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Abstract

We analyze the performance of the least absolute
shrinkage and selection operator (Lasso) for the
linear model when the number of regressors N
grows larger keeping the true support size d fi-
nite, i.e., the ultra-sparse case. The result is based
on a novel treatment of the non-rigorous replica
method in statistical physics, which has been ap-
plied only to problem settings where N , d and
the number of observations M tend to infinity
at the same rate. Our analysis makes it possible
to assess the average performance of Lasso with
Gaussian sensing matrices without assumptions
on the scaling ofN andM , the noise distribution,
and the profile of the true signal. Under mild
conditions on the noise distribution, the analy-
sis also offers a lower bound on the sample com-
plexity necessary for partial and perfect support
recovery when M diverges as M = O(logN).
The obtained bound for perfect support recovery
is a generalization of that given in previous liter-
ature, which only considers the case of Gaussian
noise and diverging d. Extensive numerical ex-
periments strongly support our analysis.

1 Introduction

An important objective of high dimensional statistics is
to extract information in situations where the signal’s di-
mension N is overwhelmingly large compared to the ac-
cumulated sample size M . It is crucial to incorporate prior
knowledge on the signal structure to reduce the signal space
dimension for reliable estimation. A particularly common
assumption is sparsity, which postulates that the true sig-
nal has few nonzero entries. Exploiting this property al-
lows one to obtain robust and interpretable results specify-
ing the few relevant variables explaining the retrieved data
(Donoho, 2006).
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For instance, consider the sparse linear regression problem
where measurements y ∈ RM of the signal x0 ∈ RN with
d non-zero components are given by the linear model

y = Ax0 + ξ, (1)

where A ∈ RM×N is the sensing matrix, and ξ ∈ RM is
the noise vector distributed according to pξ(ξ). The most
fundamental yet popular sparse signal estimation method is
the least absolute shrinkage and selection operator (Lasso)
(Tibshirani, 1996), which offers the estimator by solving
the following convex program:

x̂λ(A,y) := arg min
x

(
1

2
∥Ax− y∥2 +Mλ∥x∥1

)
, (2)

where λ is a regularization parameter. Since its introduc-
tion, this simple ℓ1-regularization scheme has been suc-
cessfully adapted as a backbone technique for solving a
wide variety of sparse estimation problems. A particularly
interesting question to ask is if one can make any guaran-
tees on the performance of Lasso under general scalings of
(N,M, d), its dependence on λ, and statistical properties
of the noise and true signal.

A sheer amount of research has been devoted to assess-
ing the performance of Lasso. Traditionally, research
based on the irrepresentability condition (Meinshausen and
Bühlmann, 2006; Zhao and Yu, 2006) has been popular
in establishing guarantees in terms of support recovery of
the sparse signal (Wainwright, 2009b; Dossal et al., 2012;
Meinshausen and Bühlmann, 2006; Zhang and Huang,
2008; Candès and Plan, 2009; Zhao and Yu, 2006). A
different approach based on approximate message-passing
(AMP) theory (Donoho et al., 2009), and the heuristi-
cal replica method (Mézard et al., 1986) from statistical
physics has focused on assessing the sharp, asymptotic
properties of Lasso in the large N and M limit under ran-
dom sensing matrix designs. Despite the previous works,
the understanding of the Lasso estimator is still limited.
Analysis based on the irrepresentability condition often of-
fers only scaling guarantees with respect to (N,M, d), or
statements with strong assumptions on the regularization
parameter. Besides, the AMP/replica-based analysis has
been only limited to linear sparsity, i.e. d/N = O(1) and
M/N = O(1) as N →∞, which may be somewhat unre-
alistic compared to real-world situations.
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1.1 Contributions

In this work, we complement the drawbacks in both the
irrepresentability condition approach and AMP / replica
approach by theoretically analyzing the average perfor-
mance of Lasso when d = O(1), i.e. the ultra-sparse case
(Donoho et al., 1992; Bhadra et al., 2017), which is a more
typical situation in certain applications such as materials
informatics (Ghiringhelli et al., 2015; Kim et al., 2016; Pi-
lania et al., 2016). Moreover, our result offers a necessary
condition for support recovery in the limit N,M → ∞.
Specifically, our contributions are summarized as follows:

• We provide a new way to apply the replica
method in the ultra-sparsity regime. This is done
by explicitly handling the correlations and finite-
size effects acting on the active set supp(x0) ={
i | x0i , ̸= 0 i = 1, · · · , N

}
, which is otherwise ig-

nored in conventional analysis (Section 2.1, Claim 1).

• Using this enhanced replica method, we precisely
evaluate the average property of Lasso under ultra-
sparsity and standard Gaussian matrix design, i.e.
each element of A is i.i.d. according to a standard
Gaussian distribution. This provides an extension to
previous results derived from the AMP theory and the
replica method, where linear sparsity is necessary for
the analysis (Section 2.2, Claim 2).

• We derive a necessary condition for partial sup-
port recovery supp(x̂λ(A,y)) ⊆ supp(x0) under
some mild conditions (Assumption 1). Specifically,
the number of false positives, and subsequently the
model misselection probability vanishes only if M >
αC logN for N → ∞. This constant αC is deter-
mined by the mean prediction error of an oracle (Sec-
tion 2.3, Claim 3, 4).

• In addition to partial support recovery, the analysis
also provides a necessary condition for perfect support
recovery supp(x̂λ(A,y)) = supp(x0), which gener-
alizes the sample complexity bound given by Wain-
wright (2009b) for i.i.d. Gaussian noise distributions
in the limit d→∞ to more general noise distributions
under constant d (Section 2.3, Claim 5).

• We demonstrate that our theory agrees well with ex-
periment by conducting extensive numerical simula-
tions (Section 3).

Note that all of the results are derived from the enhanced
replica method, which is yet to be proven rigorously; hence
the statements are presented as claims.

