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Abstract

Active search is a setting in adaptive experimental
design where we aim to uncover members of rare,
valuable class(es) subject to a budget constraint.
An important consideration in this problem is di-
versity among the discovered targets – in many
applications, diverse discoveries offer more in-
sight and may be preferable in downstream tasks.
However, most existing active search policies ei-
ther assume that all targets belong to a common
positive class or encourage diversity via simple
heuristics. We present a novel formulation of
active search with multiple target classes, charac-
terized by a utility function chosen from a flexible
family whose members encourage diversity via a
diminishing returns mechanism. We then study
this problem under the Bayesian lens and prove a
hardness result for approximating the optimal pol-
icy for arbitrary positive, increasing, and concave
utility functions. Finally, we design an efficient,
nonmyopic approximation to the optimal policy
for this class of utilities and demonstrate its supe-
rior empirical performance in a variety of settings,
including drug discovery.

1 Introduction

A theme underlying many real-world applications is the
need to rapidly discover rare, valuable instances from mas-
sive databases in a budget-efficient manner. For example,
both drug discovery and fraud detection entail searching
through huge spaces of candidates for rare instances exhibit-
ing desired properties: binding activity against a biological
target for drug discovery, or fraudulent behavior for fraud
detection. In both of these cases, labeling a given data point
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is expensive: synthesis and characterization in a laboratory
for drug discovery, and human intervention (and possibly
lost sales) for fraud detection. This cost of labeling rules out
exhaustive scanning and raises a challenge in experimental
design. The active search (AS) framework frames such tasks
in terms of active learning, where one iteratively queries an
expensive oracle to determine whether chosen data points
are valuable. The goal of AS is to adaptively design queries
for labeling in order to identify as many valuable data points
as possible under a given budget.

AS has enjoyed a great deal of study (Garnett et al., 2012;
Jiang et al., 2017, 2018, 2019; Nguyen et al., 2021), and
strong theoretical results and efficient algorithms are known.
Most relevant to this work, Jiang et al. (2017) established
a strong hardness result for AS. Namely, no computation-
ally tractable policy (i.e., one that runs in polynomial time
with respect to its querying budget) can guarantee recovery
within any constant factor of the (exponential-time) optimal
policy in the worst case. This proof was by an explicit con-
struction of arbitrarily hard problems. Nonetheless, Jiang
et al. (2017) were able to develop an efficient, nonmyopic
policy that achieves impressive empirical results.

Prior work on AS has operated in a binary setting where
every data point is either valuable or not. The total number
of discoveries made in a given budget is then used as a
utility function during experimental design, encoding equal
marginal utility for every discovery made. However, this
may not adequately capture preferences over experimental
outcomes in many practical scenarios, where there may
be diminishing returns in finding additional members of a
frequently observed class. This is often the case in, e.g.,
scientific discovery, where a discovery in a novel region of
the design space may offer more marginal insight than the
100th discovery in an already densely labeled region. In
this work, we will consider a multiclass variant of the AS
problem, wherein discoveries in rare classes are awarded
more marginal utility than those in an already well-covered
classes. As we will see, this approach naturally encourages
diversity among the points discovered.

After defining this problem, we study it through the lens of
Bayesian decision theory. We begin by outlining how we
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can capture the notion of diminishing returns in marginal
discovery through an (arbitrary) positive, increasing, and
concave utility function. We then extend the hardness of
approximation result by Jiang et al. (2017) from the lin-
ear utility to this much larger family, demonstrating that
search is fundamentally difficult for a broad range of nat-
ural utility functions. We then propose an approximation
to the optimal policy for problems in this this class that is
both computationally efficient and nonmyopic. We show
that the resulting algorithms effectively encourage diversity
among discoveries, and, similar to nonmyopic policies from
previous work, leverage budget-awareness to dynamically
balance exploration and exploitation. We demonstrate the
superior empirical performance of our approach through an
exhaustive series of experiments, including in a challenging
drug discovery setting. Across the board, our proposed pol-
icy recovers both better balanced and richer data sets than a
suite of strong baselines.

2 Problem Definition

We first introduce the multiclass active search problem with
diminishing returns and present the Bayesian optimal policy.
This policy will be hard to compute (or even approximate),
but will inspire an approximation developed in the next
section. Suppose we are given a large but finite set of points
X ≜ {xi}, each of which belongs to exactly one of C
classes, denoted by [C] ≜ {1, 2, . . . , C}, where C > 2. We
assume class-1 instances are abundant and uninteresting,
while other classes are rare and valuable; we call the
members of these classes targets. The class membership
of a given point x ∈ X is not known a priori but can be
determined by making a query to an oracle that returning
its label y = c. We assume this labeling procedure is
expensive and can only be accessed a limited number of
times T ≪ n ≜ |X | – the querying budget. Denote a given
data set of queried points and labels as D = {(xi, yi)}, and
Dt as the data set collected after t queries to the oracle in
a given search.

Our high-level goal is to design a policy that decides which
elements of X should be queried in order to uncover as
many targets as possible. Preferences over different data
sets (experimental outcomes) are expressed via a utility
function; previous work (Garnett et al., 2012; Jiang et al.,
2017) has used a linear utility in the binary setting C = 2:

u (D) =
∑

y∈D
1{y > 1}, (1)

which effectively groups all targets in a common positive
class and assigns equal reward to each discovery. In many
practical scenarios, however, once a target class has been
thoroughly investigated, the marginal utility of finding yet
more examples decreases and we would prefer to either
expand a rarely sampled class or discover a new one. For
example, in drug discovery – one of the main motivating
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Figure 1: Discoveries by region relative to a uniform target
distribution by the state-of-the-art policy ENS, in a toy search
problem where points within the visible regions in the unit
square are considered search targets. ENS over-samples
the center region, the most common and easiest-to-identify
target class, and collects a highly unbalanced data set.

applications for AS – screening procedures optimized for
hit rate tend to propose very structurally similar compounds
and lead to an overall decline in usefulness of these discov-
eries downstream (Galloway et al., 2010). This has lead to
efforts to artificially encourage diversity when generating
new screening experiments, as a way to induce the desired
search behavior (Benhenda, 2017; Pereira et al., 2021).

The preferences above reflect the notion of diminishing
returns. We propose to capture diminishing returns for
marginal discoveries in a known class c (and thereby en-
courage diversity in discoveries) with a reward function
fc:

u (D) ≜
∑
c>1

fc

( ∑
y∈D

1{y = c}
)
=

∑
c>1

fc (mc) , (2)

where fc is a positive, increasing, and concave function
quantifying our reward given the number of found targets
from a given class c. The term mc denotes the number of
targets of class c in data set D; we also use mc,t to denote
the corresponding number in Dt at time t. Any utility en-
coding decreasing marginal gains (that is, concave) is an
appropriate choice for this setting, and we will see later in
Sect. 3 that the key element of our algorithm is valid with
any concave utility. In our experiments, we use the logarith-
mic function fc(x) = log(x + 1) (which has seen a wide
range of applications, namely modeling utility of wealth
(Bernoulli, 1954) or production output (Pemberton and Rau,
2015) in economics) as a reasonable default with which to
generate our main results. We also present results showing
that our methods generalize well to other possibilities such
as the square root utility fc(x) =

√
x.

Under this model, the marginal gain of an additional discov-
ery decreases with the size of the corresponding class in D.
Consider a toy problem illustrated in Fig. 1, where we wish
to search for points close to the center and corners of the
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unit square, each representing a target class. The state-of-
the-art ENS policy (Jiang et al., 2017), which uses a linear
utility, recovers many targets but over-exploits the center
region. This is undesirable behavior when we would prefer
to have balanced discoveries across all classes; ideally, we
would like to achieve a uniform target distribution (an equal
number of hits across all classes for maximum diversity),
where all five regions in the plot are transparent. We will
develop policies that can achieves such balance in the next
section.

