
Geometric Random Walk Graph Neural Networks via Implicit Layers

Giannis Nikolentzos Michalis Vazirgiannis
LIX, École Polytechnique

Institute Polytechnique de Paris, France
LIX, École Polytechnique

Institute Polytechnique de Paris, France

Abstract

Graph neural networks have recently attracted
a lot of attention and have been applied with
great success to several important graph prob-
lems. The Random Walk Graph Neural Network
model was recently proposed as a more intuitive
alternative to the well-studied family of message
passing neural networks. This model compares
each input graph against a set of latent “hidden
graphs” using a kernel that counts common ran-
dom walks up to some length. In this paper,
we propose a new architecture, called Geomet-
ric Random Walk Graph Neural Network (GR-
WNN), that generalizes the above model such
that it can count common walks of infinite length
in two graphs. The proposed model retains
the transparency of Random Walk Graph Neu-
ral Networks since its first layer also consists of
a number of trainable “hidden graphs” which are
compared against the input graphs using the geo-
metric random walk kernel. To compute the ker-
nel, we employ a fixed-point iteration approach
involving implicitly defined operations. Then,
we capitalize on implicit differentiation to de-
rive an efficient training scheme which requires
only constant memory, regardless of the number
of fixed-point iterations. Experiments on graph
classification datasets demonstrate the effective-
ness of the proposed approach in comparison
with state-of-the-art methods.

1 Introduction

Recent years have witnessed an enormous growth in the
amount of data represented as graphs. Indeed, graphs
emerge naturally in several domains, including social net-
works, bioinformatics, and neuroscience, just to name a

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

few. Besides the increase in the amount of graph-structured
data, there is also a growing interest in applying machine
learning techniques to data modeled as graphs. Among oth-
ers, the graph classification and graph regression tasks have
attracted a great deal of attention in the past years. These
tasks have served as the fundamental building block within
applications that deal with problems ranging from drug de-
sign (Kearnes et al., 2016) to protein function prediction
(Gligorijević et al., 2021).

Graph Neural Networks (GNNs) provide a powerful tool
for machine learning on graphs, So far, the field of GNNs
has been largely dominated by message passing architec-
tures. Indeed, most of them share the same basic idea, and
can be reformulated into a single common framework, so-
called message passing neural networks (MPNNs) (Gilmer
et al., 2017). These models employ a message passing
procedure to aggregate local information of vertices. For
graph-related tasks, MPNNs usually apply some permu-
tation invariant readout function to the vertex representa-
tions to produce a representation for the entire graph. The
family of MPNNs has been heavily studied in the past few
years, and there are now available very expressive models
which have achieved state-of-the-art results in several tasks
(Xu et al., 2019; Morris et al., 2019). Although the fam-
ily of MPNNs is perhaps the most successful story in the
field of graph representation learning, there exist models
that follow different design paradigms and do not fall into
this family. An example of such a model is the recently
proposed Random Walk Graph Neural Network (RWNN)
(Nikolentzos and Vazirgiannis, 2020). This model contains
a number of trainable “hidden graphs”, and it compares
the input graphs against these graphs using a random walk
kernel which counts the number of common walks in two
graphs. The emerging kernel values are fed into a fully-
connected neural network which acts as the classifier or
regressor. The employed random walk kernel is differen-
tiable, and thus RWNN is end-to-end trainable. However,
this kernel considers only random walks of a small length.
Such local patterns may fail to capture the overall large-
scale shape of the graphs, while several interesting proper-
ties of graphs depend on the graph’s global structure. Fur-
thermore, increasing the length of the walks has a direct
impact on the model’s computational complexity.

Geometric Random Walk Graph Neural Networks via Implicit Layers

In this paper, we propose a novel approach to tackle these
challenges. Specifically, we propose a new architecture,
called Geometric Random Walk Graph Neural Network
(GRWNN), that generalizes the RWNN model such that it
can count common walks of infinite length in two graphs.
The model contains a number of trainable “hidden graphs”,
and it compares the input graphs against these graphs using
the geometric random walk kernel. Thus, instead of walks
of small length, the proposed model considers walks of in-
finite length. To compute the kernel, GRWNN uses a fixed-
point iteration approach. The kernel values are then passed
on to a fully-connected neural network which produces the
output. The proposed neural network is end-to-end train-
able since we can directly differentiate through the fixed-
point equations via implicit differentation, which leads to a
very efficient implementation in terms of memory require-
ments. Hence, we can still update the “hidden graphs” dur-
ing training with backpropagation. We compare the perfor-
mance of the proposed model to recently-proposed GNN
architectures on several graph classification datasets. Re-
sults show that in most cases, the GRWNN model matches
or outperforms competing methods. Our main contribu-
tions are summarized as follows:

• We propose a novel neural network model, Geometric
Random Walk Graph Neural Network, which employs
the geometric random walk kernel to produce graph
representations. The model counts common walks of
infinite length in the input graph and a set of randomly
initialized “hidden graphs”.

• We employ an efficient scheme to compute the ran-
dom walk graph kernel using fixed-point iterations.
We show that we can directly differentiate through
the fixed-point equations via implicit differentation,
which leads to an efficient implementation.

• We evaluate the model’s performance on several stan-
dard graph classification datasets and show that it
achieves results similar and in some cases superior to
those obtained by recent GNNs.

The rest of this paper is organized as follows. Section 2
provides an overview of the related work. Section 3 in-
troduces some preliminary concepts. Section 4 provides
a detailed description of the proposed model. Section 5
evaluates the proposed model in graph classification tasks.
Finally, Section 6 concludes.

2 Related Work

Graph kernels. Graph kernels have a long history in the
field of graph representation learning (Kriege et al., 2020;
Nikolentzos et al., 2021). A graph kernel is a kernel func-
tion between graphs, i. e., a symmetric positive semidefi-
nite function defined on the space of graphs. These meth-

ods generate implicitly (or explicitly) graph representa-
tions and enable the application of kernel methods such as
the SVM classifier to graphs. Most graph kernels are in-
stances of the R-convolution framework (Haussler, 1999),
and they compare substructures extracted from the graphs
to each other. Such substructures include shortest paths
(Borgwardt and Kriegel, 2005), random walks (Gärtner
et al., 2003; Kashima et al., 2003), small subgraphs (Sher-
vashidze et al., 2009), and others. Our work is related to
random walk kernels, i. e., kernels that compare random
walks to each other. The first such kernels were proposed
by Gärtner et al. (2003) and by Kashima et al. (2003). The
work of Kashima et al. was later refined by Mahé et al.
(2004). Vishwanathan et al. (2010) and Kang et al. (2012)
proposed new algorithms for efficiently computing random
walk kernels. These algorithms improve the time com-
plexity of kernel computation. Sugiyama and Borgwardt
(2015) studied the problem of halting (i. e., longer walks
are downweighted so much that the kernel value is com-
pletely dominated by the comparison of walks of length 1)
that occurs in random walk kernels, and showed that its ex-
tent depends on properties of the graphs being compared.
Zhang et al. (2018b) defined a different kernel which does
not compare random walks to each other, but instead, com-
pares the return probabilities of random walks. Finally,
Kalofolias et al. (2021) proposed a variant of the random
walk kernel where structurally dissimilar vertices are not
just down-weighed, but are not allowed to be visited dur-
ing the simultaneous walk.

GNNs. Although the first GNNs were proposed several
years ago (Sperduti and Starita, 1997; Scarselli et al., 2009;
Micheli, 2009), until recently, these models had attracted
limited attention. In recent years, with the rise of deep
learning, a lot of models started to emerge (Bruna et al.,
2014; Li et al., 2015; Duvenaud et al., 2015; Atwood and
Towsley, 2016; Defferrard et al., 2016; Lei et al., 2017).
Most models update the representation of each vertex by
aggregating the feature vectors of its neighbors. This up-
date procedure can be viewed as a form of message pass-
ing algorithm and thus, these models are known as message
passing neural networks (MPNNs) (Gilmer et al., 2017). To
compute a feature vector for the entire graph, MPNNs ap-
ply some permutation invariant readout function to all the
vertices of the graph. The family of MPNNs has been heav-
ily studied in the past few years, and there are now available
several sophisticated models which can produce expressive
graph representations (Xu et al., 2019; Morris et al., 2019;
Dehmamy et al., 2019; Morris et al., 2020). Despite the
general recent focus on MPNNs, some works have pro-
posed architectures that are not variants of this family of
models (Niepert et al., 2016; Maron et al., 2019b,a; Niko-
lentzos and Vazirgiannis, 2020; Nikolentzos et al., 2022).
The work closest to ours is the one that proposes the Ran-
dom Walk Graph Neural Network (RWNN) model (Niko-
lentzos and Vazirgiannis, 2020). In fact, in this paper, we

Giannis Nikolentzos, Michalis Vazirgiannis

generalize the RWNN model to compare random walks of
infinite length in two graphs. Recently, the integration of
graph kernels into the message passing process of MPNNs
has attracted some research interest (Cosmo et al., 2021;
Feng et al., 2022). There also exist models that use random
walks to extract features from the graph. These features are
then processed by standard architectures such as convolu-
tional neural networks (Toenshoff et al., 2021).

Implicit models. Our work is also related to implicit mod-
els which have been applied successfully to many prob-
lems (de Avila Belbute-Peres et al., 2018; Chen et al.,
2018; Amos et al., 2018; Bai et al., 2019). The outputs
of these models are determined implicitly by a solution of
some underlying sub-problem. Implicit models have also
been defined in the context of graph representation learn-
ing. In fact, one of the earliest GNN models, the model
of Scarselli et al. (2009), employs the recurrent backprop-
agation algorithm (Almeida, 1987; Pineda, 1987), and can
be seen as an early form of an implicit model. Recently,
the recurrent backpropagation algorithm was further im-
proved and was integrated in a GNN for node classification
(Liao et al., 2018). More recently, Gu et al. (2020) pro-
posed IGNN, a model that seeks the fixed-point of some
equation which is equivalent to running an infinite number
of message passing iterations. Thus, the final representa-
tion potentially contains information from all neighbors in
the graph capturing long-range dependencies. Gallicchio
and Micheli (2020) proposed a similar model which gen-
erates graph representations based on the fixed point of a
recursive/dynamical system, but is actually only partially
trained. In contrast to these approaches whose objective
is to apply a large (or infinite) number of message passing
layers implicitly, in our setting, we employ a fixed-point it-
eration approach to compute the random walk kernel and
then we directly differentiate through the fixed point equa-
tions via implicit differentation.