1.2 Related Work

Irrepresentability Condition. As aforementioned, the
irrepresentability condition, first introduced by Mein-

shausen and Bühlmann (2006) and Zhao and Yu (2006),
has been an important cornerstone, as it establishes a suf-
ficient condition for perfect support recovery. This condi-
tion indicates whether the covariates, i.e. the columns of
A, are linearly independent enough to be distinguishable
from one another, and hence variable selection is relatively
feasible. It has been revealed that Lasso is an “optimal”
support estimator in the sublinear regime d = o(N), i.e.
Lasso has its success/failure threshold for sample complex-
ity in the same order as the informational-theoretical one
(Fletcher et al., 2009; Wainwright, 2009a). However, little
is known about the constants involved in these conditions.
Wainwright (2009b) provided necessary and sufficient con-
ditions for perfect support recovery under random Gaus-
sian matrices for diverging d. This is a simple and explicit
bound which depends on the regularization parameter and
intensity of the noise, which is restricted to i.i.d. Gaussian.
Focusing on the case d = O(1), Dossal et al. (2012) de-
rived sufficient conditions for partial and perfect support
recovery under deterministic noise, whose bound is similar
to the one given in Wainwright (2009b).

AMP theory. A particular line of work has aimed in as-
sessing the properties of Lasso under general random ma-
trix designs via careful analysis of the dynamical behavior
of the AMP algorithm (Kabashima, 2003; Donoho et al.,
2009; Takahashi and Kabashima, 2022), whose conver-
gence point coincides with (2) in the large N limit. Rather
than establishing inequality bounds or conditions, the ob-
jective is to establish sharp results on the Lasso for a ran-
dom instance of (A,y). Although analysis is limited to
linear sparsity regime, powerful and precise results have
been proven rigorously under this framework (Bayati and
Montanari, 2012). For instance, Su et al. (2017) and Wang
et al. (2020) determine the possible rate of false positives
and true positives achievable under certain settings, which
can be obtained by solving a small set of nonlinear equa-
tions. Nevertheless, the analysis does not give insight on
support recovery, since this is impossible in the linear spar-
sity regime (Fletcher et al., 2009; Wainwright, 2009a).

Replica method. Results similar to those from AMP
theory have also been derived by using the non-rigorous
replica method in statistical mechanics. Unlike AMP the-
ory, which is based on a convergence analysis of a par-
ticular algorithm, the replica method aims at directly cal-
culating the average over (A,y) of a cumulant generating
function for some probability distribution, i.e. of the form
Kϕ(t) = EA,y log

∫
dx etϕ(x)p(x|A,y). This calcula-

tion is often encountered in the field of statistics, where
one is interested in the average behavior of a statistical
model. While lacking a complete proof, this method has
been successful in predicting the average performance of
machine learning and optimization methods under general
random designs in the linear sparsity regime (Vehkaperä
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et al., 2016; Zdeborovà and Krzakala, 2016). In fact,
under certain assumptions, the average predictions given
by the replica method have been proven to be consistent
with the asymptotic results obtained from AMP theory
and other rigorous methods (Stojnic, 2013; Thrampoulidis
et al., 2018). Similar to AMP theory, however, reliable
adaptations of this method outside linear sparsity are still
open problems. Previous research such as Abbara et al.
(2020), Meng et al. (2021a) and Meng et al. (2021b) ana-
lyzed the performance of sparse Ising model selection us-
ing a variation of the replica method. However, this was
accomplished through a series of ansatzes which are gener-
ally difficult to justify theoretically.

1.3 Preliminaries

Here we summarize the notations used in this paper. The
expression ∥·∥ denotes the ℓ2 norm. The active set S is
defined as the support of the d-sparse true signal x0, S :=
supp(x0) = {i | x0i ̸= 0, i = 1, · · · , N}. Define Ñ :=
N − d, the size of the inactive set. The matrix AS denotes
the submatrix constructed by concatenating the columns of
A with indices in S. The vector x0

S denotes the subvector
of x0 with indices in S. For simplicity, x0 is assumed to
be a deterministic, although this can be extended to random
signals trivially. The expression EA,y denotes the average
over the joint probability with respect to the pair (A,y),
i.e.

EA,y(· · · )

=

∫
dydAdξpξ(ξ)(· · · )

e−
1
2TrA

TA

(2π)(NM/2)
δ(y −Ax0 − ξ),

where δ(·) denotes the Dirac delta function. The defini-
tion of EAS ,y follows straightforwardly from the above.
Also, define Dz as the standard Gaussian measure, Dz =
dze−∥z∥2/2/(2π)n/2 for z ∈ Rn. Given (A,x0,y) and
regularization parameter λ, the oracle Lasso estimator is
defined as x̂λ(AS ,y), which is the Lasso estimator with
the true support identified beforehand. It is also conve-
nient to define the oracle Lasso fit, defined by γλ(y) :=
ASx̂λ(AS ,y), with its dependence on AS suppressed for
convenience. Given configuration (A,x0,y), and regular-
ization parameter λ, the number of false positives FP and
the number of true positives TP of the lasso estimator is
defined as

FP(A,y) = #
{
SC ∩ supp(x̂λ(A,y))

}
, (3)

TP(A,y) = #{S ∩ supp(x̂λ(A,y))}, (4)

where SC denotes the complement of set S from
{1, · · · , N}. Without confusion, the dependence on
(AS ,y) is suppressed for convenience.

We say that an event A holds with asymptotically high
probability (w.a.h.p.) if there exists a constant c > 0 such

that Pr[A] > 1 − O(N−c). We also say that A holds with
probability approaching one (w.p.a.1) if Pr[A] > 1− o(1)
as N →∞.

2 Replica analysis

Define the Boltzmann distribution as

Pβ(x|A,y)

:= Z−1
β (A,y) exp

(
−β
2
∥Ax− y∥2 − βMλ∥x∥1

)
,

(5)
where Zβ(A,y) is the normalization constant. Note that in
the limit β →∞, (5) converges to a point-wise distribution
concentrated on the Lasso estimator x̂λ(A,y). The main
objective of our analysis is to calculate the average of the
logarithm of Zβ(A,y) over the random variables (A,y)
in the limit β → ∞, which is called the free energy or the
cumulant generating function

F = − lim
β→∞

β−1EA,y logZβ(A,y). (6)

The properties of x̂λ(A,y) averaged over the population of
(A,y) can then be assessed by taking appropriate deriva-
tives of F .

