
Explicit Regularization in Overparametrized Models via Noise Injection

Antonio Orvieto⇤ Anant Raj⇤
Department of Computer Science
ETH Zürich, Zürich, Switzerland

Coordinated Science Laboraotry
University of Illinois Urbana-Champaign

Inria, Ecole Normale Supérieure
PSL Research University, Paris, France

Hans Kersting⇤ Francis Bach
Inria, Ecole Normale Supérieure

PSL Research University, Paris, France
Inria, Ecole Normale Supérieure

PSL Research University, Paris, France

Abstract

Injecting noise within gradient descent has sev-
eral desirable features, such as smoothing and
regularizing properties. In this paper, we investi-
gate the effects of injecting noise before comput-
ing a gradient step. We demonstrate that small
perturbations can induce explicit regularization
for simple models based on the `1-norm, group
`1-norms, or nuclear norms. However, when ap-
plied to overparametrized neural networks with
large widths, we show that the same perturba-
tions can cause variance explosion. To overcome
this, we propose using independent layer-wise
perturbations, which provably allow for explicit
regularization without variance explosion. Our
empirical results show that these small pertur-
bations lead to improved generalization perfor-
mance compared to vanilla gradient descent.

1 Introduction

Injecting noise in gradient descent has several desirable
properties. In previous works [Jin et al., 2017, Reddi et al.,
2018, Staib et al., 2019], noise injection after the gradi-

ent step has been used to escape saddle points efficiently
in non-convex optimization. In several recent works [Zhu
et al., 2019, Nguyen et al., 2019], it was also shown that
noise injection in gradient descent helps to escape local
minima while optimizing non-convex functions. Adding
noise within the gradient, either on labels or on the iterates

⇤ Equal contribution
Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

before computing the (stochastic) gradient, has been clas-
sically used to smooth the objective function (often in the
convex case) [Nesterov and Spokoiny, 2017, Polyak and
Tsybakov, 1990, Flaxman et al., 2005, Duchi et al., 2012,
d’Aspremont and El Karoui, 2014, Nesterov, 2005]. How-
ever, the effect of noise injection on generalization is not as
well understood.

Recently, there has been some interests in understanding
the geometry of the loss landscape enforced by the induced
noise and its connection with generalization. A recent re-
sult [Liu et al., 2021] shows that perturbed gradient descent
with sufficiently small noise converges to flat minima for
non-convex matrix factorization tasks. Orvieto et al. [2022]
also provide some explanation and empirical evidence for
better performance of noise induced gradient descent as the
noise injection favors flat minima.

In this work, we explore several avenues along this line of
research. Our aim is to tackle the following questions:

1. Do small perturbations in the model while training in-
duce an explicit form of regularization for simple mod-
els common in machine learning?

2. Do the same perturbations also induce an explicit regu-
larization effect while training overparametrized models
such as homogeneous neural networks with large (infi-
nite) widths?

3. Is the induced regularization useful in practice, i.e., does
it lead to better generalization performance?

In response to the questions above, we make the following
contributions:

1. We show in Section 2 that small perturbations induce
explicit regularization for simple models, and that this
induced regularization is based on the `1-norm, group
`1-norm, or nuclear norms. Such explicit formulations

Explicit Regularization in Overparametrized Models via Noise Injection

were available before for only special cases (`1-norm),
or for special loss functions (logistic regression in the
separable case).

2. We show in Section 3 that the same perturbations do not
work for overparametrized neural networks with large
widths due to variance explosion resulting from the
number of perturbed neurons tending to infinity. How-
ever, we also show that independent layer-wise pertur-

bations (where only one layer is perturbed at each gra-
dient step) allow to avoid the exploding variance term,
and explicit regularizers can be obtained, for a fully
connected network with a single hidden layer. This is
extended in Section 4 to deep ReLU networks.

3. We empirically show in Section 5 that small layer-
wise perturbations lead to better generalization perfor-
mance in practice over vanilla (stochastic) gradient de-
scent training, for a variety of shallow and deep over-
parametrized models, fully connected or convolutional,
with minor adjustments to the training procedure.

1.1 Related work

Noise injection has been frequently used for various tasks
in statistics, machine learning and signal processing. In this
section, we discuss three major directions of research and
existing literature associated with them which are closely
connected to our work.

Perturbed gradient descent (PGD). PGD methods are
versions of (stochastic) gradient descent (GD) where noise
is injected in one of the following two ways: In the first
option, perturbations are added after each GD step. Such
versions of PGD have been shown to speed up the escape
from spurious local minima and saddle points; see Zhou
et al. [2019] and Jin et al. [2021], respectively. These meth-
ods correspond to discretizations of the continuous-time
Langevin dynamics [Li et al., 2017] where the perturba-
tions add to the diffusion coefficient. In the second option,
perturbations are added to the iterate before the gradient is
evaluated. The so-perturbed gradient is then used to update
the unperturbed iterate. In the convex case, this is typically
used to smooth a non-smooth objective function [Nesterov
and Spokoiny, 2017, Polyak and Tsybakov, 1990, Flaxman
et al., 2005, Duchi et al., 2012, d’Aspremont and El Karoui,
2014, Nesterov, 2005]. In the non-convex case, such ver-
sions of PGD have been shown to exhibit an implicit bias
toward flat minima (that generalize better) in the case of
nonconvex matrix factorization [Liu et al., 2021] and more
general models [Orvieto et al., 2022]. Flat minima are
widely believed to have a better generalization property
[Keskar et al., 2017, Chaudhari et al., 2019, Jiang et al.,
2019], and we follow this line of work, with several gener-
alization guarantees that are based on PAC-Bayesian anal-
ysis and also apply to our framework [Tsuzuku et al., 2020,
Neyshabur et al., 2018].

The second option of PGD can be interpreted as an instance
of the first option where the perturbations are instead anti-
correlated. Such methods are therefore also referred to as
Anti-PGD; see Section 2 from Orvieto et al. [2022]. In our
current paper, we determine the effective loss that is (on
average) used in the second option.

Explicit and implicit regularization in learning. It is
well understood that regularization plays a crucial role in
the generalization performance of a learning model. The
most common form of regularization is Tikhonov regular-
ization [Weese, 1993, Golub et al., 1999], which is im-
posed explicitly in the optimization objective for linear and
non-linear models. There are other ways to induce regular-
ization explicitly while training machine learning models
[Hanson and Pratt, 1988, Srivastava et al., 2014, Raj and
Bach, 2021]. Apart from explicit regularization methods,
optimization algorithms can also induce implicit bias on
the optimal solution, which was observed by Soudry et al.
[2018], Gunasekar et al. [2018], Kubo et al. [2019]. In a
closely related line of work, Camuto et al. [2020] study
the regularization induced in neural networks by Gaussian
noise injections to all network activations, and studies its
regularization effect in the Fourier domain. However, while
they obtain explicit regularizers similar to ours, we study
the effect of noise injection to the model parameter instead
of network activations, and hence our analysis is applica-
ble to general machine learning models. Moreover, we deal
with infinite widths through layer-wise perturbations.

Robustness. Apart from inducing regularization and
finding flatter minima, noise injection is also helpful in get-
ting robust models. Recent works [Salman et al., 2019,
Cohen et al., 2019, Lecuyer et al., 2019, Li et al., 2018]
have shown that randomized smoothing is a scalable way
of building provably robust neural network based classi-
fiers. However, these approaches rely on input perturbation
instead of model perturbation. Wu et al. [2020] showed
that adversarial weight perturbation helps in flattening the
weight loss landscape, which improves the robust general-
ization gap. Zheng et al. [2021] also employ adversarial
model perturbation to to favor flat local minima of the em-
pirical risk. However, a systematic study of the influence
of noise injection in the model is lacking.

2 Finite-dimensional models
In this section, we consider a loss function L : Rn ! R, as
well as a predictor � : Rm ! Rn, and we aim to minimize

R(w) = L(�(w)) (1)

with respect to w 2 Rm. In machine learning con-
texts, �(w) represents the n real-valued predictions over
n inputs, and L is the associated loss function, typically,
L(') = 1

2n

Pn
i=1(yi � 'i)2 for least-squares regression,

or L(') = 1
n

Pn
i=1 log(1 + exp(�yi'i)) for logistic re-

gression, where y 2 Rn is the vector of output labels. The

Antonio Orvieto⇤, Anant Raj⇤, Hans Kersting⇤ and Francis Bach

framework applies equally well to multi-dimensional out-
puts (such as multi-category classification and multinomial
loss), where Rn is replaced by Rn⇥k (this is in fact consid-
ered in Sections 2.4, 3 and 4 for neural networks).

In this section, we only consider the asymptotics with re-
spect to �, assuming that the number of parameters m re-
mains fixed (hence the denomination “finite-dimensional”).
We analyze the effect of strong overparametrization with
the number of parameters tending to infinity in Sec. 3 and 4.

2.1 Gaussian perturbations and Taylor expansions

Following previous work on PGD (see Section 1.1), we
consider perturbing the iterate by a standard Gaussian vec-
tor " (with zero mean and identity covariance matrix), and
consider the function

R�(w) = E
⇥
L(�(w + �"))

⇤
. (2)

We denote by D�(w) 2 Rn⇥m the Jacobian (matrix of
first-order derivatives) of �, and D2�(w) 2 Rn⇥m⇥m the
tensor of second-order derivatives.

Taylor expansions. Throughout this section, we assume
for simplicity of exposition that L and � are three times
differentiable functions with bounded third derivatives. In
Appendix A, we discuss the case of functions where this is
satisfied only piece-wise (to cover ReLU activations).

The Taylor expansion of � at w can be written:

�(w + �") = �(w) + �D�(w)"

+
�
2

2
D2�(w)["">] +O(�3k"k3), (3)

where D2�(w)[M] 2 Rn is defined as D2�(w)[M]j =Pm
a,b=1 D

2�(w)jabMab.

We also need a Taylor expansion of L around �(w), which
can be written as

L(�(w) +�) = L(�(w)) + DL(�(w))�

+
1

2
D2

L(�(w))[��>] +O(k�k3), (4)

where, for ' 2 Rn, DL(') 2 R1⇥n is the row-vector of
first-order partial derivatives, and D2

L(') 2 Rn⇥n the ma-
trix of second-order partial derivatives, with the notation
D2

L(')[M] =
Pn

a,b=1 D
2
L(')abMab 2 R.

To compute an expansion of R� , as defined in Eq. (2),
we compose the two expansions and get, with � =

�D�(w)"+ �2

2 D2�(w)["">] +O(�3k"k3) the expansion

L(�(w + �"))

= L
�
�(w) + �D�(w)"+ �2

2 D2�(w)["">] +O(�3k"k3)
�

= L(�(w)) +DL(�(w))
�
�D�(w)"+ �2

2 D2�(w)["">]

+O(�3k"k3)
�
+ 1

2D
2
L(�(w))

⇥
�D�(w)"(�D�(w)")>

+O(�3k"k3)
⇤
+O(�3k"k3).

