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Abstract

We study the finite-time behaviour of the popu-
lar temporal difference (TD) learning algorithm,
when combined with tail-averaging. We derive
finite time bounds on the parameter error of the
tail-averaged TD iterate under a step-size choice
that does not require information about the eigen-
values of the matrix underlying the projected TD
fixed point. Our analysis shows that tail-averaged
TD converges at the optimal O (1/t) rate, both
in expectation and with high probability. Our
bounds exhibit a sharper rate of decay for the ini-
tial error (bias), which is an improvement over
averaging all iterates. We also propose and anal-
yse a variant of TD that incorporates regularisa-
tion, and show that this variant fares favourably
in problems with ill-conditioned features.

1 Introduction

Temporal difference (TD) [21] learning is an efficient and
easy to implement stochastic approximation algorithm used
for evaluating the long-term performance of a decision pol-
icy. The algorithm predicts the value function using a sin-
gle sample path obtained by simulating the Markov de-
cision process (MDP) with a given policy. Analysis of
TD algorithms is challenging, and researchers have de-
voted significant effort in studying its asymptotic proper-
ties [23, 15, 19, 10]. In recent years, there has been an
interest in characterising the finite-time behaviour of TD,
and several papers [6, 17, 2, 12, 3] have tackled this prob-
lem under various assumptions.

For ¢ iterations/updates, most existing works either pro-
vide a O (&) (with universal step-size) [6, 2] ora O (1)
(with constant step-size) [17, 2, 12] convergence rate to the
TD-fixed point 8* defined as 6* £ A-1p, where A and
b are quantities which depend on the MDP and the policy
(see Section 2 for the notational information). To obtain
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a0 (%) rate with a constant step-size, [17, 2] assume that
the minimum eigenvalue of the matrix A is known apriori.
However, in a typical RL setting, such eigenvalue informa-
tion is not available. Estimating the matrix A and its low-
est eigenvalue accurately might require a large number of
additional samples, which makes the algorithm more com-
plicated. Therefore, obtaining a O () rate for TD with a
universal step-size is an important open problem.

In this paper, we provide a solution to this problem by es-
tablishing a O (1) bound on the convergence rate for a
variant of TD that incorporates tail-averaging, and uses a
constant “universal” step-size. In [2, 17, 12] the authors
study an alternate version called iterate averaging which
was introduced independently by Polyak and Juditsky [16]
and Ruppert [18] for general stochastic-approximation al-
gorithms. A shortcoming of iterate averaging is that the
initialisation error (i.e., distance between 6 and 6*) is for-
gotten at a slower rate than the non-averaged case, and in
practical implementations, one usually performs averaging
after a sufficient number of iterations have been performed.
This type of delayed averaging, called ‘tail-averaging’, has
been explored in the context of ordinary least squares by
Jain et al. [11].

Inspired by the analysis of TD learning, we propose a vari-
ant of TD that incorporates regularisation, wherein we in-
troduce a parameter A and solve for the regularised TD
fixed point given by 6, = (A + AI)~'b. The update rule
for this algorithm is similar to vanilla TD except that it in-
volves an additional factor with A. Through our analysis
we observe that using regularisation can be helpful in ob-
taining better non-asymptotic bounds for many problems,
where the discount factor is close to 1.

Concretely, the contributions of this paper are as follows:
First, we establish a O(1/t) finite time bounds on the con-
vergence rate of tail-averaged TD and tail-averaged TD
with regularisation. Similar to [2, 6], the analysis assumes
that the data is sampled in an i.i.d. fashion from a fixed dis-
tribution. The resulting bounds are valid under a universal
step-size and hold in expectation as well as high probabil-
ity. We also show that Markov sampling can be handled
with simple mixing arguments. The salient features of the
bounds for each variant are as follows:
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Tail averaged TD: In this variant, the step-size is a function
of the discount factor and a bound on the norm of the state
features. The expectation bound provides a O(1/t) con-
vergence rate for tail-averaged TD iterate, while the high-
probability bound establishes an exponential concentration
of tail-averaged TD around the projected TD fixed point.

Tail-averaged TD with regularisation: For this variant, the
step-size is a function of the discount factor, regularisation
parameter A\, and a bound on the norm of the state fea-
tures. Although this variant converges to the regularised
TD fixed-point 6;,,, we show that the worse-case bound on
the difference between TD fixed point 6* and 0}, is O())
in the {5 norm. Moreover, our analysis makes a case for
using the regularised TD algorithm for problems with ill-
conditioned features.

