfe, we name our variant Non-mon. Frank-Wolfe,
and its pseudocode appears as Algorithm 1. Algorithm 1
gets a non-negative integer parameter T and a quality con-
trol parameter ε ∈ (0, 1).

Algorithm 1: Non-mon. Frank-Wolfe (T, ε)

1 Let y(0) ← argminx∈K∥x∥∞.
2 for i = 1 to T do
3 Let s(i) ← argmaxx∈K

〈
∇F (y(i−1)),x

〉
4 Let y(i) ← (1− ε) · y(i−1) + ε · s(i)

5 return the vector maximizing F among
{y(0), . . . ,y(T )}.

For completeness, and as a warmup for Section 4, we
present a full analysis of Algorithm 1, independent of the
analysis presented by Du (2022). The conclusions of our
analysis are summarized by the following theorem. We
note that, for the purpose of this theorem, it would have suf-
ficed for Algorithm 1 to return y(T ) rather than the best so-
lution among y(0), . . . ,y(T ). However, returning the best
of these solutions results in a better empirical performance
at almost no additional cost.

Theorem 3.1. Let K ⊆ [0, 1]n be a general convex set,
and let F : [0, 1]n → R≥0 be a non-negative β-smooth DR-
submodular function. Then, Non-mon. Frank-Wolfe
(Algorithm 1) outputs a solution w ∈ K obeying

F (w) ≥ (1−2ε)T−1[(1+ε)T − 1](1−min
x∈K
∥x∥∞) ·F (o)

− 0.5ε2βD2T ,

where D is the diameter of K and o ∈ argmaxx∈K F (x).
In particular, when T is set to be ⌊ln 2/ε⌋,

F (w) ≥ (1/4− 3ε)(1−min
x∈K
∥x∥∞) · F (o)− 0.5εβD2 .

We begin the proof of Theorem 3.1 with the following ob-
servation, which bounds the rate in which the infinity norm

of the solution maintained by Algorithm 1 can be increase.
The proof of this observation is done by induction on the
number of iterations, and can be found in Appendix B (like
all the other proofs of this section).

Observation 3.2. For every integer 0 ≤ i ≤ T , 1 −
∥y(i)∥∞ ≥ (1− ε)i · (1− ∥y(0)∥∞).

By combining the last observation and Lemma 2.2, we
can prove the following lemma about the rate in which
the value of F (y(i)) increases as a function of i. The
proof gives a bound on the rate of increase in terms of
⟨s(i),∇F (y(i−1))⟩, and then lower bounds this inner prod-
uct by observing that o is one possible candidate to be s(i).

Lemma 3.3. For every integer 1 ≤ i ≤ T , F (y(i)) ≥
(1−2ε) ·F (y(i−1))+ε(1−ε)i−1 · (1−∥y(0)∥∞) ·F (o)−
0.5ε2βD2.

Theorem 3.1 is proved by using Lemma 3.3 repeatedly.

4 ONLINE MAXIMIZATION

In this section, we consider the problem of maximiz-
ing a non-negative DR-submodular function F over a
general convex set K in the online setting. The only
currently known algorithm for this problem is an algo-
rithm due to Th´̆ang and Srivastav (2021) which guarantees
1−minx∈K∥x∥∞

3
√
3

-approximation. One drawback of this algo-
rithm is that its regret is roughly T over the logarithm of the
running time, and therefore, to make this regret less than
nearly-linear in T one has to allow for a super-polynomial
time complexity (furthermore, a sub-exponential time com-
plexity is necessary to get a regret of T c for any constant
c ∈ (0, 1)). Our algorithm, given as Algorithm 2, combines
ideas from our offline algorithm and the Meta-Frank-Wolfe
algorithm suggested in (Chen et al., 2018), and guaran-
tees both 1

4 (1−minx∈K∥x∥∞)-approximation and roughly
O(
√
T )-regret in polynomial time.

Like the original Meta-Frank-Wolfe algorithm of Chen
et al. (2018), our algorithm uses in a black-box manner
multiple instances E of an online algorithm for linear op-
timization. More formally, we assume that every instance
E has the following behavior and guarantee. There are T
time steps. In every time step t ∈ [T ], E selects a vector
u(t) ∈ K, and then an adversary reveals to E a vector d(t)

that was chosen independently of u(t). The algorithm E
guarantees that

E

[
T∑

t=1

⟨u(t),d(t)⟩

]
≥ max

x∈K
E

[
T∑

t=1

⟨x,d(t)⟩

]
−R(T )

for some regret function R(T ) that depends on the partic-
ular linear optimization algorithm chosen as the black-box
(and may depend on the convex body K and the bounds
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available on the adversarially chosen vectors d(t)). One
possible choice for an online linear optimization algorithm
is Regularized-Follow-the-Leader due to Abernethy et al.
(2008) that has R(T ) ≤ DG

√
2T , where D is the diame-

ter of K and G = max1≤t≤T ∥d(t)∥2.

Algorithm 2 runs in each time step a procedure similar to
our version of the offline algorithm (Non-mon. Frank-
Wolfe). However, instead of calculating a point s that is
good with respect to the gradient at the current solution, Al-
gorithm 2 asks an instance of an online linear optimization
algorithm to provide such a point. At the end of the time
step, the online linear optimization algorithm gets an esti-
mate of the gradient as the adversarial vector, and therefore,
on average, the points it produces are a good approximation
of the optimal point in retrospect. Algorithm 2 gets three
parameters. The parameters L and ε correspond to the pa-
rameters T and ε of Non-mon. Frank-Wolfe (Algo-
rithm 1),3 respectively, and the parameter T is the number
of time steps.

Algorithm 2: Non-mon. Meta-Frank-Wolfe
(L, ε, T )

1 for i = 1 to L do Initialize an instance Ei of some
online algorithm for linear optimization.

2 for t = 1 to T do
3 Let y(0,t) ← argminx∈K∥x∥∞.
4 for i = 1 to L do
5 Let s(i,t) ∈ K ← be the vector picked by Eℓ in

time step t.
6 Let y(i,t) ← (1− ε) · y(i−1,t) + ε · s(i,t).
7 Play y(t) = y(L,t).
8 for i = 1 to L do
9 Observe an unbiased estimator g(i,t) of

∇Ft(y
(i−1,t)).

10 Pass g(i,t) as the adverserially chosen vector
d(t) for Ei.

The main result that we prove regarding the online setting
is given by the next theorem.
Theorem 4.1. LetK be a general convex set with diameter
D. Assume that for every 1 ≤ t ≤ T , Ft : [0, 1]

n → R≥0

is a β-smooth DR-submodular function, then

T∑
t=1

E[Ft(y
(t))]

≥ (1−2ε)T−1[(1+ε)T −1](1−min
x∈K
∥x∥∞) ·E

[
T∑

t=1

F (o)

]
3The parameter T of Non-mon. Frank-Wolfe was re-

named to L here to accommodate the standard notation in both
offline and online algorithms. In offline Frank-Wolfe-like algo-
rithms, the number of iterations is usually denoted by T , and in
online algorithms T is reserved to the number of time steps.

− εL · R(T )− 0.5ε2βD2TL ,

where D is the diameter of K, o is a vector in K maximiz-
ing E[

∑T
t=1 Ft(o)], and R(T ) is the regret of the online

linear optimization algorithm over the domain K when the
adversarial vectors d(t) are the estimators g(i,t) calculated
by Algorithm 2. In particular, when L is set to be ⌊ln 2/ε⌋,
ε is set to be 1/

√
T and Ei is chosen as an instance of

Regularized-Follow-the-Leader,

T∑
t=1

E[Ft(y
(t))]

≥ (1/4− 3ε)(1−min
x∈K
∥x∥∞) · E

[
T∑

t=1

Ft(o)

]
− (G+ βD)D

√
T ,

where G = max1≤i≤L,1≤t≤T ∥g(i,t)∥2.

Remark: In the last theorem we have set ε to 1/
√
T , which

requires pre-knowledge of T . This can be avoided by us-
ing a dynamic value for ε that changes as a function of the
number of time slots that have already passed.

We begin the proof of Theorem 4.1 by observing that a
repetition of the first half of the proof of Lemma 3.3 leads
to the following lemma.

Lemma 4.2. For every two integers 1 ≤ t ≤ T and
1 ≤ i ≤ L, Ft(y

(i,t)) ≥ Ft(y
(i−1,t)) + ε · ⟨s(i,t) −

y(i−1,t),∇Ft(y
(i−1,t)⟩ − 0.5ε2βD2.

Using the guarantee of Ei, it is possible to get the following
lemma from the previous one.

Lemma 4.3. For every integer number 1 ≤ i ≤ L,
E[
∑T

t=1 Ft(y
(i,t))] ≥ E[

∑T
t=1 Ft(y

(i−1,t))+ε·
∑T

t=1⟨o−
y(i−1,t),∇Ft(y

(i−1,t))⟩]− ε · R(T )− 0.5ε2βD2T .