Taking expectations, using E["] = 0 and E["">] = I:

R�(w) = L(�(w)) + �2

2 DL(�(w))D2�(w)[I]

+
�
2

2
D2

L(�(w))
⇥
D�(w)D�(w)>

⇤
+O(�3). (5)

(The careful reader will have noticed that we assumed that
� is in C

3; in Appendix A we present an extension to the
case where � is only piecewise in C

3 — e.g. ReLU.) Note
that the added terms on top of R(w) = L(�(w)) can be de-
rived as well from the trace of the Hessian of R, as obtained
by Orvieto et al. [2022].
Minimizing R� with stochastic gradient descent. As dis-
cussed by Orvieto et al. [2022], in order to minimize R�

defined as an expectation in Eq. (2), we do not need to com-
pute the expectation: we simply use a single perturbation
(i.e., a single Gaussian vector "), and compute the gradi-
ent with respect to parameters, which leads to an unbiased
estimate that can be used within a stochastic gradient de-
scent algorithm. Since the loss function L has a finite sum
structure, we can also use stochastic gradient for over ob-
servations, as traditionally done in machine learning.

2.2 Asymptotically equivalent objective functions

In several situations, we will show that we obtain
the following “asymptotically equivalent” cost function
R

(e↵)
� (w), defined as

R
(e↵)
� (w) = R(w) + �2

2 D2
L(�(w))

⇥
D�(w)D�(w)>

⇤
,

(6)
in the sense that finding a global minimizer of R�(w) =
E
⇥
L(�(w + �"))

⇤
is essentially equivalent to finding a

global minimizer of R(e↵)
� (w) as � ! 0. In other words,

the term �2

2 DL(�(w))D2�(w)[I] in Eq. (5) has no impact.
This will be done by showing that the order of approxima-
tion between R and R� is of order �2, while the one be-
tween R� and R

(e↵)
� is of order �3, in two different cases.

Hessians with no cross-products. One simple sufficient
condition for the term �2

2 DL(�(w))D2�(w)[I] to have no
impact is that D2�(w)[I] = 0 for all w 2 Rm. This is
satisfied for certain models such as neural networks, where
the second-order derivatives have no cross-product terms,
or equivalently when tr(�j(w)) = 0 for all j = 1, . . . ,m;
this is e.g. the case when the ReLU activation is used, see
Sections 2.4, 3, and 4 for more such examples. The follow-
ing theorem makes it precise for sufficiently regular func-
tions. See proof and more general results in App. A (al-
ready sketched above).
Theorem 1. Assume that (a) � and L are three-times

continuously differentiable with uniformly bounded third

derivatives, (b) D2�(w)[I] = 0 for all w 2 Rm
. Then,

there exist constants C and C
0

(independent of w) such

that 8w 2 Rm
, |R�(w)�R(w)|  C(1 + kwk2)�2

while

|R�(w)�R
(e↵)
� (w)|  C

0
�
3
.

Explicit Regularization in Overparametrized Models via Noise Injection

Overparametrized models. A more general condition is
related to overparametrization (when the model is suffi-
ciently rich to lead to the minimizer of L), and we make
a formal statement below with simplified assumptions. See
Appendix A for the proof and more refined conditions.

Theorem 2. Assume that (a) � is three-times continu-

ously differentiable with uniformly bounded second and

third derivatives, (b) L is strongly convex with uniformly

bounded second and third derivatives, with unique global

minimizer '
⇤
, (c) there exists a (non-unique) w⇤ 2 Rm

such that �(w⇤) = '⇤, and that (d) there exist minimizers

w
�
⇤ and w

�,(e↵)
⇤ of R� and R

(e↵)
� that lie in a compact set

⌦ ⇢ Rm
. Then, if w

�
⇤ is a minimizer of R� , and w

�,(e↵)
⇤ is

a minimizer of R
(e↵)
� , we have k�(w�

⇤) � '⇤k22 = O(�2)

while k�(w�,(e↵)
⇤)� �(w�

⇤)k22 = O(�3).

Note that (a) we characterize the prediction function �
taken at the various minimizers to characterize asymptotic
equivalence (but it is not possible to characterize a distance
between parameters because in overparametrized models,
� cannot be injective), and (b) when � tends to zero the
minimizer should converge to the interpolator �(w) = '⇤
with minimal D2

L(�(w))
⇥
D�(w)D�(w)>

⇤
.

Below, we consider specific cases for the least square loss
and the logistic loss in the separable case, before consider-
ing specific simple models for �.

Least-squares regression. We consider L(') = 1
2nky �

'k22, which is a quadratic function with constant Hessian
1
nI . We therefore get an extra regularizer on top of R(w)

equal to �2

n tr
⇥
DL(�(w))DL(�(w))>

⇤
.

Note that our regularizer is then related to the neural tan-
gent kernel [Jacot et al., 2018], i.e., this is the trace of the
corresponding kernel matrix. While this could lead to in-
teresting further connections, we note that our work applies
beyond the lazy training regime (that is, our parameters w
can vary significantly) [Chizat et al., 2019].

Separable logistic regression. If we consider the logis-
tic loss with an overparametrized model, then the infimum
of L is attained at infinity, and we should expect �(w) to
diverge along a specific direction, like in other similar mod-
els [Soudry et al., 2018, Chizat and Bach, 2020].
For homogeneous models like considered by Lyu and Li
[2019], we can expect w to diverge in some direction, that
is, w = �� for � ! +1. The term D�(w)D(�(w))>

grows in �, while D2
L(�(w)) converges to zero expo-

nentially fast. Overall, we conjecture (and empirically ob-
serve) that we get divergence, and that the direction � ends
up being proportional to the minimizer of kD�(�)k2F such
that y � �(�) � 1, where y 2 {�1, 1}n is the vector of
labels. See Appendix B for more details.

2.3 Lasso and L1-norm
Following Woodworth et al. [2020], Vaskevicius et al.
[2019], Pesme et al. [2021], we consider “diagonal net-

works”. All of the three mentioned works achieve implicit
sparsity regularization under sufficiently small initializa-
tion of the model parameter. Here we show that noise in-
jection in the model also induces an `1-regularization in the
problem. The main advantage we have over the discussed
work is that our approach is applicable to more complex
models as we show below.

We consider w = (w1, w2) 2 R2d, and �(w) = X(w1 �
w1 � w2 � w2) for X 2 Rn⇥d, L(') = 1

2nky � 'k22, with
m = 2d. When the model is overparametrized, that is X

has rank n, we can apply Theorem 2, and we then get an
equivalent risk:

R
(e↵)
� (w) = 1

2nky �X(w1 � w1 � w2 � w2)k22
+2�2 diag(X>

X/n)>(w1 � w1 + w2 � w2), (7)

which is exactly the Lasso once considering � = w1 �w1�
w2 � w2, that is, minimizing

1
2nky �X�k22 + 2�2 diag(X>

X/n)>|�|, (8)

where � = w1 � w1 � w2 � w2 (an explicit derivation of
Eq. (7) is given in App. C). However, there exist many ef-
ficient algorithms dealing with `1-regularization [see Bach
et al., 2012, and references therein], and one should proba-
bly not use our reduction to optimize Eq. (8).

2.4 Nuclear norm (linear networks)

Following Baldi and Hornik [1995], Arora et al. [2019],
Saxe et al. [2019], Gidel et al. [2019], we consider w =
(W1,W2), with W1 2 Rd1⇥d0 and W2 2 Rd2⇥d1 , and
�(w) = W2W1X

> with input data X 2 Rn⇥d0 . We
consider the square loss for simplicity, that is, L(') =
1
2nkY

>�'k2F for a response Y 2 Rn⇥d2 and ' 2 Rd2⇥n.
We can then apply Thm. 2, where the Hessian has no diago-
nal term, and we get (see detailed computations in App. C):

R
(e↵)
� (W1,W2) =

1
2nkY

> �W2W1X
>k2F

+
�
2

2n

⇥
d2kW1X

>k2F + kW2k2F · kXk2F
⇤
. (9)

Given the matrix M = W2W1 2 Rd2⇥d0 , we can opti-
mize 1

2

⇥
d2kW1X

>k2F + kW2k2F · kXk2F
⇤

with respect to
compatible matrices W1 and W2, leading to the penaltyp
d2kXkF · kMX

>k⇤, where k · k⇤ is the nuclear norm
(sum of singular values), which favors low-rank matrices.
Thus, minimizing R

(e↵)
� above is equivalent to minimizing

1
2nkY

> �MX
>k2F + �2

n

p
d2kXkF · kMX

>k⇤. (10)

We obtain a nuclear norm penalty, thus providing an ex-
plicit regularizer in situations where the classical tech-
niques for diagonal networks do not extend. See an em-
pirical illustration in Section 5.

We would also like to mention here a conjecture from Gu-
nasekar et al. [2017], which claims that with small enough

Antonio Orvieto⇤, Anant Raj⇤, Hans Kersting⇤ and Francis Bach

step sizes and initialization close enough to the origin, gra-
dient descent on a full dimensional factorization converges
to the minimum nuclear norm solution, which we obtain
explicitly using our noise injection approach without mak-
ing those assumptions. Like for the Lasso, we are not ad-
vocating for gradient descent to be a particularly good al-
gorithm for solving the problem above, although a detailed
analysis is worthwhile performing as future work.

2.5 Extensions
Other models could be considered as well, with relation-
ships to other explicit regularizers.
Group Lasso. It is traditional to recover the group Lasso
as a special case of nuclear norm minimization [see, e.g.,
Bach, 2008]. This is detailed in Appendix C, and can also
be applied to the Lasso with a different formulation from
Section 2.3 (and no need for overparametrization).
Optimizing over the PSD cone. By considering w 2
Rd⇥r, with r � d and �(w) = ww

> 2 Rd⇥d, then for
a cost function L over symmetric matrices, we would get a
trace penalty over positive semi-definite matrices.
Beyond quadratic models. Thus far, we have considered
only functions � that were quadratic. This can be extended
to higher order polynomials, like done for linear networks
below, but we could imagine applications to tensor decom-
position beyond the matrix decomposition above [Kolda,
2001, Kolda and Bader, 2009, Sidiropoulos et al., 2017].

3 One-hidden-layer neural networks with
infinite widths

So far we have discussed the effect of noise injection on
simple machine learning models. In this section, we will
focus our attention on more complex models like neural
networks with potentially large widths (where the limit of
large widths is taken before the limit of small �). In this
section, we start with a single hidden layer, and extend to
deeper networks in Section 4.
We first start with linear networks, before considering
ReLU activation functions in Sec. 3.3. For simplicity, we
only consider the (multivariate) square loss in our analysis.

3.1 Exploding variance for linear networks
As already shown in Section 2.4, we consider W1 2
Rd1⇥d0 and W2 2 Rd2⇥d1 , and �(W1,W2) = W2W1X

>

with input data X 2 Rn⇥d0 . We consider L(') =
1
2nkY

> � 'k2F for Y 2 Rn⇥d2 , the matrix of labels (we
allow here for multi-dimensional outputs).