3 Preliminaries

3.1 Notation

Let [n] = {1, . . . , n} ⊂ N for n ≥ 1. Let G = (V,E) be
an undirected graph, where V is the vertex set and E is the
edge set. We will denote by n the number of vertices and by
m the number of edges. The adjacency matrix A ∈ Rn×n

of a graph G is a symmetric (typically sparse) matrix used
to encode edge information in the graph. The element of
the ith row and jth column is equal to the weight of the
edge between vertices vi and vj if such an edge exists, and
0 otherwise. The degree d(v) of a vertex v is equal to the
sum of the weights of the edges that are adjacent to the ver-
tex. For vertex-attributed graphs, every vertex in the graph
is associated with a feature vector. We use X ∈ Rn×d to
denote the vertex features where d is the feature dimension
size. The feature of a given vertex vi corresponds to the ith

row of X.

The direct (tensor) product G× = (V×, E×) of two graphs
G = (V,E) and G′ = (V ′, E′) is defined as follows:

V× =
{
(v, v′) ∈ V × V ′}

E× =
{(

(v, v′), (u, u′)
)
∈ V× × V× | (v, u) ∈ E,

and (v′, u′) ∈ E′}
For weighted graphs, the weight of an edge(
(v, v′), (u, u′)

)
∈ V× × V× is equal to the product

of the weights of the edges from which it emerged. We
denote by A× the adjacency matrix of G×, and denote
by ∆× and d̄× the maximum and average of the vertex
degrees of G×, respectively. Thus, d̄× = 1/n

∑
v∈V×

d(v).
A walk in a graph is a sequence of vertices such that
consecutive vertices are linked by an edge. Performing a
random walk on the direct product G× of two graphs G
and G′ is equivalent to performing a simultaneous random
walk on the two graphs G and G′.

We use ⊗ to represent the Kronecker product, and use ⊙
to represent elementwise multiplication between two ma-
trices or vectors of the same dimension. For a p× q matrix
V, vec(V) ∈ Rpq represents the vectorized form of V,
obtained by stacking its columns. Let also vec−1 denote
the inverse vectorization operator which transforms a vec-
tor into a matrix, i. e., for a pq vector v, V = vec−1(v)
where V ∈ Rp×q (see Appendix A for the exact definition
of the vec and vec−1 operators).

3.2 Random Walk Kernel

Given two graphs G and G′, the random walk kernel counts
all pairs of matching walks on G and G′ (Gärtner et al.,
2003). There are different variants of the kernel. For in-
stance, the p-step random walk kernel (where p ∈ N)
counts all pairs of matching walks up to length p on two
graphs. The number of matching walks can be obtained
through the adjacency matrix A× of the product graph G×
(Vishwanathan et al., 2010) since a random walk on G×
is equivalent to a simultaneous random walk on the two
graphs. Assuming a uniform distribution for the starting
and stopping probabilities over the vertices of two graphs,
the p-step random walk kernel is defined as:

κp(G,G′) =

|V×|∑
i=1

|V×|∑
j=0

[
p∑

l=0

λlA
l
×

]
ij

where λ0, λ1, λ2, . . . , λp are positive, real-valued weights,
and A0

× is the identity matrix, i. e., A0
× = I. For p → ∞,

we obtain κ∞(G,G′) which is known as the random walk
kernel.

It turns out that if the sequence of weights λ0, λ1, λ2, . . .
corresponds to the geometric sequence defined as λl = λl,

Geometric Random Walk Graph Neural Networks via Implicit Layers

then the limit κ∞(G,G′) can be computed analytically as
follows:

k∞(G,G′) =

|V×|∑
i=1

|V×|∑
j=0

[∞∑
l=0

λlAl
×

]
ij

=

|V×|∑
i=1

|V×|∑
j=0

[
(I− λA×)

−1
]
ij

= 1⊤(I− λA×)
−11

It is well-known that the geometric series of matrices
I+λA×+(λA×)

2+ . . . converges only if the the largest-
magnitude eigenvalue of A× (which is also the maxi-
mum eigenvalue if G× is a graph with non-negative edge
weights), denoted by µmax

× , is strictly smaller than 1/λ.
Therefore, the geometric random walk kernel k∞ is well-
defined only if λ < 1/µmax

× . Interestingly, the maximum
eigenvalue of A× is sandwiched between the average and
the maximum of the vertex degrees of G× (Brouwer and
Haemers, 2011). We thus have that d̄× ≤ µmax

× ≤ ∆×,
and by setting λ < 1/∆×, the geometric series of matrices
is guaranteed to converge.

By defining initial and stopping probability distributions
over the vertices of G and G′, we can obtain a probabilis-
tic variant of the geometric random walk kernel. Let p and
p′ be two vectors that represent the initial probability dis-
tributions over the vertices of G and G′. Likewise, let q
and q′ denote stopping probability distributions over the
vertices of G and G′. For uniform distributions for the ini-
tial and stopping probabilities over the vertices of the two
graphs, we have pi = qi = 1/|V | and p′

i = q′
i = 1/|V ′|.

Then, p× = pp′⊤ and q× = qq′⊤, and the variant
of the geometric random walk kernel can be computed as
k∞(G,G′) = vec(q×)

⊤(I− λA×)
−1vec(p×).

4 Geometric Random Walk Graph Neural
Networks

The proposed GRWNN model maps input graphs to vectors
by comparing them against a number of “hidden graphs”,
i. e., graphs whose adjacency and attribute matrices are
trainable. The function that we employ to compare the
input graphs against the “hidden graphs” is the geometric
random walk graph kernel, one of the most well-studied
kernels between graphs (Gärtner et al., 2003; Mahé et al.,
2004; Vishwanathan et al., 2010). The proposed GRWNN
model contains N “hidden graphs” in total. The graphs
may differ from each other in terms of size (i. e., num-
ber of vertices). Furthermore, the vertices and/or edges
of those graphs can be annotated with continuous multi-
dimensional features. As mentioned above, both the struc-
ture and the vertex attributes (if any) of these “hidden
graphs” are trainable. Thus, the adjacency matrix of a “hid-
den graph” Gi of size n is described by a trainable matrix

Wi ∈ Rn×n, while the vertex attributes are contained in
the rows of another trainable matrix Qi ∈ Rn×d. Note
that the “hidden graphs” correspond to weighted graphs,
which can be directed or undirected graphs with or without
self-loops. In our implementation, we constraint them to
be undirected graphs without self-loops (n(n−1)/2 trainable
parameters in total).

To compare an input graph G against a “hidden graph” Gi,
the model uses the geometric random walk kernel that was
introduced in the previous section:

k∞(G,Gi) =

|V×|∑
i=1

|V×|∑
j=0

[∞∑
l=0

λlAl
×

]
ij

=

|V×|∑
i=1

|V×|∑
j=0

[
(I− λA×)

−1
]
ij

= 1⊤(I− λA×)
−11

(1)

where A× = A ⊗ Ai and Ai is the adjacency matrix
of “hidden graph” Gi obtained as Ai = f(Wi). Here,
f(·) is a function whose output is non-negative and poten-
tially bounded, i. e., f(Wi) = ReLU(Wi) or f(Wi) =
σ(Wi) where σ(·) denotes the sigmoid activation func-
tion. Then, given the set Gh = {G1, G2, . . . , GN} where
G1, G2, . . . , GN denote the N “hidden graphs”, we can
compute N kernel values in total. These kernel values can
be thought of as features of the input graph, and can be
concatenated to form a vector representation of the input
graph. This vector can then be fed into a fully-connected
neural network to produce the output.

Following Vishwanathan et al. (2010), to compute the ge-
ometric random walk graph kernel shown in Equation (1)
above, we employ a two-step approach. We first set z equal
to:

z = (I− λA×)
−11 ⇔ (I− λA×)z = 1

Then, given z, we can compute the kernel value as
k∞(G,Gi) = 1⊤z = 1⊤(I − λA×)

−11. Thus, we first
need to solve the above linear system for z. We first rewrite
the above system as:

z = 1+ λA× z (2)

Now, solving for z is equivalent to finding a fixed point
of Equation (2) (Nocedal and Wright, 2006). Such a fixed
point can be obtained by simply iterating the first part of the
forward pass. Letting z(t) denote the value of z at iteration
t, we set z(0) = 1, and then compute the following:

z(t+1) = 1+ λA× z(t)

repeatedly until ||z(t+1) − z(t)|| < ϵ, where || · || denotes
the Euclidean norm and ϵ some predefined tolerance or un-
til a specific number of iterations has been reached. As
mentioned in the previous section, the above problem is

Giannis Nikolentzos, Michalis Vazirgiannis

guaranteed to converge if the maximum eigenvalue of A×
is strictly smaller than 1/λ, thus if all the eigenvalues of
λA× lie inside the unit disk. If the values of the elements
of Ai are bounded, we can compute an upper bound on the
maximum degree of G× and set the parameter λ to some
value smaller than the inverse of the upper bound.

Once we have computed the kernel k∞(G,Gi) for all
i ∈ [N], the representation of the input graph G is defined
as hG =

(
k∞(G,G1), . . . , k

∞(G,GN)
)⊤ ∈ RN . This

N -dimensional vector can be used as features for different
machine learning tasks such as graph regression or graph
classification.