Although (6) is difficult to calculate straightforwardly, this
can be resolved by using the replica method (Mézard and
Montanari, 2009; Mézard et al., 1986), which is based on
the following equality

EA,y logZβ(A,y) = lim
n→+0

EA,yZ
n
β (A,y)− 1

n
. (7)

Instead of handling the cumbersome log expression in (6)
directly, one calculates the average of the n-th power of Zβ

for n ∈ N, analytically continues this expression to n ∈ R,
and finally takes the limit n → +0. Based on this replica
”trick”, it suffices to calculate

EA,yZ
n
β (A,y) = EA,y

∫ n∏
a=1

dxa

exp

(
−β
2

n∑
a=1

∥Axa − y∥2 − βMλ

n∑
a=1

∥xa∥1

)
.

(8)

up to the first order of n to take the n → +0 limit in the
right hand side of (7).

2.1 Outline of the derivation

Here, we only give a brief outline of the derivation; for
details, see Supplementary Materials. Rewriting ∆a

i :=
xai (i /∈ S), it is convenient to introduce the auxil-
lary variable haµ ≡

∑
i/∈S Aµi∆

a
i (µ = 1, · · · ,M),

which accounts for the effect from the variables not in
the true support in each replica a. A crucial observation
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is that {Aµi}1≤µ≤M,i/∈S is statistically independent from
(AS , y), which allows the average to be taken individu-
ally. By taking the average over the Gaussian variables
{Aµi}1≤µ≤M,i/∈S first, we find that haµ is Gaussian with
zero mean and covariance Ehaµhbν = δµν

∑
i/∈S ∆a

i∆
b
i . By

assuming the replica symmetric (RS) ansatz (Mézard et al.,
1986)

∑
i/∈S

∆a
i∆

b
i :=

{
Q a = b

Q− χ/β otherwise
, (9)

the integral for the replicated vectors {∆a}na=1 over the
whole RÑ×n space is restricted to a subspace satisfying
the constraints (9). More explicitly, one can rewrite (8) as

EAS ,y

∫ n∏
a=1

d∆a

∫
dQdχe−βMλ

∑n
a=1 ∥∆a∥1IL, (10)

where I corresponds to the contribution from the RS con-
straint: i.e.

I :=

n∏
a=1

δ

(
Q−

∑
i/∈S

(∆a
i )

2

)∏
a<b

δ

(
Q− χ

β
−
∑
i/∈S

∆a
i∆

b
i

)
,

(11)
and L is the contribution from the second line of (8), albeit
simplified as a result of replica symmetry:

L :=

∫
Dz

(∫
dxSe

−MβG(xS ;z)

)n

,

G(xS ; z) :=

∥∥ASxS +
√
Qz − y

∥∥2
2M(1 + χ)

+ λ∥xS∥1.
(12)

By using the Fourier representation of the delta function,
(11) can be further rewritten as

I =

∫ +i∞

−i∞
dQ̂dχ̂e

Mnβ
2 (QQ̂+(n−1)χχ̂−nβQχ̂)

×
∫
Dẑe−

MβQ̂
2

∑n
a=1 ∥∆a∥2+β

√
Mχ̂zT∆a+o(β).

(13)

Using this expression, the integral with respect to
{∆a}1≤a≤n in (10) can be calculated analytically. Per-
forming the saddle point approximation for large M to the
integrals with respect to (Q, Q̂, χ, χ̂), and finally taking the
limit β → ∞ after n → +0 in (7) yields the following ex-
pression for F .

Claim 1. The free energy is given by

F = EAS ,y Extr
Θ

{
− QQ̂− χχ̂

2

− Ñ

2Q̂

[
(Λ + χ̂)erfc

(√
Λ

2χ̂

)
−
√

2Λχ̂

π
e−Λ/2χ̂

]

+

∫
Dzmin

xS

G(xS ; z)

}
.

(14)

Here, Λ := (Mλ)2, erfc is the complementary error func-
tion erfc(x) := 2/

√
π
∫∞
x

dte−t2 , and Extr refers to the
extremum condition with respect to Θ := (Q, Q̂, χ, χ̂),
which are random variables dependent on (AS ,y).

Straightforward calculation shows that the extremum con-
ditions are given by

Q =
Ñ

Q̂2

[
(Λ + χ̂)erfc

(√
Λ

2χ̂

)
−
√

2Λχ̂

π
e−

Λ
2χ̂

]
, (15)

χ =
Ñ

Q̂
erfc

(√
Λ

2χ̂

)
, (16)

Q̂ =
M

1 + χ
− 1

1 + χ

∫
Dz ∇ · γ(1+χ)λ(

√
Qz + y)

=
M −

∫
Dz
∥∥x̂(1+χ)λ(AS ,

√
Qz + y)

∥∥
0

1 + χ
, (17)

χ̂ =

∫
Dz
∥∥γ(1+χ)λ(

√
Qz + y)−

√
Qz − y

∥∥2
(1 + χ)2

, (18)

where the second equality in (17) is from Theorem 1 in Tib-
shirani and Taylor (2012). Note that the dependence of Θ
on (AS ,y) is not explicitly written for sake of simplicity.
This evaluation of F reduces the high-dimensional integral
over A and y to an average over a four-dimensional ex-
tremum problem involving a M–dimensional integral with
respect to z, which can be numerically computed via iter-
ative substitution and Monte Carlo sampling over (AS ,y)
and z.