We here consider the overparametrized limit d1 ! +1 us-
ing initialization with random 1 weights of order (W1)ij ⇠

1The same analysis holds of course for Glorot initializa-
tion Glorot and Bengio [2010], with similar results.

Figure 1: Numerical illustration of the analysis in Sec. 3.1&3.3
on a linear network with 1 hidden layer of dimension d1 (ReLU
case and deep networks studied in the coming sections). If noise
with standard deviation � is added to all weights (left), then the
regularized loss R� explodes as d1 ! 1 due to the variance
term �

4
d2d1kXk4F . Instead, perturbing W1 and W2 in alter-

nation (right) with standard deviation
p
2� provides mathemat-

ically the same expected regularization but avoids the variance
term and therefore provides a much more reliable regularization,
as clear also from the experimental section. Runs are repeated
100 times and shown is the average.

1p
d1d0

for all i, j, that is kW1k2F not exploding with d1, and
(W2)ij ⇠ 1p

d2d1
, that is kW2k2F not exploding with d1.

We have, with Gaussian perturbations E1 and E2, an ex-
plicit exact expansion for linear networks:

�(w + �")

= (W2 + �E2)(W1 + �E1)X
>

= W2W1X
> + �(W2E1 + E2W1)X

> + �
2
E2E1X

>
.

Taking expectations and using that E1, E2 have zero mean
and are independent, and such that, E[EiME

>
i] = tr(M)I

for i = 1, 2, and M any symmetric matrix of compatible
size, we can get E

⇥
�(w + �")

⇤
= �(w), and:

E
⇥
k�(w + �")k2F

⇤
=k�(w)k2F + �

2
⇥
kW2k2F kXk2F

+d2kW1X
>k2F

⇤
+ �

4
d2d1kXk2F .

We can now compute R� as:

R�(W1,W2) = R(W1,W2) +
�2

2n

⇥
kW2k2F kXk2F

+d2kXW
>
1 k2F

⇤
+
�
4

2n
d1d2kXk2F .

We recover the expression from Section 2.4, but we have
an extra term �4

2nd2d1kXk2F , which is of superior order in
�, but problematic when d1 ! +1.

Note that �2

2n tr(W>
2 W2) tr(X>

X) scales as �2

n kXk2F ,
while the term �2

n d2 tr(W1X
>
XW

>
1) scales as

d2
�2

n kXk2F , with thus no explosion in d1. However,
the term �4

2nd2d1kXk2F explodes when d1 goes to infinity.
This is the exploding variance problem of perturbing all

layers simultaneously — see discussion in the experiment
section as well as Figures 2 and 4. We provide a fix by
perturbing one layer at a time, which we now present.

Explicit Regularization in Overparametrized Models via Noise Injection

3.2 Layer-wise perturbations for linear networks
We consider the selection of one layer j 2 {1, 2} out of the
two layers at random, and add

p
2Ej to Wj before comput-

ing the gradient. This corresponds to minimizing an objec-
tive function R̃�(W1,W2), which is an expectation (both
with respect to j and Ej) equal to

R̃�(W1,W2) =
1
2E
⇥
R(W1 + �

p
2E1,W2)

⇤

+
1

2
E
⇥
R(W1,W2 + �

p
2E2)

⇤
.

Hence

R̃�(W1,W2) = R(W1,W2) +
1
4nE

⇥
k�

p
2W2E1X

>k2F
⇤

+
1

4n
E
⇥
k�

p
2E2W1X

>k2F
⇤

= R(W1,W2) +
�2

2n

⇥
tr(W>

2 W2) tr(X>
X)

+ d2 tr(W1X
>
XW

>
1)
⇤
,

that is, the exploding variance term is not there anymore,
and we arrive at the same nuclear norm interpretation as
in Section 2.4. This generalizes to non-linear activation
functions as we show next.

3.3 One-hidden layer with non-linear activations

We now consider the same set-up as above, but with ReLU
activations, that is, �(w) = W2(W1X

>)+, with X 2
Rn⇥d0 , and L(') = 1

2nkY
> � 'k2F . We consider the

square loss for simplicity, but this applies more generally.

We also consider weights W1 and W2 initialized with
respective scales 1/

p
d1d0 and 1/

p
d2d1. After rescal-

ing, it corresponds exactly to the mean-field limit that al-
lows representation learning [Chizat and Bach, 2018, Mei
et al., 2018, Wojtowytsch, 2020, Sirignano and Spiliopou-
los, 2022], for which the scaling s.t. kW2k2F and kW1k2F
do not explode is preserved throughout optimization.

Here, we consider asymptotics explicitly with respect d1
(going to infinity), and then with respect to � (going to
zero). We show in App. D that the same variance explosion
as in Sec. 3.1, when perturbing all layers simultaneously,
still occurs in the limit of infinite widths and non-zero �.
We thus only focus here on the layer-wise perturbation.

Locally, we obtain �(W1+�
p
2E1,W2) = �(W1,W2)+

�
p
2W2

⇥
(W1X

>)0+�E1X
>⇤ and �(W1,W2+�

p
2E2) =

�(W1,W2) + �
p
2E2(W1X

>)+; see the Appendix D for
a formal derivation. We can therefore compute R̃� as:

R̃�(W1,W2) = R(W1,W2) +
�
2

2n
k(W1X

>)+k2F

+
�
2

2n

d1X

j=1

nX

i=1

k(W2)·jk22 ⇥ |((W1X
>)0+)ji|2.

Note that here our regularizer is 2-homogeneous, like con-
sidered by Chizat and Bach [2020], but that the penalty is
not any more separable in W1 and W2. Like done by Chizat
and Bach [2020], we can take the number d1 of hidden
neurons to infinity and study the associated function space
norm, which has similar adaptivity properties (see the Ap-
pendix D for details).

4 Deeper networks

In this section, we show that we still get the explicit effect
of perturbing each layer selected randomly with standard
deviation �

p
M , where M is the number of layers, and

the extra
p
M term is added to take into account that the

expectation with respect to the choice of the layer adds a
multiplicative factor 1/M . The main purpose of this sec-
tion is to show that the expression of R(e↵)

� found for finite-
dimensional models in Section 2, is still valid, that is:

R
(e↵)
� (w) = R(w)+ �2

2 tr
�
r2

L(�(w))D�(w)D�(w)>
�
.

(11)
Crucially, note that with full perturbations, and with a num-
ber of neurons going to infinity, we would get a variance ex-
plosion (see discussion in Appendix E). This finding is also
supported by our experimental findings in the next section.

In this section, to simplify the exposition and avoid techni-
calities, we only consider linear networks (see Appendix E
for non-linear ones).

Linear networks. Consider a linear neural network with
w = (W1, , . . . ,WM) with Wi 2 Rdi⇥di�1 , and �(w) =
WMWM�1 · · ·W1X

> 2 RdM⇥n with the input data X 2
Rn⇥d0 , with L(') = 1

2nkY
> � 'k2F for output data Y 2

Rn⇥dM and ' 2 RdM⇥n. We now analyze the effect of
independent layer-wise perturbations.

We consider the selection of one layer j out of the M layers
at random, and add a random Gaussian matrix

p
MEj to

Wj . We then have an expectation (both with respect to j

and Ej), equal to

R̃�(W1, . . . ,WM)

=
1
M

MX

j=1

E
⇥
R(W1, . . . ,Wj ,Wj +

p
M�Ej ,Wj+1, . . . ,WM

⇤

=
1
M

MX

j=1

E
⇥
L(WMWM�1 · · ·W1X

>

+
p
M�WM · · ·Wj+1EjWj�1 · · ·W1X

>)
⇤
.

We can then compute expectations and get

R̃�(W1, . . . ,WM) = L(�(W1, . . . ,WM))

+
�
2

2n

MX

j=1

��WM · · ·Wj+1

��2

F

��Wj�1 · · ·W1X
>��2

F
,

which is exactly Eq. (11). We thus have a non-exploding
explicit regularizer, based on the gradient of the prediction

Antonio Orvieto⇤, Anant Raj⇤, Hans Kersting⇤ and Francis Bach

Figure 2: MLP with 1 hidden layer and linear activations on synthetic data (see the Appendix for a full description and loss curves).
For 50 hidden neurons (left panels) both injecting noise layer-wise and to all weights lead to minimization of the regularized loss. If we
have 300 hidden neurons (right panels), then only injecting noise layer-wise takes us close to a minimizer for the regularized loss. For
all methods the learning rate is set to 0.1.

function with respect to the parameters. We show in Sec-
tion 5 that this extra regularization does improve test ac-
curacy, and leave for future work the detailed theoretical
study of this new regularizer.

5 Experiments

The goal of this section is to provide experimental evi-
dence2 to back-up the results of the last sections. In par-
ticular, we compare gradient descent (GD) with the per-
turbed variants studied in this paper: (1) noise injection
at each weight in the model, for each iteration (named
“GD+noise”), and (2) layer-wise perturbations (injection
layer is sampled at random) at each iteration (named
“GD+noise (layer)”). All perturbations are performed be-
fore the gradient computations. As seen in Section 3.2, if
the variance of layer-specific weight perturbations is �2

M ,
where M is the number of layers, then the two noise in-
jection methods minimize a similar regularized loss, in
expectation. However, as the degree of overparametriza-
tion (e.g., number of parameters) increases, the theory sug-
gests that layer-wise perturbations are preferable since they
overcome variance explosion (see Sections 3.1 and 3.2).

Minimization of the regularized loss. For a start, we con-
sider a one hidden layer network with linear activations and
either 50 or 300 hidden neurons on a randomly generated
sparse3 synthetic regression data set with inputs in R10 and
outputs in R. In Figure 2, we show the dynamics of the
original and regularized loss derived in this paper. As the
theory predicts, minimization of the regularized loss in the
strongly overparametrized setting is only achievable with
layer-wise perturbations (see Section 3.2). As discussed,
to keep the same explicit regularization, the variance of the
noise in the layer-wise approach is doubled compared to
the vanilla approach. This depth scaling is adopted for all

2https://github.com/aorvieto/noise_
injection_overparam

3We consider 40 data points sampled from a Gaussian in 10
dimensions. The solution is sparse and is planted as the result of
a linear prediction from the first two dimensions.

further experiments.

Effect of tuning. The findings of the last paragraph are re-
ported for one specific value of �. We test the influence of
� on a slightly more complex model: an MLP with 2 hid-
den layers (5000 neurons each) and ReLU activations on
Fashion MNIST [Xiao et al., 2017] (classification). Given
that the data is relatively easy to fit, we train on a subset
of 1024 data points — to induce heavy overparametriza-
tion. We run full-batch gradient descent with learning rate
0.005, and plot the test accuracy evolution (computed using
10K data points) for different values of �. Figure 3 shows
that, for this wide model, layer-wise perturbation acts as
an effective regularizer that is able to increase the test ac-
curacy. This is in contrast to standard noise injection (cf.
Section 3.1). A similar result also holds true for CIFAR10
on ResNet18 (see Figure 6).