Proof. Summing up Lemma 4.2 over all t values, we get

T∑
t=1

Ft(y
(i,t)) ≥

T∑
t=1

Ft(y
(i−1,t))− 0.5ε2βD2T

+ ε ·
T∑

t=1

⟨s(i,t) − y(i−1,t),∇Ft(y
(i−1,t))⟩

=

T∑
t=1

Ft(y
(i−1,t))− 0.5ε2βD2T + ε ·

[
T∑

t=1

⟨s(i,t),g(i,t)⟩

+

T∑
t=1

⟨s(i,t),∇Ft(y
(i−1,t))− g(i,t)⟩

−
T∑

t=1

⟨y(i−1,t),∇Ft(y
(i−1,t))⟩

]
.

Additionally, since g(i,t) is independent of s(i,t), by the
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guarantee of Ei,

E

[
T∑

t=1

⟨s(i,t),g(i,t)⟩

]
≥ E

[
T∑

t=1

⟨o,g(i,t)⟩

]
−R(T ) .

Finally, since g(i,t) is chosen after y(i−1,t),

E[⟨s(i,t),∇Ft(y
(i−1,t))− g(i,t)⟩ | s(i,t),y(i−1,t)]

= ⟨s(i,t),∇Ft(y
(i−1,t))− E[g(i,t) | y(i−1,t)]⟩

= ⟨s(i,t),∇Ft(y
(i−1,t))−∇Ft(y

(i−1,t))⟩ = 0 ,

which by the law of total expectation implies the equality
E[⟨s(i,t),∇Ft(y

(i−1,t)) − g(i,t)⟩] = 0. Combining all the
above inequalities yields

E

[
T∑

t=1

Ft(y
(i,t))

]

≥ E

[
T∑

t=1

Ft(y
(i−1,t))

]
+ ε ·

{
T∑

t=1

⟨o,E[g(i,t)]⟩ − R(T )

−E

[
T∑

t=1

⟨y(i−1,t),∇Ft(y
(i−1,t))⟩

]}
− 0.5ε2βD2T

= E

[
ε ·

T∑
t=1

⟨o− y(i−1,t),∇Ft(y
(i−1,t))

+

T∑
t=1

Ft(y
(i−1,t))⟩

]
− ε · R(T )− 0.5ε2βD2T .

Corollary 4.4. For every integer number 1 ≤ i ≤ L,
E[
∑T

t=1 Ft(y
(i,t))] ≥ E[(1 − 2ε) ·

∑T
t=1 Ft(y

(i−1,t)) +

ε(1− ε)i−1 ·
∑T

t=1(1− ∥y(0,t)∥∞) · Ft(o)]− ε · R(T )−
0.5ε2βD2T .

Proof. To see why this corollary follows from Lemma 4.3,
it suffices to observe that, for every integer 1 ≤ t ≤ T ,

⟨o− y(i−1,t),∇Ft(y
(i−1,t))⟩

≥ Ft(o ∨ y(i−1,t)) + Ft(o ∧ y(i−1,t))− 2Ft(y
(i−1,t))

≥ Ft(o ∨ y(i−1,t))− 2Ft(y
(i−1))

≥ (1− ε)i−1 · (1− ∥y(0,t)∥∞) · Ft(o)− 2Ft(y
(i−1,t)) ,

where the first inequality follows from Lemma 2.1, the sec-
ond inequality holds by the non-negativity of Ft, and the
last inequality follows from Lemma 2.2 and the observation
that the proof of Observation 3.2 extends to Algorithm 2
and yields 1−∥y(i,t)∥∞ ≤ (1− ε)i · (1−∥y(0,t)∥∞).

One can observe that Corollary 4.4 is very similar to
Lemma 3.3 (the main difference between the two is that
in Corollary 4.4 the sum

∑T
t=1 Ft replaces the function F

from Lemma 3.3). This similarity means that the proof
of Theorem 3.1 can work with Corollary 4.4 instead of
Lemma 3.3, which yields Theorem 4.1.

5 INAPPROXIMABILITY

This section includes our inapproximability result, which is
given by the following theorem. Our result shows that the
known offline result (reproved in Section 3) for maximiz-
ing a DR-submodular function subject to a general convex
set is optimal. Notice that this implies that our online algo-
rithm from Section 4 is also optimal (at least in terms of the
approximation ratio) unless one allows for an exponential
time complexity.

Theorem 5.1. For every two constants h ∈ [0, 1) and ε >
0, no sub-exponential time algorithm can obtain (1/4(1 −
h)+ε)-approximation for the problem of maximizing a con-
tinuously differentiable non-negative DR-submodular func-
tion F : [0, 1]n → R≥0 subject to a solvable polytope K
obeying minx∈K ∥x∥∞ = h. Furthermore, this is true even
if we are guaranteed that maxx∈K F (x) = Ω(n−1) and F
is β-smooth for some β that is polynomial in n.

The last part of Theorem 5.1 specifies some additional
conditions under which the inapproximability stated in the
theorem still applies. These conditions are important be-
cause under them our algorithm from Section 3 can be
made to have a clean approximation guarantee of 1/4(1 −
minx∈K ∥x∥∞)− ε′, for any constant ε′ > 0, by choosing
a polynomially small value for the parameter ε of the algo-
rithm (to see that this is indeed the case, it is important to
observe that since K ⊆ [0, 1]n, the diameter D of K is at
most

√
n).

Theorem 5.1 is unconditional, i.e., it does not rely on any
complexity assumption. Instead, Theorem 5.1 assumes a
constraint on the way in which the algorithm may access
the objective F . It is standard in the field to assume that
the algorithm can access F only by querying the value or
gradient of F at a given point x. Theorem 5.1 applies under
this standard assumption, and furthermore, it applies even
when the algorithm is allowed any query about F whose
output is determined by the values of F in an arbitrarily
small neighborhood of a point x. Note that the standard
queries of value and gradient at x both fall within this class
of queries, and the same is true for other natural kind of
queries (such as higher order derivatives of F ).

The proof of Theorem 5.1 is based on the symmetry gap
framework of Vondrák (2013). To use this framework, we
first need to choose a submodular set function fk (k ≥ 1
is an integer parameter of the function). We choose the
same function that was used by Vondrák (2013) to prove
his hardness for maximizing a submodular function subject
to a matroid base constraint. Specifically, the ground set
of fk is the set Nk = {ai, bi | i ∈ [k]}, and for every set
S ⊆ Nk,

fk(S) =

k∑
i=1

1[ai ∈ S] · 1[bi ̸∈ S] .
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One can verify that fk is non-negative and submodular
since it is the cut function of a directed graph consisting
of k vertex-disjoint arcs.

We now would like to convert fk into two DR-submodular
functions, which we do using the following lemma of
Vondrák (2013). This lemma refers to the multilinear ex-
tension of a set function f : 2N → R over a ground set N .
This extension is a function F : [0, 1]N → R defined for
every vector x ∈ [0, 1]N by F (x) = E[f(R(x))], where
R(x) is a random subset of N that includes every element
u ∈ N with probability xu, independently.

Lemma 5.2 (Lemma 3.2 of Vondrák (2013)). Consider a
function f : 2N → R≥0 invariant under a group of permu-
tations G on the ground setN . Let F (x) be the multilinear
extension of f , define x̄ = Eσ∈G [1σ(x)] and fix any ε′ > 0.
Then, there is δ > 0 and functions F̂ , Ĝ : [0, 1]N → R≥0

(which are also symmetric with respect to G), satisfying the
following:

1. For all x ∈ [0, 1]N , Ĝ(x) = F̂ (x̄).

2. For all x ∈ [0, 1]N , |F̂ (x)− F (x)| ≤ ε′.

3. Whenever ∥x− x̄∥2 ≤ δ, F̂ (x) = Ĝ(x) and the value
depends only on x̄.

4. The first partial derivatives of F̂ and Ĝ are absolutely
continuous.

5. If f is monotone, then, for every element u ∈ N ,
∂F̂
∂xu
≥ 0 and ∂Ĝ

∂xu
≥ 0 everywhere.

6. If f is submodular then, for every two elements u, v ∈
N , ∂2F̂

∂xu∂xv
≤ 0 and ∂2Ĝ

∂xu∂xv
≤ 0 almost everywhere.

Observe that fk is invariant to exchanging the identities of
ai and bi with aj and bj , respectively, for any choice of
i, j ∈ [k]. Therefore, we can choose G in the last lemma
as the group of permutations that can be obtained by any
number of such exchanges. In the rest of this section, we
assume that F̂k and Ĝk are functions F̂ and Ĝ obtained
using Lemma 5.2 for this choice of G, fk and ε′ = 1/(2k).
It is also important to note that for this choice of G we have
for every vector x ∈ [0, 1]Nk and i ∈ [k]

x̄ai =
1

k

k∑
j=1

xaj and x̄bi =
1

k

k∑
j=1

xbj .

Let us now define a family of polytopes. The polytopePh,k

is the convex hull of the k + 1 vectors v(1),v(2), . . . ,v(k)

and u defined as follows. For every j ∈ [k], uaj
= 0 and

ubj = h. For every i, j ∈ [k],

v(i)aj
=

{
1 if i = j ,

0 otherwise ,
and v

(i)
bj

=

{
1 if i ̸= j ,

0 otherwise .

