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Abstract

Despite superior performance in many situations,
deep neural networks are often vulnerable to ad-
versarial examples and distribution shifts, lim-
iting model generalization ability in real-world
applications. To alleviate these problems, recent
approaches leverage distributional robustness op-
timization (DRO) to find the most challenging
distribution, and then minimize loss function over
this most challenging distribution. Regardless
of having achieved some improvements, these
DRO approaches have some obvious limitations.
First, they purely focus on local regularization to
strengthen model robustness, missing a global reg-
ularization effect that is useful in many real-world
applications (e.g., domain adaptation, domain
generalization, and adversarial machine learning).
Second, the loss functions in the existing DRO
approaches operate in only the most challenging
distribution, hence decouple with the original dis-
tribution, leading to a restrictive modeling capa-
bility. In this paper, we propose a novel regulariza-
tion technique, following the veins of Wasserstein-
based DRO framework. Specifically, we define a
particular joint distribution and Wasserstein-based
uncertainty, allowing us to couple the original and
most challenging distributions for enhancing mod-
eling capability and enabling both local and global
regularizations. Empirical studies on different
learning problems demonstrate that our proposed
approach significantly outperforms the existing
regularization approaches in various domains.

1 Introduction

As the Wasserstein (WS) distance is a powerful and conve-
nient tool of measuring closeness between distributions,
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Wasserstein Distributional Robustness (WDR) has been
one of the most widely-used variants of DR. Here we con-
sider a generic Polish space .S endowed with a distribution
P. Letr : S — R be a real-valued (risk) function and
c¢: 5 xS — Ry be a cost function. Distributional robust-
ness setting aims to find the distribution P in the vicinity of
P and maximizes the risk in the expectation form (Blanchet
and Murthy, 2019; Sinha et al., 2018):

@ o

where € > 0 and W, (P, If”) = infver(ﬂ”,ﬂ”) [ edy denotes

sup E
P, (IP’,I@’) <eZ~P

an optimal transport (OT) or a WS distance with the set of

couplings I' (]P’7 I@’) whose marginals are P and P.

Direct optimization over the set of distributions P is often
computationally intractable except in limited cases, we thus
seek to cast this problem into its dual form. With the as-
sumption that » € L' (P) is upper semi-continuous and the
cost ¢ is a non-negative and continuous function satisfying
c(Z, Z) =0iff Z = Z, (Blanchet and Murthy, 2019; Sinha
et al., 2018) showed the dual form for Eq. (1) is:

} )

et 2, r(2) e (2.2))

Z
When applying DR to the supervised learning setting,
Z = (X' , }7) is a pair of data/label drawn from P and 7 is
the loss function (Blanchet and Murthy, 2019; Sinha et al.,
2018). The fact that r engages only 7 = (X', Y) ~P

certainly restricts the modeling capacity of (2). The rea-
sons are as follows. ~Firstly, for each anchor Z, the most
challenging sample Z is currently defined as the one maxi-

mizing sup ; {r(Z) —Xe(Z, Z)}, where (Z) is inherited
from the primal form (1). Hence, it is not suitable to express
the risk function r engaging both Z and Z (e.g., Kullback-
Leibler divergence KL (p (Z ) lp(Z )) between the pre-
dictions for Z and Z as in TRADES (Zhang et al., 2019)).

Secondly, it is also impossible to inject a global regulariza-
tion term involving a batch of samples Z and Z.

Contribution. To empower the formulation of DR for effi-
ciently tackling various real-world problems, in this work,
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we propose a rich OT based DR framework, named Global-
Local Optimal Transport based Distributional Robustness
(GLOT-DR). Specifically, by designing special joint distribu-
tions P and P together with some constraints, our framework
is applicable to a mixed variety of real-world applications,
including domain generalization (DG), domain adaptation
(DA), semi-supervised learning (SSL), and adversarial ma-
chine learning (AML).

Additionally, our GLOT-DR makes it possible for us to
equip not only a local regularization term for enforcing a lo-
cal smoothness and robustness, but also a global regulariza-
tion term to impose a global effect targeting a downstream
task. Moreover, by designing a specific WS distance, we
successfully develop a closed-form solution for GLOT-DR
without using the dual form in (Blanchet and Murthy, 2019;
Sinha et al., 2018) (i.e., Eq. (2)).

Technically, our solution turns solving the inner maximiza-
tion in the dual form (2) into sampling a set of challenging
particles according to a local distribution, on which we can
handle efficiently using Stein Variational Gradient Decent
(SVGD) (Liu and Wang, 2016) approximate inference al-
gorithm. Based on the general framework of GLOT-DR,
we establish the settings for DG, DA, SSL, and AML and
conduct experiments to compare our GLOT-DR to state-of-
the-art baselines in these real-world applications. Overall,
our contributions can be summarized as follows:

* We enrich the general framework of DR to make it
possible for many real-world applications by enforcing
both local and global regularization terms. We note
that the global regularization term is crucial for many
downstream tasks (see Section 3.1 for more details).