Fashion MNIST - Wide Shallow MLP

Figure 3: Test accuracy for an MLP on FMNIST (2 HL with
5000 neurons). Comparison of perturbation effects.

Deep MLPs. Next, we test how the findings carry over to
deeper networks. In the same data setting as the last para-
graph, we consider now a ReLU MLP with 5 hidden layers
and either 1000 (narrow) or 5000 (wide) hidden neurons. In
Figure 4 we test our methods (� = 0.05) against full-batch
GD, with a step size of 0.005 in the narrow setting and
0.001 in the wide setting, to account for the more complex
landscape. As can be seen, again layer-wise perturbations
yield the best result. This is also reflected in the size of the
regularizer (trace of Hessian), which is minimized by the
best-performing method in terms of test error.

https://github.com/aorvieto/noise_injection_overparam
https://github.com/aorvieto/noise_injection_overparam

Explicit Regularization in Overparametrized Models via Noise Injection

Figure 4: MLP with 5 hidden Layers and ReLU activations on a subset of Fashion MNIST. The hidden layers each have 1000 neurons
(narrow, left panels) or 5000 neurons (wide, right panels). We run full-batch gradient descent. The results show that injecting noise
separately in each layer results in improved regularization and test accuracy, even in the overparametrized setting.

Figure 5: Behavior of noise injection in convolutional networks with different degrees of overparametrization. On the two left plots we
show the performance using a toy PyTorch CNN+MLP (5 channels) while on the two right plots we perform the same task on a fully
convolutional network with 5 layers and 128 channels on 3 layers. All details are reported in the Appendix F. We run SGD with batch
size 1024 and learning rate 0.005 (0.001 for the PyTorch CNN+MLP) and cosine annealing [Loshchilov and Hutter, 2016]. We plot the
performance for � = 0.005 of the two noise injection methods. Plots of the loss dynamics are provided in Appendix F.

Small Convolutional Networks without normalization.
In Fig. 5 we go a bit beyond our theoretical setting
and test the application to convolutional networks on CI-
FAR10 [Krizhevsky and Hinton, 2009], with full data and
stochastic gradients (batch-size 1024). In this setting, we
use a Toy CNN (2 conv layers with 5 channels + MLP,
details in the App), and compare against a wider fully-
convolutional network with moderate width (4 conv lay-
ers with 128 channels + one linear layer). The pattern we
discussed above can be observed in this setting, albeit less
pronounced due to the narrow nature of convolutional net-
works with reasonable number of channels. Note that, in
the fully convolutional wide network, the trace of the Hes-
sian in the noise injection setting is damped but oscillates
around zero. This is quite different from the MLP setting.

Deep Residual Networks. To conclude, we test noise in-
jection (layer-wise or in all layers simultaneously) on a
ResNet18 (around 11M parameters) He et al. [2016] with
batch normalization. We use for this the basiline SGD con-
figuration in the popular repository https://github.
com/kuangliu/pytorch-cifar. On this baseline,
which reaches around 94.4% test accuracy, we simply add
noise 4 injection at every step. In Figure 6 we tested differ-
ent noise injection standard deviations � and plotted mean
and standard error of the mean (3 runs) for the final test
accuracy and Hessian trace after 150 epochs. We stopped
noise injection at epoch 135 to allow the networks to con-
verge and use cosine annealing, batch-size 128 and learning

4Here by “layers” we mean each network parameter group.
That is, noise is also injected in the batch-norm parameters.

rate 0.01 in all methods. The results clearly show that in-
jecting noise in all parameters is able to only regularize the
objective and improve test accuracy for very small �, but
for � > 0.1 it hurts performance. Instead, injecting layer-
wise noise provides a much more consistent regularization,
and is able to improve performance by +0.3%, which is a
sizable margin given the strong SGD baseline. The poor
performance of standard noise injection is predicted by the
theory in Section 3, which explains the sharp increase of
the Hessian trace (for SGD + noise) observed in the second
panel at � = 0.1.

Figure 6: Final Test accuracy (left) and Hessian trace (right) for
SGD on a CIFAR10 ResNet18 with batch normalization. Both
plots show mean and standard error of the mean (3 runs). SGD
is plotted at � = 1e � 3 instead of � = 0 for better visual-
ization. Layer-wise noise injection is able to boost performance
by explicit regularization with a high �. Instead, for such high
�, injecting noise simultaneously in all parameters results in in-
stabilities. We remind that the total noise injection variance in
normalized in the two methods, as detailed in this section.

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar

Antonio Orvieto⇤, Anant Raj⇤, Hans Kersting⇤ and Francis Bach

6 Conclusion
In this paper, we showed how explicit regularizers could
be obtained from small random perturbations of parame-
ters, both for simple machine learning models, and deep
learning models with potentially a large number of neu-
rons. This regularization is obtained by independent layer-
wise perturbations, can be easily added to existing training
codes, and lead to improved accuracies in our experiments.

Several avenues for future research naturally open: (a) ob-
tain non-asymptotic optimization convergence results for
the models in Section 2, (b) a detailed theoretical study of
the regularization properties of our new regularizer for deep
networks, and (c) performance ablations on other architec-
tures such as transformers [Vaswani et al., 2017]

Acknowledgements

Anant Raj is supported by the Marie Sklodowska-Curie
Fellowship (project NN-OVEROPT 101030817). Hans
Kersting and Francis Bach thank the European Research
Council for support through ERC grant 724063.

References
Sanjeev Arora, Noah Golowich, Nadav Cohen, and Wei

Hu. A convergence analysis of gradient descent for deep
linear neural networks. In International Conference on

Learning Representations, 2019.

Francis Bach. Consistency of trace norm minimization.
Journal of Machine Learning Research, 9:1019–1048,
2008.

Francis Bach. Breaking the curse of dimensionality with
convex neural networks. Journal of Machine Learning

Research, 18(1):629–681, 2017.

Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guil-
laume Obozinski. Optimization with sparsity-inducing
penalties. Foundations and Trendsin Machine Learning,
4(1):1–106, 2012.

Pierre F. Baldi and Kurt Hornik. Learning in linear neu-
ral networks: A survey. IEEE Transactions on Neural

Networks, 6(4):837–858, 1995.

Alexander Camuto, Matthew Willetts, Umut Simsekli,
Stephen J. Roberts, and Chris C. Holmes. Explicit regu-
larisation in Gaussian noise injections. Advances in Neu-

ral Information Processing Systems, 33:16603–16614,
2020.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto,
Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer
Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-
SGD: Biasing gradient descent into wide valleys. Jour-

nal of Statistical Mechanics: Theory and Experiment,
2019(12):124018, 2019.

Lenaic Chizat and Francis Bach. On the global conver-
gence of gradient descent for over-parameterized models
using optimal transport. Advances in Neural Information

Processing Systems, 31, 2018.

Lenaic Chizat and Francis Bach. Implicit bias of gradi-
ent descent for wide two-layer neural networks trained
with the logistic loss. In Conference on Learning The-

ory, pages 1305–1338, 2020.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On
lazy training in differentiable programming. Advances

in Neural Information Processing Systems, 32, 2019.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified
adversarial robustness via randomized smoothing. In
International Conference on Machine Learning, pages
1310–1320, 2019.

Alexandre d’Aspremont and Noureddine El Karoui. A
stochastic smoothing algorithm for semidefinite pro-
gramming. SIAM Journal on Optimization, 24(3):1138–
1177, 2014.

John C. Duchi, Peter L. Bartlett, and Martin J. Wain-
wright. Randomized smoothing for stochastic optimiza-
tion. SIAM Journal on Optimization, 22(2):674–701,
2012.

Abraham D. Flaxman, Adam Tauman Kalai, and H. Bren-
dan McMahan. Online convex optimization in the bandit
setting: gradient descent without a gradient. In Proceed-

ings of the Symposium on Discrete algorithms, pages
385–394, 2005.

Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien.
Implicit regularization of discrete gradient dynamics in
linear neural networks. Advances in Neural Information

Processing Systems, 32, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the dif-
ficulty of training deep feedforward neural networks. In
Proceedings of the International Conference on Artifi-

cial Intelligence and Statistics, pages 249–256, 2010.

Gene H. Golub, Per Christian Hansen, and Dianne P.
O’Leary. Tikhonov regularization and total least squares.
SIAM Journal on Matrix Analysis and Applications, 21
(1):185–194, 1999.

Suriya Gunasekar, Blake E. Woodworth, Srinadh Bhojana-
palli, Behnam Neyshabur, and Nati Srebro. Implicit reg-
ularization in matrix factorization. Advances in Neural

Information Processing Systems, 30, 2017.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan
Srebro. Characterizing implicit bias in terms of opti-
mization geometry. In International Conference on Ma-

chine Learning, pages 1832–1841, 2018.

Stephen Hanson and Lorien Pratt. Comparing biases for
minimal network construction with back-propagation.
Advances in Neural Information Processing Systems, 1,
1988.

Explicit Regularization in Overparametrized Models via Noise Injection

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-

ceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.
Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural

tangent kernel: Convergence and generalization in neu-
ral networks. Advances in Neural Information Process-

ing Systems, 31, 2018.
Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip

Krishnan, and Samy Bengio. Fantastic generalization
measures and where to find them. In International Con-

ference on Learning Representations, 2019.
Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade,

and Michael I. Jordan. How to escape saddle points effi-
ciently. In International Conference on Machine Learn-

ing, pages 1724–1732, 2017.
Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M. Kakade,

and Michael I. Jordan. On nonconvex optimization for
machine learning: Gradients, stochasticity, and saddle
points. J. ACM, 68(2), 2021.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang,
Dheevatsa Mudigere, and Mikhail Smelyanskiy. On
large-batch training for deep learning: Generalization
gap and sharp minima. In International Conference on

Learning Representations, 2017.
Tamara G. Kolda. Orthogonal tensor decompositions.

SIAM Journal on Matrix Analysis and Applications, 23
(1):243–255, 2001.

Tamara G. Kolda and Brett W. Bader. Tensor decompo-
sitions and applications. SIAM Review, 51(3):455–500,
2009.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images, 2009.

Masayoshi Kubo, Ryotaro Banno, Hidetaka Manabe,
and Masataka Minoji. Implicit regularization in
over-parameterized neural networks. arXiv preprint

arXiv:1903.01997, 2019.
V. Kurkova and M. Sanguineti. Bounds on rates of variable-

basis and neural-network approximation. IEEE Trans-

actions on Information Theory, 47(6):2659–2665, Sep
2001.

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu,
Daniel Hsu, and Suman Jana. Certified robustness to
adversarial examples with differential privacy. In Sym-

posium on Security and Privacy (SP), pages 656–672.
IEEE, 2019.

Bai Li, Changyou Chen, Wenlin Wang, and Lawrence
Carin. Second-order adversarial attack and certifiable
robustness, 2018.

Qianxiao Li, Cheng Tai, and Weinan E. Stochastic mod-
ified equations and adaptive stochastic gradient algo-
rithms. In Proceedings of the International Conference

on Machine Learning, volume 70, pages 2101–2110,
2017.