Using the above definitions, we can state two instances of
the problem we consider

max F̂k(x)
x ∈ Ph,k

and max Ĝk(x)
x ∈ Ph,k

.

In Appendix C we refer to these instances as the basic
instances. We show there that by “scrambling” these in-
stances in an appropriate way, they can be made indistin-
guishable. This yields Theorem 5.1 as we also prove in
Appendix C that the scrambled instances obey the proper-
ties assumed in the theorem, and furthermore, that there is
a large gap between the optimal values of scrambled in-
stances derived from the two basic instances.

6 APPLICATIONS AND
EXPERIMENTAL RESULTS

Up until recently, all the algorithms suggested for sub-
modular maximization subject to general convex set con-
straints had a sub-exponential execution time. As men-
tioned above, Du (2022) has recently shown the first poly-
nomial time offline algorithm for this problem, and in this
paper we have shown another polynomial time algorithm
obtaining a similar guarantee for the online (regret mini-
mization) setting. In this section (and Appendix D), we
study the empirical performance of these algorithms on the
machine learning applications of revenue maximization,
location summarization and quadratic programming. We
note that these are just a few examples of standard appli-
cations to which our results can be applied (other possible
applications include, for example, movie recommendation
and image summarization).

In the case of the offline algorithm, it is important to note
that (i) we analyze our explicit version of the algorithm,
rather than the original version of Du (2022); and (ii) it is
interesting to study the empirical performance of the algo-
rithm of Du (2022) because only a theoretical analysis of
this algorithm appeared in (Du, 2022).

Since the previously suggested algorithms require sub-
exponential execution time, and thus cannot be used as
is, we allowed all algorithms in our experiments the same
number of iterations. This makes all the algorithms termi-
nate in roughly the same amount of time, and allows for a
fair comparison between the quality of their solutions. In
a nutshell, our experiments show that our online algorithm
and the offline algorithm of Du (2022) provide better solu-
tions (often much better) compared to their state-of-the-art
sub-exponential time counterparts.

6.1 Revenue Maximization

Following Th´̆ang and Srivastav (2021), our first set of ex-
periments considers revenue maximization in the following
setting. The goal of a company is to advertise a product
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to users so that the revenue increases through the “word-
of-mouth” effect. Formally, the input for the problem is a
weighted undirected graph G = (V,E) representing a so-
cial network graph, where wij denotes the weight of the
edge between vertex i and vertex j (wij = 0 if the edge
(i, j) is missing from the graph). If the company invests xi

unit of cost in a user i ∈ V , then this user becomes an ad-
vocate of the product with probability 1− (1− p)xi , where
p ∈ (0, 1) is a parameter. Note that this means that each ε
unit of cost invested in the user has an independent chance
to make the user an advocate, and that by investing a full
unit in the user, she becomes an advocate with probability
p (Soma and Yoshida, 2017).

Let S ⊆ V be a set of users who ended up being advocates
for the product. Then, the revenue obtained is represented
by the total influence of the users of S on non-advociate
users, or more formally, by

∑
i∈S

∑
j∈V \S wij . The ob-

jective function f : [0, 1]V → R≥0 of the experiments is
accordingly defined as the expectation of the above expres-
sion, i.e.,

f(x) = ES

∑
i∈S

∑
j∈V \S

wij


=
∑
i∈V

∑
j∈V
i ̸=j

wij(1− (1− p)xi)(1− p)xj .

It has been shown that f is a non-monotone DR-sub-
modular function (Soma and Yoshida, 2017).

In both the online and offline settings, we experimented
on instances of the above setting based on two differ-
ent datasets. The first is a Facebook network (Viswanath
et al., 2009), and includes 64K users (vertices) and 1M
unweighted relationships (edges). The second dataset is
based on the Advogato network (Massa et al., 2009), and
includes 6.5K users (vertices) as well as 61K weighted re-
lationships (edges).

6.1.1 Online setting

When performing our experiments in the online settings,
we tried to closely mimic the experiment of Th´̆ang and Sri-
vastav (2021). Therefore, we chose the number of time
steps to be T = 1000, and the parameter p = 0.0001. In
each time step t, the objective function is defined in the
following way. A subset V t ⊆ V is selected, and only
edges connecting two vertices of V t are kept. In the case
of the Advogato network, Vt is a uniformly random sub-
set of V of size 200, and in the case of the much larger
Facebook network, Vt is a uniformly random subset of V
of size 15,000. The optimization is done subject to the con-
straint 0.1 ≤

∑
i xi ≤ 1, which represents both minimum

and maximum investment requirements. Note that the in-
tersection of this constraint with the implicit box constraint
represents a non-down-monotone feasibility polytope.

In our experiments, we have compared our algorithm
from Section 4 with the algorithm of Th´̆ang and Srivastav
(2021), which is the only other algorithm for the online set-
ting currently known. In both algorithms, we have set the
number of online linear optimizers used to be L = 100, and
in our algorithm we have set the error parameter ε = 0.03
(there is no error parameter in the algorithm of Th´̆ang and
Srivastav (2021)). The results of these experiments on the
Advogato and Facebook networks can be found in Fig-
ures 1a and 1b, respectively. One can observe that our al-
gorithm significantly outperforms the state-of-the-art algo-
rithm for any number of time steps.

6.1.2 Offline setting

Our experiments in the offline setting are similar to the ones
done in the online setting, with two differences. First, since
there is only one objective function in the offline setting, we
base it on the entire network graph rather than on a subset
of its vertices. Second, for the sake of diversity, we changed
the constraint to be 0.25 ≤

∑
i xi ≤ 1 (but we note that the

results of the experiments remain essentially unchanged if
one reuse the constraint from the online setting).

In our experiments, we have compared our explicit version
from Section 3 of the algorithm of Du (2022) with the pre-
vious algorithms of Dürr et al. (2021) and Du et al. (2022).
All the algorithms have been executed for T = 100 itera-
tions,4 and the error parameter ε was set 0.03 in (our ver-
sion of) the algorithm of Du (2022). The results of these
experiments on the Advogato and Facebook networks can
be found in Figures 1c and 1d, respectively. One can ob-
serve that our version of the polynomial time algorithm of
Du (2022) clearly outperforms the two previous algorithms,
except when the number of iterations is very low.

6.2 Location Summarization

In this section we consider a location summarization task
based on the Yelp dataset (Yelp), which is a subset of Yelp’s
businesses, reviews and user data. This dataset contains in-
formation about local businesses across 11 metropolitan ar-
eas, and we have followed the technique of Kazemi et al.
(2021) for generating symmetry scores between these loca-
tions based on features extracted from the descriptions of
the locations and their related user reviews (such as park-
ing options, WiFi access, having vegan menus).

We would like to pick a non-empty set of up to 2 locations
that summarizes the existing locations, while not being too
far from the current location of the user. A natural objective
function for this task (which is very similar to the objective
function used in (Kazemi et al., 2021)) is the following set
function. Assume that the set of locations is [n], Mi,j is

4Recall that the number of iterations corresponds to the pa-
rameter L in the online setting, which was also set to 100 above.
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(a) Online Algorithms on the
Advogato network.
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(b) Online Algorithms on the
Facebook network.
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Dürr et al. (2021)
Du et al. (2022)

(c) Offline Algorithms on the
Advogato network.
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(d) Offline Algorithms on the
Facebook network.

Figure 1: Results of the Revenue Maximization Experiments

the similarity score between locations i and j, and di is the
distance of location i from the user (in units of 200KM);
then for every set S ⊆ [n], the value of the objective is
f(S) = 1

n

∑n
i=1 maxj∈S Mi,j −

∑
i∈S di.

Since f is a set function, and the tools we have developed in
this work apply only to continuous functions, we optimize
the multilinear extension F of f ,5 which is given for every
vector x ∈ [0, 1]n by

F (x) = 1
n

n∑
i=1

n∑
j=1

xjMi,j ·
∏

j′|Mi,j≺Mi,j′

(1− xj′)

− n∑
i=1

xidi .

The multilinear extension F is DR-submodular since f is
submodular. Moreover, any solution obtained while opti-
mizing F can be rounded into a solution obtaining the same
approximation guarantee for f using either pipage or swap
rounding (Calinescu et al., 2011; Chekuri et al., 2010).

In our experiment, we restricted attention to a single
metropolitan area (Charlotte), and assumed there are 100
time steps. In each time step, a new user u arrives, and her
location is determined uniformly at random within the rect-
angle containing the metropolitan area. Let us denote by
Fu the function F when the distances are calculated based
on the location of u. When user u arrives, we would like
to choose a vector x(u) maximizing Fu among all vectors
obeying ∥x∥1 ∈ [1, 2] (recall that we look for solutions that
include 1 or 2 locations). Furthermore, we would like to do
that before learning the location of u (to speed up the re-
sponse and for privacy reasons); thus, we need to consider
online optimization algorithms. Specifically, like in Sec-
tion 6.1.1, we compared our algorithm from Section 4 with
the algorithm of Th´̆ang and Srivastav (2021). In both algo-
rithms, we have set the number of online linear optimizers
used to be L = 100, and in our algorithm we have set the
error parameter ε = 0.03. The results of the experiment
can be found in Figure 2, and they show that our algorithm
(again) significantly outperforms the state-of-the-art algo-
rithm for any number of time steps.