It is interesting to compare our replica analysis in the large
N and M limit to the ones considering linear sparsity
(Kabashima et al., 2009; Vehkaperä et al., 2016). In linear
sparsity, the lasso estimator’s statistical property can effec-
tively be described by a population of N decoupled, inde-
pendent scalar estimators under Gaussian noise with iden-
tical intensity as N → ∞. This is often referred to as the
decoupling principle in information theory; see Guo and
Verdú (2005) and Bayati and Montanari (2011) for details.
In the ultra-sparse case, the elements of the Lasso estimator
in the active set, consisting of d = O(1) terms, cannot be
expected to decouple, as finite-size effects of non-Gaussian
and correlated nature are expected to be significant to de-
scribe its profile. This is why a d−body optimization pro-
cedure and the average with respect to (AS ,y) appears ex-
plicitly in (14). On the other hand, the decoupling princi-
ple is implicitly employed for the Ñ non-active variables
conditioned on (AS ,y). More explicitly, for each config-
uration of (AS ,y), each element of the non-active Lasso
estimator is statistically equivalent to

(x̂λ(A,y))i/∈S ∼ gλ(Q̂,
√
χ̂zi)

= min
x

(
Q̂

2
x2 −

√
χ̂zix+Mλ|x|

)
,

(19)
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where zi are i.i.d. according to N (0, 1). Note that the de-
coupling principle, rigorously proven under AMP theory,
does not necessarily need N and M to diverge at the same
rate (Rush and Venkataramanan, 2018).

2.2 Performance assessment of Lasso

The free energy allows convenient evaluation of averages
of certain functions of the estimator. More explicitly, for
a function Ψ : RN → R, its average with respect to the
Boltzmann distribution (5) and (A,y) is given by

⟨Ψ(x)⟩ := lim
β→∞

EA,y

∫
dxPβ(x|A,y)Ψ(x)

= − lim
β→∞

lim
h→0

∂

∂h
β−1EA,y logZβ(A,y;hΨ),

(20)

where

Zβ(A,y;hΨ) :=

∫
dx e−

β
2 ∥Ax−y∥2−βMλ∥x∥1−βhΨ(x).

(21)
For a class of functions Ψ, the above can be calculated triv-
ially, which we state in the following claim:

Claim 2 (Average with respect to active and inactive sets).
For arbitrary functions ψ : R → R and Ψ : Rd → R, we
have〈∑

i/∈S

ψ(xi)

〉
= ÑEAS ,y

∫
Dzψ(gλ(Q̂,

√
χ̂z)), (22)

and

⟨Ψ(xS)⟩ = Eeff Ψ(x̂(1+χ)λ(AS ,
√
Qz + y)), (23)

where Eeff := EAS ,y

∫
Dz, and (Q, Q̂, χ̂, χ) is given by

the solution of the extremum conditions (15)–(18) for each
(AS ,y). In particular, performance measures such as the
average of true positives (TP), false positives (FP) and ℓ2
error ϵx :=

∥∥xλ(A,y)− x0
∥∥2 is given by

⟨TP⟩ = Eeff

∥∥∥x̂(1+χ)λ(AS ,
√
Qz + y)

∥∥∥
0
, (24)

⟨FP⟩ = ÑEAS ,yerfc

(√
Λ

2χ̂

)
, (25)

⟨ϵx⟩ = Eeff

(
Q+

∥∥∥x̂(1+χ)λ(AS ,
√
Qz + y)− x0

S

∥∥∥2).
(26)

2.3 Necessary condition for support recovery

A particular topic of interest is partial support recovery, and
the minimum number of samples M necessary for the false
positives to vanish in the limit N → ∞. Although the
fixed point equations (15) –(18) do not admit a closed form
solution, a necessary condition in terms of the sample com-
plexity can be derived under the following mild conditions:

Assumption 1.
A: (Uniqueness of fixed point) The solutions of the fixed

point equations (15)–(18) are unique and satisfy
(Q, Q̂, χ, χ̂) ∈ (0,∞)4.

B: (Concentration of the oracle Lasso estimator) The
random variable

s
(M)
λ :=

1

M
∥γλ(y)− y∥2

has finite mean s̄(M)
λ and variance converging to zero.

C: (Bounded variance of noise distribution) The distribu-
tion pξ satisfies

Γ(M) :=
1

M

∫
dξpξ(ξ)∥ξ∥2 < C

for some constant C.

Claim 3 (Necessary sample complexity for asymptotically
zero false positives). Let M diverge with N with scaling
M = α logN (α > 0). Under Claim 1 and Assumption 1,
if there exists a constant c > 0 such that ⟨FP⟩ < O(N−c)
in the limit N →∞, then

α(1 + ϵ) > αC =
s̄λ
2λ2

, (27)

holds for any constant ϵ > 0, where s̄λ = lim
M→∞

s̄
(M)
λ .

The proof is postponed to Section 4. From this claim, the
necessary sample complexity for partial support recovery
follows immediately:

Claim 4 (Necessary sample complexity for partial sup-
port recovery). Under the settings in Claim 3, if
supp(x̂λ(A,y)) ⊆ supp(x0) w.a.h.p., then α > αC .

By definition, s̄λ is the prediction error of the oracle, which
is given the sensing submatrix AS and observation vector
y. This is reminiscent of the primal-dual witness construc-
tion in Wainwright (2009b), where sufficient conditions for
asymptotically zero FPs are derived by solving the oracle
Lasso first, and observing whether the oracle solution con-
catenated with N − d zero elements is a unique solution of
the original Lasso problem (2).

Furthermore, the necessary condition for perfect support
recovery can also be derived using Claim 3.

Claim 5 (Necessary sample complexity for perfect sup-
port recovery). Under the settings in Claim 3, suppose
supp(x̂λ(A,y)) = supp(x0) holds w.a.h.p. Then

α(1 + ϵ) > 2

(
d+

Γ

λ2

)
, (28)

holds for any constant ϵ > 0, where Γ = lim
M→∞

Γ(M).
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Figure 1: Average values of false negatives (d − TP), false positives and ℓ2 error for (λ, σ2) = (0.5, 0.0) (upper panels)
and (λ, σ2) = (0.5, 0.5) (lower panels) with M given by M = α logN . Error bars for ⟨FN⟩ and ⟨FP⟩ represent the 95%
interval of the mean, assuming that the samples from the 104 experimental runs follow a binomial distribution. Error bars
for ℓ2-error represent the standard error obtained from 104 experimental runs.

Note that in the special case of Gaussian noise with vari-
ance σ2, we have Γ = σ2, which extends the result of
Wainwright (2009b), Theorem 4 to the case d = O(1).
Moreover, our result can be applied to any noise distribu-
tion satisfying Assumption 1.C.