Next, we show that under mixing assumptions, we can ex-
tend our results to Markov sampling instead of i.i.d. sam-
pling. These error bounds contain an extra O(Tmix), where
Tmix 18 the underlying Markov chain’s mixing time. This is
no better than making the samples appear approximately
iid. by considering one out of every O(Tmix) samples,
and then dropping the rest. In fact, as per Nagaraj et al.
[13, Theorem 2], even with the discount factor 3 = 0, it is
information-theoretically impossible to do any better with-
out further assumptions on the nature of the linear approx-
imation. Recently Agarwal et al. [1] showed that for linear
MDPs, one can use reverse experience replay with function
approximation to obtain finite time bounds which are inde-
pendent of the mixing time constant. We leave the study
of TD with different experience replay strategies as an in-
teresting future direction, and for the sake of completeness,
present the bounds for Markov sampling in Remark 8, and
provide a proof sketch in Section 6.

In Table 1 we compare our expectation bounds with exist-
ing bounds in the literature. In addition, we also derive
high-probability bounds for tail-averaged TD with/without
regularisation, and we provide a summary of these bounds
in a tabular form in Table 2.

Related work. Over the past few years, there has been
significant interest in understanding the finite-time be-
haviour of TD learning. Several researchers have proposed
interesting frameworks establishing bounds on TD’s con-
vergence rate under different assumptions. In [20, 25, 7, 24,
9] the authors analyse the finite time behaviour of TD using
Lyapunov drift-conditions and establish finite time bounds
that hold under expectation. The advantage of this frame-
work is that it can be used directly for analysing TD with
Markov noise. However, to provide an O(1/t) bound, these
analyses use a step-size which depends on the eigenvalue of
A. For eg., in [20, Theorem 7], we have ¢ = O(%)
where vmax is essentially the smallest eigenvalue of A.
Similar conditions can also be found in [7, Eq. (88)], [24,
Proposition 2], and [9, Eq. (18)].

Table 1: Summary of the bounds in expectation of the form
E[||Oalg,t — 0* ||§], where 6* is the TD fixed point, and Oajg ¢
is the parameter picked by an algorithm after ¢ iterations of
TD.

| Reference | Algorithm | Stepsize | Rate |
Bhandari et al. [2] Last iterate ¢ /t' O(1/t)
Averaged iterate O(1//1)
| Dalal et al. [6] | Last iterate | 1 /z‘" | o@/t*) |
Lakshminarayanan and | Constant step-size c O(1/t)
Szepesvari [12] with averaging
Prashanth et al. [17] Last iterate c/n,cox 1/p | O(1/t)
Averaged iterate c/t* ¢>0 O(1/t*)
Our work Tail-averaged TD c>0 O(1/t)
Regularised TD? c>0 O(1/t)

TStep-size requires information about eigenvalue of the feature covariance matrix X.
2The convergence here is to the regularised TD solution.

Table 2: Summary of the high-probability bounds of the
form P |:||9Alg,t — 9*||§ < h(t)}, where 6* is the TD fixed
point, fajg,; is the parameter picked by an algorithm after ¢

iterations of TD, and h(t) is a function of ¢ that depends on
Alg.

| Reference | Algorithm | Step-size | A(t) |
| Dalaletal. [6] | Lastiterate |  1/t* | O(1/t%) |
Prashanth et al. [17] Last iterate c/n,ex 1/p | O(1/t)
Averaged iterate | c¢/t*, c¢>0 | O(1/t%)
Our work Tail-averaged TD c>0 O(1/t)
Regularised TD? c>0 O(1/t)

The convergence here s to the regularised TD solution.

The analysis presented in this work is closely related to
bounds established in [2, 17, 12], where the authors pro-
vide an O(1/t) bound in expectation on the mean square
error of the parameters. Our bounds match the overall or-
der of these bounds under comparable assumptions. The
principal advantage with our bounds is that they hold for a
‘universal’ step-size choice, while the aforementioned ref-
erences required the knowledge of p. Another advantage
with our bounds, owing to tail averaging, is that the ini-
tial error is forgotten exponentially fast, while the corre-
sponding term in the aforementioned references exhibit a
power law decay. In another related work, for a univer-
sal step-size the authors in [6] provide a O(1/t) bound in
expectation, where o € (0, 1), while we obtain a O(1/t)
bound under similar assumptions. Finally, high-probability
bounds for TD have been derived in [6, 17]. In comparison
to these works, the high-probability bound that we derive
is easy to interpret and exhibits better concentration prop-
erties. The related Q-learning algorithm and modifications
have also been considered in the finite-time regime with
linear function approximation (cf. [5, 4] and the references
therein). However, these results too require the knowledge
of the condition number to set the step-size.
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The rest of the paper is organised as follows: In Section 2,
we present the main model of TD with function approx-
imation used for our analysis. In Section 3, we describe
the tail-averaged TD algorithm, and also present the finite
time bounds for this algorithm. In Section 4, we combine
tail-averaging with regularisation in a TD algorithm, and
provide finite time bounds for this algorithm. In Section 5,
we present a sketch of the proofs of our main results, and
the detailed proofs are available in [14, Section 6]. In Sec-
tion 6, we discuss the extension of our results to address the
case of Markov sampling. Finally, in Section 7, we provide
the concluding remarks.