2.1 The Bayesian Optimal Policy

We now derive the optimal policy in the expected case using
Bayesian decision theory. We first assume access to a model
computing the posterior probability that a point x ∈ X
belongs to class c ∈ [C] given an observed data set D,
denoted by pc (x | D) ≜ Pr (y = c | x,D). (We sometimes
omit the dependence on D in the notation when the context
is clear.) This model may be arbitrary. Now, suppose we are
currently at iteration t + 1 ≤ T , having collected data set
Dt, and now need to identify the next point xt+1 ∈ X \ Dt

to query the oracle with. The optimal policy selects the
point that maximizes the expected utility of the terminal
data set DT , conditioned on the current query, recursively
assuming that future queries will also be made optimally:

x∗
t+1 = argmax

xt+1∈X\Dt

E
[
u (DT ) | xt+1,Dt

]
. (3)

This expected optimal utility may be computed using back-
ward induction (Bellman, 1957). In the base case where
t = T − 1 and we are faced with the very last query xT ,

E
[
u (DT ) | xT ,DT−1

]
=

∑
c∈[C]

u (DT ) pc (xT | DT−1) .

(4)
Maximizing this expectation is equivalent to maximizing
the expected marginal utility gain

∆(xT | DT−1) ≜
∑
c>1

pc (xT | DT−1)×[
fc (mc,T−1 + 1)− fc (mc,T−1)

]
. (5)

For each class c, this quantity not only increases as a func-
tion of the positive probability pc, but also decreases as a
function of the number of targets already found in that class.
Therefore, even at this very last step, the optimal decision
balances between hit probability and discovery/extension
of a rare class. When more than one query remains in our
budget, the expected optimal utility in Eq. (3) expands into

E
[
u (DT ) | xt+1,Dt

]
= u (Dt) + ∆ (xt+1 | Dt)+

Eyt+1

[
max
xt+2

E
[
u (DT ) | xt+2,Dt+1

]
− u (Dt+1)

]
, (6)

where E
[
u (DT ) | xt+2,Dt+1

]
is the expected utility that

is a step further into the future and may be recursively com-
puted using the same expansion. Here, we note while the
first term in the sum on the right-hand side (the utility at the
current step u (Dt)) is a constant, the other two terms may be
interpreted as balancing between exploitation from the im-
mediate reward (the marginal gain ∆(xt+1 | Dt)), and ex-
ploration from the future rewards to be optimized by subse-
quent queries (the expected future utility). Overall, comput-
ing this expectation involves (ℓ− 1) further nested expecta-
tions and maximizations, where ℓ = T − t is the search hori-
zon. This has a time complexity of O

(
(C n)ℓ

)
, making find-

ing the optimal decision intractable for any large data set.

A potential solution to this problem is to limit the lookahead
horizon by pretending that ℓ is small, thus myopically ap-
proximating the optimal policy. The simplest form of this is
to set ℓ = 1 and greedily optimize for the one-step expected
marginal utility gain in Eq. (5). We refer to the resulting pol-
icy as the one-step policy. Since our utility function has ele-
ments with diminishing returns, a question naturally arises
as to whether the results from the submodularity (Krause
and Guestrin, 2007) and adaptive submodularity (Golovin
and Krause, 2011) literature apply here, and whether the
greedy strategy of the one-step policy could approximate
the optimal policy well. In the next subsection, we present
the perhaps surprising result that no polynomial-time policy
can approximate the optimal policy by any constant factor.

2.2 Hardness of Approximation

Assuming access to a unit-cost conditional probability
pc (x | D) for any point x ∈ X and data set D, we obtain
the same hardness result of Jiang et al. (2017) for the broad
range of utility functions considered here:
Theorem 2.1. There is no polynomial-time policy providing
any constant factor approximation to the optimal expected
utility in the worst case.

Our proof strategy follows that of Jiang et al. (2017). We
construct a family of hard problem instances, where in each
instance a secret set of points encodes the location of a larger
“treasure” of targets. The probability of discovering this trea-
sure is extremely small without observing the secret set first,
which in itself is vanishingly unlikely to happen in polyno-
mial time. Further, the average hit rate outside of the trea-
sure set is vanishingly low, making it infeasible to compete
with the optimal policy. Remarkably, we can construct such
hard problem instances for any utility that is positive, in-
creasing, unbounded, and concave in the number of discover-
ies in each class. The complete proof is included in Appx. A.

Despite this negative result, we hope to design empirically
effective policies. Previous work has demonstrated that
nonmyopic policies offer both theoretical and empirical ben-
efits when working with the linear utility function, and that
budget-awareness is in particular can be especially bene-
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ficial for a policy to effectively balance exploration and
exploitation. In the next section, we propose an efficient,
nonmyopic approximation to the optimal policy for the class
of utility functions we consider here, which we will show
later also improves practical performance.

3 Efficient Nonmyopic Approximation

We propose a batch rollout approximation to the optimal pol-
icy similar to the ENS algorithm for binary AS (Jiang et al.,
2017) and the GLASSES algorithm for Bayesian optimiza-
tion (González et al., 2016). The key idea is to assume that
after a proposed query in the current iteration, all remaining
budget will be spent simultaneously on a single batch of
queries exhausting the budget. This assumption simplifies
the decision tree we must analyze, reducing its depth to 2
while expanding the branching factor of the last layer. Un-
der the linear utility model, the expected marginal utility of
a final batch of queries conveniently decomposes into a sum
of positive probabilities of individual batch members. The
optimal final batch therefore consists of the points with the
highest probabilities, which may be computed efficiently.
By matching the size of the following batch to the number
of queries remaining, we can effectively account for our
remaining budget when computing the expected utility of
a given putative query. Unfortunately, the linear decompo-
sition enabling rapid computation in ENS does not hold in
our setting due to our nonlinear utility (2), and designing an
effective batch policy requires more care.

3.1 Making a Batch of Queries

We first temporarily consider the subproblem of designing
a batch of b queries X given a data set D to maximize
the expected utility of the combined observation set, i.e.,
EY

[
u (D ∪X,Y )

]
, where the expectation is taken over Y ,1

the labels of X . As labels may be conditionally dependent
and the utility function u is not linear, exact computation of
this expectation requires iterating over all Cb realizations of
the label set Y . This is infeasible unless b is very small, and
represents the primary challenge we must overcome.

A crude but effective mechanism to address the conditional
dependence of labels is to simply ignore the dependence (a
“mean field approximation”). This relieves us from having
to update the posterior for unseen points given fictitious
observations arising in the computation. However, in our
setting, even if we assume conditional independence, we
still face challenges in computing the expected utility:

EY

[
u (D ∪X,Y )

]
=

∑
c>1

EY

[
fc (m

′
c)
]
, (7)

1In this section, expectations over Y are universally condi-
tioned on knowledge of X and D; we drop this conditioning from
the expressions to clarify the main ideas.

where m′
c is the total number of targets belonging to class c

in the union set ofD and a particular realization of Y . In the
interest of effective computation, we use Jensen’s inequality
to obtain an upper bound on the expected utility:∑

c>1

EY

[
fc (m

′
c)
]
≤

∑
c>1

fc

(
EY [m′

c]
)
. (8)

Now, for a given class c, the inner expectation may be
rewritten as the sum of probabilities (and some constants):

EY [m′
c] = mc +

∑
x∈X

pc (x | D) . (9)

We then upper-bound the overall expected utility:

EY

[
u (D ∪X,Y )

]
≤ u(X)

≜
∑
c>1

fc

(
mc +

∑
x∈X

pc(x | D)
)
.