5See Section 5 for a definition of the multi-linear extension.
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Figure 2: Location Summarization Experiment

7 CONCLUSION

In this work, we have considered the problem of maximiz-
ing a DR-submodular function over a general convex set
in both the offline and the online (regret minimization) set-
tings. For the online setting we provided the first polyno-
mial time algorithm. Our algorithm matches the approx-
imation guarantee of the only polynomial time algorithm
known for the offline setting. Moreover, we presented a
hardness result showing that this approximation guarantee
is optimal for both settings. Finally, we have run experi-
ments to study the empirical performance of both our al-
gorithm and the (recently suggested) polynomial time of-
fline algorithm. Our experiments show that both these al-
gorithms outperform previous benchmarks.
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Resolving the Approximability of Offline and Online Non-monotone DR-Submodular Maximization over General Convex Sets

A PROOF OF LEMMA 2.2

In this section we prove Lemma 2.2, which we repeat here for convenience.

Lemma 2.2. For every two vectors x,y ∈ [0, 1]n and any continuously differentiable non-negative DR-submodular func-
tion F : [0, 1]n → R≥0, F (x ∨ y) ≥ (1− ∥x∥∞)F (y).

Proof. If ∥x∥∞ = 0, then x is the all zeros vector, and the lemma becomes trivial. Thus, we may assume in the rest of this
proof that ∥x∥∞ > 0. Let z = x ∨ y − y. Then,

F (x ∨ y)− F (y) =

∫ 1

0

dF (y + r · z)
dr

∣∣∣∣
r=t

dt =

∫ 1

0

n∑
i=1

⟨z,∇F (y + t · z)⟩dt (1)

= ∥x∥∞ ·
∫ 1/∥x∥∞

0

n∑
i=1

⟨z,∇F (y + ∥x∥∞ · t′ · z)⟩dt′

≥ ∥x∥∞ ·
∫ 1/∥x∥∞

0

n∑
i=1

⟨z,∇F (y + t′ · z)⟩dt′ ,

where the last equality holds by changing the integration variable to t′ = t/∥x∥∞, and the inequality follows from the
DR-submodularity of F because y + t′ · z ∈ [0, 1]n. To see that the last inclusion holds, note that, for every i ∈ [n], if
xi ≤ yi, then yi + t′ · zi = yi ≤ 1, and if xi ≥ yi, then

yi + t′ · zi ≤ yi +
zi
∥x∥∞

= yi +
xi − yi
∥x∥∞

≤ xi

∥x∥∞
≤ 1 .

Observe now that we also have∫ 1/∥x∥∞

0

n∑
i=1

⟨z,∇F (y + t′ · z)⟩dt′ =
∫ 1/∥x∥∞

0

dF (y + r · z)
dr

∣∣∣∣
r=t′

dt′

= F

(
y +

z

∥x∥∞

)
− F (y) ≥ −F (y) ,

where the inequality follows from the non-negativity of F . The lemma now follows by plugging this inequality into
Inequality (1), and rearranging.

B MISSING PROOFS OF SECTION 3

B.1 Proof of Observation 3.2

In this section we prove observation 3.2, which we repeat here for convenience.

Observation 3.2. For every integer 0 ≤ i ≤ T , 1− ∥y(i)∥∞ ≥ (1− ε)i · (1− ∥y(0)∥∞).

Proof. To prove the observation, we show by induction that for every fixed coordinate j ∈ [n], we have 1 − y
(i)
j ≥

(1− ε)i · (1− y
(0)
j ). For i = 0, this inequality trivially holds. Furthermore, assuming this inequality holds for i− 1, it also

holds for i because

1− yij = 1− (1− ε)y
(i−1)
j − εs

(i)
j

≥ 1− (1− ε)y
(i−1)
j − ε

= (1− ε)(1− y
(i−1)
j )

≥ (1− ε)i · (1− y
(0)
j ) ,

where the second inequality follows from the induction hypothesis.
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B.2 Proof of Lemma 3.3

In this section we prove Lemma 3.3, which we repeat here for convenience.

Lemma 3.3. For every integer 1 ≤ i ≤ T , F (y(i)) ≥ (1−2ε)·F (y(i−1))+ε(1−ε)i−1 ·(1−∥y(0)∥∞)·F (o)−0.5ε2βD2.

Proof. By the chain rule,

F (y(i))− F (y(i−1)) = F ((1− ε) · y(i−1) + ε · s(i))− F (y(i−1))

=

∫ ε

0

F ((1− z) · y(i−1) + z · s(i))
dz

∣∣∣∣
z=r

dr

=

∫ ε

0

⟨s(i) − y(i−1),∇F ((1− r) · y(i−1) + r · s(i))⟩dr

≥
∫ ε

0

[
⟨s(i) − y(i−1),∇F (y(i−1))⟩ − rβD2

]
dr

= ε · ⟨s(i) − y(i−1),∇F (y(i−1))⟩ − 0.5ε2βD2,

where the inequality follows from the β-smoothness of F . Recall now that s(i) is the maximizer found by Algorithm 1 in
its i-th iteration, and o is one of the values in the domain on which the maximum is calculated. Therefore,

F (y(i))− F (y(i−1)) ≥ ε · ⟨s(i) − y(i−1),∇F (y(i−1))⟩ − 0.5ε2βD2

≥ ε · ⟨o− y(i−1),∇F (y(i−1))⟩ − 0.5ε2βD2

≥ ε ·
[
F (o ∨ y(i−1)) + F (o ∧ y(i−1))− 2F (y(i−1))

]
− 0.5ε2βD2

≥ ε ·
[
(1− ε)i−1 · (1− ∥y(0)∥∞) · F (o)− 2F (y(i−1))

]
− 0.5ε2βD2.

where the third inequality follows from Lemma 2.1, and the last inequality from Lemma 2.2, Observation 3.2 and the
non-negativity of F . The lemma now follows by rearranging the last inequality.

B.3 Proof of Theorem 3.1

In this section we prove Theorem 3.1, which we repeat here for convenience.

Theorem 3.1. Let K ⊆ [0, 1]n be a general convex set, and let F : [0, 1]n → R≥0 be a non-negative β-smooth DR-
submodular function. Then, Non-mon. Frank-Wolfe (Algorithm 1) outputs a solution w ∈ K obeying

F (w) ≥ (1−2ε)T−1[(1+ε)T − 1](1−min
x∈K
∥x∥∞) ·F (o)

− 0.5ε2βD2T ,

where D is the diameter of K and o ∈ argmaxx∈K F (x). In particular, when T is set to be ⌊ln 2/ε⌋,

F (w) ≥ (1/4− 3ε)(1−min
x∈K
∥x∥∞) · F (o)− 0.5εβD2 .

Proof. To see that the second part of the theorem follows from the first part, note that for T = ⌊ln 2/ε⌋ and ε < 1/4,

(1− 2ε)T−1[(1 + ε)T − 1] ≥ e−2εT (1− 4ε2T )[eεT (1− ε2T )− 1]

≥ e−2 ln 2(1− 4ε ln 2)[eln 2−ε(1− ε ln 2)− 1]

=

(
1

4
− ε ln 2

)[
2− 2ε ln 2

eε
− 1

]
≥
(
1

4
− ε

)[
2− 2ε

1 + 2ε
− 1

]
=

(
1

4
− ε

)
· 1− 4ε

1 + 2ε

≥ 1

4
− 3ε .
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For ε ≥ 1/4, the second part of the theorem is an immediate consequence of the non-negaitivity of F .

It remains to prove the first part of the theorem. We do that by proving by induction the stronger claim that for every integer
0 ≤ i ≤ T ,

F (y(i)) ≥ (1− 2ε)i−1
[
(1 + ε)i − 1

]
· (1− ∥y(0)∥∞) · F (o)− 0.5ε2βD2i . (2)

Note that the theorem indeed follows from this claim because w is the best vector within a set that includes y(T ), and
y(0) ∈ argminx∈K ∥x∥∞. For i = 0, Equation (2) follows directly from the non-negativity of F . Hence, we only need to
show that for 1 ≤ i ≤ T , if we assume that Equation (2) holds for i− 1, then it holds for i as well. This is indeed the case
because Lemma 3.3 yields

F (y(i)) ≥ (1− 2ε) · F (y(i−1)) + ε(1− ε)i−1 · (1− ∥y(0)∥∞) · F (o)− 0.5ε2βD2

≥ (1− 2ε) · {(1− 2ε)i−2
[
(1 + ε)i−1 − 1

]
· (1− ∥y(0)∥∞) · F (o)− 0.5ε2βD2(i− 1)}

+ ε(1− ε)i−1 · (1− ∥y(0)∥∞) · F (o)− 0.5ε2βD2

≥ {(1− 2ε)i−1
[
(1 + ε)i − ε(1 + ε)i−1 − 1

]
+ ε(1− ε)i−1} · (1− ∥y(0)∥∞) · F (o)− 0.5ε2βD2i

≥ (1− 2ε)i−1
[
(1 + ε)i − 1

]
· (1− ∥y(0)∥∞) · F (o)− 0.5ε2βD2i ,

where the second inequality follows from the induction hypothesis, and the last inequality holds since

(1− 2ε)i−1 · ε(1 + ε)i−1 = ε(1− ε− 2ε2)i−1 ≤ ε(1− ε)i−1 .