2 TD with linear function approximation

Consider an MDP (S, A, P,r,3), where S is the state
space, A is the action space, P(s’|s,a) is the probability
of transitioning to the state s’ from the state s on choos-
ing action a, r : S x A — R is the per step reward, and
B € (0,1] is the discount factor. We assume that the state
and action spaces are both finite. A stationary randomised
policy m maps every state s to a distribution over actions.
For a given policy 7, we define the value function V™ as
follows:

V7™(s) = E™F [Zﬂtr(st, at)|So = s} , (1)

t=0

where the action a; in state s; is chosen using policy T,
i.e., a; ~ m(s¢). The value function V™ obeys the Bellman
equation 7"V™ = V™, where the Bellman operator 77 is

defined by (77V)(s) £ E™F [r(s,a) + BV(S/):|, where

the action a is chosen using 7, i.e., a ~ 7(s) and the next
state " is drawn from P(:|s).

2.1 Value function approximation

Most practical applications have high-dimensional state-
spaces making exact computation of the value function in-
feasible. One solution to overcome this problem is to use
a parametric approximation of the value function. In this
work, we consider the linear function approximation ar-
chitecture [22], where the value function V™ (s), for any
s € S, is approximated as follows:

V7 (s) ~ V(s 0) := p(s)" 6. 2)
In the above, ¢(s) € R? is a fixed feature vector for
state s, and 0 € R% is a parameter vector that is shared
across states. When the state space is a finite set, say
S = {1,2,...,n}, the n-vector V(#) with components
17(5; 6) can be expressed as follows:

- $1(1)  ¢2(1) da(1)] |61
V(o) = : : : o, 3
$1(n)  P2(n) ¢a(n)| |0aq
——

P 0

where ® € R"*4 and § € R<.

The objective is to learn the best parameter for approximat-
ing V™ within the following linear space:

B:={®0 |6 c R} “4)

Naturally, with a linear function approximation, it is not
possible to find the fixed point V™ = 77V ™. Instead, one
can approximate V™ within B by solving a projected sys-
tem of equations. The system of equations, which is also
referred to as the projected Bellman equation, is given by

DO* = 1177 (D0), )

where II is the orthogonal projection operator onto the set
B using a weighted /5-norm. More precisely, let D =
diag(p(1),...,p(n)) € R™™ denote a diagonal matrix,
whose elements are given by the stationary distribution
p of the Markov chain underlying the policy m. We as-
sume that the stationary distribution exists (see Assump-
tion 1). Let |V, = V'V T DV denote the weighted norm
of a n-vector V, and assume that the matrix ® has full
column rank. Then, the operator II projects orthogonally
onto the B using the ||-|| , norm, and it can be shown that
I=&@ ' De)" ' D.

Next, the projected TD fixed point 8* for (5) is given by:

Af* =b, where A2 ®"D(I—3P)®, b2 d'DR,

(6)

and R =), 7(s,a)r(s,a).
2.2 Temporal Difference (TD) Learning

Temporal difference (TD) [22] algorithms are a class of
stochastic approximation methods used for solving the pro-
jected linear system given in (5). These algorithms start
with a initial guess for the 6, and at every time-step ¢ and
update them using samples from the Markov chain induced
by a policy .

The update rule is given as follows:
Or = 0t 1+ fe(0i—1), where
fr(0) £ (re + BT ¢(s1) — 07 ¢(51))p(s1).- @)
In the above, 7 is the step-size parameter.

An alternate version of the algorithm (which we consider
for deriving the high probability bounds) uses the projec-
tion I' as follows:

0r = T(Or—1 +7ft(0r-1))- ®

In (8), operator I' projects the iterate 6; onto the nearest
point in a closed ball C € R with a radius H, which is
large enough to include 6*.

An interesting result by [23] tells us that for any § € R?,
the function
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f(0) = (r(s,a) + BOTo(s") — 0T (s5))¢(s) has a well
defined steady-state expectation given by

BT = Y p(s)w(sm((r(s,a)
s,8’€S,ae A
T P(s/]s,0)807 (") — 9T¢T<s>>¢><s>>,
C))

We can rearrange (9) as >, e e P(8]5,0)(r(s,8") +
BOT¢(s})) = (T™®H)(s), and use [23, Lemma 8] to get
the following:

(10
1n

where A and b are as defined in (6). We can then charac-
terise the mean behaviour of TD algorithm using the fol-
lowing update rule:

EPP[f(0)] = T D(T™ (6) — )

0,5 = Qt_l + "}/((I)TD(TW(CI)Ht_l) — <I>0t_1)>

=01 +YEP[£(0,-1)). (12)

The characterisation of TD’s behaviour in (12) is of partic-
ular importance as it forms the basis of our analysis.