(10)

We propose to use this upper bound, u, to approximate the
expected utility of a batch for the purposes of policy com-
putation. Here, we note that we may derive this bound for
any concave utility. In Appx. D, we present simulation re-
sults comparing the fidelity of this approximation to that of
Monte Carlo sampling. Overall, our method offers competi-
tive accuracy even against sampling with a large number of
samples of Y (>1000), while being significantly more com-
putationally lightweight. Here, speed is paramount since in
batch rollout, computing the utility of a batch is a subrou-
tine that needs to run many times (C times for each putative
query candidate, once for each putative label). Another
attractive feature of our approach is that u is a monotone
submodular set function, which will facilitate efficient (ap-
proximate) maximization.

Our goal now is to find the batch X that maximizes u, as
an approximation to the batch maximizing the expected
one-step utility. Naïvely maximizing u requires iterating
over

(
n
b

)
candidate batches to compute the corresponding

score. However, we note that this score is a sum of concave,
increasing functions, which are monotone submodular, and
therefore u is a monotone submodular function itself. We
thus opt to greedily optimize u by sequentially maximizing
the pointwise marginal gain; the resulting batch provides a
(1− 1/e)-approximation for the optimal batch (Nemhauser
et al., 1978; Krause and Guestrin, 2007). We briefly remark
on the nature of the batches resulting from this greedy pro-
cedure, which naturally encourages batch members to be
diverse in their likely labels: once a point having a high pc
is added to X , others with high pc′ for another target will
be prioritized during the next selection. This is a desidera-
tum of a batch policy when seeking to encourage diversity,
indicating the output of the algorithm is a reasonable ap-
proximation of the optimal batch. Further, when b = 1 (that
is, at the second-to-last iteration), this procedure makes the
true expected-case optimal decision – a reassuring feature.
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Algorithm 1 Diversity-aware active search (DAS)
1: inputs observations Dt, remaining budget T − t
2: returns x∗

t+1 maximizing the score in Eq. (11)
3: for xt+1 ∈ X \ Dt do
4: for yt+1 ← 1 to C do
5: α (xt+1 | yt+1)← u (X | Dt ∪ {(xt+1, yt+1)})
6: end for
7: α(xt+1)←

∑
c pc(xt+1)α (xt+1 | c)

8: end for
9: x∗

t+1 ← argmaxxt+1 α(xt+1)

3.2 Completing the Algorithm

With a method of constructing approximate one-step opti-
mal batches in hand, we now complete our proposed pol-
icy, diversity-aware active search, or DAS. For a candi-
date observation xt+1, we condition on each possible label
yt+1 ∈ [C], approximate the optimal batch observation fol-
lowing (xt+1, yt+1), and average the resulting approximate
terminal utility u over the labels yt+1:

α(xt+1) = Eyt+1

[
u (X) | xt+1,Dt

]
, (11)

where u depends on the putative dataD∪(xt+1, yt+1). DAS
proceeds by selecting the candidate x∗

t+1 that maximizes
the score α. This procedure is summarized in Alg. 1.

As mentioned, with the lookahead batch construction simu-
lating future queries, DAS accounts for not only the immedi-
ate reward but also the impact of the chosen query on future
rewards. Additionally, the latter quantity naturally decreases
as a function of the remaining budget b, allowing our policy
to be budget-aware and dynamically balance exploitation
and exploration without any tradeoff parameter. We briefly
demonstrate the benefits of our approach by continuing with
the example previously seen in Fig. 1, where ENS, in seek-
ing to maximize only recovery, collected highly unbalanced
data sets. Fig. 2 shows the results of the one-step policy and
DAS under the same setting. Compared to ENS, one-step
distributes its queries more equally, but it is our proposed
policy DAS that constructs the most diverse data set.

3.3 Implementation

A naïve implementation of the batch subroutine in DAS
has a complexity of O(b n), and the entire DAS procedure
has a complexity of O

(
C n (b n)

)
= O

(
C bn2

)
, where

again n = |X | is the size of our search space and b is the
remaining budget.

We now describe the k-NN model used in our experiments,
introduced by Garnett et al. (2012) in the binary setting. The
idea is to use the proportion of class-c members among the
observed nearest neighbors of a given point x as the poste-
rior marginal probability pc (x | D). Formally, denote the
set of nearest neighbors of x as NN(x) and the (potentially

(a) One-step (b) DAS (ours)
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Figure 2: Discoveries by region relative to a uniform target
distribution by the one-step policy and our proposal DAS,
in the problem visualized in Fig. 1. One-step distributes
queries more equally than the previously seen ENS; however,
center points are still over-represented. DAS constructs more
diverse data sets and finds more rare corner targets.

empty) subset of labeled neighbors as LNN(x) ⊆ NN(x).
Then, the posterior probability of x belonging to class c is

pc (x | D) =
γc +

∑
x′∈LNN(x) 1{y′ = c}
1 + |LNN(x)|

, (12)

where each γc ∈ (0, 1) is a hyperparameter acting as a
“pseudocount”, or our prior belief about the prevalence of
class c (since pc (x | D) = γc if LNN(x) = ∅). We detail
our choice for this hyperparameter in Appx. C.

The k-NN achieves reasonable generalization error in prac-
tice (in the sparsely labeled setting we are considering here),
and can be rapidly updated given a new observation, which
is a valuable feature with respect to our method. Further,
the k-NN only uses the similarity matrix for X , whose cal-
culation only needs to be done once and can be accelerated
by modern similarity search libraries such as Faiss (Johnson
et al., 2019). This model also allows us to employ a branch-
and-bound pruning strategy that speeds up the search for the
query maximizing the score α at each iteration; we detail
this procedure in Appx. B.

In the event where pruning is unsuccessful, we can sub-
sample the space (e.g., subject to a user-specified cardinality
constraint) and conduct the current search within the sam-
pled pool. This technique is extensively explored in Mirza-
soleiman et al. (2015) and used by Nguyen et al. (2021).

4 Related Work

Active search (Garnett et al., 2012) is a variant of active
learning (AL) (Settles, 2009) where we aim not to learn an
accurate model, but to collect members of rare and valuable
classes. Previous work has explored AS under a wide range
of settings, such as when the goal is to hit a targeted number
of positives as quickly/cheaply as possible (Warmuth et al.,
2002, 2003; Jiang et al., 2019), when queries are made in
batches (Jiang et al., 2018), or with multifidelity oracles
(Nguyen et al., 2021). These studies all assumed there is
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only one target class, and collecting a target constitutes a
constant reward. Ours is the first to our knowledge to tackle
multiclass AS.

Diversity as an objective has enjoyed great interest from the
broader AL community. A common approach is to modify
a typical AL acquisition function to encourage diversity in
the resulting queries. For example, Gu et al. (2015) and
Yang et al. (2015) encouraged diversity by incorporating
dissimilarity terms (computed via an RBF kernel) into un-
certainty sampling schemes. Brinker (2003) used the angles
between the hyperplanes induced by adding new points to
the training set of an SVM, and Zhdanov (2019) considered
the minimum distance between any pair of labeled points.
Others have employed coreset-based strategies (Sener and
Savarese, 2018; Agarwal et al., 2020) to identify a set of
diverse representative points. Another popular strategy is to
partition a given data set into different groups (e.g., using
a clustering algorithm) and inspect the groups in a round-
robin manner (Madani et al., 2004; Lin et al., 2018; Ma et al.,
2020; Citovsky et al., 2021). We will apply a round-robin
heuristic to a number of benchmarks in our experiments.

Vanchinathan et al. (2015) was motivated by a similar prob-
lem of uncovering a diverse, valuable subset. Theirs is
a regression setting in which diversity is measured in the
feature space – via the logdet of the Gram matrix of the
collected data. The proposed policy is myopic, maximizing
the expected one-step marginal gain in a weighted sum of
reward and diversity. He and Carbonell (2007) studied a
related problem where the objective is to detect at least one
instance of each rare target class as quickly as possible. By
assuming the target classes are highly concentrated, they
design a policy that optimizes the difference in local density
between a given point and its nearest neighbors, which is
effective at identifying targets on the boundary. Malkomes
et al. (2021) considered the constraint active search problem,
in which they seek to find a diverse set of points satisfying
a set of constraints. The authors propose maximizing the
expected improvement in a coverage measure given a new
observation. We include these policies as AL baselines in
our experiments.