C CONTINUING THE PROOF OF THEOREM 5.1

In this section, we complete the proof of Theorem 5.1. As explained in Section 5, the proof of Theorem 5.1 is based
on showing that: (i) by “scrambling” the basic instances defined in Section 5 in an appropriate way, they can be made
indistinguishable, (ii) the scrambled instances obey the properties assumed in the theorem, and (iii) there is a large gap
between the optimal values of scrambled instances derived from the two basic instances. Towards this goal, we first study
the properties of the basic instances themselves, and the gap between their optimal values. Let us begin with the following
lemma, which gives some properties of the objective functions of the basic instances.
Lemma C.1. The functions F̂k and Ĝk are continuously differentiable, non-negative and DR-submodular. Furthermore,
they are β-smooth for a value β that is polynomial in k.

Proof. The non-negativity of F̂k and Ĝk is explicitly guaranteed by Lemma 5.2, and Part 4 of the lemma shows that
F̂ and Ĝ are also continuously differentiable. Finally, Parts 4 and 6 of Lemma 5.2 imply together that F̂k and Ĝk are
DR-submodular (see the proof of Lemma 3.1 of Vondrák (2013) for a formal argument).

It remains to bound the smoothness of F̂k and Ĝk. Notice that the following claim implies that both functions are β-
smooth for a β value that is polynomial in k. Unfortunately, the proof of this claim is technically quite involved (and
not very insightful) as it requires us to look into the proof Lemma 5.2, and therefore, we defer the proof of this claim to
Section C.1.

Claim C.2. The absolute values of the second order partial derivatives of the functions F̂k and Ĝk are bounded by 16k+2
almost everywhere, and therefore, both functions are β-smooth for a β value that is polynomial in k.

Next, we observe that the common constraint polytope of the basic instances is solvable since Ph,k is a polytope over 2k
variables defined as the convex-hall of k + 1 vectors. The next observation proves another property of this polytope.
Observation C.3. If k ≥ 1/(1− h), minx∈Ph,k

∥x∥∞ = h.

Proof. Since u ∈ Ph,k, minx∈Ph,k
∥x∥∞ ≤ h. Thus, we only need to show that no point in Ph,k has an infinity norm less

than h. Recall that every point in Ph,k is a convex combination
∑k

i=1 civ
(i) + du (where ci is the coefficient of v(i) in the

combination, and d is the coefficient of u), and assume without loss of generality that c1 = min{c1, c2, . . . , ck}. Then,∥∥∥∥∥
k∑

i=1

civ
(i) + du

∥∥∥∥∥
∞

≥
k∑

i=1

civ
(i)
b1

+ dub1 =

k∑
i=2

ci + dh ≥ k − 1

k

k∑
i=1

ci + dh ≥ h

k∑
i=1

ci + dh = h ,

where the last inequality holds by the condition of the observation, and the last equality holds since the fact that∑k
i=1 civ

(i) + du is a convex combination implies
∑k

i=1 ci + d = 1.
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The last properties that we need to prove for the basic instances are about the optimal values of these instances. Specifically,
we need to show that both their optimal values are significant (at least Ω(k−1)), but there is a large gap between them. The
following two lemmata show these properties, respectively.

Lemma C.4. maxx∈Ph,k
F̂k(x) = Ω(k−1) and maxx∈Ph,k

Ĝk(x) = Ω(k−1).

Proof. We prove the lemma by considering the vector y = 1
k

∑k
i=1 u

(i). Since y ∈ Ph,k and ȳ = y, F̂k(y) lower bounds
both maxx∈Ph,k

F̂k(x) and maxx∈Ph,k
Ĝk(x). Thus, it remains to show that F̂k(y) = Ω(k−1). By Lemma 5.2,

F̂k(y) ≥ Fk(y)− ε′ =

k∑
i=1

yai
(1− bi)− ε′ =

k∑
i=1

1

k
·
(
1−

(
1− 1

k

))
− ε′ =

1

k
− ε′ =

1

2k
,

where Fk is the multilinear extension of fk.

Lemma C.5. maxx∈Ph,k
F̂k(x) ≥ 1− 1/(2k) and maxx∈Ph,k

Ĝk(x) ≤ (1− h)/4 + 3/(2k).

Proof. To prove the first part of the lemma, it suffices to observe that v(1) ∈ Ph,k and

F̂k(v
(1)) ≥ Fk(v

(1))− ε′ = fk({a1} ∪ {bi | 2 ≤ i ≤ k})− ε′ = 1− 1/(2k) ,

where Fk is the multilinear extension of fk.

Let us now prove the second part of the lemma. Fix an arbitrary vector x ∈ Ph,k, and let d be the coefficient of u in the
convex combination that shows that x belongs to Ph,k. Then,

k∑
i=1

xai = 1− d and
k∑

i=1

xbi = dkh+ (1− d)(k − 1) = k(dh+ 1− d) + d− 1 .

Thus,

Ĝk(x) = F̂k(x̄) ≤ Fk(x̄) + ε′ =

k∑
1=1

∑k
i=1 xai

k

(
1−

∑k
i=1 xbi

k

)
+ ε′

= (1− d)

(
d− dh+

1− d

k

)
+ ε′ ≤ d(1− d)(1− h) +

1

k
+ ε′ ≤ 1− h

4
+

3

2k
.

We now would like to describe how the two basic instances are scrambled. Intuitively, the constraint polytope Kh,k,ℓ of a
scrambled instance is obtained by combining ℓ orthogonal instances of Ph,k. Each element ai or bi has a copy in all the
orthogonal instances, and the objective function treats every such copy as representing ℓ−1 of the original element. For
example, if one would like to construct a solution assigning a value of 1/2 to ai, then the copies of ai in Kh,k,ℓ should get
an average value of 1/2. By randomly permuting the names of the elements in each orthogonal instance of Ph,k, we make
it difficult for the algorithm to construct solutions that do not correspond to symmetric vectors in Ph,k. More formally, the
constraint polytope Kh,k,ℓ is a subset of [0, 1]Mk,ℓ , where

Mk,ℓ = {ai,j , bi,j | i ∈ [k], j ∈ [ℓ]} .

A vector x ∈ [0, 1]Mk,ℓ belongs to Kh,k,ℓ if for every j ∈ [ℓ] we have x(j) ∈ Ph,k, where the vector x(j) ∈ [0, 1]Nk is
defined by

x(j)
ai

= xai,j and x
(j)
bi

= xbi,j .

The following lemma is an immediate corollary of the definition of Kh,k,ℓ, Observation C.3 and the discussion before this
observation.

Lemma C.6. When k ≥ 1/(1− h), Kh,k,ℓ is solvable and maxx∈Kh,k,ℓ
∥x∥∞ = h.
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The objective functions of the scrambled instances are formally defined using a vector σ of ℓ permutations over [k] (in
other words, σ1, σ2, . . . , σℓ are all permutations over [k]). Given such a vector σ and a vector x ∈ [0, 1]Mk,ℓ , we define
the vector x(σ) ∈ [0, 1]Nk as follows.

x(σ)
ai

= 1
ℓ

ℓ∑
j=1

xaσj(i),j
and x

(σ)
bi

= 1
ℓ

ℓ∑
j=1

xbσj(i),j
.

Then, the functions F̄k,σ : [0, 1]Mk,ℓ → R≥0 and Ḡk,σ : [0, 1]Mk,ℓ → R≥0 are defined for every vector x ∈ [0, 1]Mk,ℓ by

F̄k,σ(x) = F̂ (x(σ)) and Ḡk,σ(x) = Ĝ(x(σ)) .

The following lemma shows that the functions F̄k,σ and Ḡk,σ inherit all the good properties of F̂k and Ĝk promised
by Lemma C.1. Since the proof of this lemma is technical and quite straightforward given Lemma C.1, we defer it to
Section C.1.

Lemma C.7. The functions F̄k,σ and Ḡk,σ are continuously differentiable, non-negative and DR-submodular. Further-
more, they are β-smooth for a value β that is polynomial in k and ℓ.

We can now formally state the scrambled instances that we consider.

max F̄k,σ(x)
x ∈ Kh,k,ℓ

and
max Ḡk,σ(x)
x ∈ Kh,k,ℓ

.

The next lemma shows that these scrambled instances inherit the values of their optimal solutions from the basic instances,
which in particular, implies that they also inherit the gap between these solutions.

Lemma C.8. We have both maxx∈Kh,k,ℓ
F̄k,σ(x) = maxx∈Ph,k

F̂k(x) and maxx∈Kh,k,ℓ
Ḡk,σ(x) = maxx∈Ph,k

Ĝk(x).