3 Tail-averaged TD
3.1 Basic algorithm

Tail averaging or suffix averaging refers to returning the
average of the final few iterates of the optimisation pro-
cess, to improve its variance properties. Specifically, for
any t, the tail-averaged iterate 05 v is the average of

{0k+1,-..,0:}, computed as follows:
| RN

Orin =+ Z 0s, 13)
1=k+1

where N =t — k.

An alternative to tail-averaging is the Polyak-Ruppert av-
eraging, where one takes an average of all the iterates.
This approach has the best asymptotic convergence rate,
as shown by [16]. However, from a non-asymptotic anal-
ysis viewpoint, it is usually observed that the initial er-
ror (the rate at which the initial point is forgotten) is for-
gotten slower with iterate averaging compared to the non-
averaged case, see [8]. Tail averaging retains the advan-
tages of iterate averaging while ensuring that the initial er-
ror is forgotten exponentially fast — a conclusion that can
be inferred from the finite time bounds that we derive for
the TD algorithm.

Algorithm 1 presents the pseudocode of the tail-averaged
TD algorithm.

A AW N =

Algorithm 1: Tail-averaged TD(0)

Input : Initial parameter 6, step-size -, initial state
distribution (, tail-average index k.
Sample an initial state so ~ (p ;
for t=0,1,...do
Choose an action a; ~ m(s;);
Observe 74, and next state s};
Update parameters: 6; = 60;_1 + v f(6:—1);
Average the final NN iterates:
k4N

> 6;, where N =t — k.
i=k+1

1
Orr1,n = 7

end

3.2 Finite time bounds

Before presenting our results, we list the assumptions under
which we conduct our analysis.

Assumption 1. The Markov chain underlying the policy 7
is irreducible.

Assumption 2. The samples {s, ¢, s} }+en are indepen-
dently and identically drawn from the following distribu-
tion given as p(s) P(s’|s) where p is the stationary distribu-
tion induced by the policy 7 and P is the MDP’s transition
probability matrix.

Assumption 3. Forall s € S,

P(s)lly < Pmax < o0

Assumption 4. For all s € S, and a € A, |r(s,a)| <
Rmax < 00.

Assumption 5. The matrix ¢ has full column rank.

Assumption 6. The set C = {0 € R?| |||, < H} used

for projection through I" satisfies H > %
We now discuss the assumptions listed above. Assump-
tion 1 ensures the existence of the stationary distribution for
the Markov chain underlying policy , since the underlying
state and action spaces are assumed to be finite. We study
the non-asymptotic behaviour of the tail-averaged TD al-
gorithm under the i.i.d observation model specified in As-
sumption 2, and later show that we can extend our results
to handle Markov sampling. Next, Assumptions 3 and 4
are boundedness requirements on the underlying features
and rewards, and are common in the finite time analysis
of the TD algorithm, see [2, 17]. Assumption 5 requires
the columns of the feature matrix ® to be linearly inde-
pendent, which ensures the uniqueness of the TD solution
0*. Tt also ensures that the minimum eigenvalue, say p’
of B = E*"P[®® 7] is strictly positive, which implies that
the minimum eigenvalue p of the matrix A defined in (6)
is strictly positive. Assumption 6 is required for the high-
probability bounds, while the bounds in expectation do not
require projection.
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The first result we state below is a bound in expectation on
the parameter error ||0;4+1,n — 9*||§.

Theorem 1 (Bound in expectation). Suppose Assump-
tions I to 5 hold. Choose a step-size y satisfying

1-5
1+ B)2e7,,

where (3 is the discount factor and ® .4 is a bound on the
features (see Assumption 3).

Yy S Ymax = (14)

Then the expected error of the tail-averaged iterate 0,1, N
formed using Algorithm 1 satisfies

10e(—k7(1=B)u")

* 12 * (12

E [”9k+1,N -0 HQ} < 72(1 — /8)2M/2N2E |:||00 —0 “2}
1002

e 3

where N = t — k, Oy is the initial point, 0 = (Rmax +
(1 + B)®2..110%|l,), with 8% denoting the TD fixed point
specified in (6), and ' is the minimum eigenvalue of B =

EFP [0 T).

Proof. See Section 5.1 for the proof sketch and [14, Sec-
tion 6] for detailed proof. O

A few remarks are in order.