Efficient implementation. If the input graph G consists
of n vertices and a “hidden graph” Gi consists of c ver-
tices, then A× is an nc×nc matrix. Thus, multiplying A×
by some vector inside the fixed-point algorithm requires
O(n2c2) operations in total. Fortunately, to compute the
kernel, it is not necessary to explicitly compute matrix A×.
Specifically, the Kronecker product and vec operator are
linked by the well-known property (Bernstein, 2009):

vec(ABC) = (C⊤ ⊗A)vec(B) (3)

Then, let Z ∈ Rc×n be a matrix such that Z = vec−1(z).
Recall also that A× = A⊗Ai. Based on the above and on
Equation (3), we can write:

A× z = (A⊗Ai)vec(Z)

= vec(Ai ZA
⊤)

= vec(Ai vec−1(z)A⊤)

The above matrix-vector product can be computed in
O(n2c) time in case n > c. If A is sparse, then it can
be computed yet more efficiently. Furthermore, we do not
need to compute and store matrix A× which might not be
feasible due to high memory requirements. Then, instead
of solving the system of Equation (2), we solve the follow-
ing equivalent system:

z = 1+ λ vec(Ai vec−1(z)A⊤)

Node attributes. In many real-world problems, vertices
of the input graphs are annotated with real-valued multi-
dimensional vertex attributes. We next generalize the pro-
posed model to graphs that contain such vertex attributes.
Let X ∈ Rn×d denote the matrix that contains the ver-
tex attributes of the input graph G. As already mentioned,
we also associate a trainable matrix Qi ∈ Rc×d to each
“hidden graph” Gi, where c is the number of vertices of
Gi. Then, let S = σ(XQ⊤

i) ∈ Rn×c where σ(·) denotes
the sigmoid function. The (j, k)th element of matrix S is
equal to the inner product (followed by a sigmoid) between
the attributes of the jth vertex of the input graph G and the
kth vertex of the “hidden graph” Gi. Roughly speaking,

this matrix encodes the similarity between the attributes of
the vertices of the two graphs. Note that instead of directly
using matrix X, we can first transform it into matrix X̃ us-
ing a single- or a multi-layer perceptron. Let s = vec(S)
where s ∈ Rnc. Each element of s corresponds to a vertex
of G× and quantifies the similarity between the attributes
of the pair of vertices (i. e., one from G and one from Gi)
it represents. Then, we can compute the geometric random
walk kernel as follows:

k∞(G,G′) =

|V×|∑
i=1

|V×|∑
j=0

[∞∑
l=0

λl
(
(s s⊤)⊙A×

)l]
ij

=

|V×|∑
i=1

|V×|∑
j=0

[(
I− λ(s s⊤)⊙A×

)−1
]
ij

= 1⊤(I− λ(s s⊤)⊙A×
)−1

1

Note that since the elements of s take values between 0
and 1, the same applies to the elements of the output of the
outer product s s⊤. Therefore, the maximum degree of the
vertices of the graph derived from the matrix s s⊤ ⊙A× is
not greater than that of the graph derived from matrix A×,
and we do not thus need to set λ to a new value. Then,
to compute the kernel, we first need to solve the following
system:

z = 1+ λ(s s⊤ ⊙A×)z (4)

Again, naively computing the right part of the above Equa-
tion is expensive and requires O(n2c2) operations in total.
The following result shows that in fact we can compute the
above in a more time and memory efficient manner.
Proposition 4.1. Let A1 ∈ Rn×n and A2 ∈ Rm×m be
two real matrices. Let also s,y ∈ Rnm be two real vectors.
Then, we have that:(
s s⊤ ⊙ (A1 ⊗A2)

)
y = s⊙ vec

(
A2 vec−1(y ⊙ s)A⊤

1

)
Based on the above result (the proof is left to the Ap-
pendix), the system that needs to be solved is:

z = 1+ λ
(
s⊙ vec

(
Ai vec−1(z⊙ s)A⊤))

Since we store matrix A as a sparse matrix, if there are
O(m) non-zero entries in A, then computing one itera-
tion of the above equation for all N “hidden graphs” takes
O
(
Nc(n(d+ c) +m)

)
computational time where d is the

size of the vertex attributes.

Infinite length walks vs. fixed length walks. Standard
GNNs might fail to capture long-range dependencies be-
tween nodes in graphs. This motivated the development
of graph Transformers which inherently model long-range
dependencies (Wu et al., 2021). The proposed GRWNN
model can also capture such dependencies since it counts
walks of infinite length. As we show next, this property
gives the model more expressive power than that of the p-
step RWNN for bounded number of steps.

Geometric Random Walk Graph Neural Networks via Implicit Layers

Proposition 4.2. There are infinitely many pairs of non-
isomorphic node-attributed graphs which can be distin-
guished by the proposed GRWNN model, but not by the
p-step RWNN for bounded number of steps.

Convergence. The geometric series converges if
λ < 1/µmax

× where µmax
× denotes the largest-magnitude

eigenvalue of A×. We know that µmax
× ≤ ∆× where

∆× is the maximum degree of G×. Thus, the series still
converges if λ < 1/∆×. Let ∆train denote the maximum
degree of the vertices of all graphs of the training set and
∆hidden denote the maximum degree of the vertices of
all “hidden graphs”. Then, ∆× ≤ ∆train ∆hidden. Thus,
the series is well-defined if λ < 1/(∆train ∆hidden).
Since we apply the sigmoid function to the adjacency
matrix of each “hidden graph”, ∆hidden is bounded by
c − 1 (where c is the number of vertices of the “hidden
graph”). Then, ∆× ≤ ∆(c − 1) holds. Thus, by setting
λ < 1/(∆train(c − 1)), the series will converge for all
training examples. At inference time, if we assume that the
unseen graphs that the model receives are similar to those
of the training set, the series are still likely to converge
since the maximum degrees of the “hidden graphs” is
usually much smaller than the upper bound (i. e., c − 1).
In the extreme case where the maximum degree of some
unseen graph is much larger than ∆train, the series might
not converge and in such a case, we need to retrain the
model.

Implicit differentiation. Clearly, iteratively computing
Equation (2) or Equation (4) to find the fixed point corre-
sponds to a differentiable module. However, to train the
model, we need to backpropagate the error through the
fixed point solver in the backward pass. That would require
storing all the intermediate terms, which could be pro-
hibitive in practice. Fortunately, thanks to recent advances
in implicit layers and equilibrium models (Bai et al., 2019),
this can be performed in a simple and efficient manner
which requires constant memory, and assumes no knowl-
edge of the fixed point solver. Specifically, based on ideas
from Bai et al. (2019), we derive the form of implicit back-
propagation specific to the employed fixed point iteration
layer.

Theorem 4.3. Let fθ be the system of Equation (2) or
Equation (4), and z⋆ ∈ Rnc be a solution to that linear
system. Let also gθ(z

⋆;A,X) = fθ(z
⋆;A,X)− z⋆. Since

z⋆ is a fixed point, we have that gθ(z⋆;A,X) → 0 and z⋆

is thus the root of gθ. Let y ∈ R denote the ground-truth
target of the input sample, h : R → R be any differentiable
function and let L : R × R → R be a loss function that
computes:

ℓ = L
(
h(1⊤z⋆), y

)
= L

(
h
(
1⊤FindRoot(gθ;A,X)

)
, y
)

Then, the gradient of the loss w.r.t. (·) (e. g., θ, A or X) is:

∂ℓ

∂(·)
= − ∂ℓ

∂z⋆
(
J−1
gθ

∣∣
z⋆

)∂fθ(z⋆;A,X)

∂(·)

= − ∂ℓ

∂h

∂h

∂z⋆
(
J−1
gθ

∣∣
z⋆

)∂fθ(z⋆;A,X)

∂(·)

where J−1
gθ

∣∣
z⋆ is the inverse Jacobian of gθ evaluated at z⋆.

The above formula gives a form for the necessary Jaco-
bian without needing to backpropagate through the method
used to obtain the fixed point. Thus, as mentioned above,
we only need to find the fixed point, and we can com-
pute the necessary Jacobians at this specific point using the
above analytical form. No intermediate terms of the iter-
ative method used to compute the fixed point need to be
stored in memory, while there is also no need to unroll the
forward computations within an automatic differentiation
layer. Still, to compute the analytical backward gradient at
the solution of the fixed point equation, it is necessary to
first compute the exact inverse Jacobian J−1

gθ
which has a

cubic cost. As shown in the work of Bai et al. (2019), we
can instead compute the − ∂ℓ

∂z⋆

(
J−1
gθ

∣∣
z⋆

)
term by solving

the following linear system:

x =

(
∂fθ(z

⋆;A,X)

∂z⋆

)⊤

x+

(
∂ℓ

∂z⋆

)⊤

which in fact is also a fixed point equation and can be
solved via some iterative procedure. Note that the first term
of the above Equation is a vector-Jacobian product which
can be efficiently computed via autograd packages (e. g.,
PyTorch (Paszke et al., 2017)) for any x, without explicitly
writing out the Jacobian matrix. Finally, we can compute
∂ℓ
∂(·) as follows:

∂ℓ

∂(·)
=

(
∂fθ(z

⋆;A,X)

∂(·)

)⊤

x

where again this product is itself a vector-Jacobian product,
computable via normal automatic differentiation packages.

5 Experimental Evaluation

We next evaluate the proposed GRWNN model on standard
graph classification datasets.

Datasets. We evaluate the proposed model on 10
publicly available graph classification datasets includ-
ing 5 bio/chemo-informatics datasets: MUTAG, D&D,
NCI1, PROTEINS, ENZYMES, and 5 social interac-
tion datasets: IMDB-BINARY, IMDB-MULTI, REDDIT-
BINARY, REDDIT-MULTI-5K, COLLAB (Kersting et al.,
2016). To show that the proposed model also scales
to larger datasets, we additionally use two Open Graph
Benchmark (OGB) datasets (Hu et al., 2020). Specif-
ically, we use a molecular property prediction dataset:

Giannis Nikolentzos, Michalis Vazirgiannis

ogbg-molhiv, and a code summarization dataset:
ogbg-code2. More details about the datasets are given
in Appendix E.