Tianyi Liu, Yan Li, Song Wei, Enlu Zhou, and Tuo Zhao.
Noisy gradient descent converges to flat minima for non-
convex matrix factorization. In International Conference

on Artificial Intelligence and Statistics, pages 1891–
1899, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic
gradient descent with warm restarts. arXiv preprint

arXiv:1608.03983, 2016.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the
margin of homogeneous neural networks. In Interna-

tional Conference on Learning Representations, 2019.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A
mean field view of the landscape of two-layer neural net-
works. Proceedings of the National Academy of Sci-

ences, 115(33):E7665–E7671, 2018.

Yu Nesterov. Smooth minimization of non-smooth func-
tions. Mathematical Programming, 103(1):127–152,
2005.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-
free minimization of convex functions. Foundations of

Computational Mathematics, 17(2):527–566, 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Sre-
bro. A PAC-Bayesian approach to spectrally-normalized
margin bounds for neural networks. In International

Conference on Learning Representations, 2018.

Thanh Huy Nguyen, Umut Simsekli, Mert Gurbuzbalaban,
and Gaël Richard. First exit time analysis of stochas-
tic gradient descent under heavy-tailed gradient noise.
Advances in Neural Information Processing systems, 32,
2019.

Antonio Orvieto, Hans Kersting, Frank Proske, Francis
Bach, and Aurelien Lucchi. Anticorrelated noise in-
jection for improved generalization. In Proceedings of

the 39th International Conference on Machine Learn-

ing, volume 162 of Proceedings of Machine Learning

Research, pages 17094–17116. PMLR, 2022.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic differentiation in pytorch, 2017.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammar-
ion. Implicit bias of SGD for diagonal linear networks:
a provable benefit of stochasticity. Advances in Neural

Information Processing Systems, 34, 2021.

Boris Teodorovich Polyak and Aleksandr Borisovich Tsy-
bakov. Optimal order of accuracy of search algorithms
in stochastic optimization. Problemy Peredachi Infor-

matsii, 26(2):45–53, 1990.

Antonio Orvieto⇤, Anant Raj⇤, Hans Kersting⇤ and Francis Bach

Anant Raj and Francis Bach. Explicit regularization of
stochastic gradient methods through duality. In Interna-

tional Conference on Artificial Intelligence and Statis-

tics, pages 1882–1890, 2021.

Sashank Reddi, Manzil Zaheer, Suvrit Sra, Barnabas Poc-
zos, Francis Bach, Ruslan Salakhutdinov, and Alex
Smola. A generic approach for escaping saddle points. In
International Conference on Artificial Intelligence and

Statistics, pages 1233–1242, 2018.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan
Zhang, Huan Zhang, Sebastien Bubeck, and Greg Yang.
Provably robust deep learning via adversarially trained
smoothed classifiers. Advances in Neural Information

Processing Systems, 32, 2019.

Andrew M. Saxe, James L. McClelland, and Surya Gan-
guli. A mathematical theory of semantic development
in deep neural networks. Proceedings of the National

Academy of Sciences, 116(23):11537–11546, 2019.

Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu,
Kejun Huang, Evangelos E. Papalexakis, and Christos
Faloutsos. Tensor decomposition for signal processing
and machine learning. IEEE Transactions on Signal Pro-

cessing, 65(13):3551–3582, 2017.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field
analysis of deep neural networks. Mathematics of Oper-

ations Research, 47(1):120–152, 2022.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya
Gunasekar, and Nathan Srebro. The implicit bias of gra-
dient descent on separable data. Journal of Machine

Learning Research, 19(1):2822–2878, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. Journal

of Machine Learning Research, 15(1):1929–1958, 2014.

Matthew Staib, Sashank Reddi, Satyen Kale, Sanjiv Ku-
mar, and Suvrit Sra. Escaping saddle points with adap-
tive gradient methods. In International Conference on

Machine Learning, pages 5956–5965, 2019.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Nor-
malized flat minima: Exploring scale invariant defi-
nition of flat minima for neural networks using pac-
bayesian analysis. In International Conference on Ma-

chine Learning, pages 9636–9647, 2020.

Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini.
Implicit regularization for optimal sparse recovery. Ad-

vances in Neural Information Processing Systems, 32,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances

in neural information processing systems, 30, 2017.

Jürgen Weese. A regularization method for nonlinear ill-
posed problems. Computer Physics Communications, 77
(3):429–440, 1993.

Stephan Wojtowytsch. On the convergence of gradient de-
scent training for two-layer relu-networks in the mean
field regime. arXiv preprint arXiv:2005.13530, 2020.

Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Ed-
ward Moroshko, Pedro Savarese, Itay Golan, Daniel
Soudry, and Nathan Srebro. Kernel and rich regimes in
overparametrized models. In Conference on Learning

Theory, pages 3635–3673, 2020.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversar-
ial weight perturbation helps robust generalization. Ad-

vances in Neural Information Processing Systems, 33:
2958–2969, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

Yaowei Zheng, Richong Zhang, and Yongyi Mao. Reg-
ularizing neural networks via adversarial model pertur-
bation. In Proceedings of the Conference on Computer

Vision and Pattern Recognition, pages 8156–8165, 2021.

Mo Zhou, Tianyi Liu, Yan Li, Dachao Lin, Enlu Zhou,
and Tuo Zhao. Toward understanding the importance of
noise in training neural networks. In International Con-

ference on Machine Learning, pages 7594–7602, 2019.

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen
Ma. The anisotropic noise in stochastic gradient descent:
Its behavior of escaping from sharp minima and regular-
ization effects. In International Conference on Machine

Learning, pages 7654–7663, 2019.

Explicit Regularization in Overparametrized Models via Noise Injection

Explicit Regularization in Overparametrized Models via Noise Injection:
Supplementary Materials

A Proofs of equivalences

Note that in finite-dimensional models, all norms are equivalent, so we use any of them, unless otherwise stated.

A.1 Proof of Theorem 1

Proof. We first observe from Eq. (2) that

|R�(w)�R(w)| = �
2

2
DL(�(w))D2�(w)[I]| {z }

=0

+
�
2

2
D2

L(�(w))
⇥
D�(w)D�(w)>

⇤
+O(�3). (12)

By using the inequality (due to bounded second derivative of �)

D�(w)  D�(0) + Ckwk  C(1 + kwk), (13)

we obtain the first desired bound

|R�(w)�R(w)| =

�������

�
2

2
D2

L(�(w))| {z }
uniformly bounded by Ass.

⇥
D�(w)D�(w)>

⇤
�������
 C(1 + kwk2)�2

. (14)

For the second desired bound, we observe from Eqs. (5) and (6) that

|R�(w)�R
(e↵)
� (w)| =

������
�
2

2
DL(�(w))D2�(w)[I]| {z }

=0

+O(�3)

������
, (15)

which concludes the proof. (Note that in this proof the precise value of the constant C > 0 is changing form line to line. It
is not necessarily the same as the C in the statement of the theorem.)

A.2 Proof of Theorem 2

Proof. As proved in Eq. (13) under the same assumptions, we again have
����
�
2

2
D2

L(�(w))
⇥
D�(w)D�(w)>

⇤����  C(1 + kwk22)�2
. (16)

(Here, and in the rest of the proof, C > 0 is a constant independent of � which may change from line to line.) Similarly,
by both the boundedness of second derivatives of L and �, we have that

����
�
2

2
DL(�(w))D2�(w)[I]

����  C(�2(1 + k�(w)k2)). (17)

Thus, by putting both bounds together, there exists a constant C > 0 such that for all w,

|R�(w)�R(w)|  �
2

2
D2

L(�(w))
⇥
D�(w)D�(w)>

⇤
+
�
2

2
DL(�(w))D2�(w)[I]

 C�
2(1 + k�(w)k2 + kwk22).

(18)

Hence, if w�
⇤ is a minimizer of R� , we have the chain of inequalities

R(w�
⇤)� C�

2(1 + k�(w�
⇤)k2 + kw�

⇤ k22))  R�(w
�
⇤)  R�(w⇤)

R�(w⇤)  R(w⇤) + C�
2(1 + k�(w⇤)k2 + kw⇤k22).

Antonio Orvieto⇤, Anant Raj⇤, Hans Kersting⇤ and Francis Bach

This leads to
µ

2
k�(w�

⇤)� '⇤k22  R(w�
⇤)�R(w⇤)  2C�2(2 + k�(w⇤)k2 + k�(w�

⇤)k2 + kw�
⇤ k22 + kw⇤k22),

by µ-strong-convexity of L. Thus, since w⇤ and w
�
⇤ are in a predefined compact set ⌦ for � small enough and since �(w)

is bounded on ⌦ due to boundedness of its second derivative, we arrive at: k�(w�
⇤)� '⇤k22 = O(�2). This shows the first

statement.

We also consider a minimizer w�,(e↵)
⇤ of R(e↵)

� , which satisfies the same bound as above (exact same reasoning), that is,

k�(w�,(e↵)
⇤)� '⇤k2  C

00
�
2
. (19)

Since
kDL(�(w�,(e↵)

⇤))k  C,

due to w
�,(e↵)
⇤ 2 ⌦ (compact set) and

kD2�(w�,(e↵)
⇤)k = kD2�(w�,(e↵)

⇤)�D2�('⇤)k  Ck�(w�,(e↵)
⇤)� '⇤k  C

00
�
2
,

due to Eq. (19), we get
�
2

2
DL(�(w�,(e↵)

⇤))D2�(w�,(e↵)
⇤)[I]  C�

3
.

This implies moreover that
|R(e↵)

� (w�,(e↵)
⇤)�R�(w

�,(e↵)
⇤)|  C�

3
.

Moreover, since w
�
⇤ minimizes R� , the differential of R� at w�

⇤ is equal to zero, and using a similar expansion than
Theorem 1 for the differential, we get 0 = DL(�(w�

⇤)) + O(�). This leads to |R(e↵)
� (w�

⇤) � R(w�
⇤)|  C�

3 due to
DL(�(w�

⇤))  C�. We can thus use the chain of inequalities

R(w�,(e↵)
⇤))� C�

3  R
(e↵)
� (w�,(e↵)

⇤))  R
(e↵)
� (w�

⇤)  R(w�
⇤) + C�

3
,

and follow the same reasoning as above to obtain the desired bound k�(w�,(e↵)
⇤)� �(w�

⇤)k22 = O(�3).

A.3 Extension of asymptotic theory from Section 2 to piecewise regularity

In this section, we show how the derivation of R�(w), Eq. (5), and Theorem 1 can be extended to deal with a more general
predictor �. More precisely, we extend it to the case where globally � is only assumed to be continuous and the additional
regularity of � is only given piecewise, i.e., where there exists a finite number of open convex sets {⌦i, i = 1, . . . ,M}
with

S
i2I ⌦i = Rm such that � restricted to ⌦i is in C

3 for all i. This is an important extension because it takes care of
locally non-differentiable activation functions, such as ReLU.