Remark 1. 1t is apparent that the bound presented above
scales inversely with the square of (1 — 3)y/. More impor-
tantly, the bound presented above is for a step-size choice
that does not require information about the eigenvalues of
matrices A or B. To the best of our knowledge, this is the
first bound of O (1/t) for a ‘universal’ step-size for tail-
averaged TD. Previous results, such as those by [2, 17] pro-
vide a comparable bound, albeit for a diminishing step-size
of the form ¢/k, where setting ¢ requires knowledge of .
On the other hand, [6, 17] provide a O (1/t*) bound for
larger step-sizes of the form ¢/t*, where c is a universal
constant and o < 1

Remark 2. The first term on the RHS of (15) relates to the
rate at which the initial parameter 6y is forgotten, while the
second term arises from a martingale difference noise term
associated with the i.i.d. sampling model. Setting k = t/2,
we observe that the first term is forgotten at an exponential
rate, while the noise term is O(1/t).

Remark 3. In [12], the authors consider iterate averaging
in the linear stochastic approximation setting. Comparing
their Theorem 1 to the result we have presented above, we
note that the first term on the RHS of (15) exhibits an ex-
ponential decay, while the corresponding decay is of order
O(1/t) in [12]. The second term in their result as well as
in (15) is of order O(1/t). While the second dominates the
rate, the first term, which relates to the rate at which the
initial parameter is forgotten, decays much faster with tail

averaging. Intuitively, it makes sense to average after suf-
ficient iterations have passed instead of averaging from the
beginning, and our bounds confirm this viewpoint.

Remark 4. A closely related result under comparable as-
sumptions is Theorem 2 of [2]. This result provides two
bounds corresponding to constant and diminishing step-
sizes, respectively, while assuming the knowledge of pu.
The bound there corresponding to the constant stepsize for
the last iterate of TD is the sum of an exponentially decay-
ing ‘initial error’ term and a constant offset with the noise
variance. The second bound in the aforementioned work is
O(1/t) for both initial error and noise terms. The bound
we derived in (15) combines the best of these two bounds
through tail averaging, i.e., an exponentially decaying ini-
tial error and a O(1/t) noise term. As an aside, our bound
is for the projection-free variant of TD, while the bounds in
[2] requires projection, with an assumption similar to As-
sumption 6 specified.

Remark 5. Another closely related result is Theorem 4.4
of [17], where the authors analyse TD with linear function
approximation, with input data from a batch of samples.
One can easily extend their analysis to cover our i.i.d. sam-
pling model. As in the remark above, while the overall rate
is O(1/t) in their result as well as (15), the initial error in
our bound is forgotten much faster. A similar observation
also holds w.r.t. the bound in the recent work [3], but the
authors do not state their bound explicitly.

Remark 6. It is possible to extend our analysis to cover
the Markov noise observation model, as specified in Sec-
tion 8 of [2]. In this model, we assume that the underlying
Markov chain is fast mixing. For finite Markov chains, ir-
reducibility and aperiodicity is sufficient to establish this
(see Assumption 1). The fast mixing assumption allows
us to translate the i.i.d. sample bounds to Markov sample
bounds. We provide the details of such an extension in Re-
mark 8 and Section 6.

Next, we turn to provide a bound that holds with high prob-
ability for the parameter error ||0;41,n — 0* ||§ of the pro-
jected TD algorithm. For this result, we require the TD up-
date parameter to stay within a bounded region that houses
0*, which is formalised in Assumption 6.

Theorem 2 (High-probability bound). Suppose Assump-

tions I to 6 hold. Choose the step-size such that v < Ymax

where Ymax is defined in (14). Then, for any § € (0, 1], we

have the following bound for the projected tail-averaged
P(Wcr =071, < =

iterate Q41 N:
/\/>~l
4e(—kv(A=B)u )

JFW (|00 — 07]],]
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4o
) >1-4, (16)
(1- 6)u’vN>

where N, o, u, 0y, 0* are as specified in Theorem 1.

Proof. See Section 5.2 for the proof sketch and [14, Sec-
tion 6] for detailed proof. O

Remark 7. High-probability bounds for TD algorithm have
been derived earlier in [17, 6]. In comparison to Theorem
4.2 of [17], we note that our bound is an improvement since
the sampling error (the first and third terms in K(n) defined
above) decays at a much faster rate for tail-averaged TD.
Next, unlike [6], we note that our bound requires projec-
tion. However, it does exhibit a O(1/t) rate. The result by
[6] (Theorem 3.6) is of the form O(1/t*) where X is re-
lated to the p of A, and hence cannot be guaranteed to be
of order O(1/t).

Remark 8. Consider the case when Assumption 2 does not
hold, but we sample (s, r:,s}) from a trajectory corre-
sponding the policy . We assume exponential ergodicity
for the total variation distance as used in [2, 20], with mix-
ing time T,x. For this case, we consider a variant of TD
which uses one sample in every 0) (Tmix) consecutive sam-
ples for the update iteration. The guarantees for the result-
ing TD algorithm with tail averaging with N data points in
the trajectory correspond to the guarantees for 611 n- in

Theorem 2 where N = O (TN ), and (1 — ¢) is replaced

by (1 — 26). This gives an error of the order O (v ),
which is similar to the bounds in [2, Theorem 3]. These
follow from standard mixing arguments, and we refer to
Section 6 for further details. As an aside, we remark that
without further assumptions on the linear approximation, it
is information theoretically impossible to get a better bound
(cf. Theorem 2 in [13]).