Experimental Setup. In the case of the 10 standard bench-
mark datasets, we compare the proposed model against
the following six neural network models: (1) DGCNN
(Zhang et al., 2018a), (2) DiffPool (Ying et al., 2018),
(3) ECC (Simonovsky and Komodakis, 2017), (4) GIN
(Xu et al., 2019), (5) GraphSAGE (Hamilton et al., 2017),
and (6) RWNN (Nikolentzos and Vazirgiannis, 2020). We
also compare the proposed model against GRWNN-fixed, a
variant of the model whose “hidden graphs” are randomly
initialized and kept fixed during training. To evaluate the
proposed model, we employ the experimental protocol pro-
posed by Errica et al. (2020). Therefore, we perform 10-
fold cross-validation to obtain an estimate of the gener-
alization performance of each method, while within each
fold a model is selected based on a 90%/10% split of the
training set. We use exactly the same splits as Errica et al.
(2020) and Nikolentzos and Vazirgiannis (2020), hence, for
the different datasets, we use the results reported in these
two papers.

For all datasets, we set the batch size to 64 and the number
of epochs to 300. We use the Adam optimizer with initial
learning rate 0.001 and applied an adaptive learning rate
decay based on validation results. We use a 1-layer per-
ceptron to transform the vertex attributes. We apply layer
normalization (Ba et al., 2016) on the generated graph rep-
resentations (i. e., vector consisting of kernel values). The
hyper-parameters we tune for each dataset are: (1) the num-
ber of “hidden graphs” ∈ {32, 64}, (2) the number of ver-
tices of the “hidden graphs” ∈ {5, 10}, (3) the hidden-
dimension size of the vertex features ∈ {32, 64} for the
bio/chemo-informatics datasets and ∈ {8, 16} for the social
interaction datasets, and (4) the dropout ratio ∈ {0, 0.1}.

For both OGB datasets, we used the available predefined
splits. We compare the proposed model against the fol-
lowing neural network models: GCN (Kipf and Welling,
2017), GIN (Xu et al., 2019), GCN-FLAG (Kong et al.,
2020), GIN-FLAG (Kong et al., 2020), PNA (Corso et al.,
2020), GSN (Bouritsas et al., 2020), HIMP (Fey et al.,
2020), and DGN (Beaini et al., 2020). For all models, we
use the results that are reported in the respective papers.
For ogbg-code2, we did not add the inverse edges to the
graphs. All reported results are averaged over 10 runs.

For both OGB datasets, we set the batch size to 128. For
the ogb-molhiv dataset, we set the number of epochs to
300, the number of “hidden graphs” to 200, the number of
vertices of the “hidden graphs” to 5, the hidden-dimension
size of the vertex features to 128 and the dropout ratio to
0.1. Furthermore, we employ the probabilistic variant of
the geometric random walk kernel and use uniform distri-
butions for the initial and stopping probabilities over the

vertices of the two compared graphs. For the ogb-code2
dataset, we set the number of epochs to 100, the number
of “hidden graphs” to 200, the number of vertices of the
“hidden graphs” to 5, the hidden-dimension size of the ver-
tex features to 128 and the dropout ratio to 0.2. For both
datasets, we apply layer normalization (Ba et al., 2016) on
the generated graph representations.

Implementation Details. To set the value of parameter
λ, we assume a transductive setting, where we are given
a collection of graphs beforehand. Therefore, we can find
the vertex of highest degree across all graphs and set the
value of λ accordingly. We can explicitly compute the
upper bound of λ, which is (maxG,G′∈G µ×,max)

−1 with
the maximum of the maximum eigenvalues over all pairs
of graphs G,G′ ∈ G. In the inductive learning setting,
since we do not know a priori target graphs that the model
may receive in the future, λ should be small enough so that
λ < 1/µmax

× for any pair of an unseen graph and a “hidden
graph”. This is a limitation of the proposed model since in
case the model receives at test time a graph whose largest
eigenvalue is higher than expected, we need to set λ to a
smaller value and retrain the model.

To compute the fixed point of Equation (2) or (4), we fol-
lowed the naive approach where we simply performed mul-
tiple times the forward iteration. In practice, there are more
efficient fixed point iteration methods, such as Anderson
Acceleration (Walker and Ni, 2011), that converge faster
than the naive forward iteration at the cost of some addi-
tional memory complexity. However, as shown next, we
found that in our setting, the naive forward iteration con-
verges in a small number of steps, while the additional
cost introduced by more efficient methods associated with
the generation and manipulation of new tensors made them
overall slower than the naive forward iteration even though
they required fewer iterations to converge.

The model was implemented with PyTorch (Paszke et al.,
2019), and all experiments were run on a single machine
equipped with an NVidia Titan Xp GPU card. Our code is
available at https://github.com/giannisnik/
grwnn.

Results. Table 1 illustrates average prediction accuracies
and standard deviations for the 10 standard graph classi-
fication datasets. We observe that the proposed GRWNN
model is the most successful method since it outperforms
all baseline models on 4 out of the 10 datasets, while it pro-
vides the second best and third best accuracy on 1 and 2 out
of the remaining 6 datasets, respectively. On the remaining
6 datasets, GIN is the best-performing model on half of
them, and RWNN on the other half. On the ENZYMES
and IMDB-BINARY datasets, our model offers respective
absolute improvements of 3.1%, and 1.6% in accuracy over
GIN and even greatest improvements over RWNN. On the
NCI1 dataset, all models that count random walks achieve

Geometric Random Walk Graph Neural Networks via Implicit Layers

Table 1: Classification accuracy (± standard deviation) of the proposed model and the baselines on the 5 chemo/bio-
informatics and on the 5 social interaction benchmark datasets. OOR means Out of Resources, either time (> 72 hours for
a single training) or GPU memory. Best performance per dataset in bold.

MUTAG D&D NCI1 PROTEINS ENZYMES

DGCNN 84.0 (± 6.7) 76.6 (± 4.3) 76.4 (± 1.7) 72.9 (± 3.5) 38.9 (± 5.7)
DiffPool 79.8 (± 7.1) 75.0 (± 3.5) 76.9 (± 1.9) 73.7 (± 3.5) 59.5 (± 5.6)
ECC 75.4 (± 6.2) 72.6 (± 4.1) 76.2 (± 1.4) 72.3 (± 3.4) 29.5 (± 8.2)
GIN 84.7 (± 6.7) 75.3 (± 2.9) 80.0 (± 1.4) 73.3 (± 4.0) 59.6 (± 4.5)
GraphSAGE 83.6 (± 9.6) 72.9 (± 2.0) 76.0 (± 1.8) 73.0 (± 4.5) 58.2 (± 6.0)
1-step RWNN 89.2 (± 4.3) 77.6 (± 4.7) 71.4 (± 1.8) 74.7 (± 3.3) 56.7 (± 5.2)
2-step RWNN 88.1 (± 4.8) 76.9 (± 4.6) 73.0 (± 2.0) 74.1 (± 2.8) 57.4 (± 4.9)

GRWNN-fixed 81.9 (± 6.4) 73.2 (± 3.5) 66.9 (± 2.4) 74.6 (± 4.0) 56.8 (± 3.7)

GRWNN 83.4 (± 5.6) 75.6 (± 4.6) 67.7 (± 2.2) 74.9 (± 3.5) 62.7 (± 5.2)

IMDB IMDB REDDIT REDDIT COLLABBINARY MULTI BINARY MULTI-5K

DGCNN 69.2 (± 3.0) 45.6 (± 3.4) 87.8 (± 2.5) 49.2 (± 1.2) 71.2 (± 1.9)
DiffPool 68.4 (± 3.3) 45.6 (± 3.4) 89.1 (± 1.6) 53.8 (± 1.4) 68.9 (± 2.0)
ECC 67.7 (± 2.8) 43.5 (± 3.1) OOR OOR OOR
GIN 71.2 (± 3.9) 48.5 (± 3.3) 89.9 (± 1.9) 56.1 (± 1.7) 75.6 (± 2.3)
GraphSAGE 68.8 (± 4.5) 47.6 (± 3.5) 84.3 (± 1.9) 50.0 (± 1.3) 73.9 (± 1.7)
1-step RWNN 70.8 (± 4.8) 47.8 (± 3.8) 90.4 (± 1.9) 51.7 (± 1.5) 71.7 (± 2.1)
2-step RWNN 70.6 (± 4.4) 48.8 (± 2.9) 90.3 (± 1.8) 51.7 (± 1.4) 71.3 (± 2.1)

GRWNN-fixed 72.1 (± 4.1) 48.1 (± 3.6) 82.2 (± 2.4) 53.1 (± 1.8) 71.3 (± 1.9)

GRWNN 72.8 (± 4.2) 49.0 (± 2.9) 90.0 (± 1.8) 54.4 (± 1.7) 72.1 (± 1.9)

low levels of accuracy. We believe that this is due to
some underlying properties of the dataset that need to be
investigated. Overall, the model exhibits highly competi-
tive performance on the graph classification datasets, while
the achieved accuracies follow different patterns from all
the baseline methods. Furthermore, the proposed model
outperforms GRWNN-fixed on all datasets, demonstrating
that the set of trainable “hidden graphs” is an indispensable
component of the model. With regards to the the compari-
son between GRWNN and RWNN, we should mention that
the former is sensitive to the large scale structure of graphs,
while the latter computes a function of two graphs that is
purely local. We hypothesize that on some datasets, local
patterns are better indicators of class membership than the
overall structure of the graph, and therefore, 1- and 2-step
RWNNs outperform the proposed model.

The Table shown in Figure 1a illustrates the performance
on the two OGB datasets. Note that the proposed model
does not utilize the edge features that are provided for the
different datasets. Still, we can see that it managed to out-
perform several of the baselines on the ogbg-molhiv
dataset, where it achieved the fourth best ROC-AUC. On
the ogbg-code2 dataset, GRWNN outperformed GIN,
while it achieved an F1-score similar to that of GCN. How-
ever, all these three models achieved a much smaller F1-

score than the one achieved by PNA which is the best-
performing model.