Closest to the motivation of our work, a line of research
(Kothawade et al., 2021, 2022) has explored a unified AL
framework for querying rare, diverse subsets of a large pool
using submodular information measures. Specifically, the
neural network-based SIMILAR algorithm (Kothawade et al.,
2021) consists of AL policies that can tackle problematic
yet realistic learning scenarios such as imbalance in the
training data, rare classes, out-of-distribution test data, and
redundancy. While it can be used for active search, SIMILAR
is not designed to specifically target discovery tasks; in
Appx. E, we present results comparing the instantiation of
SIMILAR for rare class detection with our method, noting
a slightly lower performance from SIMILAR. Further, our
diversity-aware active search framework allows the utility

function to be adjusted by the user to dynamically balance
between discovery and diversity, a valuable feature in many
discovery tasks.

Diversity has also been explored in the related task of
Bayesian optimization (Garnett, 2022). A common ap-
proach is to incorporate a determinantal point process
(Kulesza and Taskar, 2012) to induce diversity in the feature
space (Wang et al., 2018; Nava et al., 2021). In the multiob-
jective setting, many policies leverage the diversity of their
collected data in the Pareto space to design queries (Gupta
et al., 2018; Shu et al., 2020; Lukovic et al., 2020).

5 Experiments

We performed a series of experiments to evaluate the em-
pirical performance of our policy DAS. As baselines, we
considered related active learning/search algorithms (He
and Carbonell, 2007; Vanchinathan et al., 2015; Malkomes
et al., 2021) (see Sect. 4), as well as the one-step looka-
head policy, which greedily maximizes the marginal utility
at each iteration. Another baseline was ENS (Jiang et al.,
2017), the state-of-the-art for binary AS, where we lumped
all targets into a single positive class.

We also considered a family of policies that design queries
in a round-robin (RR) manner. In each iteration t, we choose
a target class ct and seek to make a discovery for this tar-
get class. A round-robin policy then continually rotates
the target class among the positive classes throughout the
search, devoting an equal amount of resources to each class.
The first of these policies is RR-greedy, which for a given
class index ct queries the point that maximizes the proba-
bility pct . Another round-robin baseline is RR-UCB, which
maximizes an upper confidence bound score (Auer, 2002)
corresponding to ct: pct + β

√
pct(1− pct). Here β is a

hyperparameter trading off exploitation (class membership
probability) and uncertainty (as measured by the standard
deviation of the binary indicator [y = ct]). We evaluate this
policy for β ∈ {0.1, 0.3, 1, 3, 10} and report the result of
the best performing value of β, denoted β∗ in our results
(Tab. 1). Finally, we consider RR-ENS, which applies the
ENS heuristic to the subproblem of finding positives in the
target class ct. The remaining budget is equally allocated
among the positive classes, and we adjust the remaining
budget when constructing lookahead batches accordingly.

When relevant in the following experiments, we used a util-
ity function that was logarithmic in marginal discoveries for
each class: u (D) =

∑
c>1 log (1 +mc); however, we also

conducted a robustness study comparing performance for
this utility function with an alternative that had significantly
faster (square root) growth in each class. We set our budget
T = 500 unless specified otherwise and run each policy
20 times, each time with an initial training set containing a
randomly selected target. We tested our policies on a wide
range of data sets representing a diverse set of applications,
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Table 1: Logarithmic utility and standard errors across 20 repeated experiments for each setting. C is the total number of
unique classes in the search space. The best performance in each column is highlighted in bold; policies not significantly
worse than the best (according to a two-sided paired t-test with a significance level of α = 0.05) are in blue italics.

Fashion-MNIST Photoswitch CiteSeerx Drug discovery

easy hard C = 5 C = 10 C = 5 C = 10 C = 15

He and Carbonell (2007) 3.99 (0.16) 3.95 (0.16) 12.65 (0.22) 11.30 (0.11) 24.61 (0.14) 3.49 (0.23) 7.19 (0.27) 10.35 (0.35)
Vanchinathan et al. (2015) 9.47 (0.50) 6.99 (0.51) 7.16 (0.25) 16.28 (0.06) 31.95 (0.49) 10.19 (0.70) 18.67 (0.88) 25.51 (1.40)

Malkomes et al. (2021) 11.31 (0.34) 10.93 (0.47) 6.39 (0.03) 11.28 (0.01) 22.16 (0.01) 7.41 (0.31) 13.77 (0.56) 19.60 (0.66)

ENS 10.48 (0.29) 10.91 (0.14) 5.04 (0.21) 16.57 (0.08) 32.54 (0.50) 10.29 (0.68) 13.79 (0.85) 17.00 (1.15)

RR-greedy 11.41 (0.36) 10.41 (0.44) 11.70 (0.30) 16.66 (0.14) 33.08 (0.13) 10.87 (0.82) 18.66 (1.13) 24.87 (0.95)

RR-UCB
11.51 (0.37)

(β∗ = 1)
11.28 (0.47)

(β∗ = 1)
11.70 (0.30)

(β∗ = 3)
16.68 (0.12)

(β∗ = 1)
33.22 (0.13)

(β∗ = 3)
11.60 (0.90)

(β∗ = 3)
19.27 (1.13)

(β∗ = 3)
26.45 (0.96)
(β∗ = 10)

RR-ENS 13.97 (0.09) 12.78 (0.31) 12.54 (0.11) 17.47 (0.11) 33.78 (0.16) 10.56 (0.72) 17.83 (0.66) 23.58 (0.88)

One-step 11.83 (0.39) 11.57 (0.47) 8.67 (0.13) 16.77 (0.13) 34.01 (0.13) 11.68 (0.92) 19.06 (0.98) 27.40 (1.11)
DAS (ours) 14.02 (0.06) 12.38 (0.30) 13.85 (0.27) 17.37 (0.09) 34.45 (0.11) 13.34 (0.79) 23.39 (0.83) 31.48 (1.25)
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Figure 3: Average count of least-common papers found
by different policies in the CiteSeerx C = 10 experiments.
DAS finds more members of rare classes.

which we briefly describe below. More details on these data
sets are included in Appx. C.

Product recommendation. Our first task uses the Fashion-
MNIST data set (Xiao et al., 2017) of fashion item images
to simulate a product recommendation setting. Here, we
assume a user is looking for specific classes of fashion
articles while shopping online. To simulate two different
users (corresponding to two search problems), we select
specific classes to be the products each user is looking for.
We sub-sample these classes uniformly at random, making
the positives harder to uncover; the hit rate of a random
policy is roughly 2%. While the k-NN model has been
found to perform well on the remaining data sets in previous
studies (Garnett et al., 2012; Jiang et al., 2017; Mukadum
et al., 2021), with this data, we can select targets that are
either easy or difficult to identify with the k-NN, to simulate
different levels of search difficulty and study the effect of
the quality of the k-NN on the performance of our methods.
To this end, we measure the predictive performance of the
k-NN and split the two search problems into an “easy” one,
where the model scores highly on precision-at-k metrics

(particularly important in AS), and a “hard” one, where the
k-NN scores lower. More details are included in Appx. C.

Photoswitch discovery. We also consider the task intro-
duced by Mukadum et al. (2021) of searching for photo-
switches (molecules that change their properties upon irra-
diation) in chemical databases that exhibit both desirable
light absorbance and long half-lives. Roughly 36% of the
molecules in the search space are targets. In their study, the
authors partitioned the points into 29 groups by their respec-
tive substructures, thus defining a multiclass AS problem
with C = 30 (a negative class and 29 positive classes). As
this data set is smaller in size, we set the budget T = 100.