4 Regularised TD Learning

In this section, we present the regularised TD algorithm.
From the results in Theorems 1 and 2 one can observe that
although tail-averaged TD achieves a O (%) rate of conver-
gence, the bounds depend inversely on (1 — 3)u’, where
1/ is the minimum eigenvalue of B = E*T[®®T]. In
the following results we will show that the non-asymptotic
bounds for regularised TD scale inversely with g (mini-
mum eigenvalue of matrix A). Such dependence may be
preferable over vanilla TD, as there are problem instances
where (1 — 8)p’ < p. To make this intuition more con-
crete, consider the following problem instance.

Example 1. Consider a two state MDP with the transition
dynamics as depicted in Figure 1, for a given policy, say
7. The one-dimensional state features are given as follows:
¢(1) =1, and ¢(2) = 3. For the case of p = 3, we have

A=(1/2) (6(1)* + 6(2)%) — B/4(6(1)* + 6(2)

b

R OWID O

p

Figure 1: A two state Markov chain

+6(1)6(2) + ¢(2)(1))
5 98
=1

Further, B = 2. Thus, for any 8 € [0, 1], we have
(1—-B)B < A.

Further, as 3 approaches 1, (1 — 8)B — 0, while A —
%. Since the convergence rate of tail-averaged TD depends
inversely on (1 — 3)u’ (see Theorems | and 2), there is
a concrete case for an algorithm whose convergence rate
depends on p instead of (1 — 8)u/. The regularised TD

variant that we present next achieves this objective.

4.1 Basic algorithm
Instead of the TD solution (6), we solve the following regu-
larised problem for a given regularisation parameter A > 0:

0%, = (A+ \I)~'b, (17)

reg —

The update for the regularised version of TD is as follows:

0r= (LY N)0s—1 +(re + B0, 6(s}) — 0,1 6(50))b(50)-
(18)

Similarly, the projected regularised TD update (which we
consider for deriving the high probability bounds) uses the
projection I" as follows:

B =T (T—y\) 01+ (re+ B0 6(5})—0,_ 1 6(s0))(51)-

19)
In (19), operator I" projects the iterate 6, onto the nearest
point in a closed ball C € R? with a radius H which is large

enough to include 67, .

Using arguments similar to vanilla TD, it is easy to see that
the iterate 6, converges to (17) under Assumptions 1 to 5,
and a standard stochastic approximation condition on the
step-size.

The overall flow of the regularised TD algorithm would be
similar to Algorithm 1, except that the iterate is updated ac-
cording to (18), and an additional regularisation parameter
is involved.

4.2 Finite time bounds

Using a technique similar to that used in establishing the
bound for tail-averaged TD in Theorem 1, we arrive at the
following bound in expectation for regularised TD.
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Theorem 3 (Bound in expectation). Suppose Assump-
tions 1 to 5 hold. Choose a step-size vy satisfying

)\

< = .
7= Hmax +(1+ B)2ak,,

(20)

Then the expected error of the tail-averaged regularised TD
iterate 041, N satisfies

2 10e(=F7(ut+X) R .
|:H9k+1 N — ereg 2:| = 72(M+ )\)QNQE |: ereg :|
1002
L2 21
TERE @D

where N =t —k, o (Rmax + (14 B8)Ph. HaregH )
and p is the minimum eigenvalue of the matrix A defined in

().

Proof. See Section 5.3 for the proof sketch, and [14, Sec-
tion 6] for the detailed proof O

Note that the result above bounds the distance to the reg-
ularised TD solution. In the next result we will show that
the distance between regularised TD iterate and vanilla pro-
jected TD fixed point is of O ()).

Corollary 1. Under conditions of Theorem 3, we have

0*

reg

2] 20e(—kY(u+X)) { R
2

———FE
= 2 (u+ AN
2)‘2(br2naer2nax

e+ A)

EM@HWw

)

(22)

+ 2002
(it NN

With a suitable choice of A, the following result shows that
regularised TD obtains a O (1/¢) rate (e.g., with k = ¢/2),
and the bound scales inversely with the eigenvalue p of the
matrix A. From the discussion earlier, recall that there are
problem instances where p > (1 — )/, and the bound for
tail-averaged TD sans regularisation depended inversely on

(L—=B)w'.
Corollary 2. Under conditions of Theorem 3, and with
)< e

A= T we obtain
mﬂ 202 R?

‘LLQN maszmax , (23)

(=kp)
where K = 20(1 + (1 + 5)® max\/ﬁ)%uw)%;gaxm

A few remarks are in order.