As already discussed, the running time of the model de-
pends on the number of fixed point iterations that need to
be performed until convergence. Figure 1b (top) illustrates
the average number of iterations (across all batches) for the
forward and backward pass for different values of λ and
for each epoch. The model was trained on a single split
of the ENZYMES dataset. The maximum eigenvalue of
all graphs of the dataset is equal to 5.47, while the highest
degree is equal to 9. The number of nodes of the “hidden
graphs” was set to 5. If the elements of the adjacency ma-
trices of the “hidden graphs” take values no greater than
one, then no vertex of G× can have a degree greater than
9 ∗ 4 = 36. Thus, setting λ < 1/36 guarantees conver-
gence. In practice, as shown in the Figure, we found that
even if λ takes larger values, we only need a small number
of iterations. For λ = 1/5, we can see that the fixed point
equation fails to converge since the average number of iter-
ations is close to 100 (which is the upper limit we have set).
For λ = 1/10 and for smaller values of λ, the system con-
verges in a small number of iterations. In terms of perfor-
mance, as shown in Figure 1b (bottom), the model achieves
the highest levels of validation accuracy for λ = 1/20 and
λ = 1/30, while for λ = 1/5, the model yields much worse

Giannis Nikolentzos, Michalis Vazirgiannis

Method Dataset

ogbg-molhiv ogbg-code2

GCN 76.06 ± 0.97 15.07 ± 0.18

GIN 75.58 ± 1.40 14.95 ± 0.23

GCN+FLAG 76.83 ± 1.02 –

GIN+FLAG 76.54 ± 1.14 –

GSN 77.99 ± 1.00 –

HIMP 78.80 ± 0.82 –

PNA 79.05 ± 1.32 15.70 ± 0.32

DGN 79.70 ± 0.97 –

GRWNN 78.38 ± 0.99 15.03 ± 0.21

(a) Performance of the proposed model
and the baselines on the OGB datasets.
Reported values correspond to ROC-AUC
scores for ogbg-molhiv and F1-scores for
ogbg-code2.

0 100 200 300

101

102

A
vg
.
it
er
at
io
ns

Forward Pass

0 100 200 300

101

102
Backward Pass

0 100 200 300
Epoch

0.25

0.50

0.75

1.00

A
cc
ur
ac
y

Train Accuracy

0 100 200 300
Epoch

0.2

0.4

0.6

0.8
Validation Accuracy

λ=1/5 λ=1/10 λ=1/20 λ=1/30 λ=1/40 λ=1/50

(b) Number of fixed point iterations during the forward and backward pass (top), and
training and validation accuracy (bottom) on the ENZYMES dataset for different
values of λ.

Figure 1: Performance on the OGB datasets and impact of the value of parameter λ on running time and performance of
the model.

performance compared to the other values of λ. Similar be-
havior was observed on the other datasets.

6 Conclusion

In this paper, we introduced the GRWNN model, a new ar-
chitecture which generates graph representations by com-
paring the input graphs against “hidden graphs” using the
geometric random walk kernel. To compute the kernel, the
proposed model uses a fixed point iteration algorithm, and
to update the “hidden graphs” during backpropagation, the
model capitalizes on implicit differentation and employs
an efficient training scheme which requires only constant
memory, regardless of the number of fixed-point iterations.
The model was evaluated on several graph classification
datasets where it achieved competitive performance.

Acknowledgements

G.N. is supported by the French National research agency
via the AML-HELAS (ANR-19-CHIA-0020) project.

References

Almeida, L. B. (1987). A learning rule for asynchronous
perceptrons with feedback in a combinatorial environ-
ment. In Proceedings of the 1st IEEE International Con-
ference on Neural Networks, pages 609–618.

Amos, B., Rodriguez, I. D. J., Sacks, J., Boots, B., and
Kolter, J. Z. (2018). Differentiable MPC for End-to-end
Planning and Control. In Advances in Neural Informa-
tion Processing Systems, volume 31, pages 8299–8310.

Atwood, J. and Towsley, D. (2016). Diffusion-
Convolutional Neural Networks . In Advances in Neu-
ral Information Processing Systems, volume 29, pages
1993–2001.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer
normalization. arXiv preprint arXiv:1607.06450.

Bai, S., Kolter, J. Z., and Koltun, V. (2019). Deep Equilib-
rium Models. In Advances in Neural Information Pro-
cessing Systems, volume 32, pages 690–701.

Beaini, D., Passaro, S., Létourneau, V., Hamilton, W. L.,
Corso, G., and Liò, P. (2020). Directional Graph Net-
works. arXiv preprint arXiv:2010.02863.

Bernstein, D. S. (2009). Matrix mathematics: theory, facts,
and formulas. Princeton University Press.

Borgwardt, K., Ong, C., Schönauer, S., Vishwanathan, S.,
Smola, A., and Kriegel, H. (2005). Protein function
prediction via graph kernels. Bioinformatics, 21(Suppl.
1):i47–i56.

Borgwardt, K. M. and Kriegel, H. (2005). Shortest-path
kernels on graphs. In Proceedings of the 5th Interna-
tional Conference on Data Mining, pages 74–81.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein,
M. M. (2020). Improving graph neural network ex-
pressivity via subgraph isomorphism counting. arXiv
preprint arXiv:2006.09252.

Brouwer, A. E. and Haemers, W. H. (2011). Spectra of
graphs. Springer Science & Business Media.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2014).
Spectral Networks and Locally connected networks on

Geometric Random Walk Graph Neural Networks via Implicit Layers

Graphs. In 2nd International Conference on Learning
Representations.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duve-
naud, D. (2018). Neural Ordinary Differential Equa-
tions. In Advances in Neural Information Processing
Systems, volume 31, pages 6572–6583.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. (2020). Principal Neighbourhood Aggregation for
Graph Nets. In Advances in Neural Information Pro-
cessing Systems, volume 33.

Cosmo, L., Minello, G., Bronstein, M., Rodolà, E., Rossi,
L., and Torsello, A. (2021). Graph Kernel Neural Net-
works. arXiv preprint arXiv:2112.07436.

de Avila Belbute-Peres, F., Smith, K., Allen, K., Tenen-
baum, J., and Kolter, J. Z. (2018). End-to-End Differ-
entiable Physics for Learning and Control. Advances in
neural information processing systems, 31:7178–7189.

Debnath, A., Lopez de Compadre, R., Debnath, G., Shus-
terman, A., and Hansch, C. (1991). Structure-Activity
Relationship of Mutagenic Aromatic and Heteroaro-
matic Nitro Compounds. Correlation with Molecular Or-
bital Energies and Hydrophobicity. Journal of Medicinal
Chemistry, 34(2):786–797.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016).
Convolutional Neural Networks on Graphs with Fast Lo-
calized Spectral Filtering. In Advances in Neural In-
formation Processing Systems, volume 29, pages 3837–
3845.

Dehmamy, N., Barabasi, A.-L., and Yu, R. (2019). Un-
derstanding the Representation Power of Graph Neural
Networks in Learning Graph Topology. In Advances in
Neural Information Processing Systems, volume 32.

Dobson, P. and Doig, A. (2003). Distinguishing En-
zyme Structures from Non-enzymes Without Align-
ments. Journal of Molecular Biology, 330(4):771–783.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bom-
barell, R., Hirzel, T., Aspuru-Guzik, A., and Adams,
R. P. (2015). Convolutional Networks on Graphs for
Learning Molecular Fingerprints. In Advances in Neu-
ral Information Processing Systems, volume 28.

Errica, F., Podda, M., Bacciu, D., and Micheli, A. (2020).
A Fair Comparison of Graph Neural Networks for Graph
Classification. In Proceedings of the International Con-
ference on Learning Representations.

Feng, A., You, C., Wang, S., and Tassiulas, L. (2022).
KerGNNs: Interpretable Graph Neural Networks with
Graph Kernels. In Proceedings of the 36th AAAI Con-
ference on Artificial Intelligence, pages 6614–6622.

Fey, M., Yuen, J.-G., and Weichert, F. (2020). Hierar-
chical Inter-Message Passing for Learning on Molecular
Graphs. arXiv preprint arXiv:2006.12179.

Gallicchio, C. and Micheli, A. (2020). Fast and Deep
Graph Neural Networks. In Proceedings of the 34th
AAAI Conference on Artificial Intelligence, pages 3898–
3905.

Gärtner, T., Flach, P., and Wrobel, S. (2003). On Graph
Kernels: Hardness Results and Efficient Alternatives. In
Learning Theory and Kernel Machines, pages 129–143.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. (2017). Neural Message Passing for Quan-
tum Chemistry. In Proceedings of the 34th International
Conference on Machine Learning, pages 1263–1272.

Gligorijević, V., Renfrew, P. D., Kosciolek, T., Leman,
J. K., Berenberg, D., Vatanen, T., Chandler, C., Taylor,
B. C., Fisk, I. M., Vlamakis, H., et al. (2021). Structure-
based protein function prediction using graph convolu-
tional networks. Nature communications, 12(1):3168.

Gu, F., Chang, H., Zhu, W., Sojoudi, S., and El Ghaoui, L.
(2020). Implicit Graph Neural Networks. In Advances
in Neural Information Processing Systems, volume 33,
pages 11984–11995.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive
Representation Learning on Large Graphs. In Advances
in Neural Information Processing Systems, pages 1024–
1034.

Haussler, D. (1999). Convolution kernels on discrete struc-
tures. Technical report, Technical report, Department
of Computer Science, University of California at Santa
Cruz.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu,
B., Catasta, M., and Leskovec, J. (2020). Open Graph
Benchmark: Datasets for Machine Learning on Graphs.
arXiv preprint arXiv:2005.00687.

Kalofolias, J., Welke, P., and Vreeken, J. (2021). SUSAN:
The Structural Similarity Random Walk Kernel. In Pro-
ceedings of the 2021 SIAM International Conference on
Data Mining.

Kang, U., Tong, H., and Sun, J. (2012). Fast Random Walk
Graph Kernel. In Proceedings of the 2012 SIAM Inter-
national Conference on Data Mining, pages 828–838.

Kashima, H., Tsuda, K., and Inokuchi, A. (2003).
Marginalized Kernels Between Labeled Graphs. In Pro-
ceedings of the 20th International Conference on Ma-
chine Learning, pages 321–328.