The CiteSeerx data set. We use the CiteSeerx citation
network data (Garnett et al., 2012), which contains papers
published at popular computer science conferences and jour-
nals. The label of each paper is its publication venue, and
our targets are machine learning and artificial intelligence
proceedings. We conduct two sets of experiments with
different numbers of classes C. For C = 5, we select pa-
pers from NeurIPS, ICML, UAI, and JMLR as our four target
classes (roughly a 14% hit rate). For C = 10, we further
include IJCAI, AAAI, JAIR, Artificial Intelligence, and Ma-
chine Learning (ML) as targets, yielding a 31% hit rate.

Drug discovery. Finally, we experiment with a drug dis-
covery task using a massive chemoinformatic data set. The
goal is to identify chemical compounds that exhibit selective
binding activity to a given protein. The data set consists of
120 such activity classes from BindingDB (Liu et al., 2007).
For each class, there are a small number of compounds with
significant binding activity – these are our search targets.
In each experiment for a given C ∈ {5, 10, 15}, we select
(C − 1) of the 120 classes uniformly at random without re-
placement to form the targets. They are then combined with
100 000 “drug-like” entries in the ZINC database (Sterling
and Irwin, 2015), which serve as the negatives, to make up
our search space. We note that each of these active classes
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Table 2: Average search utility and standard errors under various utility functions. C is the total number of unique classes
in the search space. The best performance in each column is highlighted in bold; policies that are not significantly worse
than the best (according to a two-sided paired t-test with a significance level of α = 0.05) are in blue italics.

utility function One-step DASlinear (ENS) DASsqrt DASlog

CiteSeerx C = 10
linear 445.90 (5.74) 459.25 (3.23) 448.35 (2.48) 433.55 (4.42)
sqrt 60.59 (0.46) 59.31 (0.81) 62.41 (0.24) 61.41 (0.33)
log 34.01 (0.13) 32.54 (0.50) 34.72 (0.09) 34.45 (0.11)

Drug discovery

C = 10
linear 370.00 (18.37) 415.25 (12.05) 304.35 (22.73) 269.25 (18.47)
sqrt 36.33 (1.48) 32.12 (1.17) 38.89 (1.76) 40.44 (1.66)
log 19.06 (0.98) 13.79 (0.85) 21.07 (1.11) 23.39 (0.83)

C = 15
linear 384.65 (11.08) 427.95 (12.88) 327.50 (14.82) 269.25 (18.47)
sqrt 46.60 (1.70) 36.71 (1.71) 55.50 (1.41) 49.20 (1.98)
log 27.40 (1.11) 17.00 (1.15) 34.03 (1.06) 31.48 (1.25)

has a unique structure and behavior, and combining multiple
classes in one AS problem makes ours a challenging task.
Here, the average prevalence of a target is 0.2%; the hit rates
are 1%, 2%, and 3% for C = 5, 10, and 15, respectively.

Discussion. We report the performance of the policies, quan-
tified by the logarithmic utility function, in Tab. 1. Overall,
DAS either is the winner or does not perform significantly
worse than the best policy. This consistent performance
highlights the benefits of our nonmyopic, budget-aware ap-
proach. Under Fashion-MNIST, most methods work better
on the easy problem than on the hard problem, showing the
importance of the predictive model in AS. That said, our
method remains competitive even under the harder setting.
Inspecting the optimal values for RR-UCB’s tradeoff parame-
ter β∗ in the CiteSeerx and drug discovery experiments, we
notice a natural trend: as C increases, so does the need for
exploration, and larger values of β are thus selected.

To illustrate DAS is effective at constructing diverse obser-
vations, we show in Fig. 3 (whose y-axis is truncated for
clarity) the average numbers of discoveries by the best three
policies under the CiteSeerx C = 10 experiments for the
three rarest classes: UAI, JMLR, and ML. Here, DAS success-
fully finds more targets from the rarer classes of JMLR and
ML, with a better balance among these classes as well.

By design, DAS is always aware of its remaining budget dur-
ing search and therefore dynamically balances exploration
and exploitation. We demonstrate this with the difference in
the cumulative reward of DAS vs. one-step under the drug
discovery C = 10 setting in Fig. 4. DAS collects fewer
rewards in the beginning while exploring the space. As the
search progresses, the policy transitions to more exploitation
and ultimately outperforms the myopic one-step.

Other utility functions and misspecification. One may
reasonably ask whether DAS still works under other possi-
ble utility functions, and how robust the method is against
utility misspecification. To tackle these questions, we reran
the CiteSeerx C = 10 and drug discovery C ∈ {10, 15} ex-
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Figure 4: Difference in cumulative reward between DAS
and one-step across the drug discovery C = 10 experiments.
DAS dynamically balances exploration and exploitation.

periments with the square root utility u (D) =
∑

c>1

√
mc,

which rewards additional discoveries of a known class more
than the logarithm. This presents an alternative utility with
a different asymptotic behavior, but our method can be
applied without any algorithmic modification. DAS again
consistently performs the best across these settings (results
in Appx. E), showing that the policy generalizes well to
this utility. As another note on the flexibility of our frame-
work, a user may select different reward functions fc (e.g.,
by weighting the functions differently) to prioritize certain
classes, and DAS can still run as-is.

As for robustness against utility misspecification, we look
for any performance drop when DAS is evaluated under a
utility different from what the policy uses during search.
First, we classify the variants of DAS by the utility they use:
(1) the version optimizing the logarithmic utility shown in
Tab. 1 is denoted by DASlog, (2) the version using the square
root utility is DASsqrt, and (3) the version with the linear
utility, DASlinear, reduces to ENS. We then evaluate these
policies using all three utility functions. We also include the
one-step policy optimizing the correct utility in the results
in Tab. 2. Overall, each DAS variant is competitive under the
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correct utility, always outperforming the corresponding one-
step counterpart. Crucially, both concave variants, DASlog
and DASsqrt, perform well “cross-utility” in each other’s
setting, even outperforming the one-step policy with the
correctly specified objective. Thus there is merit in adopting
DAS even when there may be uncertainty regarding the nu-
ances of the user’s “true” utility function. We hypothesize
this is because the concave utilities are similar in behavior
– both encourage diversity in the collected labels and are
optimized by balanced data sets – and a policy effective
under one utility is likely to perform well under the other.
The linear utility, on the other hand, does not exhibit di-
minishing returns and behaves differently from the others.
Utility misspecification here is thus more costly: DASlinear is
not competitive under concave utilities, and neither are the
concave variants under linear utility.

6 Conclusion

We propose a novel active search framework that rewards
diverse discoveries and study the problem from the Bayesian
perspective. We first prove a hardness result, showing the
optimal policy cannot be approximated by a constant in
polynomial time. We then design a policy that simulates
approximate optimal future queries in an efficient manner.
This nonmyopic planning allows our method to be aware of
its remaining budget at any point during search and trade off
exploitation and exploration dynamically. Our experiments
illustrate the empirical success of the proposed policy on
real-world problems and its ability to build diverse data sets.

While many real-world applications are modeled by our
multiclass AS framework, our model assumes we know a
priori how many classes are present, which may be violated
in many use cases. In other applications, one might also
consider the multilabel setting where a data point can belong
to more than one target class. Investigating the problem
under these settings is an interesting future work. Another
direction is to extend our approach to the batch setting where
multiple queries run simultaneously.
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A Hardness of Approximation

We present the proof of Theorem 2.1. This is done by constructing a class of AS problems similar to those described in
Jiang et al. (2017) but with different parameterizations. Consider an AS problem whose setup is summarized in Fig. 5 and
described below. The problem has n = 16m points, C = 2m+1 + 1 classes (2m+1 positive classes), and the search budget
is T = 2m+1, where m is a free parameter. We also have the reward function for each class fi to be the same (arbitrary)
positive, increasing, unbounded, and concave f . Each of the n points is classified into two groups: “clumps” and “isolated
points.”