3 Numerical experiments

3.1 Non-asymptotic results

To verify the derived results based on Claim 1, numerical
experiments were conducted. For simplicity, we consider
the case where the active set has size d = 3 with x0

S = 13,
and ξ is generated from a Gaussian distribution with vari-
ance σ2. Here, the value of d is taken to be small enough
such that finite-size effects are nonignorable. The values
of ⟨TP⟩ , ⟨FP⟩ and ϵx obtained from our replica predic-
tions (24)-(26) are compared with the average over 104 ex-
perimental runs. The average with respect to (AS ,y) for
obtaining the replica prediction was approximated using a
Monte Carlo procedure over 106 samples.

Figure 1 shows that all three values from theory and ex-
periment are in good agreement for parameters (λ, σ2) =
(0.5, 0.0) and (0.5, 0.5).

3.2 Asymptotic results

Claims 3 and 4 are also verified via numerical experiments;
see Supplementary Materials for numerical experiments on
Claim 5. In order to access the critical point αC in (27),
Monte Carlo experiments were conducted to evaluate s(M)

λ

for different values ofM . Figure 2 shows the value of s(M)
λ

at (λ, σ2) = (0.5, 0.0) and (0.5, 0.5) for both x0
S = 13 and

x0
S = [ 13 ,

2
3 , 1]. From its asympototic behavior, αC can be

evaluated as the values given in Table 1. Interestingly, for
the case x0

S = 13, sλ approaches 6 and 10 for σ2 = 0 and
0.5 respectively, which is equivalent to 2(d+ Γ/λ2) given
in Claim 5.

Table 1: Values of αC evaluated from figure 2.

x0
S (λ, σ2) αC

[1, 1, 1] (0.5, 0.0) 6.00
[1, 1, 1] (0.5, 0.5) 10.0

[1/3, 2/3, 1] (0.5, 0.0) 4.89
[1/3, 2/3, 1] (0.5, 0.5) 8.89

Figure 3 shows the average number of FP and partial sup-
port recovery probability over 10,000 experimental runs for
α in the vicinity of the numerically evaluated αC for differ-
ent values of N . We observe that for α < αC , the average
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Figure 2: Value of s̄(M)
λ for M . The asymptotic values of s̄(M)

λ (blue dashed lines) are evaluated as 0.750, 1.250, 0.611 and
1.111 from left to right. Error bars represent the standard error obtained from 10,000 Monte Carlo samples.
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Figure 3: Average number of false positives (upper panels) and partial support recovery probability (lower panels) near
complexity α = αC (blue vertical lines). Error bars represent the standard error obtained from 10,000 experimental runs.
For α < αC , the number of false positives is consistently nondecreasing with respect to N , while the partial support
recovery probability is consistently nonincreasing with respect to N , which is in agreement with Claims 3 and 4.

FP is consistently nondecreasing with respect to N , while
partial support recovery probability is consistently nonin-
creasing with respect to N .

4 Proofs

4.1 Proof of Claim 3

The following lemmas will be useful in the proof.

Lemma 1 (Lemma 1, Dossal et al. (2012)). There is a finite
increasing sequence (λt)t≤K with λ0 = 0 such that for all
t < K, the sign and support of x̂λ(AS ,y) are constant on
each interval (λt, λt+1).

Lemma 2 (Lemma 1, Tibshirani and Taylor (2012)). The
Lasso fit is 1-Lipschitz continuous with respect to ℓ2 norm.

Lemma 3 (Theorem II.13, Davidson and Szarek (2001)).
Let A ∈ RM×d be a random matrix with i.i.d standard
Gaussian entries. The largest and smallest eigenvalue of
B = ATA satisfy

Pr

[
λmax(B) ≥

(√
M +

√
d+ t

)2]
≤ e− t2

2 (29)

for t > 0 and

Pr

[
λmin(B) ≤

(√
M −

√
d− t

)2]
≤ e− t2

2 (30)

for 0 < t <
√
M −

√
d.

We now prove Claim 3. Define

s
(M)
λ,Q :=

1

M

∫
Dz
∥∥∥γλ(y +

√
Qz)− (y +

√
Qz)

∥∥∥2.
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Let us evaluate the difference between s
(M)
(1+χ)λ,Q and

s
(M)
λ,0 = s

(M)
λ when ⟨FP⟩ < O(N−c). Using the Cauchy

Schwartz inequality and symmetry γλ(y) = −γλ(−y),

M(s
(M)
(1+χ)λ,Q − s

(M)
λ )

≥ −
∫
Dz
∥∥∥γ(1+χ)λ(

√
Qz + y)− γλ(y)−

√
Qz
∥∥∥

×
∥∥∥γ(1+χ)λ(

√
Qz + y)− γλ(−y)− 2y −

√
Qz
∥∥∥.
(31)

The triangle inequality and Lemma 2 implies that∥∥∥γ(1+χ)λ(
√
Qz + y)− γλ(y)−

√
Qz
∥∥∥

≤
√
Q∥z∥+

∥∥∥γ(1+χ)λ(
√
Qz + y)− γ(1+χ)λ(y)

∥∥∥
+
∥∥γ(1+χ)λ(y)− γλ(y)

∥∥
≤2
√
Q∥z∥+

∥∥γ(1+χ)λ(y)− γλ(y)
∥∥, (32)

and similarily,∥∥∥γ(1+χ)λ(
√
Qz + y)− γλ(−y)− 2y −

√
Qz
∥∥∥

≤2
√
Q∥z∥+ 4∥y∥+

∥∥γ(1+χ)λ(y)− γλ(y)
∥∥. (33)

To derive a bound for the last term in (32) and (33), Lemma
1 is employed. Let the support and sign of x̂λ(AS ,y) be
constant in intervals (Mλt,Mλt+1) (t = 0, · · · ,K − 1),
where λ = λ0 < · · · < λK = (1 + χ)λ. Let the sup-
port set in interval (λt, λt+1) be given by It, and define
st ∈ {−1, 0, 1}|It| be the sign vector of x̂λ′(AS ,y) (λ

′ ∈
(λt, λt+1)) restricted to It. From the KKT conditions, the
Lasso fit is expressed as

γλt(y) = ASItA
+
SIt

y −MλtASIt(A
T
SItASIt)

−1st,

where M+ denotes the pseudoinverse of matrix M. We
deduce

∥∥γ(1+χ)λ(y)− γλ(y)
∥∥ ≤ K−1∑

t=0

∥∥γλt(y)− γλt+1(y)
∥∥

≤Mλ

K−1∑
t=0

(λt+1 − λt)
∥∥ASIt(A

T
SItASIt)

−1st
∥∥

≤χM
√
dλ2 max

t

√
ρ((AT

SIt
ASIt)

−1).