Extension of Eq. (5) Let w 2 ⌦i for a fixed i = 1, . . . ,M . Under the above piecewise assumption, the Taylor expansion
of � at w can now be written:

�(w + �") = w+�" 62⌦i

⇥
�(w + �")

⇤
(20)

+ w+�"2⌦i

⇥
�(w) + �D�(w)"+

�
2

2
D2�(w)["">] +O(�3k"k3)

⇤
. (21)

Thus, as in the main text, we have

L(�(w + �")) = w+�" 62⌦i


L(�(w + �"))

�

+ w+�"2⌦i


L(�(w)) +DL(�(w))

�
�D�(w)"+ �2

2 D2�(w)["">] +O(�3k"k3)
�

+
1

2
D2

L(�(w))
⇥
�D�(w)"(�D�(w)")> +O(�3k"k3)

⇤
+O(�3k"k3)

�
.

Explicit Regularization in Overparametrized Models via Noise Injection

Now, taking the expectation we get

R�(w) = E [L(�(w + �"))]

=

Z

{":w+�" 62⌦i}
L(�(w + �"))dN("; 0, I) +

Z

{":w+�"2⌦i}
L(�(w + �"))dN("; 0, I)

=: J1(�) + J2(�),

with the integrands from the above cases of L(�(w + �")). Now,

lim
�!0

J2(�) = L(�(w)) +
�
2

2
DL(�(w))D2�(w)[I] +

�
2

2
D2

L(�(w))
⇥
D�(w)D�(w)>

⇤
+O(�3)

analogously to the main text, and
lim
�!0

J1(�) = 0

because the probability mass of {" : w + �" 62 ⌦i} under N("; 0, I) goes to zero exponentially fast, while L(�) can
diverge at most polynomially. Thus, we arrive at Eq. (5) from the main text.

Extension of Theorems 1 and 2 Above, we saw how our Taylor expansions and averaging carry over to the case where
� is only piece-wise in C

3. Holding this in mind, we can now verify that the above proofs of Theorems 1 and 2 also carry
through in this case:

Since both Theorems are formulated only for sufficiently small � > 0, this can be easily verified. For Theorem 1 this is
trivial, one just has to emphasize that � > 0 is small enough after each step. For Theorem 2, one additionally has to make
sure that the minimizers w

�
⇤ and w

�,(e↵)
⇤ of R(w) = L(�(w)) and R

(e↵)
� are also in ⌦i. But this will hold true for all

sufficiently small � for the following reason: First, for w�
⇤ this follows from the fact that J2(�) goes to 0 exponentially

fast, as � ! 0. Hence, only values of L(�(w)) for w 2 ⌦i matter to determine the minimizer w�
⇤ , which will thus lie in

⌦i. Second, under the assumptions of Theorem 2, the difference between R� and R
(e↵)
� is in O(�3). Thus, for � small

enough, w�,(e↵)
⇤ will lie in the same open convex set as w�

⇤ , i.e., in ⌦i.

B Logistic regression

We consider a 2-homogeneous model such that �(�w) = �
2�(w) for any w and � > 0. We aim to minimize

1

n

nX

i=1

log(1 + exp(�yi�(w)i)),

where y 2 {�1, 1}n. We assume that the model is overparameterized, so that there exists w such that yi�(wi) > 0 for all
i.

Following Lyu and Li [2019], we expect w to diverge in some direction, that is, w = �� for �! +1 and k�k2 = 1. We
assume that this is the case, and we derive here an informal argument highlighting what the limit direction � should be.

In the function
R

(e↵)
� (w) = R(w) + �2

2 D2
L(�(w))

⇥
D�(w)D�(w)>

⇤

from Equation (6), the term D�(w)D(�(w))> grows in � as �2D�(�)D(�(�))>, while D2
L(�(w)) is diagonal and

proportional to exp(��2|�(�)i|), with the same scaling as the loss function. We thus get an asymptotic approximate cost
function equal to, since |�(�)i| = yi�(�)i (because we have perfect predictions):

1

n

nX

i=1

e
�yi�

2�(�)i
⇣
1 +

�
2

2
�
2kD(�(�))ik22

⌘
⇠ 1

n

nX

i=1

e
�yi�(w)i

⇣
1 +

�
2

2
kD(�(w))ik22

⌘
.

By taking the gradient with respect to w, we get that

nX

i=1

e
�yi�(w)i

��2

2

@

@w
kD(�(w))ik22 � yi

⇣
1 +

�
2

2
kD(�(w))ik22

⌘
@

@w
�(w)i

⌘
,

Antonio Orvieto⇤, Anant Raj⇤, Hans Kersting⇤ and Francis Bach

which is asymptotically equivalent to

nX

i=1

e
�yi�(w)i

��2

2

@

@w
kD(�(w))ik22 � yi

@

@w
�(w)i

⌘
/ �w.

We conjecture that this is equivalent to the optimality conditions of the problem

max
k�k21

min
i2{1,...,n}

n
yi�(w)i �

�
2

2
kD(�(w))ik22

o
,

where for � = 0, this is the result of Lyu and Li [2019]. We leave a formalization of such a result for future work.

C Direct derivations of formulas from Sections 2.3 and 2.4

This section contains some explicit derivation of formulas that were asserted in the main text.

C.1 Lasso

Here, we present the derivation of Equation (7). First we note that D2
L(�(w)) = 1

nI , i.e. the identity matrix, and that

D�(w) =
⇥
2X diag(w1), 2X diag(w2)

⇤
. (22)

Insertion of these two identities into Eq. (6) yields

R
(e↵)
� (w) = R(w) +

�
2

2
D2

L(�(w))
⇥
D�(w)D�(w)>

⇤
(23)

= R(w) + 2�2 1

n
I

"
⇥
X diag(w1), X diag(w2)

⇤ X diag(w1)
X diag(w2)

� #

| {z }
=:J

. (24)

By our above notation D2
L(')[M] =

Pn
a,b=1 D

2
L(')abMab 2 R, we have

J =
1

n

dX

a=1

⇥
X diag(w2

1)X
>
/n
⇤
aa

+
dX

a=1

⇥
X diag(w2

1)X
>
/n
⇤
aa

:= J1 + J2. (25)

We keep computing:

J1 =
nX

a=1

dX

i=1

1

n
Xaiw1

2
iX

>
ia =

dX

i=1

nX

i=1

1

n
X

>
iaXai

!

| {z }
[X>X]ii

w1
2
i = diag(X>

X/n)>[w1 � w1], (26)

and analogously J2 = diag(X>
X/n)>[w2 � w2]. Thus, J = diag(X>

X/n)>[w1 � w1] + diag(X>
X/n)>[w2 � w2]

which we insert back into Eq. (23). This yields the desired Eq. (7).

C.2 Nuclear norm (linear networks)

For the main text, only the derivation of Eq. (9) is missing. To this end, we first observe that

[W2W1X
>]ij =

d0X

k=1

d�1X

l=1

[W2]il[W1]lkXjk. (27)

Moreover,

D2
L(�(w)) =

1

2n
I. (28)

Explicit Regularization in Overparametrized Models via Noise Injection

Hence,

D2
L(�(w))

⇥
D�(w)D�(w)>

⇤
=

1

2n

nd2X

a=1

⇥
D�(w)D�(w)>

⇤
aa

(29)

=
1

2n

d2X

i=1

nX

j=1

2

4
�����rw

d0X

k=1

d1X

l=1

[W2]il[W1]lkXjk

�����

2

2

3

5 (30)

=
1

2n

d2X

i=1

nX

j=1

2

4
d0X

k=1

d1X

l=1

�
[W2]ilX

>
kj

�2
+

d1X

l=1

d0X

k=1

[W1]lkX
>
kj

!2
3

5 (31)

=
1

2n
(J1 + J2), (32)

with

J1 :=
d2X

i=1

nX

j=1

d0X

k=1

d1X

l=1

[W2]
2
ilX

2
jk (33)

=

"
d2X

i=1

d1X

l=1

[W2]
2
il

#2 2

4
nX

j=1

d0X

k=1

X
2
jk

3

5
2

(34)

=kW2k2F kXk2F (35)

and

J2 :=
d2X

i=1

nX

j=1

d1X

l=1

[W2X
>]2lj = d2kW1X

>k2F . (36)

Putting all equations to together concludes the derivation of Eq. (9).

C.3 Group Lasso

Extension to “group Lasso”. It is traditional to recover the group Lasso as a special of nuclear norm minimization [see,
e.g., Bach, 2008]. We thus consider w = (v1, w1, . . . , vd, wd) 2 Rd(k+1), with vj 2 R and wj 2 Rk, and �(w) =
v1X1w1+ · · ·+vdXdwd, for X1, . . . , Xd 2 Rn⇥k, and L(') = 1

2nky�'k
2
2. This corresponds exactly to a linear network

defined above, with X = (X1, . . . , Xn), W1 defined by blocks and block-diagonal with blocks w>
j , and W2 = v

>.

Regardless whether the model is overparametrized or not, we can apply Theorem 1, and we get:

R
(e↵)
� (w) =

1

2n
ky � v1X1w1 � · · ·� vdXdwdk22

+
�
2

2n

h
kX1w1k22 + v

2
1kX1k2F + · · ·+ kXdwdk22 + v

2
dkXdk2F

i
.

(37)

See the Appendix for a detailed derivation of Eq. (37). Optimizing over the “invariance of scale” (we can multiply vj by
↵j and divide wj by the same ↵j), we get the equivalent problem of minimizing

1

2n
ky �X1�1 � · · ·�Xd�dk22 +

�
2

n

h
kX1kF · kX1�1k2 + · · ·+ kXdkF · kXd�dk2

i
, (38)

where �j = |vj |wj , which is a form of group Lasso. In particular if all �j’s have dimension one, we recover the Lasso
with a different formulation from Section 2.3 (and no need for overparametrization).