Proof. We prove below only the first equality of the lemma. The proof of the other equality is analogous. We begin
by arguing that maxx∈Kh,k,ℓ

F̄k,σ(x) ≥ maxx∈Ph,k
F̂k(x). To show this inequality, we start with an arbitrary vector

x ∈ Ph,k, and we construct a vector y ∈ Kh,k,ℓ such that F̄k,σ(y) = F̂k(x). Formally, the vector y is defined as follows.
For every i ∈ [k] and j ∈ [ℓ],

yai,j
= xa

σ
−1
j

(i)
and ybi,j = xb

σ
−1
j

(i)
.

One can observe that x = y(σ), and therefore, we indeed have F̄k,σ(y) = F̂k(x); which means that we are only left to
show that y ∈ Kh,k,ℓ. Recall that, by the definition of Kh,k,ℓ, to prove this inclusion, we need to argue that y(j) ∈ Ph,k

for every j ∈ [ℓ], where y(j) is the restriction of y to elements of {ai,j , bi,j | i ∈ [k]}.

Below, given a vector z ∈ Ph,k, we denote by σj(z) the following vector.

(σj(z))ai
= za

σ
−1
j

(i)
and (σj(z))bi = zb

σ
−1
j

(i)
.

Observe that this definition implies σj(u) = u and σj(v
(i)) = v(σj(i)), where u,v(1),v(2), . . . ,v(k) are the vec-

tors whose convex-hall defines Ph,k. Since x ∈ Ph,k, it must be given by some convex combination of the vectors
u,v(1),v(2), . . . ,v(k). In other words,

x =

k∑
i=1

ci · v(i) + d · u .

Thus,

y(j) = σj(x) = σj

(
k∑

i=1

ci · v(i) + d · u

)
=

k∑
i=1

ci · v(σj(i)) + d · u .

The rightmost side of the last equality is another convex combination of the vectors u,v(1),v(2), . . . ,v(k), and thus, the
equality shows that y(j) ∈ Ph,k, as desired.

We now get to the proof that maxx∈Kh,k,ℓ
F̄k,σ(x) ≤ maxx∈Ph,k

F̂k(x). Consider an arbitrary vector x ∈ Kh,k,ℓ. By the
definition of F̄k,σ(x), F̄k,σ(x) = F̂k(x

(σ)). Thus, to prove the last inequality, it suffices to show that x(σ) ∈ Ph,k, which
is done by the next claim. Since the proof of this claim is very similar to the above proof that y ∈ Kh,k,ℓ, we defer it to
Section C.1.
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Claim C.9. For every vector x ∈ Kh,k,ℓ, x(σ) ∈ Ph,k.

Corollary C.10. It holds that maxx∈Kh,k,ℓ
F̄k,σ(x) ≥ 1 − 1/(2k) = Ω(k−1) and (1 − h)/4 + 3/(2k) ≥

maxx∈Kh,k,ℓ
Ḡk,σ(x) = Ω(k−1).

Lemmata C.6, C.7 and C.8 show that the scrambled instances we have constructed have all the properties stated in Theo-
rem 5.1 when k ≥ 1/(1− h)). Therefore, to prove the theorem it suffices to show that no sub-exponential time algorithm
can obtain a good approximation guarantee given these instances when ℓ is large enough compared to k. We do this by
showing that when σ is chosen uniformly at random, it is difficult to distinguish between the two scrambled instances, and
therefore, no sub-exponential time algorithm can obtain an approximation ratio better than the (large) gap between their
optimal values. The first step in this proof is done by the next lemma, which shows that any single access to the objective
function almost always returns the same answer given either of the two scrambled instances. To understand why the lemma
implies this, it is important to recall that we assume that the algorithm is able to access F only by making queries whose
outputs are determined by the values of F in an arbitrary small neighborhood of a given point x (this kind of queries
includes the standard value and gradient queries).

Lemma C.11. Assume σ is drawn uniformly at random, i.e., σj is an independently chosen uniformly random permutation

of [k] for every j ∈ [ℓ]. Given any vector x ∈ [0, 1]Mk , with probability at least 1 − 4k · e−ℓ· δk
6
√

2k we have F̄k,σ(y) =

Ḡk,σ(y) for every vector y such that ∥x−y∥2 ≤ (
√
ℓ/4) · δk, where δk is the value of δ when Lemma 5.2 is applied to fk.

Proof. Below, we show that ∥x(σ) − x̄(σ)∥2 ≤ δk/2 with probability at least 1 − 4k · e−ℓδk/(6
√
2k). However, before

getting to this proof, let us show that, whenever this inequality holds, we also have F̄k,σ(y) = Ḡk,σ(y). By the definitions
of F̄k,σ and Ḡk,σ , the last equality is equivalent to F̂k(y

(σ)) = Ĝk(y
(σ)), and this equality holds by Lemma 5.2 since

∥y(σ) − ȳ(σ)∥2 ≤ ∥y(σ) − x(σ)∥2 + ∥ȳ(σ) − x̄(σ)∥2 + ∥x(σ) − x̄(σ)∥2 ≤ 2∥y(σ) − x(σ)∥2 + δk/2 ≤ δk ,

where the first inequality is the triangle inequality, the second inequality holds since averaging two vectors in the same
way can only decrease their distance from each other, and the last inequality holds because Sedrakyan’s inequality (or
Cauchy-Schwarz inequality) implies

∥y(σ) − x(σ)∥22 =

∑k
i=1[

∑ℓ
j=1(yaσj(i),j

− xaσj(i),j
)]2 +

∑k
i=1[

∑ℓ
j=1(ybσj(i),j

− xbσj(i),j
)]2

ℓ2

≤
∑k

i=1

∑ℓ
j=1(yaσj(i),j

− xaσj(i),j
)2 +

∑k
i=1

∑ℓ
j=1(ybσj(i),j

− xbσj(i),j
)2

ℓ
=
∥x− y∥22

ℓ
.

It now remains to prove that the inequality ∥x(σ)− x̄(σ)∥2 ≤ δk/2 holds with probability at least 1−4k ·e−ℓδk/(6
√
2k). By

the union bound, to prove this inequality it suffices to show that, for every i ∈ [k], the probabilities of the two inequalities
|x(σ)

ai − x̄
(σ)
ai | > δk/

√
8k and |x(σ)

bi
− x̄

(σ)
bi
| > δk/

√
8k to hold are both at most 2e−ℓδk/(6

√
2k). The rest of this proof is

devoted to showing that this is indeed the case for the first inequality as the proof for the second inequality is analogous.
Recall that

x(σ)
ai

= 1
ℓ

ℓ∑
j=1

xaσj(i),j
. (3)

Thus,

x̄(σ)
ai

=
1

k

k∑
i′=1

x(σ)
ai′

=
1

k

k∑
i′=1

 1
ℓ

ℓ∑
j=1

xaσj(i
′),j

 =
1

kℓ

k∑
i′=1

ℓ∑
j=1

xaσj(i
′),j =

1

kℓ

k∑
i′=1

ℓ∑
j=1

xai′,j , (4)

where the last equality holds since σj is a permutation over [k]. Similarly, we also have

E[x(σ)
ai

] =
1

ℓ

ℓ∑
j=1

E[xaσj(i),j
] =

1

ℓ

ℓ∑
j=1

(
1
k

k∑
i′=1

E[xai′,j ]

)
= x̄(σ)

ai
.

Hence, the claim that we want to prove bounds the probability that x(σ)
ai significantly deviates from its expectation. Fur-

thermore, Equation (3) shows that ℓ · x(σ)
ai is the sum of ℓ random variables taking values from the range [0, 1]. Since σj
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is chosen independently for every j ∈ [ℓ], these ℓ random variables are independent, which allows us to use Chernoff’s
inequality to bound their sum. Therefore,

Pr

[
|x(σ)

ai
− x̄(σ)

ai
| > δk√

8k

]
= Pr

∣∣∣∣∣∣
ℓ∑

j=1

xaσj(i),j
− E

 ℓ∑
j=1

xaσj(i),j

∣∣∣∣∣∣ > ℓδk√
8k



≤ 2e−
E[

∑ℓ
j=1 xaσj(i),j

]·min

 ℓδk√
8k·E[

∑ℓ
j=1

xaσj(i),j
]
,

ℓ2δ2k
8k·E[

∑ℓ
j=1

xaσj(i),j
]2


3

= 2e−
min

 ℓδk√
8k

,
ℓ2δ2k

8k·E[
∑ℓ

j=1
xaσj(i),j

]


3 ≤ 2e−

ℓδk√
8k

·min

{
1,

δk√
8k

}
3 = 2e

−ℓ· δk
6
√

2k .

Equation (4) in the last proof has another interesting consequence. This equation shows that x̄(σ) is independent of σ.
Since Lemma 5.2 shows that Ĝk(x) = F̂k(x̄) for every x ∈ [0, 1]Nk , this implies the following observation.

Observation C.12. For every x ∈ [0, 1]Mk,ℓ , the value of Ḡk,σ(x) = Ĝk(x
(σ)) = F̂k(x̄

σ) is independent of σ.