Lemma 3, with the inclusion principle
ρ((AT

SIt
ASIt)

−1) ≤ ρ((AT
SAS)

−1) implies that
w.a.h.p.,

∥∥γ(1+χ)λ(y)− γλ(y)
∥∥ ≤ 2χ

√
dλ2M . The

relations (31) – (33), and inequality
∫
Dz∥z∥ =√

2Γ((M + 1)/2)/Γ(M/2) <
√
M then leads to the

following holding w.a.h.p.

s
(M)
(1+χ)λ,Q − s

(M)
λ

≥− 4(
√
Q+ χ

√
dλ2)

(√
Q+ χ

√
dλ2 +

2∥y∥√
M

)
. (34)

We now use the following lemma which shows that Q and
χ are negligible almost surely.

Lemma 4. Under the assumptions of Claim 3, χ < N−c/2

and Q < N−c/4 holds w.a.h.p.

The proof is given in Supplementary Materials. Since
∥y∥ <

∥∥ASx
0
∥∥ + ∥ξ∥ is bounded by M2 w.p.a.1 from

Lemma 3 and Assumption 1.C, the right hand side of eq.
(34) is of O(N−c/8) w.p.a.1. We therefore have

Pr

 χ̂

M
=
s
(M)
(1+χ)λ,Q

(1 + χ)2
≥ s(M)

λ −O(N−c/8)

 > 1− o(1).

(35)

On the other hand, the extremum conditions (16) and (17)
imply that χ̂ is always bounded.

Lemma 5. Suppose the extremum conditions (15)–(18) are
satisfied. Then, the variable χ̂ satsfies

χ̂

M
≤ 1

2
αλ2

(
1− (2α+ 1)

logM

M

)−1

. (36)

Combined with (35), for sufficiently large M

Pr

[
s
(M)
λ ≤ 1

2
αλ2(1 + ϵ)

]
> 1− o(1), (37)

holds for arbitrary constant ϵ > 0. This implies that
1
2αλ

2(1+ ϵ) must be larger than the median of s(M)
λ . Now,

the difference between the median and average is no larger
than one standard deviation, which is negligible from As-
sumption 1.B. This yields the statement of the claim in the
limit M →∞.

4.2 Proof of Claim 4

From Theorem 6 in Osborne et al. (2000), the number of
false positives is bounded by min(M,N). Hence, we have
⟨FP⟩ < M×Pr[FP ̸= 0] = O(N−c) for some c > 0. The
statement of Claim 4 then follows from Claim 3.

4.3 Proof of Claim 5

From Claim 3 and 4, it suffices to show that

Es(M)
λ > dλ2 + ΓM − o(1), (38)

The KKT conditions imply that w.p.a.1, ASx̂ =
ASA

+
S (y − Mλ(A+

S )
Ts), where we abbreviated x̂ :=

x̂λ(AS ,y), and s = sgn(x̂). Therefore, y −ASx̂ can be
decomposed into a sum of two linearly independent vectors

y −ASx̂ = v + v⊥, (39)

where v := MλAS(A
T
SAS)

−1s, v⊥ := Pker(AS)(y) =
Pker(AS)(ξ), and Pker(AS) is the projection onto the ker-
nel of AS . The average of the squared norm of v can be
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evaluated as

Eeff∥v∥2 ≥ Eeff
Λd

λmin(AT
SAS)

≥ Mλ2

(1 +
√
d/M)2

, (40)

where the last inequality follows from Jensen’s inequal-
ity and Eeffλmin(A

T
SAS) ≥ (

√
M −

√
d)2 (Davidson and

Szarek, 2001).

To obtain a lower bound on the squared norm of v⊥, fix
the vector ξ. Noticing that entries of AT

Sξ/∥ξ∥
2 are i.i.d.

standard Gaussian, the tail bound for χ2–random variables
(Laurent and Massart, 2000) implies that for some constant
C > 0,

Pr
[∥∥AT

Sξ
∥∥2 ≤ C∥ξ∥2 logM] ≥ 1− 1

M
. (41)

Using this inequality, (30) with t =
√
2 logM and the

union bound, we have that

Eeff∥v⊥∥2 ≥ Eeff∥ξ∥2 − Eeff

∥∥AT
Sξ
∥∥2

λmin(AT
SAS)

≥
(
1− 2

M

)(
1− C logM

(
√
M −O(

√
logM))2

)
Eξ∥ξ∥2

=MΓM (1− o(1)). (42)

Equation (38) immediately follows from (40) and (42),
which completes the proof.

5 Conclusion

In this paper, we provided an analysis based on an en-
hanced replica method for assessing the average perfor-
mance of the Lasso estimator under ultra-sparse conditions.
Besides, we deduced conditions necessary for support re-
covery which are derived from the oracle Lasso estimator.
Numerical experiments strongly support the validity of our
analysis.