Derivation of Equation (37) First we note that D2
L(�(w)) = 1

nI , i.e. the identity matrix, and that

�(w) =
dX

i=1

�i(w), where �i(vi, wi) := viXiwi. (39)

Antonio Orvieto⇤, Anant Raj⇤, Hans Kersting⇤ and Francis Bach

Under this notation, we get the Jacobian

D�(w) =

2

64
D�1(w)

. . .
D�d(w)

3

75 , (40)

with
D�i(vi, wi) =

⇥
Xiwi, viXi

⇤
2 Rn⇥(k+1)

. (41)

Now,

D�i(vi, wi)D�i(vi, wi)
> =

⇥
Xiwi, viXi

⇤ w>
i X

>
i

viX
>
i

�
=
⇥
Xiwiw

>
i X

>
i , v

2
iXiX

>
i

⇤
, (42)

which implies that

D�(w) ·D�(w)> =

2

64
D�1(w)D�1(w)>

. . .
D�d(w)D�d(w)>

3

75 (43)

=

2

64

⇥
X1w1w

>
1 X

>
1 , v

2
1X1X

>
1

⇤

. . . ⇥
Xdwdw

>
d X

>
d , v

2
dXdX

>
d

⇤

3

75 . (44)

By our above notation D2
L(')[M] =

Pn
a,b=1 D

2
L(')abMab 2 R, we now get the desired formula:

R
(e↵)
� (w) = R(w) +

�
2

2
D2

L(�(w))
⇥
D�(w)D�(w)>

⇤
(45)

= R(w) +
�
2

2n
I[D�(w) ·D�(w)>] (46)

= R(w) +
�
2

2n
[kX1w1k22 + v

2
1kX1k2F + · · ·+ kXdwdk22 + v

2
dkXdk2F]. (47)

D Appendix for Section 3 (one-hidden layer)

D.1 Explosion of full perturbations

We have discussed the exploding variance phenomena in one hidden layer linear networks in Section 3.1. We here discuss
the variance explosion in one hidden layer neural networsk with ReLU activations . Similarly, we here consider the
overparametrized limit d1 ! +1 with initialization which corresponds to having weights of order (W1)ij ⇠ 1p

d1d0
for all

i, j, that is kW1k2F not exploding with d1, and (W2)ij ⇠ 1p
d2d1

, that is kW2k2F not exploding with d1. This initialization
corresponds to the one in Glorot and Bengio [2010] in the case where the network was constant width. We have

�(w) = W2(W1X
>)+,

where the positive part is taken element-wise.

We have, with Gaussian perturbations E1 and E2, an explicit exact expansion for one hidden layer ReLU networks for
small � (so that � is locally quadratic):

�(w + �")

= �(W2 + �E2,W1 + �E1) = (W2 + �E2)[(W1 + �E1)X
>]+

= (W2 + �E2)(W1X
>)+ + �(W2 + �E2)

⇥
(W1X

>)0+ � E1X
>⇤

= W2(W1X
>)+ + �E2(W1X

>)+ + �W2

⇥
(W1X

>)0+ � E1X
>⇤+ �

2
E2

⇥
(W1X

>)0+ � E1X
>⇤

= �(w) + �
�
E2(W1X

>)+ +W2

⇥
(W1X

>)0+ � E1X
>⇤�+ �

2
E2

⇥
(W1X

>)0+ � E1X
>⇤

.

Taking expectations and using that E1, E2 have zero mean and are independent, and such that, E[EiME
>
i] = tr(M)I for

i = 1, 2, and M any symmetric matrix of compatible size, we can get E
⇥
�(w + �")

⇤
= �(w), and:

Explicit Regularization in Overparametrized Models via Noise Injection

E
⇥
k�(w + �")k2F

⇤

= k�(w)k2F + �
2k(W1X

>)+k2F + �
2

d1X

j=1

nX

i=1

k(W2)·jk22 ⇥ |((W1X
>)0+)ji|2 ⇥ kXi·k22

+�4E
⌦
E2

⇥
(W1X

>)0+ � E1X
>⇤

, E2

⇥
(W1X

>)0+ � E1X
>⇤↵

.

Consider a case when (W1X
>)0+ = 1 at all of its entries. In that case, We can now compute R� as:

R�(W1,W2) = R(W1,W2) +
�
2

2n

⇥
k(W1X

>)+k2F

+
�
2

2n

d1X

j=1

nX

i=1

k(W2)·jk22 ⇥ |((W1X
>)0+)ji|2 ⇥ kXi·k22 +

�
4

2n
d1d2kXk2F .

The extra term �4

2nd2d1kXk2F is of superior order in �, but problematic when d1 ! +1 using same argument as that for
linear net with one hidden layer.

D.2 Layer-wise perturbation

Now, we show that layer wise perturbation helps in variance control. Consider the following two cases :

�(W2,W1 +
p
2�E1) = W2[(W1 +

p
2�E1)X

>]+ = W2(W1X
>)+ +

p
2�W2

⇥
(W1X

>)0+ � E1X
>⇤

= �(W2,W1) +
p
2�W2

⇥
(W1X

>)0+ � E1X
>⇤

.

Similarly,

�(W2 +
p
2�E2,W1) = (W2 +

p
2�E2)(W1X

>)+ = W2(W1X
>)+ +

p
2�E2(W1X

>)+

= �(W2,W1) +
p
2�E2(W1X

>)+.

Hence,

Ek�(W2,W1 +
p
2�E1)k2F = k�(W2,W1)k2F + 2�2

d1X

j=1

nX

i=1

k(W2)·jk22 ⇥ |((W1X
>)0+)ji|2 ⇥ kXi·k22

⇤
.

Similarly,

Ek�(W2 +
p
2�E2,W1)k2F = k�(W2,W1)k2F + 2�2k(W1X

>)+k2F .

If we choose uniformly at random the layer to be perturbed, then one can then see that5

R�(W1,W2) = R(W1,W2) +
�
2

2n

⇥
k(W1X

>)+k2F

+
�
2

2n

d1X

j=1

nX

i=1

k(W2)·jk22 ⇥ |((W1X
>)0+)ji|2 ⇥ kXi·k22

⇤
.

Due to same argument as that for one hidden layer linear net, R�(W1,W2) is well behaved.

D.3 Function space

Here we change slightly the notations to be closer to notations from Chizat and Bach [2020].

Given some data x1, . . . , xn, we consider the function (a, b) = a(b>xi)+, with (a, b) 2 Rd+1, and
�(a1, b1, . . . , am, bm) = 1

m

Pn
i=1 (ai, bi), with all weights with unit scale. This corresponds exactly to the one-hidden

layer neural network with Glorot initialization, where m = d1.
5Note that in the main paper, there is a typo, and the term kXi·k22 was missing.

Antonio Orvieto⇤, Anant Raj⇤, Hans Kersting⇤ and Francis Bach

We consider L(') = 1
2nky � 'k22, and the equivalent cost function that we obtained is exactly

1

2n

nX

i=1

⇣
yi �

1

m

mX

j=1

aj(b
>
j xi)+

⌘2
+

�
2

2nm

nX

i=1

mX

j=1

n
(b>j xi)

2
+ + a

2
jkxik22(b>xi)

0
+

o
.

We can optimize over the scale �j > 0 so that aj ! aj� and bj ! bj/�, leading to

1

2n

nX

i=1

⇣
yi �

1

m

mX

j=1

aj(b
>
j xi)+

⌘2
+
�
2

m

mX

j=1

vuut 1

n

nX

i=1

|aj |2kxik22(b>j xi)0+

vuut 1

n

nX

i=1

(b>j xi)2+,

that is,
1

2
E
⇣
y �

Z
a(b>x)+dµ(a, b)

⌘2
+ �

2

Z
|a|
q
Ekxk22(b>x)0+

q
E(b>x)2+dµ(a, b),

where E is the empirical expectation over the data and dµ(a, b) = 1
m

Pm
j=1 �(aj ,bj). Denoting d⌫(b) = adµ(a, b), we get

the following const function with respect to ⌫:

F�(⌫) =
1

2
E
⇣
y �

Z
(b>x)+d⌫(b)

⌘2
+ �

2

Z q
Ekxk22(b>x)0+

q
E(b>x)2+|d⌫(b)|.

We thus get a specific `1-penalty, where the difference with the variation norm of Kurkova and Sanguineti [2001], Bach
[2017] is the presence of the data-dependent multiplier

q
Ekxk22(b>x)0+

q
E(b>x)2+, rather than simply having a constant.

With sufficiently many data points, these expectations are bounded from below and above, so the regularization properties
are the same, with the same adaptivity to linear substructures highlighted by Chizat and Bach [2020].

E Appendix for Section 4 (deep networks)

E.1 Explosion of full perturbations

E.1.1 Linear Network

Consider a linear neural network with w = (W1, , . . . ,WM) with Wi 2 Rdi⇥di�1 , and �(w) = WMWM�1 · · ·W1X
> 2

RdM⇥n with the input data X 2 Rn⇥d0 , with L(') = 1
2nkY

> � 'k2F for output data Y 2 Rn⇥dM and ' 2 RdM⇥n. Let
us denote the noise with " = (E1, E2, . . . , EM). Let us now compute,

�(w + �") = �(WM + �EM , . . . ,W1 + �E1) = (WM + �EM) . . . (W1 + �E1)X
>

= WM . . .W1X
> + �

M
EM . . . E1X

> +
M�1X

i=1

�
i
Ci

= �(WM , . . . ,W1) + �
M
EM . . . E1X

> +
M�1X

i=1

�
i
Ci,

where Ci depends on WM , . . . ,W1 and EM , . . . , E1. It is easy to check that E[�(w + �")] = �(w). To show that R�

explodes we will show that k�(w + �")k2F explodes. Because of independence of E1, . . . EM , we have

Ek�(w + �")k2F = k�(WM , . . . ,W1)k2F + �
2MEkEM . . . E1X

>k2F +
M�1X

i=1

�
2iEkCik2F .

Consider the term

�
2MEkEM . . . E1X

>k2F = �
2M

d1d2 · · · dMkXk2F .

In the above we used the fact that E[EiME
>
i] = tr(M)I . As di ! 1 for i 2 {1, . . . ,M � 1}, �2MEkEM . . . E1X

>k2F
diverges and hence R� explodes as well. Using the same argument, we can show that all coefficients �2i for all i > 1
explode.

Explicit Regularization in Overparametrized Models via Noise Injection

E.1.2 ReLU Network

Consider a deep neural network with w = (W1, , . . . ,WM) with Wi 2 Rdi⇥di�1 , and �(w) = WMWM�1 · · ·W1X
> 2

RdM⇥n with the input data X 2 Rn⇥d0 , with L(') = 1
2nkY

> � 'k2F for output data Y 2 Rn⇥dM and ' 2 RdM⇥n. We
use ReLU activation here. Let us denote the noise with " = (E1, E2, . . . , EM). We have,

�(WM , . . . ,W1) = WM (WM�1 . . . (W1X
>)+ . . .)+

Now, let us compute

�(WM + �EM , . . . ,W1 + �E1) = (WM + �EM)((WM�1 + �EM�1) . . . ((W1 + �E1)X
>)+ . . .)+

= WM (WM�1 . . . (W1X
>)+ . . .)+ ++

M�1X

i=1

�
i
Ci

+ �
M
EM ((WM�1 . . . (W1X

>)+ . . .)0+ � EM�1(. . . (W1X
>)0+ � E1X

>)),

where Ci depends on WM , . . . ,W1 and EM , . . . , E1. Using similar argument as for linear network,

Ek�(w + �")k2F = k�(w)k2F + �
2MEkEM ((WM�1 . . . (W1X

>)+ . . .)0+ � EM�1(. . . (W1X
>)0+ � E1X

>))k2F

+
M�1X

i=1

�
2iEkCik2F .

Let us again consider a special case and assume that w = (WM , . . . ,W1) are such that W1X
>

> 0 at all entries and
W2, . . . ,WM has all positive entries. In such scenario, for small enough �

�
2MEkEM ((WM�1 . . . (W1X

>)+ . . .)0+ � EM�1(. . . (W1X
>)0+ � E1X

>))k2F
= �

2MEkEM . . . E1X
>k2F = �

2M
d1 · · · dMkXk2F .