In light of the above observation, we use below Ḡk to denote the function Ḡk,σ . We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Fix an arbitrary sub-exponential function P (·). Below, we show that there is a distribution of
instances on which no deterministic algorithm making at most P (n) accesses to the objective function, where n is the
dimension, can obtain an approximation ratio of (1− h)/4+ ε. By Yao’s principle, this will imply the same result also for
randomized algorithms running in time P (n) (notice that running in time P (n) implies making at most P (n) accesses to
the objective function).

The distribution of instances we consider is the scrambled instance maxvx∈Kh,k,ℓ
Fk,σ , where k ≥ 1/(1−h) and ℓ are de-

terministic values to be determined below, and σ is chosen at random according to the distribution defined in Lemma C.11.
Assume towards a contradiction that there exists a deterministic algorithm ALG that accesses the objective function at
most P (|Mk,ℓ|) = P (2kℓ) times, and given a random instance from the above distribution obtains an approximation ratio
of (1 − h)/4 + ε. More formally, if we denote OPT = maxx∈Ph,k

F̂k(x), then ALG guarantees that its output vector a
obeys

E[Fk,σ(a)] ≥ [(1− h)/4 + ε] · E
[

max
x∈Kh,k,ℓ

F̂k,σ(x)

]
= [(1− h)/4 + ε] ·OPT , (5)

where the equality holds by Lemma C.8.

Consider now an execution of ALG on the instance maxx∈Kh,k,ℓ
Ḡk(x), and let us denote by A1, A2, . . . , Ar the accesses

made by ALG (each access Ai consists of a vector x and the type of access, namely whether ALG evaluates the objective
function at x or calculates the gradient of the objective function at x). It is convenient to assume that the last access made
by ALG is to evaluate the value of its output set a. If this is not the case, we can add such an access to the end of the
execution of ALG, and still have r ≤ P (2kℓ) + 1. Let E be the event that all the accesses A1, A2, . . . , Ar return the same
value given that the objective is either Ḡk or F̄k,σ . Clearly, ALG follows the same execution path given either Ḡk or F̄k,σ

when the event E happens, and therefore, it outputs the same vector a ∈ Kh,k,ℓ in this case. Furthermore, E also implies
that F̄k,σ(a) = Ḡk(a), and thus, conditioned on E ,

Fk,σ(a) ≤ max
x∈Kh,k,ℓ

Ĝk(x) ≤ (1− h)/4 + 3/(2k) ≤ (1− h)/4 + 3/(2k)

1− 1/(2k)
·OPT

≤
[

1− h

4− 2/k
+

3

k

]
·OPT ≤

[
1− h

4
+

4

k

]
·OPT ,

where the second inequality holds by Corollary C.10, the third inequality follows from Lemma C.5, and two last inequalities
hold since k ≥ 1 and h ∈ [0, 1].

We would like to use the last inequality to upper bound E[Fk,σ(a)]. For that purpose, we need to lower bound the
probability of the event E . By Lemma C.11 and the union bound,

Pr[E ] ≥ 1− 4kr · e−ℓ· δk
6
√

2k ≥ 1− 4k[P (2kℓ) + 1] · e−ℓ· δk
6
√

2k .
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Consider the second term in the rightmost side of the last inequality. This term is a function of k and ℓ alone, and for a fixed
value of k it is the product of a sub-exponential function of ℓ and an exponentially decreasing function of ℓ. Therefore, for

any fixed value of k, we can choose a large enough value for ℓ to guarantee that 2k[P (2kℓ) + 1] · e−ℓ· δk
6
√

k ≤ ε/2. In the
rest of the proof we assume that ℓ is chosen in such a way. Then, since we always have Fk,σ(a) ≤ OPT and Pr[E ] ≤ 1,
we get by the law of total expectation,

E[Fk,σ(a)] ≤ Pr[Ē ] ·OPT + E[Fk,σ(a) | E ] ≤
ε

2
·OPT + [(1− h)/4 + 4/k] ·OPT ,

which contradicts Equation (5) (and thus, the existence of ALG) when k is chosen to be max{⌈1/(h− 1)⌉, 8/ε}.

C.1 Missing Proofs

C.1.1 Proof of Claim C.2

In this section we prove Claim C.2, which we repeat here for convenience.

Claim C.2. The absolute values of the second order partial derivatives of the functions F̂k and Ĝk are bounded by 16k+2
almost everywhere, and therefore, both functions are β-smooth for a β value that is polynomial in k.

Proof. Recall that F̂k and Ĝk are the functions F̂ and Ĝ whose existence is guaranteed by Lemma 5.2 for f = fk. The
functions F̂ and Ĝ are obtained in the proof of Lemma 5.2 in a series of steps involving multiple intermediate functions.
The first of these functions are F (the multilinear extension of f ), the function G(x) = F (x̄) and the function H(x) =
F (x)−G(x). The proof of Lemma 3.5 of Vondrák (2013) shows that the absolute values of the second partial derivatives
of these functions are bounded by 4M , 4M and 8M , respectively, where M is the maximum value that the function f can
take. Since in our case f is fk, the maximum value it can take is k, and therefore, the absolute values of the second partial
derivatives of all three functions can be upper bounded by 8k.

The next function we consider is a function denoted by F̃ in the proof of Lemma 5.2. The proof of Lemma 3.8 of Vondrák
(2013) shows that for every two elements u, v ∈ N , this function obeys almost everywhere the inequality∣∣∣∣∣∂2F̃ (x)

∂u∂v
− ∂2F (x)

∂u∂v
+ ϕ(D(x)) · ∂

2H(x)

∂u∂v

∣∣∣∣∣ ≤ 512M |N |α =
512ε′

2000|N |2
≤ 1 ,

where ϕ is a function defined by Vondrák (2013) whose range is [0, 1], D(x) is another function defined by Vondrák (2013)
and α = ε′/(2000M |N |3). Since |ϕ(D(x))| ≤ 1, the last inequality implies that the absolute values of the second partial
derivatives of F̃ are upper bounded by 16k + 1 because the second partial derivatives of F and H have absolute values
bounded by 8k.

The functions F̂ and Ĝ are obtained from F̃ and G, respectively, by adding 256M |N |αJ(x) = 256ε′

2000|N |2 · J(x), where

J(x) = |N |2 + 3|N |∥x∥1 − (∥x∥1)2 .

Since the second order partial derivatives of J(x) are all −2, and the coefficient of J(x) is 256ε′

2000|N |2 ≤ 1/2, adding
256ε′

2000|N |2 · J(x) cannot increase the absolute value of the second order partial derivatives by more than 1.

C.1.2 Proof of Lemma C.7

In this section we prove Lemma C.7, which we repeat here for convenience.

Lemma C.7. The functions F̄k,σ and Ḡk,σ are continuously differentiable, non-negative and DR-submodular. Further-
more, they are β-smooth for a value β that is polynomial in k and ℓ.

Proof. We prove the lemma below for F̄k,σ . The proof for Ḡk,σ is analogous. The non-negativity of F̄k,σ follows
immediately from their definitions and the non-negativity of F̂k and Ĝk. Furthermore, by the chain-rule, for every pair of
i ∈ [k] and j ∈ [ℓ], we have

∂F̄k,σ(x)

∂xai,j

=
1

ℓ
· ∂F̂k(z)

∂zaσj(i)

∣∣∣∣∣
z=x(σ)

and
∂F̄k,σ(x)

∂xbi,j

=
1

ℓ
· ∂F̂k(z)

∂zbσj(i)

∣∣∣∣∣
z=x(σ)

. (6)
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Thus, the continuous differentiability of F̂k implies that F̄k,σ is also continuously differentiable.

Taking the derivative of the last equalities with respect to ai′,b′ for another pair i′ ∈ [k], j′ ∈ [ℓ], the chain-rule gives us the
equalities

∂2F̄k,σ(x)

∂xai′,j′∂xai,j

=
1

ℓ2
· ∂2F̂k(z)

∂zaσ
j′ (i

′)∂zaσj(i)

∣∣∣∣∣
z=x(σ)

and
∂2F̄k,σ(x)

∂xai′,j′∂xbi,j

=
1

ℓ2
· ∂2F̂k(z)

∂zaσ
j′ (i

′)∂zbσj(i)

∣∣∣∣∣
z=x(σ)

.

Since similar equalities hold also when we take the derivative of the equalities in Equation (6) with respect to bi′,j′ , the
DR-submodularity of F̂k implies the same property for F̄k,σ .