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Ri-
ley, P. (2016). Molecular graph convolutions: moving
beyond fingerprints. Journal of Computer-Aided Molec-
ular Design, 30(8):595–608.

Kersting, K., Kriege, N. M., Morris, C., Mutzel, P.,
and Neumann, M. (2016). Benchmark data sets
for graph kernels. http://graphkernels.cs.
tu-dortmund.de.

Giannis Nikolentzos, Michalis Vazirgiannis

Kipf, T. N. and Welling, M. (2017). Semi-supervised clas-
sification with graph convolutional networks. In In 5th
International Conference on Learning Representations.

Kong, K., Li, G., Ding, M., Wu, Z., Zhu, C., Ghanem, B.,
Taylor, G., and Goldstein, T. (2020). Flag: Adversarial
Data Augmentation for Graph Neural Networks. arXiv
preprint arXiv:2010.09891.

Kriege, N. M., Johansson, F. D., and Morris, C. (2020).
A survey on graph kernels. Applied Network Science,
5(1):1–42.

Lei, T., Jin, W., Barzilay, R., and Jaakkola, T. (2017). De-
riving Neural Architectures from Sequence and Graph
Kernels. In Proceedings of the 34th International Con-
ference on Machine Learning, pages 2024–2033.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R.
(2015). Gated Graph Sequence Neural Networks. In 3rd
International Conference on Learning Representations.

Liao, R., Xiong, Y., Fetaya, E., Zhang, L., Yoon, K.,
Pitkow, X., Urtasun, R., and Zemel, R. (2018). Reviv-
ing and Improving Recurrent Back-Propagation. In Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, pages 3082–3091.

Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., and Vert, J.-
P. (2004). Extensions of Marginalized Graph Kernels.
In Proceedings of the 21st International Conference on
Machine Learning.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y.
(2019a). Provably Powerful Graph Networks. In Ad-
vances in Neural Information Processing Systems.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
(2019b). Invariant and Equivariant Graph Networks. In
7th International Conference on Learning Representa-
tions.

Micheli, A. (2009). Neural Network for Graphs: A Con-
textual Constructive Approachs. IEEE Transactions on
Neural Networks, 20(3):498–511.

Morris, C., Rattan, G., and Mutzel, P. (2020). Weisfeiler
and Leman go sparse: Towards scalable higher-order
graph embeddings. In Advances in Neural Information
Processing Systems, volume 33, pages 21824–21840.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. (2019). Weisfeiler
and Leman Go Neural: Higher-order Graph Neural Net-
works. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence, pages 4602–4609.

Niepert, M., Ahmed, M., and Kutzkov, K. (2016). Learning
Convolutional Neural Networks for Graphs. In Proceed-
ings of the 33rd International Conference on Machine
Learning, pages 2014–2023.

Nikolentzos, G., Dasoulas, G., and Vazirgiannis, M.
(2022). Permute Me Softly: Learning Soft Permutations

for Graph Representations. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence.

Nikolentzos, G., Siglidis, G., and Vazirgiannis, M. (2021).
Graph kernels: A survey. Journal of Artificial Intelli-
gence Research, 72:943–1027.

Nikolentzos, G. and Vazirgiannis, M. (2020). Random
Walk Graph Neural Networks. Advances in Neural In-
formation Processing Systems, 33:16211–16222.

Nocedal, J. and Wright, S. (2006). Numerical Optimiza-
tion. Springer Science & Business Media.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in PyTorch.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. (2019). PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances
in Neural Information Processing Systems, volume 32,
pages 8026–8037.

Pineda, F. J. (1987). Generalization of back-propagation
to recurrent neural networks. Physical review letters,
59(19):2229.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M.,
and Monfardini, G. (2009). The Graph Neural Net-
work Model. IEEE Transactions on Neural Networks,
20(1):61–80.

Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn,
K., and Borgwardt, K. M. (2009). Efficient graphlet ker-
nels for large graph comparison. In The 12th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 488–495.

Simonovsky, M. and Komodakis, N. (2017). Dynamic
Edge-Conditioned Filters in Convolutional Neural Net-
works on Graphs. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
3693–3702.

Sperduti, A. and Starita, A. (1997). Supervised Neural Net-
works for the Classification of Structures. IEEE Trans-
actions on Neural Networks, 8(3):714–735.

Sugiyama, M. and Borgwardt, K. (2015). Halting in Ran-
dom Walk Kernels. Advances in Neural Information
Processing Systems, 28:1639–1647.

Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. (2021).
Graph learning with 1d convolutions on random walks.
arXiv preprint arXiv:2102.08786.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R.,
and Borgwardt, K. M. (2010). Graph Kernels. Journal
of Machine Learning Research, 11:1201–1242.

Wale, N., Watson, I., and Karypis, G. (2008). Compari-
son of descriptor spaces for chemical compound retrieval
and classification. Knowledge and Information Systems,
14(3):347–375.

Geometric Random Walk Graph Neural Networks via Implicit Layers

Walker, H. F. and Ni, P. (2011). Anderson acceleration
for fixed-point iterations. SIAM Journal on Numerical
Analysis, 49(4):1715–1735.

Wu, Z., Jain, P., Wright, M., Mirhoseini, A., Gonzalez,
J. E., and Stoica, I. (2021). Representing Long-Range
Context for Graph Neural Networks with Global Atten-
tion. In Advances in Neural Information Processing Sys-
tems, pages 13266–13279.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
(2018). Moleculenet: a benchmark for molecular ma-
chine learning. Chemical Science, 9(2):513–530.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How
Powerful are Graph Neural Networks? In 7th Interna-
tional Conference on Learning Representations.

Yanardag, P. and Vishwanathan, S. (2015). Deep Graph
Kernels. In Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 1365–1374.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and
Leskovec, J. (2018). Hierarchical Graph Representa-
tion Learning with Differentiable Pooling. In Advances
in Neural Information Processing Systems, pages 4801–
4811.

Zhang, M., Cui, Z., Neumann, M., and Chen, Y. (2018a).
An End-to-End Deep Learning Architecture for Graph
Classification. In Proceedings of the 32nd AAAI Confer-
ence on Artificial Intelligence, pages 4438–4445.

Zhang, Z., Wang, M., Xiang, Y., Huang, Y., and Neho-
rai, A. (2018b). RetGK: Graph Kernels based on Return
Probabilities of Random Walks. Advances in Neural In-
formation Processing Systems, 31:3964–3974.

Giannis Nikolentzos, Michalis Vazirgiannis

The Appendix is organized as follows. In section A, we define some basic concepts from linear algebra. In sections B
and C, we prove Propositions 4.1 and 4.2, respectively. In section D, we give more details about the direct differentiation
through the fixed point, while section E provides a detailed description of the graph classification datasets. Section F gives
details about parameter λ, and section G about the running time of the model. Finally, in section H, we present the results
of a sensitivity analysis.

A Linear Algebra Concepts

In this section, we provide definitions for concepts of linear algebra, namely the vectorization operator, the inverse vector-
ization operator and the Kronecker product, which we use heavily in the main paper.
Definition A.1. Given a real matrix A ∈ Rm×n, the vectorization operator vec : Rm×n → Rmn is defined as:

vec(A) =


A:1

A:2

...

A:n


where A:i is the ith column of A.
Definition A.2. Given a real vector b ∈ Rmn, the inverse vectorization operator vec−1 : Rnm → Rn×m is defined as:

vec−1(b) =


b1 bn+1 . . . bn(m−1)+1

b2 bn+2 . . . bn(m−1)+2

...
...

...
...

bn b2n . . . bnm


Definition A.3. Given real matrices A ∈ Rn×m and B ∈ Rp×q , the Kronecker product A⊗B ∈ Rnp×mq defined as:

A⊗B =


A11 B A12 B . . . A1m B

A21 B A22 B . . . A2m B

...
...

...
...

An1 B An2 B . . . Anm B


B Proof of Proposition 4.1

For convenience, we restate the Proposition below.
Proposition 4.1. Let A1 ∈ Rn×n and A2 ∈ Rm×m be two real matrices. Let also s,y ∈ Rnm be two real vectors. Then,
we have that: (

s s⊤ ⊙ (A1 ⊗A2)
)
y = s⊙ vec

(
A2 vec−1(s⊙ y)A⊤

1

)
Proof. Let Ds denote a diagonal matrix with the vector s as its main diagonal. Then, we have:(

s s⊤ ⊙ (A1 ⊗A2)
)
y =

(
Ds (A1 ⊗A2)Ds

)
y

The Hadamard product of two vectors s and y is the same as matrix multiplication of vector y by the corresponding
diagonal matrix Ds of vector s, i. e., Ds y = s⊙ y. Thus, it follows that:(

Ds (A1 ⊗A2)Ds

)
y = Ds (A1 ⊗A2) (s⊙ y)

Note that the Kronecker product and vec operator are linked by the well-known property (Bernstein, 2009)(Proposition
7.1.9):

vec(ABC) = (C⊤ ⊗A)vec(B)

Therefore, we have that:(
Ds (A1 ⊗A2) (s⊙ y) = Ds vec

(
A2 vec−1(s⊙ y)A⊤

1

)
= s⊙ vec(A2 vec−1(s⊙ y)A⊤

1)

which concludes the proof.

Geometric Random Walk Graph Neural Networks via Implicit Layers

C Proof of Proposition 4.2

For convenience, we restate the Proposition below.

Proposition 4.2. There are infinitely many pairs of non-isomorphic node-attributed graphs which can be distinguished by
the proposed GRWNN model, but not by the p-step RWNN for bounded number of steps.

Proof. Let Cn denote an n-cycle, i. e., a graph on n nodes containing a single cycle through all nodes. Let also C2
n be the

union of two copies of n-cycle with disjoint vertex sets V1 = {1, . . . , n} and V2 = {n+ 1, . . . , 2n} and edge sets E1 and
E2, i. e., C2

n = (V,E) with V = V1 ∪ V2 and E = E1 ∪ E2. Let n ∈ {n |n ∈ N, n ≥ 3}. We annotate vertex
⌈
n
2

⌉
of the

first component of C2
n with a feature equal to x1 and vertex

⌈
n
2

⌉
+ n of the second component of C2

n with a feature equal
to x2 with x1 ̸= x2. We also annotate vertices

⌈
n
2

⌉
and

⌈
n
2

⌉
+n of C2n (with shortest path distance n) with a feature equal

to x1 and x2, respectively. The rest of the vertices of both graphs (i. e., C2
n and C2n) are annotated with a feature equal to

x ̸= 0 where x ̸= x1 and x ̸= x2. Since the two graphs share identical node features, these can be stored into a matrix
X ∈ R2n×1.