In the above we used the fact that E[EiME
>
i] = tr(M)I . As di ! 1 for i 2 {1, . . . ,M � 1}, �2MEkEM . . . E1X

>k2F
diverges and hence R� explodes as well. We can use similar constructions to show that all coefficients �2i for i > 1
explode.

E.2 Layer-wise perturbation

In this section, we will show that how layer wise perturbations leads to the desired result. We then proceed to show that
the term is not exploding.

The perturbation argument follows exactly the same line as Section D.2, using that neural networks with ReLU activations
or without activations are positively homogeneous with respect to each layer.

We thus simply need to show that the extra term is not exploding. For linear networks, the regularization term is

�
2

2n

MX

j=1

��WM · · ·Wj+1

��2
F

��Wj�1 · · ·W1X
>��2

F
,

and with scaling described in the paper, we get that each element of WM · · ·Wj+1 is the product of dM�1 · · · dj+1 terms,
each of scale6 1p

dMdM�1
· · · 1p

dj+1dj
, thus we an overall scale of

dM�1 · · · dj+1 ⇥
1p

dMdM�1

· · · 1p
dj+1dj

=
1p
dMdj

.

Then, the Frobenius norm of WM · · ·Wj+1 is of order dMdj ⇥
�

1p
dMdj

�2
= 1. The reasoning is the same for

��Wj�1 · · ·W1X
>
��2
F

and leads to no explosion.

With ReLU activation functions, since the derivative of the ReLU activation is either 0 or 1, this does not change the
scalings.

6We recall that this initialization, i.e. each weight between layer i and i� 1 with variance 1/
p
didi�1, which stabilizes the expected

Frobenius norm of the weight matrices.

Antonio Orvieto⇤, Anant Raj⇤, Hans Kersting⇤ and Francis Bach

Figure 7: Fashion MNIST MLP 1: MLP with 4 Layers (3 hidden), width 500. Full Batch.

F Further experimental details
We provide a thorough overview of the experimental results presented in this work. Some of the plots of the main paper
are also presented again here for ease of comparison.

Datasets and networks. We use the Fashion MNIST [Xiao et al., 2017] and CIFAR10 [Krizhevsky and Hinton, 2009]
datasets and train on different neural network models (6 experiments in total).

Setup. We repeat all experiments 3 times (different network initializations and injected noise) and show mean and 1
standard deviation. All experiments are conducted in PyTorch [Paszke et al., 2017] on up to 8 Tesla V100 GPUs with 32
GB memory.

Noise injection. We perform noise injection in two different ways, as described in the main paper. In GD (SGD) +noise

at each iteration we perturbe all the network weights with Gaussian noise with standard deviation �/
p
M ,where M is the

number of layers. Instead, in GD (SGD) +noise (layer), at each iteration, a specific layer7 is picked and all weights are
perturbed with Gaussian noise with standard deviation �. As explained in the main text (see Section 3.2&4), we expect the
layer-wise perturbation to provide a more stable approach for the minimization of the regularized loss, as width increases.
In the results below, we show that this is indeed the case and provide detailed comparisons.

F.1 Experiments on Fashion MNIST MLPs

Batch-size, learning rate and noise injection strength. For the simulations on Fashion MNIST, we use a random
subsample of the dataset (1024 samples), to introduce a sizable train-test gap. This also allows us to train with full-batch
gradient descent on this subset. Performance of stochastic gradient descent (i.e. mini-batch case) is evaluated for CNNs
in the next subsection. We selected for all experiments a sizeable learning rate of 5e � 3, except for the Deep and Wide
case (MLP 4), where a smaller learning rate is necessary to avoid instabilities. Since we have no access to the problem
Lipschitz constant, to allow methods to converge to potentially sharp regions, we use cosine annealing [Loshchilov and
Hutter, 2016] for the learning rate. Regarding �, we select the value that showcases best the implications of our theory:
picking a value around 0.05 works in all settings. A plot showing the effect of tuning � on both noise injection schemes
can be found in Section 5 in the main paper. Test performance is evaluated on the full 10K testing dataset.

Fashion MNIST MLP 1 (Shallow Narrow). The input (28⇥ 28 = 784-dimensional) is processed with the following 4
narrow layers with ReLU activations (except last layer) to an output with dimension 10:

784 ! 500 ! 500 ! 500 ! 10. (48)

The final output is then processed using a log-softmax and signal is backpropagated using a cross-entropy loss. We run
full-batch gradient descent on the 1024 datapoints (subset of the data) and train with learning rate 5e� 3 and � = 5e� 2.
Figure 7 shows that, since the network is not too wide, both the noise injection schemes are able to decrease the Hessian
trace and improve test accuracy. Yet, interestingly, layer-wise noise injection outperforms standard noise injection in test
accuracy.

Fashion MNIST MLP 2 (Shallow Wide). The 784-dimensional input is processed with the following 4 wide layers with
ReLU activations (except last layer) to an output with dimension 10:

784 ! 5000 ! 5000 ! 5000 ! 10. (49)
7In the implementation we injected noise sequentially through the network, and we actually perturbe separately each parameter

group (i.e. half iterations noise is injected on specific layer biases) and pick M to be the number of parameter groups.

Explicit Regularization in Overparametrized Models via Noise Injection

Figure 8: Fashion MNIST MLP 2: MLP with 4 Layers (3 hidden), width 5000. Full Batch.

Figure 9: Fashion MNIST MLP 3: MLP with 6 Layers (5 hidden), width 1000. Full Batch.

The final output is then processed as before, and we select a stepsize 5e � 3 and � = 1e � 1. Figure 8 shows that, since
the network is wide, only layer-wise injection provides a successful regularization. These findings are complemented by
Figure 3 in the main paper.
Fashion MNIST MLP 3 (Deep Narrow). 784-dimensional input is processed with the following 6 not extremely wide
layers with ReLU activations (except last layer) to an output with dimension 10:

784 ! 1000 ! 1000 ! 1000 ! 1000 ! 1000 ! 10. (50)

The final output is then processed as before, and we select a stepsize 5e � 3 and � = 1e � 1. Figure 9 shows that the
behavior is similar to the shallow case (Figure 7).
Fashion MNIST MLP 4 (Deep Wide). 784-dimensional input is processed with the following 6 wide layers with ReLU
activations (except last layer) to an output with dimension 10:

784 ! 5000 ! 5000 ! 5000 ! 5000 ! 5000 ! 10. (51)

The final output is then processed as before, and we select a stepsize 1e � 3 and � = 5e � 2. Figure 10 shows that the
behavior is similar to the narrow case (Figure 8): as the width increases, only layer-wise injection provides an improvement
in test accuracy, while standard noise injection hurts convergence at the same value of � (scaled properly).

F.2 Experiments on CIFAR10 CNNs

Batch-size and learning rate, noise injection strength. For the simulations on CIFAR10, we use the full training
dataset (50K samples) and train with SGD with batch-size 1024 and cosine annealing on a tuned learning rate. � is picked

Figure 10: Fashion MNIST MLP 4: MLP with 6 Layers (5 hidden), width 5000. Full Batch.

Antonio Orvieto⇤, Anant Raj⇤, Hans Kersting⇤ and Francis Bach

to be 0.05 in all settings and layer-wise noise injection is performed with
p
M scaling compared to the standard case,

where M is the number of parameter groups in the network. Test performance is evaluated on the full 10K testing dataset.

CIFAR10 Toy Narrow CNN+MLP. The 28 ⇥ 28 ⇥ 3 image (RGB) is processed by 2 convolutions with 5 channels
followed by an MLP. Both Conv and Lin layers have ReLU activations (except last layer) and max pooling is applied after
each convolution after the ReLU. Flattening of the tensor is performed before the MLP. The layers are reported8 next:

Conv(3, 6, 5),Conv(6, 16, 5),Lin(16⇥ 5⇥ 5, 120),Lin(120, 84),Lin(84, 10). (52)

Backpropagated gradients are computed using a cross-entropy loss. For this network, we train with SGD with batch-size
1024, using a stepsize of 1e� 3 with cosine annealing. We select here � = 5e� 2. In Figure 11 we see that, while the test
performance of SGD with batch size 1024 degrades overtime (known effect of linear layers), the performance of all noise
injection schemes leads to better and stable generalization. This is reflected in the regularized Hessian trace. We note that
here the performances of the noise injection methods are comparable since the network is not very wide.

CIFAR10 Wider fully convolutional. The 28⇥ 28⇥ 3 image (RGB) is processed by a fully convolutional network with
up to 128 channels (i.e. wide) with max pooling and ReLU activations (except last layer). The last layer acts on the average
output of each channel. The network operations are as follows:

Conv(3, 32, 3),Conv(32, 64, 3),Conv(64, 128, 3),Conv(128, 128, 3),Lin(128, 10) (53)

For this network, we train with SGD with batch-size 1024, using a stepsize of 5e � 3 with cosine annealing. We select
here � = 5e � 2. Figure 12 shows that, in contrast to the toy narrow CNN we inspected above, here layer-wise noise
injection provides an improved performance in terms of test loss over standard noise injection. Yet, compared to the MLP
case, here injecting noise to all weights does not lead to a quick performance degradation — to observe this, one has to
design a network with unrealistically big number of channels. Regarding the Hessian trace, we observe that injecting noise
dampens the oscillations in the dynamics of this quantity, which is in line with our result on minimization of a regularized
loss (see Section 3.2), even though this was derived in the MLP case.

Figure 11: CIFAR10, PyTorch Toy CNN+MLP. Batch size 1024.

Figure 12: CIFAR10, Wide CNN (128 channels). Batch size 1024.

8by Conv(Cin, Cout, k) we meen a convolutional layer with kernel size k, number of input channels Cin and number output channels
Cout

	Introduction
	Related work

	Finite-dimensional models
	Gaussian perturbations and Taylor expansions
	Asymptotically equivalent objective functions
	Lasso and L1-norm
	Nuclear norm (linear networks)
	Extensions

	One-hidden-layer neural networks with infinite widths
	Exploding variance for linear networks
	Layer-wise perturbations for linear networks
	One-hidden layer with non-linear activations

	Deeper networks
	Experiments
	Conclusion
	Proofs of equivalences
	Proof of Theorem 1
	Proof of Theorem 2
	Extension of asymptotic theory from Section 2 to piecewise regularity

	Logistic regression
	Direct derivations of formulas from Sections 2.3 and 2.4
	Lasso
	Nuclear norm (linear networks)
	Group Lasso

	Appendix for Section 3 (one-hidden layer)
	Explosion of full perturbations
	Layer-wise perturbation
	Function space

	Appendix for Section 4 (deep networks)
	Explosion of full perturbations
	Linear Network
	ReLU Network

	Layer-wise perturbation

	Further experimental details
	Experiments on Fashion MNIST MLPs
	Experiments on CIFAR10 CNNs