It remains to bound the smoothness of F̄k,σ . For every two vectors x,y ∈ [0, 1]Mk , we have by Equation (6) that

∥∇F̄k,σ(x)−∇F̄k,σ(y)∥22 =

k∑
i=1

ℓ∑
j=1

1

ℓ
· ∂F̂k(z)

∂zaσj(i)

∣∣∣∣∣
z=x(σ)

− 1

ℓ
· ∂F̂k(z)

∂zaσj(i)

∣∣∣∣∣
z=y(σ)

2

+

k∑
i=1

ℓ∑
j=1

1

ℓ
· ∂F̂k(z)

∂zbσj(i)

∣∣∣∣∣
z=x(σ)

− 1

ℓ
· ∂F̂k(z)

∂zbσj(i)

∣∣∣∣∣
z=y(σ)

2 =
1

ℓ
·

k∑
i=1

 ∂F̂k(z)

∂zai

∣∣∣∣∣
z=x(σ)

− ∂F̂k(z)

∂zai

∣∣∣∣∣
z=y(σ)

2

+
1

ℓ
·

k∑
i=1

 ∂F̂k(z)

∂zbi

∣∣∣∣∣
z=x(σ)

− ∂F̂k(z)

∂zbi

∣∣∣∣∣
z=y(σ)

2 =
∥∇F̂k(x

(σ))−∇F̂k(y
(σ))∥22

ℓ
≤ β2∥x(σ) − y(σ)∥22

ℓ

=
β2 ·

∑k
i=1[(

∑ℓ
j=1 xaσj(i),j

−
∑ℓ

j=1 yaσj(i),j
)2 + (

∑ℓ
j=1 xbσj(i),j

−
∑ℓ

j=1 ybσj(i),j
)2]

ℓ3
,

where β is the smoothness parameter of F̂k, and the second equality holds since the entries of σ are permutations. Using
Sedrakyan’s inequality (or Cauchy–Schwarz inequality), we also have, for every i ∈ [k], ℓ∑

j=1

xaσj(i),j
−

ℓ∑
j=1

yaσj(i),j

2 ≤ ℓ ·
ℓ∑

j=1

(xaσj(i),j
−

ℓ∑
j=1

yaσj(i),j
)2

and  ℓ∑
j=1

xbσj(i),j
−

ℓ∑
j=1

ybσj(i),j

2 ≤ ℓ ·
ℓ∑

j=1

(xbσj(i),j
−

ℓ∑
j=1

ybσj(i),j
)2 .

Combining all the above inequalities yields

∥∇F̄k,σ(x)−∇F̄k,σ(y)∥2 ≤
β ·
√∑k

i=1[
∑ℓ

j=1(xaσj(i),j
− yaσj(i),j

)2 +
∑ℓ

j=1(xbσj(i),j
− ybσj(i),j

)2]

ℓ

=
β · ∥x− y∥2

ℓ
,

which completes the proof of the lemma since the smoothness parameter β of F̂k is polynomial in k.

C.1.3 Proof of Claim C.9

In this section we prove Claim C.9, which we repeat here for convenience.

Claim C.9. For every vector x ∈ Kh,k,ℓ, x(σ) ∈ Ph,k.
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Proof. By the definition of Kh,k,ℓ, the membership of x in Kh,k,ℓ implies that for every j ∈ [ℓ] we must have x(j) ∈ Ph,k.
Thus, x(j) can be represented by a convex combination of the vectors u,v(1),v(2), . . . ,v(k) as follows.

x(j) =

k∑
i=1

ci,j · v(j) + dj · u .

Similarly to the proof of Lemma C.8, let us define σ−1
j (x(j)) to be the following vector. For every i ∈ [k],

(σ−1
j (x(j)))ai

= x(j)
aσ(i)

and (σ−1
j (x(j)))bi = x

(j)
bσ(i)

.

Using the above notation, we get

x(σ) = 1
ℓ

ℓ∑
j=1

σ−1
j (x(j)) = 1

ℓ

ℓ∑
j=1

σ−1
j

(
k∑

i=1

ci,j · v(i) + dj · u

)

= 1
ℓ

ℓ∑
j=1

[
k∑

i=1

ci,j · σ−1
j (v(i)) + dj · σ−1

j (u)

]
= 1

ℓ

ℓ∑
j=1

[
k∑

i=1

ci,j · v(σ−1
j (i)) + dj · u

]

=

k∑
i=1

∑ℓ
j=1 cσj(i),j

ℓ
· v(i) +

∑ℓ
j=1 dj

ℓ
· u .

The last step in the proof of the claim is to show that the rightmost side is a convex combination, which implies x(σ) ∈ Ph,k

by the definition of Ph,k. To see that this is indeed the case, we observe that the coefficients of all the vectors in this
rightmost side are averages of non-negative numbers, and therefore, are non-negative as well. Furthermore,

k∑
i=1

∑ℓ
j=1 cσj(i),j

ℓ
+

∑ℓ
j=1 dj

ℓ
= 1

ℓ

ℓ∑
j=1

[
k∑

i=1

cσj(i),j + dj

]
= 1

ℓ

ℓ∑
j=1

[
k∑

i=1

ci,j + dj

]
= 1

ℓ

ℓ∑
j=1

1 = 1 ,

where the second equality holds since σj is a permutation for every j ∈ ℓ.

D QUADRATIC PROGRAMMING

In this section, we complement the study of (our version) of the offline algorithm of Du (2022), by checking its empir-
ical performance for down-closed polytopes. Algorithms with better approximation guarantees are known when one is
guaranteed to have such a constraint (Bian et al., 2017a). However, it is still important to understand the performance of
algorithms designed for general polytope constraint when they happen to get a down-closed polytope. In particular, we
note that Dürr et al. (2021) studied the empirical performance of their algorithm compared to the performance of the algo-
rithm of Bian et al. (2017a) subject to such constraints, and we extend here their work by comparing the performance of
their algorithm with that of newer algorithms. All the experiments presented in this section closely follow settings studied
in (Dürr et al., 2021).

Consider the down-closed polytope given by

K = {x ∈ Rn
≥0 | Ax ≤ b,x ≤ u,A ∈ Rm×n

≥0 ,b ∈ Rm
≥0} ,

where A is a non-negative matrix chosen in a way described below, b is the all ones vector, and u is a vector that acts as an
upper bound on K and is given by uj = minj∈[m] bi/Ai,j for every j ∈ [n]. We now describe a function F that we would
like to maximize subject to K. For every vector 0̄ ≤ x ≤ u (where 0̄ is the all zeros vector),

F (x) =
1

2
xTHx+ hTx+ c ,

where H is a matrix, h is a vector and c is a scalar. The matrix H is chosen in a way described below, and it is always
non-positive, which guarantees that F is DR-submodular. Furthermore, once H is chosen, we follow Bian et al. (2017a)
and set h = −0.1 · HTu. Finally, to make sure that F is also non-negative, the value of c should be at least M =
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(b) m = n
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Figure 3: Quadratic Programming with Uniform Distribution

−min0̄≤x≤u
1
2x

THx + hTx . The value of M can be approximately obtained using QUADPROGIP6 (Xia et al., 2020),
and c is chosen to be M + 0.1|M |, which is a bit larger than the necessary minimum.

It remains to describe the way in which the entries of the matrices H and A are chosen. Below we describe two different
random ways in which this can be done, and study the performance of the various algorithms on the instances generated in
this way.

D.1 Uniform distribution

The first way to choose the matrices H and A is using a uniform distribution. Here, the matrix H ∈ Rn×n is a randomly
generated symmetric matrix whose entries are drawn uniformly at random (and independently) from [−1, 0], and A ∈
Rm×n is a randomly generated matrix whose entries are drawn uniformly at random from [v, v + 1] for v = 0.01 (this
choice of v guarantees that the entries of A are strictly positive).

In each one of our experiments, we chose a different set of values for the dimensions n and m, and then drew an instance
from the above distribution and executed on it 100 iterations of three algorithms: our explicit version from Section 3 of the
algorithm of Du (2022) (with ε = 0.03), and the previous algorithms of Dürr et al. (2021) and Du et al. (2022). Each such
experiment was repeated 100 times, and the results are depicted in Figure 3. In each plot of this figure, the x-axis represents
the value of n, and the caption of the plot specifies how the value of m was calculated based on the value of n. The y-axis
of the plots represents the approximation ratios obtained by the various algorithms compared to the optimum computed
using a quadratic programming solver. One can observe that the two sub-exponential time algorithms of Dürr et al. (2021)
and Du et al. (2022) exhibit similar performance, and (our version) of the newer algorithm of Du (2022) consistently and
significantly outperforms them.

D.2 Exponential distribution

The other way to choose the matrices H and A is using an exponential distribution. Recall that given λ > 0, the exponential
distribution exp(λ) is given by a density function assigning a density of λe−λy for every y ≥ 0 and density 0 for negative y
values. Then, H ∈ Rn×n is randomly generated symmetric matrix whose entries are drawn independently from − exp(1),
and A ∈ Rm×n is a randomly generated matrix whose entries are drawn independently from exp(0.25) + 0.01.

For this way of generating H and A, we repeated that same set of experiments as for the previous way of generating these
matrices. The results of these experiments (averaged over 100 repetitions) are depicted in Figure 4. Again, we note that
the two sub-exponential time algorithms of Dürr et al. (2021) and Du et al. (2022) exhibit similar performance, and (our
version) of the newer algorithm of Du (2022) significantly outperforms them, especially as the dimension n grows.

6We have used IBM CPLEX optimization studio https://www.ibm.com/products/ilog-cplex-optimization-
studio.
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(b) m = n
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Figure 4: Quadratic Programming with Exponential Distribution