The p-step RWNN model computes features for the different values of p (where p ≥ 0) as follows (Nikolentzos and
Vazirgiannis, 2020):

k(p)(G,Gh) =

c∑
i=1

n∑
j=1

[
QX⊤ ⊙

(
RELU(W)pQX⊤Ap

)]
ij

where G is the input graph and Gh is a “hidden graph” consisting of c vertices whose attributes are stored in matrix Q,
while RELU(W) is the adjacency matrix of Gh. Then, note that for p <

⌈
n
2

⌉
, corresponding vertices of C2

n and C2n have
isomorphic p-hop neighborhoods (also considering node features). Since these neighborhoods are isomorphic, it turns out
that X⊤Ap

C2
n
= X⊤Ap

C2n
where AC2

n
and AC2n

denote the adjacency matrices of C2
n and C2n, respectively. Therefore,

k(p)(C2
n, Gh) = k(p)(C2n, Gh) holds for any “hidden graph” Gh and for any p <

⌈
n
2

⌉
. We then have that the p-step

RWNN maps the two graphs (i. e., C2
n and C2n) to the same vector.

We will next show that there exists weights such that the proposed GRWNN model can distinguish between graphs C2
n and

C2n. Without loss of generality, assume that the model contains a single “hidden graph” which consists of two vertices. Let
the weights that represent the adjacency matrix of the “hidden graph” RELU(W) ∈ R2×2 and the corresponding vertex
features Q ∈ R2×1 be defined as follows:

RELU(W) =

[
0 1

1 0

]
Q =

[
1

1

]

The kernel between the “hidden graph” and the input graph is computed as follows:

k∞(G,G′) =

|V×|∑
i=1

|V×|∑
j=0

[∞∑
l=0

λl
(
(s s⊤)⊙A×

)l]
ij

= |V×|+ λ 1⊤((s s⊤)⊙A×
)
1+ λ2 1⊤((s s⊤)⊙A×

)2
1+ . . .

where A× = RELU(W)⊗A, s = vec(S) where S = σ(XQ⊤), σ(·) denotes the sigmoid function, and λ is a hyperpa-
rameter such that the above series converges for both C2

n and C2n. Then, if A and X denote the adjacency matrix of the
input graph and the matrix of features, respectively, we have:

A× =

[
0 A

A 0

]
s =

[
σ(Z) σ(Z)

]
s s⊤ =

[
σ(Z) σ(Z)

σ(Z) σ(Z)

]

where Z = XX⊤. Then, we have:

(s s⊤)⊙A× =

[
0 σ(Z)⊙A

σ(Z)⊙A 0

]

Note that σ(Z) ⊙ A reweights the edges of the input graph, i. e., the weight of an edge is set equal to the sigmoid of
the product of the features of the two endpoints. The kernel between the “hidden graph” and the input graph can then be

Giannis Nikolentzos, Michalis Vazirgiannis

computed as follows:

k∞(G,G′) = |V×|+ λ 1⊤

[
0 σ(Z)⊙A

σ(Z)⊙A 0

]
1+ λ2 1⊤

[
0 σ(Z)⊙A

σ(Z)⊙A 0

]2
1+ . . .

= |V×|+ λ 1⊤

[
0 σ(Z)⊙A

σ(Z)⊙A 0

]
1+ λ2 1⊤

[(
σ(Z)⊙A

)2
0

0
(
σ(Z)⊙A

)2
]
1+ . . .

Given the adjacency matrices AC2
n

and AC2n
of graphs where C2

n and C2n, we have that:

λp 1⊤

[
0 σ(Z)⊙AC2

n

σ(Z)⊙AC2
n

0

]p
1 = λp 1⊤

[
0 σ(Z)⊙AC2n

σ(Z)⊙AC2n
0

]p
1

for p ∈ [n− 1] ∪ {0}. This holds since the sets of weighted paths of length p in the two graphs are identical to each other.
Thus, the set of weighted walks of length p are also identical. Then, it suffices to show that for any p ≥ n, the following
holds:

λp 1⊤

[
0 σ(Z)⊙AC2

n

σ(Z)⊙AC2
n

0

]p
1 > λp 1⊤

[
0 σ(Z)⊙AC2n

σ(Z)⊙AC2n
0

]p
1 (5)

This is true if
(
σ(Z)⊙AC2

n

)p
>
(
σ(Z)⊙AC2n

)p
holds. Note that the entry at position (i, j) of

(
σ(Z)⊙AC2

n

)p
is the sum

of the products of all weights of all walks from node i to node j of length exactly p. For any p, the number of walks of length
exactly p in graph C2

n is equal to the number of walks of length exactly p in graph C2n. However, for p ≥ n, in the case of
C2n, there exist walks that visit both vertices

⌈
n
2

⌉
and

⌈
n
2

⌉
+ n, while in C2

n, there are no such walks, but instead vertices⌈
n
2

⌉
and

⌈
n
2

⌉
+n are visited multiple times. Thus, in the case of C2n, there are entries that correspond to sums that contain

products of the form σ(x ·x1) ·σ(x ·x2), while in the case of C2
n, the sum emerges among others from products of the form

σ(x · x1)
2 and σ(x · x2)

2. Since σ(·) is the sigmoid function, 0 < σ(x · x1), σ(x · x2) < 1 holds. Furthermore, since we
have assumed that x1 ̸= x2, we have that σ(x ·x1) ̸= σ(x ·x2) and therefore σ(x ·x1)

2+σ(x ·x2)
2 > 2σ(x ·x1) ·σ(x ·x2).

Thus, Equation (5) holds.

D Implicit Differentiation

Clearly, iteratively computing Equation (2) or Equation (4) to find the fixed point corresponds to a differentiable module.
However, to train the model, we need to backpropagate the error through the fixed point solver in the backward pass.
That would require storing all the intermediate terms, which could be prohibitive in practice. Fortunately, thanks to recent
advances in implicit layers and equilibrium models (Bai et al., 2019), this can be performed in a simple and efficient manner
which requires constant memory, and assumes no knowledge of the fixed point solver. Specifically, based on ideas from
(Bai et al., 2019), we derive the form of implicit backpropagation specific to the employed fixed point iteration layer.

Theorem D.1. Let fθ be the system of Equation (2) or Equation (4), and z⋆ ∈ Rnc be a solution to that linear system.
Let also gθ(z

⋆;A,X) = fθ(z
⋆;A,X) − z⋆. Since z⋆ is a fixed point, we have that gθ(z⋆;A,X) → 0 and z⋆ is thus the

root of gθ. Let y ∈ R denote the ground-truth target of the input sample, h : R → R be any differentiable function and let
L : R× R → R be a loss function that computes:

ℓ = L
(
h(1⊤z⋆), y

)
= L

(
h
(
1⊤FindRoot(gθ;A,X)

)
, y
)

Then, the gradient of the loss w.r.t. (·) (e. g., θ, A or X) is:

∂ℓ

∂(·)
= − ∂ℓ

∂z⋆
(
J−1
gθ

∣∣
z⋆

)∂fθ(z⋆;A,X)

∂(·)
= − ∂ℓ

∂h

∂h

∂z⋆
(
J−1
gθ

∣∣
z⋆

)∂fθ(z⋆;A,X)

∂(·)

where J−1
gθ

∣∣
z⋆ is the inverse Jacobian of gθ evaluated at z⋆.

The above Theorem gives a form for the necessary Jacobian without needing to backpropagate through the method used to
obtain the fixed point. We can thus treat the fixed point algorithm as a black box, and we do not need to store intermediate
terms associated with the fixed point algorithm into memory. We only need to apply some algorithm that will produce a
solution to the system (i. e., it will compute the fixed point).

Geometric Random Walk Graph Neural Networks via Implicit Layers

Following (Bai et al., 2019), we differentiate the two sides of the fixed point equation z⋆ = fθ(z
⋆;A,X) wih respect to

(·):

dz⋆

d(·)
=

dfθ(z
⋆;A,X)

d(·)
=

∂fθ(z
⋆;A,X)

∂(·)
+

∂fθ(z
⋆;A,X)

∂z⋆
dz⋆

d(·)

=⇒
(
I− ∂fθ(z

⋆;A,X)

∂z⋆

)
dz⋆

d(·)
=

∂fθ(z
⋆;A,X)

∂(·)

Since gθ(z
⋆) = fθ(z

⋆;A,X)− z⋆, we have:

Jgθ
∣∣
z⋆ = −

(
I− ∂fθ(z

⋆;A,X)

∂z⋆

)
which implies the following:

∂ℓ

∂(·)
=

∂ℓ

∂z⋆
dz⋆

d(·)
= − ∂ℓ

∂z⋆
(
J−1
gθ

∣∣
z⋆

)∂fθ(z⋆;A,X)

∂(·)
.

Unfortunately, computing the exact inverse Jacobian J−1
gθ

has a cubic cost. As shown in (Bai et al., 2019), we can instead
compute the − ∂ℓ

∂z⋆

(
J−1
gθ

∣∣
z⋆

)
term of the gradient (which contains the Jacobian) by solving the following linear system:

x⊤ = − ∂ℓ

∂z⋆
(
J−1
gθ

∣∣
z⋆

)
=

∂ℓ

∂z⋆

(
I− ∂fθ(z

⋆;A,X)

∂z⋆

)−1

=⇒ x =

((
I− ∂fθ(z

⋆;A,X)

∂z⋆

)⊤
)−1(

∂ℓ

∂z⋆

)⊤

=⇒
(
I− ∂fθ(z

⋆;A,X)

∂z⋆

)⊤

x =

(
∂ℓ

∂z⋆

)⊤

=⇒ x =

(
∂fθ(z

⋆;A,X)

∂z⋆

)⊤

x+

(
∂ℓ

∂z⋆

)⊤

which in fact is also a fixed point equation and can be solved via some iterative procedure. Note that the first term of
the above Equation is a vector-Jacobian product which can be efficiently computed via autograd packages (e. g., PyTorch
(Paszke et al., 2017)) for any x, without explicitly writing out the Jacobian matrix. Finally, we can compute ∂ℓ

∂(·) as follows:

∂ℓ

∂(·)
=

(
∂fθ(z

⋆;A,X)

∂(·)

)⊤

x

where again this product is itself a vector-Jacobian product, computable via normal automatic differentiation packages.