The methodological novelty originates from an observation
of finite-size effects and correlations within the active set,
which is implicitly assumed to be negligible in the conven-
tional replica analysis. We anticipate that this framework
is applicable to analysis of other machine learning or opti-
mization problems where finite-size effects are nonnegligi-
ble. Extending this method further to more general sensing
matrix ensembles is also another exciting direction for fu-
ture work.
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Supplementary Materials

A Detailed derivation of Claim 1

Here, we derive the expression in Claim 1; see Figure 4 for an outline of the calcuation. For simplicity, we abbreviate
EA\S , the average over A excluding the submatrix acting on S, as E, and A\S as the submatrix of A excluding AS . Using
the shorthand expression dxa

S :=
∏

i∈S dxai and d∆a :=
∏

i ̸=S d∆a
i , EZn

β (A,y) can be written as

EZn
β (A,y) =

∫ ( n∏
a=1

dxa
Sd∆

ae−βMλ∥∆a
1 ∥

)
E

[
n∏

a=1

∫
dhaδ

(
ha −A\S∆

a
)
e−

β
2 ∥ASxa

S−ha−y∥2−βMλ∥xa
S∥1

]
(43)

Using the Fourier representation, the average of the delta functions over A\S = (ã1, · · · , ãM )T is given by

E
n∏

a=1

δ
(
ha −A\S∆

a
)
=

∫ M∏
µ=1

dãµe
− 1

2∥ãµ∥2

(2π)(N−d)/2

n∏
a=1

∫
dh̃aµ
2π

e−ih̃a
µ(h

a
µ−ãT

µ∆
a)

=

∫ M∏
µ=1

 dãµ

(2π)(N−d)/2

∫ ( n∏
a=1

dh̃aµ
2π

)
exp

−i n∑
a=1

haµh̃
a
µ −

1

2

∥∥∥∥∥ãµ − i

n∑
a=1

h̃aµ∆
a

∥∥∥∥∥
2

− 1

2

∑
a,b

h̃aµh̃
b
µ(∆

a)T∆b


=

∫ ( n∏
a=1

M∏
µ=1

dh̃aµ
2π

)
exp

−1

2

M∑
µ=1

∑
a,b

h̃aµh̃
b
µ(∆

a)T∆b − i

n∑
a=1

M∑
µ=1

haµh̃
a
µ

 =

M∏
µ=1

1√
(2π)n detQ

exp

(
−1

2
hT
µQ

−1hµ

)
,

where we defined the matrix Q as (Q)ab := (∆a)T∆b and used the notation hµ := (h1µ, · · · , hnµ) ∈ Rn without confusion.
This implies that the vector hµ is Gaussian with covariance matrix Q. Now, the replica symmetric ansatz (9) implies that
the integral over {∆a}na=1 is dominated by the subspace of the form∫

dQdχ

n∏
a=1

δ
(
Q− ∥∆a∥2

)∏
a<b

δ

(
Q− χ

β
− (∆a)T∆b

)
, (44)

which allows us to simplify the profile of haµ as

haµ =

√
Q− χ

β
zµ +

√
χ

β
vaµ, (45)

where zµ and vaµ (a = 1, · · · , n) are all i.i.d. standard Gaussian variables. Using (43)–(45) yields the expression

EZn
β (A,y) =

∫ n∏
a=1

d∆a

∫
dQdχe−βMλ

∑n
a=1 ∥∆a

1∥IL, (46)

where L is given by

logL = log

∫
Dz

n∏
a=1

{∫
Dvadxa

S exp

(
−β
2

∥∥∥∥ASx
a
S −

√
Q− χ

β
z −

√
χ

β
va − y

∥∥∥∥2 − βMλ∥xa
S∥1

)}

= log

∫
Dz

{∫
dxS exp

(
− β

2(1 + χ)

∥∥∥ASxS −
√
Qz − y

∥∥∥2 − βMλ∥xS∥1 + o(β)

)}n

= n

∫
Dz log

∫
dxS exp

(
− β

2(1 + χ)

∥∥∥ASxS −
√
Qz − y

∥∥∥2 − βMλ∥xS∥1

)
+O(n2) + o(β).
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“Replicate” the partition function:

Zn =

∫ n∏
a=1

dxad∆a e−βE(∆a,xa) (n ∈ N).

Analytically continuing EZn from n ∈ N to R,
the free energy is calculated via the equality

E logZ = lim
n→+0

1

n
logEZn.

Replica symmetric ansatz:

Restrict integral space over {∆a}na=1 to
subspace satisfying replica symmetry (44) :

(∆a)T∆b =

{
Q a = b

Q− χ
β , a ̸= b

, (a, b = 1 . . . n)

Obtain expression (46).
Calculate “energy” term L and “sub-
shell” term I (plus regularization) in

an analytic form of n (eqs. (47), (48)).

Obtain reduced integral over Θ = (Q,χ, Q̂, χ̂):

logEZn ≃ log

∫
dΘ eMnβΦ(Θ)

saddle-point−−−−−−→
M≫1

Mnβ Extr
Θ

Φ(Θ) (eq. (50))

Figure 4: Outline of the replica calculation for Claim 1.

The integral with respect to xS can be evaluated using Laplace’s method for large β, yielding

L ≃ exp

[
−Mnβ

∫
Dzmin

x

(∥∥ASx−
√
Qz − y

∥∥2
2M(1 + χ)

+ λ∥x∥1

)]
, (47)

where the subleading terms are ignored. Similarily, I is given by

I =

n∏
a=1

δ
(
Q− ∥∆a∥2

)∏
a<b

δ

(
Q− χ

β
− (∆a)T∆b

)

=

∫ +i∞

−i∞
dQ̂dχ̂ expM

1
2
(βQ̂− β2χ̂)

n∑
a=1

(
Q− ∥∆a∥2

)
− 1

2
β2χ̂

∑
a ̸=b

(
Q− χ

β
− (∆a)T∆b

)
+ o(β)


=

∫ +i∞

−i∞
dQ̂dχ̂e

nβM
2 (QQ̂+(n−1)χχ̂−nβQχ̂) expM

−βQ̂
2

n∑
a=1

∥∆a∥2 + β2χ̂

2

∥∥∥∥∥∑
a=1

∆a

∥∥∥∥∥
2

+ o(β)


=

∫ +i∞

−i∞
dQ̂dχ̂e

nβM
2 (QQ̂+(n−1)χχ̂−nβQχ̂)

∫
Dẑ expβ

[(
−MQ̂

2

n∑
a=1

∥∆a∥2 +
√
Mχ̂

n∑
a=1

ẑT∆a

)
+ o(β)

]
.