Remark 9. The choice of step-size in the bound of Theorem
3 is universal, i.e., does not require the knowledge of pu,
and the rate of convergence is O(1/t), if we set k = t/2,
or any constant multiple of ¢. Although the regularised TD
iterate converges to (17), which is different from the vanilla
TD fixed point, in Corollary 1 we show that the distance
between the regularised and vanilla TD solutions is O()).
This implies that for a small value of )\, the regularised TD
solution is a good proxy for the vanilla TD, and one can
use regularised TD iterate can be used in place of vanilla
TD iterate, to obtain a good approximation to the TD fixed
point.

Remark 10. The initial and sampling errors in (21) are as
in the tail-averaged TD (see Theorem 1), i.e., initial error is
forgotten at an exponential rate, while the sampling error is

O(1/t).

Remark 11. In [17], the authors analyse the iterate-average
variant of TD, and derive a O(1/t*) bound for a step-size
©(1/k*), where 1/2 < o < 1. Further, their step-size
choice is universal as is the case of tail-averaged TD. Our
bound for regularised TD exhibits a better rate than [17].

Next, we present a high-probability bound for regularised
TD in the spirit of Theorem 2.

Theorem 4 (High-probability bound). Suppose Assump-
tions I to 6 hold. Choose the step-size such that v < Vmax
where Ymax is defined in (20). Then, for any 6 € (0,1], we
have the following bound for the projected tail-averaged
regularised TD iterate HA;H_L N

<H9k+1N reg 2S M+)\\F“
ky(u+X)) R .
+7@?§NE[M a%]

40
+(u+)\)\/ﬁ> =1

where N, o, i, éo, 0

— 4,

reg are as specified in Theorem 3.
Proof. See Section 5.4 for a proof sketch, and [14, Section
6] for the detailed proof. O

As discussed in Remark 8 and Section 6 for tail-averaged
TD sans regularisation, it is straightforward to extend the
results in Theorems 3 and 4 to cover the case of Markov
sampling.

5 Proof Ideas
5.1 Proof of Theorem 1 (Sketch)

Proof. We present the framework for obtaining the results
obtained in the paper; the framework has been introduced
in the work of [17, 2, 6]. Towards that end, we begin by
introducing some notation. First, we define the centered
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error z; = 0, — 0*. Using the TD update (7), the centred
error can be seen to satisfy the following recursive relation:

2z = (I —~yap)ze—1 + v f(07), (24)

where f(-) defined as in (7), and
a £ P(se)p(se) " — /&b(st)éb(sg)r

The centred error is decomposed into a bias and variance
term as follows:

E [|lz3] = 2E [[|c" 2ol

t t
+292 Y E |7 D ot g (67)
k=0 k=0 9
— 2thias + Q,YQZXariance7 (25)
where
i — (I—va;))XT—~ai—1)...(T—~a;), ifi>=j,
I, otherwise.

The bias term is then bounded as follows:
i 2
202 < exp(—y(1 = B)u't)E[|| 205

On the other hand, the variance term is bounded above by

2
variance < g

& BRI

The centered error corresponding to the tail-averaged it-
L E+N

erate 041 Ny iS given by zp1 Ny = % Zi:kﬂ z;. The

analysis proceeds by bounding the expectation of the norm

E[||zk+1.n5 ||§] using the following decomposition:

k+N

> El03]

a1 1
E [||2k+1,NH2} <z
i=k+1
k+N—-1 k+N )

+2 Z Z E[z:zj]

i=k+1 j=i+1

Using the definitions of 225 and z}2"¢, we simplify the
RHS above as follows:

2 4
E [”%+1,N”§} < el <1 + M)

bias
Zkt1,N

k+N

bias
E i

i=k+1

k+N

2 4 ;
+ —(1+ )'72 Z%/anance’
v () 2

i=k+1

variance
Zk+1,N

(26)
where 2912 and z¥2"ance are defined in (25).

The main result follows by substituting the bounds on
zbias and zyariance followed by some algebraic manipula-
tions. O

5.2 Proof of Theorem 2 (Sketch)

Proof. To obtain the high-probability bound, we use the
proof technique by Prashanth et al. [17], where we con-
sider separately the deviation of the centred error from its

mean, i.e., Zk+1,N||§ —-E [||zk+1NH§} We decompose
this quantity as a sum of martingale differences, establish a
Lipschitz property followed by a sub-Gaussian concentra-

tion bound to infer

P( Vsl — E [leerinlly] > )

2
< exp < - kN )’
(Rmax + (1 + B)H®Z,,,)2 >0y L7
27
Iy i+N g\~
where L; = 37000 (1 — B .
Next, under the choice of step-size ~y specified in the theo-
rem statement, we establish that

k+N

4
I

2"
i=k+1 H

The main claim follows by (i) substituting the bound ob-
tained above in (27); (ii) using the bound on I [|| 2541, ||
specified in Theorem 1; and (iii) converting the tail
bound resulting from (i) and (ii) into a high-probability
bound. O

5.3 Proof of Theorem 3 (Sketch)

The template for the proof of Theorem 3 is more or less
similar to Theorem 1. The main difference in the proof
technique is the following lemma that helps us capture the
effect of the interplay of the step-size and regularisation
parameters on the constants and decay rates in Theorem 3’s
result.