The former consists of 4m clumps, each of size T , and is visualized in Fig. 5(b). All points within the same clump share the
same label, and exactly one clump contains positives, each of which belongs to a different positive class. In each instance of
the problem class being described, this positive clump is chosen uniformly at random among the 4m clumps. As such, the
prior marginal positive probability of any of these points is pclump = 4−m.

As for the isolated points, their labels are independent from one another. The positives among the isolated points only belong
to a single positive class. The marginal probability of an isolated is set to be pisolated = 1− 0.5

2m2

2m . These isolated points
are further separated into two categories:

• A secret set S of size T/2 = 2m, visualized in Fig. 5(a), which encodes the location of the positive clump. The set S is
first partitioned into 2m subsets S1, S2, . . . , S2m, each of size 2m/2m. Each subset Si encodes one virtual bit bi of
information about the location of S, and is further split into m groups of 2m/2m2 points, with each group encoding
a virtual bit bij by a logical OR. The aforementioned virtual bit bi, on the other hand, is obtained via a logical XOR:
bi = bi1 ⊕ bi1 ⊕ . . .⊕ bim.

• The remaining points, denoted asR and visualized in Fig. 5(c), are completely independent from each other and any
other points. We have |R| = 16m − 2(8m)− 2m.

We first make the same two observations as in Jiang et al. (2017).

Observation A.1. At least m points from Si need to be observed in order to infer one bit bi of information about the
location of the positive clump.

Each bij has the same marginal probability of being 1:

Pr (bij = 1) = 1− Pr (bij = 0) = 1− (1− pisolated)
2m

2m2 = 0.5.

We also have Pr (bi = 1) = 0.5, as the positive clump is chosen uniformly at random. It is necessary to observe all virtual
bits bij from the same group Si to infer the bit bi, since observing a fraction of the inputs of a XOR operator does not change
the marginal belief about the output bi. So, observing (m− 1) or fewer points conveys no information about the positive
clump.

Observation A.2. Observing any number of clump points does not change the marginal probability of any point in the
secret set S.

The knowledge of bi does not change the marginal probability of any bij . This is to say no point in S will have a different
probability after observing bi. This means observing points outside of S does not help distinguish S from the remaining
isolated points inR.

With this setup, we now compare the performance of the optimal policy and the expected performance of a given polynomial-
time policy. To this end, we first consider the optimal policy with unlimited compute. Before querying any point, the policy
computes the marginal probability of an arbitrary fixed clump point, conditioning on observing every possible subset of the
isolated points of size m and fantasized positive labels. This set of O (nm) inference calls will reveal the location of the
secret set S, as only points in S will update the probabilities of the fixed clump point.

Now the policy spends the first half of its budget querying S, the labels of which identify the positive clump. The policy now
spends the second half of the budget collecting these positive points. The resulting reward, denoted as OPT, is lower-bounded
in the worst-case scenario where S does not contain any positive point:

OPT ≥ T

2
f(1) = 2m f(1).
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Figure 5: An instance of AS where any efficient algorithm can be arbitrarily worse than the optimal policy.

We now consider a policy A. Let α denote the total number of inference calls performed by A throughout its run. At the ith

inference call,A uses a training set Di of size at most T = 2m+1. We will show thatA has a very small chance of collecting
a large reward by considering several cases.

We first examine the probability that A finds the secret set S. By Obs. A.1 and A.2, A cannot differentiate between the
points in S and those inR unless |Di ∩ S| ≥ m. Suppose that before this inference call, the algorithm has no information
about S (which is always true when i = 1). The chances of A choosing Di such that |Di ∩ S| ≥ m are no better than a
random selection from n− 2 (8m) isolated points. We can upper-bound the probability of this event by counting how many
subsets of size 2m+1 would contain at least m points from S among all subsets of the n− 2 (8m) isolated points:

Pr (|Di ∩ S| ≥ m) ≤
(
2m

m

)(n−2(8m)−m
2m+1−m

)(n−2(8m)
2m+1

) .

The RHS may further be upper-bounded by considering(
2m

m

)(n−2(8m)−m
2m+1−m

)(n−2(8m)
2m+1

) =
(2m)! (n− 2(8m)−m)! (2m+1)!

m! (2m −m)! (2m+1 −m)! (n− 2(8m))!
,

where

(2m)!

(2m −m)!
< (2m)m,

(2m+1)!

(2m+1 −m)!
< (2m+1)m,

(n− 2(8m)−m)!

m! (n− 2(8m))!
<

1

(n− 2(8m))m
.
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The last inequality is due to
(n− 2(8m))m

m!
<

(n− 2(8m))!

(n− 2(8m)−m)!
,

which is true by observing that for each of the m factors on each side,

n− 2(8m)

i
< n− 2(8m)− i+ 1,∀i = 1, . . . ,m.

Overall, we upper-bound the probability that A hits m points in S with

Pr(|Di ∩ S| ≥ m) <

(
2m 2m+1

n− 2(8m)

)m

,

and union-bound the probability of A “hitting” the secret set after α inferences, denoted as phit, with

phit <
α(

n−2(8m)
2m 2m+1

)m .

Here, n− 2(8m) = 16m − 2(8m) = Θ(16m), so

phit <
α

Θ
((

16m

2(4m)

)m) =
α

Θ
(
4m2

) .
Hence, for any α = O(nc) = O(16cm) = O(42cm), where c is a constant,

phit < O

(
42cm

4m2

)
= O(4−m2

) = O(4− log2 n).

In other words, the probability that A does find the secret set S decreases as a function of n. Conditioned on this event, we
upper-bound its performance with 2m+1 f(1), assuming that every query is a hit.

On the other hand, if A never finds S, we further consider the following subcases: if the algorithm queries an isolated point,
no marginal probability is changed; if a clump point is queried, only the marginal probabilities of the points in the same
clump are updated. The expected performance in these two cases can be upper-bounded by pretending that the algorithm
had a budget of size 2T = 2m+2, half of which is spent on querying isolated points and half on clump points.

The expected utility after T queries on isolated points is E
[
f(X)

]
, where X =

∑T
i=1 Xi and Pr(Xi = 1) = pisolated. We

further upper-bound this expectation using Jensen’s inequality:

E
[
f(X)

]
< f

(
E[X]

)
= f

(
T pisolated

)
= f

(
2m+1(1− 2−

2m

2m2 )
)
.

The expected utility after T queries on clump points is

T f(1)

4m
+

(
1− 1

4m

)(
(T − 1) f(1)

4m − 1
+

(
1− 1

4m − 1

)
(· · · )

)
=

f(1)
∑T

i=1 i

4m
=

f(1)T (T − 1)

2 4m
=

f(1) (2m+1 − 1)

2m
.

Combining the two subcases, we have the expected utility in the case where A never hits S upper-bounded by

f
(
2m+1(1− 2−

2m

2m2 )
)
+

f(2m+1)

2m−1
.

With that, the overall expected utility of A, denoted by EA is upper-bounded by

EA < 2m+1 f(1) phit + f
(
2m+1(1− 2−

2m

2m2 )
)
+

f(2m+1)

2m−1
.
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We then consider the upper bound of the approximation ratio

EA

OPT
< 2 phit +

f
(
2m+1(1− 2−

2m

2m2 )
)

2m f(1)
+

(2m+1 − 1)

4m
.

The first and third terms are arbitrarily small with increasing m. As for the second term, L’Hôpital’s rule shows that
1− 2−

2m

2m2 = Θ
(

2m2

2m

)
, so this term scales like Θ

(
f(4m2)

2m

)
, which is O

(
4m2

2m

)
and also arbitrarily small with increasing

m. As a result, algorithm A cannot approximate the optimal policy by a constant factor.