Therefore, ignoring the subleading term with respect to β,

∫ n∏
a=1

d∆ae−βMλ
∑n

a=1 ∥∆a
1∥I

≃
∫ +i∞

−i∞
dQ̂dχ̂e

nβM
2 (QQ̂+(n−1)χχ̂−nβQχ̂)

∫
Dẑ

{∫
d∆ expβ

[
−MQ̂

2
∥∆∥2 +

√
Mχ̂ẑT∆−Mλ∥∆∥1

]}n

(48)
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The log of the integral with respect to Dẑ can be expanded as

log

∫
Dẑ

{∫
d∆ expβ

[
−MQ̂

2
∥∆∥2 +

√
Mχ̂ẑT∆−Mλ∥∆∥1

]}n

= n

Ñ∑
i=1

∫
Dẑi log

∫
d∆exp β

[
−MQ̂

2
∆2 +

√
Mχ̂ẑi∆−Mλ|∆|

]
+O(n2)

≃ − nβÑ
∫
Dẑmin

∆

(
MQ̂

2
∆2 −

√
Mχ̂ẑ∆+Mλ|∆|

)
+O(n2)

=Mnβ
Ñ

2Q̂

[(
λ2 +

χ̂

M

)
erfc

(√
Λ

2Mχ̂

)
−
√

2λ2χ̂

πM
e−Λ/2Mχ̂

]
+O(n2), (49)

where Laplace’s approximation was used for large β to obtain the third line. Substituting (47), (48) and (49) into (46),
using the saddle point method for large M results in

logEZn
β (A,y) =Mnβ Extr

Q,Q̂,χ,χ̂

{
QQ̂+ (n− 1)χχ̂− nβQχ̂

2

−
∫
Dzmin

x

(∥∥ASx−
√
Qz − y

∥∥2
2M(1 + χ)

+ λ∥x∥1

)
+

Ñ

2Q̂

[(
λ2 +

χ̂

M

)
erfc

(√
Λ

2Mχ̂

)
−
√

2λ2χ̂

πM
e−Λ/2Mχ̂

]}
.

(50)

Noticing that

lim
n→+0

EZn
β (A,y)− 1

n
= lim

n→+0

logEZn
β (A,y)

n
, (51)

and finally rescaling Q̂←MQ̂ and χ̂←Mχ̂, one obtains (14).

B Proof of auxiliary lemmas

B.1 Proof of Lemma 4

From (16) and (17), we have χ =f
(

Ñ
M−d̄

erfc
(√

Λ
2χ̂

))
, where f(x) = x/(1−x), and d̄:=

∫
Dz
∥∥x̂(1+χ)λ(

√
Qz + y)

∥∥
0
.

From χ > 0, we see that f is a increasing function. By using the Markov inequality, it can be deduced that

Pr
[
χ > N−c1

]
= Pr

[
f−1(χ) > f−1(N−c1)

]
≤ Ef−1(χ)

f−1(M−1)
<

1 +N c1

M − d
⟨FP⟩ < O(N−(c−c1)),

which proves the first part of the lemma with c1 = c/2. For the probability bound on Q, using erfc(x) < 1
x
√
π
e−x2

,

Q <
χ̂(1 + χ)

(M − d̄)2
Ñerfc

(√
Λ

2χ̂

)
= g

(
Ñ

M − d̄
erfc

(√
Λ

2χ̂

))
,

where

g(x) =
M2λ2

2(M − d)
x

(1− x)2

[
erfc−1

(
Mx

N

)]−2

.

Using erfc−1(Mx/N) > (1− x)2 for M/N < 1, we have for large enough M ,

g(N−c1) <
λ2

2
N−c1M2(M − d)−1(1−N−3c1)−6.

Since both g and g−1 are nonnegative and increasing, for large enough M ,

g−1(N−c1/2) > g−1

(
λ2

2
N−c1M2(M − d)−1(1−N−3c1)−6

)
> N−c1 .
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Figure 5: Probability of perfect recovery for noise distributed according to (1) Gaussian distribution with mean 0 and
variance 0.5 (left), (2) Uniform distribution defined on the interval [−1, 1] (middle), and (3) Laplace distribution with
mean 0 and variance 0.5 (right) at N = 104, 105, and 106. Error bars represent the standard error obtained from 1,000
experimental runs. The horizontal blue line depicts the necessary sample complexity given by Claim 5.

The Markov inequality then implies the second part of the lemma with c1 = c/2:

Pr
[
Q > N−c1/2

]
= Pr

[
g−1(Q) > g−1(N−c1/2)

]
<

⟨FP⟩
(M − d)g−1(N−c1/2)

<
1

M − d
N−c1 ⟨FP⟩ < O(N−(c−c1)).

B.2 Proof of Lemma 5

Equations (16) and (17) imply thatNerfc
(

Λ√
2χ̂

)
= Q̂χ ≤M χ

1+χ ≤M holds for any (AS ,y). Thus, χ̂ is deterministically
upper-bounded as

χ̂ ≤ 1

2

Λ2[
erfc−1(M/N)

]2 . (52)

Now, erfc satisfies (Chang et al., 2011) for 0 < ϵ < 1/3,

erfc(x) ≥ exp
[
−(1 + ϵ)x2 + log ϵ

]
. ∴

[
erfc−1(x)

]−2 ≤ (1 + ϵ)(− log x+ log ϵ)−1.

Applying this inequality to (52) with ϵ =M−1 and N = exp(M/α) for M > 3 yields

χ̂ ≤ 1

2
αMλ2

(
1 +

1

M

)(
1− 2α

logM

M

)−1

<
1

2
αMλ2

(
1− (2α+ 1)

logM

M

)−1

. (53)

C Additional numerical experiments : Necessary condition for perfect support recovery

To verify the necessary sample complexity for perfect recovery given by Claim 5, numerical experiments were conducted.
The profile of x0 is the same as that of Section 3.1, and the regularization parameter is taken as λ = 0.5. Figure 5 shows
the perfect support recovery probability for noise distributed according to the Gaussian, uniform, and Laplace distribution.
Clearly, for all three cases, perfect recovery fails with finite probability as N tends to infinity when α is less than the value
indicated by Claim 5.