Lemma 1. With v < vymax as given in (20), the following
bound holds

H{I—W(AjL)\I)r{I_W(AjL/\I)} 2 <1—y(u+ N,
and
Iy <1 - A,

The main consequence of the above result is that the bounds
in Theorem 3 directly depend on the minimum eigenvalue
of A as opposed to the minimum eigenvalue of B in Theo-
rem [.

5.4 Proof of Theorem 4 (Sketch)

Similar to Theorem 3, high-probability bounds for regu-
larised TD depend on the p. The main lemma that helps
establish this result is as follows:
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Lemma 2. Let a; £ [¢(s;)¢(s;)" — Bo(s;)o(s)) "] and
Y < Ymaxo wlzere Ymax 1S set as per (20). Then for any F;_1
measurable § € R* we have

B[00+ 0)) (= 2O+ )01

< (= 2) [

and,

2

B[ -0+ i, 1714

(1o 222

) .

The rest of the proof then follows steps similar to that of
Theorem 2.

6 Bounds for Markov Sampling

In this section we will analyse the performance of tail-
averaged TD when (s;):en are drawn from a single sta-
tionary trajectory of the Markov chain with policy 7. To
derive our results we assume that the Markov chain is ex-
ponentially egrodic, which holds true for any finite Markov
chain which is irreducible. Let p denote the stationary dis-
tribution of the Markov chain under policy .

Assumption 7. With s; ~ p, there exist constants C' and
Tmix such that for every t, 7 € N

D(1) :=sup TV(st4-|5: = 5,p) < Cexp(—-=),
SGS mix

where TV denotes the total variation distance between
probability measures.

This is a standard assumption in the literature [2, 20]. We
now adapt Lemma 3 from [13] to our present setting.

Lemma 3 (Adaptation of Lemma 3 in [13]). Forany K €
N, define the random variable

SK,TL = ((817 82)7 (SK+1; SK+2)) (82K+1a 82K+2)7 L]
) (SnKJrh SnK+2))~
Let P™ denote the transition kernel for the Markov chain

under policy m. By p'®) denote the joint distribution of
(s1, 82). Under Assumption 7, we have

TV(SK,'m (0(2))®n) < ’I’LD(K — 1) < nC’eXp(_Kfl).

Tmix

Proof. Let Rg., = (P, TK41y -y TRK+1)
be the random  rewards  corresponding  to
Sk on and consider 1.1.d random variables

Skn = ((51,52), BKk+1, 5K +2)s (82K 41, S2K +2)
vy (Bnks1, Snk42)) ~ (p)®" along with the cor-

responding rewards Rk ,. We can define these random
variables on a common probability space such that

]P)((SK,na RK,TL) 7£ (SK,na RK,H))

<nD(K —-1) < nCexp(—Iin:xl).
(28)

O

Since the samples (s¢, r¢, st+1) now belong to a trajectory
(as opposed being i.i.d), we will modify Algorithm 1 in the
following ways to account for the mixing.

We fix K € N.

Modification 1: Run Algorithm 1 with data Sk ,,, R p
-i.e, we input (S¢x 41, "tk +1, Stic+2) at step t.

Modification 2:  Run Algorithm | with data Sk ., Rx -

Note that the Modification 2 is exactly same as running the
algorithm under Assumption 2 for n steps and therefore
the results of Theorem 2 apply to this case if we replace
N with n. By the results in Lemma 3, we conclude that
the trajectories (0;) generated by modification 1 and (6;)
generated by modification 2 can be coupled such that

P (9t)?:+11 e (ét)?;i_ll <nD(K —1).

This is based on the fact that whenever the algorithm is fed
with the same input, we obtain the same output. Setting
K = Tmix log(%), we conclude that under Assumption 7,

we have

P [00i2) # @it ] <. 29)

Therefore, we conclude the bounds in Remark 8.

7 Conclusions

We presented a finite time analysis of tail-averaged TD al-
gorithm. We obtained O (1) bounds, both in expectation as
well as high-probability, for a step-size choice that is ‘uni-
versal’, and this is an improvement over previously known
results. Additionally, we proposed and analysed a variant
of TD that incorporated regularisation. This algorithm in
conjunction with tail averaging was shown to be useful over
vanilla tail-averaged TD on problem instances, where the
feature matrix is ill-conditioned.
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