B Implementation and Pruning

As stated in Sect. 3.3, we use a k-NN model as the probabilistic classifier in our experiments, which achieves reasonable
generalization error in practice and computationally efficient. Another benefit of this model is that it is possible to cheaply
compute a posterior probability upper bound p∗, given any data set D and an additional observation with label y:

max
x′∈X\D

pc
(
x′ | D ∪ {(x, y)}

)
≤ p∗c (y,D) .

This upper bound is useful in that we may then bound the approximate expected terminal utility u conditioned on label
c when computing the score in Eq. (11), i.e., α (x | y = c), and therefore the overall score α(x). With these score upper
bounds in hand, we employ branch-and-bound pruning strategies used in previous work (Jiang et al., 2018; Nguyen et al.,
2021). Specifically, before evaluating the score α of a given candidate x, we compare the upper bound of α(x) against the
current best score α∗ we have found. If α∗ exceeds this bound, computing α(x) is unnecessary and we proceed to the next
candidate. Otherwise, since we have access to the conditional score upper bounds for α (x | y = c), as we marginalize over
each label y, we further check whether the conditional scores computed thus far, when combined with the complementary
conditional upper bounds, are less than α∗. If this is the case, we terminate the current α computation “on the fly.” The
upper bounds p∗c are cheap to evaluate, and these checks add a trivial overhead to the entire procedure in the pessimistic
situation of no pruning – in practice, this cost is well worth it. Finally, a lazy-evaluation strategy is used, where candidates
are evaluated in descending order of their score upper bounds, so that a given point that may be pruned will not be evaluated.

We also employ a pruning strategy for the inner batch-building procedure. We first note that, in this procedure, points having
the same marginal probabilities pc (conditioned on a putative query) are interchangeable as we have assumed conditional
independence. We point out one particular set of such points with equal pc: those whose marginal probabilities have not
been updated from the prior due to having no labeled nearest neighbors. In a typical AS iteration, there may be many such
points, especially in early stages of the search. Pruning duplicates appropriately allows the follow-on batch to be built more
efficiently, and we empirically observed a drastic improvement in our experiments. A welcomed property of this method is
that it has the most impact in the early iterations of a search, which would usually be the longest-running iterations otherwise.
Overall, the combination of these strategies allows our algorithm to scale to large data sets (>100 000 points).

C Data Sets

We now describe the data sets used in our experiments in Sect. 5. These data sets are curated from authors of respective
publications, as detailed below. No identifiable information or offensive content is included in the data.

Product recommendation. We use the Fashion-MNIST data set (Xiao et al., 2017), which 70 000 contains images of
ten classes of fashion articles (e.g., t-shirts, trousers, pullovers, etc. – 10 000 instances for each class) to make a product
recommendation problem for clothing items. To simulate two different users (corresponding to two search problems), we
select three from the ten classes to be the positive classes:

• User 1: trouser, bag, ankle boot.

• User 2: t-shirt, sandal, sneaker.

For each user, we sub-sample these positive classes uniformly at random, making the positives harder to uncover; the hit
rate that a random policy selects a positive point is roughly 2%. To build the similarity matrix used by the k-NN model, we
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Table 3: Class-specific precision-at-k statistics of the k-NN, averaged across 10 randomly sampled training sets of size 499
(1% of the data set)

precision at 1 precision at 5 precision at 10 precision at 50

easy
trouser 0.60 0.60 0.60 0.59

bag 0.70 0.80 0.81 0.85
ankle boot 0.40 0.52 0.60 0.49

hard
t-shirt 0.10 0.24 0.25 0.20
sandal 0.50 0.60 0.56 0.49
sneaker 0.70 0.68 0.68 0.66

used UMAP (McInnes et al., 2018) to obtain a five-dimensional embedding of the images and compute the top 100 nearest
neighbors using Euclidean distance (similarity is calculated as exp

(
−d2

)
).

While the k-NN model has been found to perform well on the remaining data sets in previous studies (Garnett et al., 2012;
Jiang et al., 2017; Mukadum et al., 2021), with this data, we can set select as targets classes that are either easy or difficult to
identify with the k-NN, to simulate different levels of difficulty of search and study the effect of the quality of the k-NN on
the performance of our methods. To this end, we measure the predictive performance of the k-NN and report the results
in Tab. 3. We then classify the two search problems into an “easy” one, where the model scores highly on precision-at-k
metrics (particularly important in AS), and a “hard” one, where the k-NN scores lower. The k-NN work as well on User 2 as
on User 1, specifically on instances of t-shirt. This is because this class is not well-separated from the negative points.
(Among the negative points, there are similar-looking classes such as pullover and shirt.)

Photoswitch discovery. We consider another AS problem introduced by Mukadum et al. (2021). The task is to search for
molecular photoswitches with two specific desirable properties: high light absorbance and long half-lives. The collected
data set contains 2049 molecules, 733 of which are found to be targets according to the criteria defined in the study. Further,
the authors partition the points into 29 groups by their respective substructures, thus defining a multiclass AS problem
with C = 30 (a negative class and 29 positive classes). The number of targets in a class ranges from 0 to 121. Following
Mukadum et al. (2021), we used the Morgan fingerprints (Rogers and Hahn, 2010) of the molecules to compute the Tanimoto
similarity coefficient (Willett et al., 1998) between each pair of molecules. These coefficients were then used to compute the
nearest neighbor set of each data point.

The CiteSeerx data set. We use the CiteSeerx citation network data, introduced by Garnett et al. (2012). This data set
contains 39 788 papers published at the 50 most popular computer science conferences and journals, and the label of each
paper is its publication venue. Following Fouss et al. (2007), we compute the “graph principal component analysis” and use
the first 20 components to form the feature vector of each paper. Our objective is to search for papers in machine learning
and artificial intelligence proceedings. We conduct two sets of experiments with different numbers of classes C. For C = 5,
we select papers from NeurIPS, ICML, UAI, and JMLR as our four target classes, adding up to 5575 targets (roughly 14%
hit rate; an average of 3.5% per class). For C = 10, we additionally include papers from IJCAI, AAAI, JAIR, Artificial
Intelligence, and Machine Learning as targets; this totals 12 382 targets, yielding a 31% overall hit rate and a 3.5% per class.

Drug discovery. We experiment with a drug discovery task using a massive chemoinformatic data set. The goal is to identify
chemical compounds that exhibit selective binding activity given a protein. The data set consists of 120 such activity classes
from BindingDB (Liu et al., 2007). For each class, there are a small number of compounds with significant binding activity
– these are our search targets. We use the Morgan fingerprints (Rogers and Hahn, 2010) as the feature vectors and the
Tanimoto coefficient (Willett et al., 1998) as the measure of similarity. In each experiment for a given value C ∈ {5, 10, 15},
we select (C − 1) out of the 120 classes uniformly at random without replacement to form the target classes. They are
then combined with 100 000 points sampled from the “drug-like” entries in the ZINC database (Sterling and Irwin, 2015),
which serve as the negative set, to make up our search space. Features for these points are binary vectors encoding chemical
properties, typically referred to as fingerprints. We use the Morgan fingerprint (Rogers and Hahn, 2010), which has shown
good performance in past studies. The average prevalence of a target is 0.2%; the total hit rates are thus 1%, 2%, and 3% for
C = 5, 10, and 15, respectively.

We finally report the values for the pseudocount γc of the k-NN, as described in Sect. 3.3, in Tab. 4, which roughly estimate
the prevalence of each target class in each data set.
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Table 4: Values for the pseudocount γc, as described in Sect. 3.3, used in the experiments in Sect. 5.