E Datasets

We evaluated the proposed model on 10 publicly available graph classification datasets including 5 bio/chemo-informatics
datasets: MUTAG, D&D, NCI1, PROTEINS and ENZYMES, as well as 5 social interaction datasets: IMDB-BINARY,
IMDB-MULTI, REDDIT-BINARY, REDDIT-MULTI-5K and COLLAB (Kersting et al., 2016). A summary of the 10
datasets is given in Table 2. MUTAG consists of 188 mutagenic aromatic and heteroaromatic nitro compounds. The task
is to predict whether or not each chemical compound has mutagenic effect on the Gram-negative bacterium Salmonella
typhimurium (Debnath et al., 1991). ENZYMES contains 600 protein tertiary structures represented as graphs obtained
from the BRENDA enzyme database. Each enzyme is a member of one of the Enzyme Commission top level enzyme
classes (EC classes) and the task is to correctly assign the enzymes to their classes (Borgwardt et al., 2005). NCI1 contains
more than four thousand chemical compounds screened for activity against non-small cell lung cancer and ovarian cancer
cell lines (Wale et al., 2008). PROTEINS contains proteins represented as graphs where vertices are secondary structure
elements and there is an edge between two vertices if they are neighbors in the amino-acid sequence or in 3D space. The
task is to classify proteins into enzymes and non-enzymes (Borgwardt et al., 2005). D&D contains over a thousand protein
structures. Each protein is a graph whose nodes correspond to amino acids and a pair of amino acids are connected by
an edge if they are less than 6 Ångstroms apart. The task is to predict if a protein is an enzyme or not (Dobson and

Giannis Nikolentzos, Michalis Vazirgiannis

Table 2: Summary of the 10 datasets that were used in our experiments.

Dataset MUTAG D&D NCI1 PROTEINS ENZYMES
IMDB IMDB REDDIT REDDIT

COLLAB
BINARY MULTI BINARY MULTI-5K

Max # vertices 28 5,748 111 620 126 136 89 3,782 3,648 492
Min # vertices 10 30 3 4 2 12 7 6 22 32
Average # vertices 17.93 284.32 29.87 39.05 32.63 19.77 13.00 429.61 508.50 74.49
Max # edges 33 14,267 119 1,049 149 1,249 1,467 4,071 4,783 40,119
Min # edges 10 63 2 5 1 26 12 4 21 60
Average # edges 19.79 715.66 32.30 72.81 62.14 96.53 65.93 497.75 594.87 2,457.34
labels 7 82 37 3 – – – – – –
attributes – – – – 18 – – – – –
graphs 188 1,178 4,110 1,113 600 1,000 1,500 2,000 4,999 5,000
classes 2 2 2 2 6 2 3 2 5 3

Table 3: Statistics of the 2 OGB datasets that we used in our experiments.

Dataset ogbg-molhiv ogbg-code2

Average # vertices 25.5 125.2
Average # edges 27.5 124.2
Node features ✓ ✓
Edge features ✓ ✓
Directed – ✓
graphs 41,127 452,741
tasks 1 1
Split scheme Scaffold Project
Split ratio 80/10/10 90/5/5
Task type Binary class. Sub-token prediction
Metric ROC-AUC F1-score

Doig, 2003). IMDB-BINARY and IMDB-MULTI were created from IMDb, an online database of information related to
movies and television programs. The graphs contained in the two datasets correspond to movie collaborations. The vertices
of each graph represent actors/actresses and two vertices are connected by an edge if the corresponding actors/actresses
appear in the same movie. Each graph is the ego-network of an actor/actress, and the task is to predict which genre an
ego-network belongs to (Yanardag and Vishwanathan, 2015). REDDIT-BINARY and REDDIT-MULTI-5K contain graphs
that model the social interactions between users of Reddit. Each graph represents an online discussion thread. Specifically,
each vertex corresponds to a user, and two users are connected by an edge if one of them responded to at least one of
the other’s comments. The task is to classify graphs into either communities or subreddits (Yanardag and Vishwanathan,
2015). COLLAB is a scientific collaboration dataset that consists of the ego-networks of several researchers from three
subfields of Physics (High Energy Physics, Condensed Matter Physics and Astro Physics). The task is to determine the
subfield of Physics to which the ego-network of each researcher belongs (Yanardag and Vishwanathan, 2015).

We also evaluated the proposed model on two datasets from the Open Graph Benchmark (OGB) (Hu et al., 2020), a
collection of large-scale and diverse benchmark datasets for machine learning on graphs. A summary of the two datasets
is given in Table 3.

The ogbg-molhiv dataset is a molecular property prediction dataset that is adopted from the MoleculeNet (Wu et al.,
2018). The dataset consists of 41, 127 molecules and corresponds to a binary classification dataset where the task is to
predict whether a molecule inhibits HIV virus replication or not. The molecules in the training, validation and test sets are
divided using a scaffold splitting procedure that splits the molecules based on their two-dimensional structural frameworks.
The scaffold splitting attempts to separate structurally different molecules into different subsets. The ogbg-code2 dataset
contains a large number of Abstract Syntax Trees (ASTs) that are extracted from approximately 450, 000 Python method
definitions. For each method, the AST edges, the AST nodes, and the tokenized method name are retrieved. Given the
body of a method represented by the AST and its node features, the task (which is known as code summarization) is to

Geometric Random Walk Graph Neural Networks via Implicit Layers

Table 4: Values of λ that we used in our experiments.

MUTAG D&D NCI1 PROTEINS ENZYMES
IMDB IMDB REDDIT REDDIT

COLLAB
BINARY MULTI BINARY MULTI-5K

λ 1/5 1/20 1/20 1/30 1/20 1/200 1/300 1/500 1/400 1/2000

Table 5: Average running time per epoch (in seconds) of the proposed model and 3 baselines on the 10 graph classification
datasets.

MUTAG D&D NCI1 PROTEINS ENZYMES
IMDB IMDB REDDIT REDDIT

COLLAB
BINARY MULTI BINARY MULTI-5K

GIN 0.03 0.34 0.50 0.14 0.07 0.13 0.19 0.81 2.43 0.98
2-RWNN 0.03 0.19 0.57 0.16 0.08 0.14 0.20 0.43 1.13 0.89
3-RWNN 0.04 0.23 0.76 0.21 0.11 0.18 0.28 0.55 1.42 1.04

GRWNN 0.07 0.77 0.94 0.32 0.17 0.24 0.34 2.93 6.19 2.69

predict the sub-tokens forming the name of the method. The ASTs for the training set are obtained from GitHub projects
that do not appear in the validation and test sets. We refer the reader to (Hu et al., 2020) for more details about the OGB
datasets.

F Parameter λ

Given an input graph G and a “hidden graph” Gi, since the “hidden graph” is trainable, the maximum vertex degree of the
product graph G× is not known beforehand. However, in case the weights of the edges of the “hidden graph” are bounded,
we can compute an upper bound to that. Let ∆ denote the maximum vertex degree of G, c denote the number of vertices
of the “hidden graph” Gi, and b the maximum edge weight of the “hidden graph”. Then, we have that ∆× ≤ ∆(c − 1)b,
and therefore, to guarantee convergence, we need to set λ ≤ 1/∆(c−1)b. In practice, we empirically found that even if λ
takes higher values, the geometric series converges within a small number of iterations. Table 4 shows the value of λ that
we used for each dataset.

G Runtime Analysis

The proposed model is indeed computationally more expensive than the RWNN model due to the fixed point iteration
which is not parallelizable. However, as already discussed, we empirically observed that the forward iteration converges
in a small number of steps, thus incurring a relatively small overhead in the model’s running time. We have computed the
average running time per epoch of the proposed model, and 3 of the baselines (2-RWNN, 3-RWNN and GIN) on the 10
graph classification datasets. We use the same values for the common hyperparameters (e. g., number and size of hidden
graphs for GRWNN and RWNN, and hidden dimension size, batch size, etc for all 3 models). The results are shown in
Table 5 (in seconds). As we can see, the proposed model is not much more expensive than the baselines. In fact, in most
cases, its average running time per epoch is 1− 3 times higher than that of the baselines, which is by no means prohibitive
for real-world scenarios.

H Sensitivity Analysis

The proposed GRWNN model involves two main parameters: (1) the number of “hidden graphs”, and (2) the number of
vertices of “hidden graphs”. We next investigate how these two parameters influence the performance of the GRWNN
model. Specifically, in Figure 2, we examine how the different values of these parameters affect the performance of
GRWNN on the ENZYMES dataset. We observe that the accuracy on the test set increases as the number of “hidden
graphs” increases. The number of “hidden graphs” seems to have a significant impact on the performance of the model.
When the number of graphs is set equal to 5, the model achieves an accuracy smaller than 50%, while when the number of

Giannis Nikolentzos, Michalis Vazirgiannis

20 40 60 80 100
number of hidden graphs

0.3

0.4

0.5

0.6

0.7

0.8

Av
g.

 a
cc

ur
ac

y

20 40 60 80 100
size of hidden graphs

Figure 2: Performance on the ENZYMES dataset as a function of the number of “hidden graphs” (left) and the number of
vertices of the “hidden graphs” (right).

graphs is set equal to 100, it yields an accuracy greater than 65%. On the other hand, the number of vertices of the “hidden
graphs” does not affect that much the performance of the model.