Fashion-MNIST Photoswitch CiteSeerx Drug discovery

γc 0.01 0.005 0.05 0.001

Table 5: Quality and time of our approximation method against MC sampling, averaged across 10 random repeats of
CiteSeerx C = 5 experiments. Under each setting, the approximation with the lowest error (with respect to the chosen
ground truth) is highlighted bold, and so is the fastest method.

RMSE Time in seconds

Ground truth Exact MC
(
215

)
Exact MC

(
215

)
b 3 10 30 100 300 3 10 30 100 300

Exact - - NA NA NA 0.0031 53.7149 NA NA NA

MC
(
25
)

0.0021 0.0027 0.0060 0.0090 0.0167 0.0026 0.0015 0.0021 0.0056 0.0195
MC

(
210

)
0.0004 0.0008 0.0014 0.0021 0.0025 0.0190 0.0304 0.0576 0.1574 0.4581

MC
(
215

)
0.0001 0.0001 - - - 0.4908 0.7933 1.7341 4.7440 14.4539

Ours 0.0001 0.0003 0.0010 0.0028 0.0059 0.0001 0.0003 0.0003 0.0003 0.0004

Table 6: Quality and time of our approximation method against MC sampling, averaged across 10 random repeats of
CiteSeerx C = 10 experiments. Under each setting, the approximation with the lowest error (with respect to the chosen
ground truth) is highlighted bold, and so is the fastest method.

RMSE Time in seconds

Ground truth Exact MC
(
215

)
Exact MC

(
215

)
b 3 10 30 100 300 3 10 30 100 300

Exact - NA NA NA NA 0.0056 NA NA NA NA

MC
(
25
)

0.0023 0.0056 0.0091 0.0141 0.0275 0.0008 0.0016 0.0022 0.0060 0.0178
MC

(
210

)
0.0005 0.0013 0.0010 0.0031 0.0032 0.0167 0.0281 0.0536 0.1522 0.4390

MC
(
215

)
0.0001 - - - - 0.5122 0.8178 1.6678 4.7923 13.9236

Ours 0.0002 0.0007 0.0017 0.0055 0.0120 0.0003 0.0005 0.0004 0.0005 0.0007

D Batch Utility Approximation Quality

We run simulations to compare the performance of the Jensen’s upper bound u against Monte Carlo (MC) sampling, under
the logarithmic utility function u (D) =

∑
c>1 log (1 +mc). Using the CiteSeerx data set described in Appx. C, we first

construct a training data set D by randomly selecting 50 points for each class (|D| = 50C), and compute the posterior
probabilities pc with the k-NN to simulate a typical AS iteration. A random target batch X of size b is then chosen, and the
considered approximation methods are applied on this batch. This entire procedure is repeated 10 times for each setting of
(C, b), and the average root mean squared error (RMSE) and time taken for each method to return are reported in Tabs. 5
and 6. (MC(s) denotes MC sampling using s samples.) Note that in settings with large C or b, exact computation of Eq. (7)
is prohibitively expensive, in which case MC

(
215

)
is used as the ground truth. Overall, our Jensen’s approximation offers a

good tradeoff between accuracy and speed.

E Experimental Details & Further Results

We first detail how we set the hyperparameters of the active learning baselines used in our experiments.

• The policy by Vanchinathan et al. (2015) has two hyperparameters: λ encourages diversity (measured by the logdet of
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Table 7: Square root utility and standard errors across 20 repeated experiments for each setting. C is the total number of
unique classes in the search space. The best performance in each column is highlighted in bold; policies not significantly
worse than the best (according to a two-sided paired t-test with a significance level of α = 0.05) are in blue italics.

CiteSeerx Drug discovery

C = 10 C = 10 C = 15

He and Carbonell (2007) 35.51 (0.22) 9.40 (0.33) 13.60 (0.45)
Vanchinathan et al. (2015) 48.61 (1.22) 32.28 (1.26) 41.10 (1.99)

Malkomes et al. (2021) 31.32 (0.01) 18.26 (0.79) 25.82 (0.87)

ENS 59.31 (0.81) 32.12 (1.17) 36.71 (1.71)
RR-GREEDY 57.37 (0.33) 30.66 (1.82) 37.51 (1.38)

RR-UCB
57.87 (0.32)

(β∗ = 3)
30.77 (1.47)

(β∗ = 1)
38.02 (1.49)

(β∗ = 3)
RR-ENS 60.20 (0.30) 37.09 (1.20) 45.05 (1.27)

One-step 60.59 (0.46) 38.86 (1.59) 46.60 (1.70)
DAS (ours) 62.41 (0.24) 38.89 (1.76) 55.50 (1.41)

Table 8: Logarithmic utility and standard errors across 20 repeated experiments on the Fashion MNIST data.

easy hard

DAS 14.02 (0.06) 12.38 (0.30)
SIMILAR 13.89 (0.02) 12.31 (0.58)

the Gram matrix of the collected data), and βt encourages UCB-style exploration of the space. We run all variants of
this policy with λ ∈ {0.25, 0.5, 0.75} and βt ∈ {0.1, 0.3, 1, 3, 10} and report the best performance in Tabs. 1 and 7.

• The policy by He and Carbonell (2007) has a hyperparameter p, which is an estimate of the prevalence of the targets
within the search space. We set this value in the same way as we set γc in Tab. 4.

• The policy by Malkomes et al. (2021) has a hyperparameter r, which sets the radius of the spheres that compute their
coverage measure. As we have access to similarity scores (between 0 and 1) among points in each of our data sets, the
spheres in this method cover points that are sufficiently similar (similarity greater than threshold 1− r) to a collected
target. We run all variants of this policy with r ∈ {0.25, 0.5, 0.75} and report the best performance in Tabs. 1 and 7.

We also include our experiment results with the square root utility function

u (D) =
∑
c>1

√
mc,

under the CiteSeerx C = 10 and drug discovery C ∈ {10, 15} settings in Tab. 7. Again, our method DAS was applied to this
utility function without any algorithmic modification from the logarithmic utility. Under this utility, DAS still consistently
performs the best across the investigated settings, showing that our proposed method generalizes well to this utility.

Finally, we present brief results comparing the SIMILAR algorithm (Kothawade et al., 2021) (instantiated for the task of rare
class detection) with our method DAS. A neural network-based policy, SIMILAR can be readily applied to our production
recommendation problem with the Fashion MNIST data, and the results are presented in Tab. 8, where we note a slight
degradation in performance going from DAS to SIMILAR.

F Extension to Within-Class Diversity-Aware Active Search

In many important applications, one is concerned about not only diversity in the observed labels, but also a measure of
within-class diversity, defined in the feature space. In this section, we describe how our diversity-aware active search
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framework can be extended to this setting. First, we use a monotone submodular set function g (e.g., logdet) to quantify the
diversity of a set of class-c positives Xc. Then, g (Xc), instead of the class count mc, is used as input to the class-specific
concave utility fc – our final utility is

∑
fc (g(Xc)). This way, when a new point is added to Xc, the more different the

point is from Xc, the more g, and in turn fc, increases; this modified utility thus captures within- and cross-class diversity.
Conveniently, our method still applies: E

[
fc (g(Xc))

]
< fc

(
E [g(Xc)]

)
(Jensen’s inequality), and our lookahead seeks a

batch maximizing u =
∑

fc
(
E [g(Xc)]

)
. The expectation of the submodular g(Xc) is itself submodular, and thus the sum

u is submodular and can be greedily optimized. In other words, our nonmyopic decision-making scheme remains viable. (In
the special case of the count function g(Xc) = |Xc|, this reduces to what the main text presents.)

G Software

Matlab implementation of this work is released under MIT license at https://github.com/KrisNguyen135/
diverse_as.

https://github.com/KrisNguyen135/diverse_as
https://github.com/KrisNguyen135/diverse_as
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