* We propose a closed-form solution for our GLOT-
DR without involving the dual form in (Blanchet and
Murthy, 2019; Sinha et al., 2018) (i.e., Eq. (2)). We
note that the dual form (2) is not computationally
tractable due to the minimization over .

* We conduct comprehensive experiments to compare
our GLOT-DR to state-of-the-art baselines in DG, DA,
SSL, and AML. The experimental results demonstrate
the merits of our proposed approach and empirically
prove that both of the introduced local and global regu-
larization terms advance existing methods across vari-
ous scenarios, including DG, DA, SSL, and AML.

2 Related Work

Distributional robustness (DR). DR is an attractive frame-
work for improving machine learning models in terms of
robustness and generalization. Its underlying idea is to find
the most challenging distribution around a given distribution
and then challenge a model with this distribution. To charac-
terize the closeness of a distribution to a center distribution,
either a f-divergence (Ben-Tal et al., 2013; Duchi et al.,,

2021, 2019; Miyato et al., 2015; Namkoong and Duchi,
2016) or Wasserstein distance (Blanchet et al., 2019; Gao
and Kleywegt, 2016; Kuhn et al., 2019; Mohajerin Esfahani
and Kuhn, 2015; Shafieezadeh-Abadeh et al., 2015) can be
employed. Other works (Blanchet and Murthy, 2019; Sinha
et al., 2018) developed a dual form for DR, opening the door
to incorporate DR into the training of deep learning models.

Adversarial Robustness (AR). Neural networks are gener-
ally vulnerable to adversarial attacks, notably FGSM (Good-
fellow et al., 2014), PGD (Madry et al., 2018), and Auto-
Attack (Croce and Hein, 2020). Among various kinds of
defense approaches, Adversarial Training (AT), originating
in (Goodfellow et al., 2014), has drawn the most research
attention. Given its effectiveness and efficiency, many vari-
ants of AT have been proposed with: (1) different types of
adversarial examples (e.g., the worst-case examples (Good-
fellow et al., 2014) or most divergent examples (Zhang et al.,
2019)), (2) different searching strategies (e.g., non-iterative
FGSM and Rand FGSM (Madry et al., 2018)), (3) additional
regularization (e.g., adding constraints in the latent space
(Bui et al., 2020; Zhang and Wang, 2019)). Inspired by
the potential of DR, it has been applied to enhance model
robustness in (Dong et al., 2020; Levine and Feizi, 2020;
Miyato et al., 2018; Sinha et al., 2018; Nguyen-Duc et al.,
2022; Bui et al., 2022; Le et al., 2022; Hoang et al., 2020).

Transfer Learning (TL). Domain adaptation (DA) and
domain generalization (DG) are two typical settings in TL.
As for domain adaptation, (Ganin et al., 2016; Li et al.,
2020; Long et al., 2017a; Nguyen et al., 2022; Le et al.,
2021; Nguyen et al., 2021b,c,a) aim at training a model
based on a labeled source domain to adapt to an unlabeled
target domain, while the works in DG (Balaji et al., 2018;
Bousmalis et al., 2016; Li et al., 2017, 2018, 2019; Mancini
et al., 2018; Phung et al., 2021) aim at training a model
based on multiple labeled source domains to predict well on
unseen target domains. Finally, in more recent work, it was
leveraged with DG in (Zhao et al., 2020) and DA in (Wang
et al., 2021).

3 Proposed Approach

In this section, we first introduce the GLOT-DR frame-
work and provide the theoretical development in Section 3.1.
Then Section 3.2 presents the general training procedure
of our proposed approach, and the detailed formulations of
scenarios are described in the remainder of this section.

3.1 Our Framework

We propose a regularization technique based on optimal
transport distributional robustness that can be widely ap-
plied to many settings including i) semi-supervised learning,
ii) domain adaptation, iii) domain generalization, and iv)
adversarial machine learning . In what follows, we present
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Figure 1: Overview of GLOT-DR. We sample [X i Yki]i _’“1 for each source domain, [X i ]i_l for the target domain,

- ~ ~\11/4a ~
and define 7,7 as in Eqs. (3.4). For (Z,2) ~ v satistying B, [0 (2,2)] " < e, we have X5, = X5 = X5,

vT _ vT _ vT : S
X;o = X;o = X; . Besides, inj

with j > 1 can be viewed as the perturbed examples in the ball B, (X;), which have

the same label 3. Similarly, X with j > 1 can be viewed as the perturbed examples in the ball B, (X]).

the general setting along with the notations used throughout
the paper and technical details of our framework.

Assume that we have multiple labeled source domains with
the data/label distributions {P} }211 and a single unla-

beled target domain with the data distribution PT. For
the k-th source domain, we draw a batch of B,f exam-

ples as (X,f’i,YkSi) i Pf, where i = 1,.. .,B,f. Mean-
while, for the target domain, we sample a batch of BT
examples as X 8 PpT i =1,...,BT. It is worth not-

ing that for the DG setting, we set BT = 0 (i.e., not
use any target data in training). Furthermore, we exam-
ine the multi-class classification problem with the label
set Y := {1,...,M}. Hence, the prediction of a classi-
fier is a prediction probability belonging to the label sim-
plex Ay = {7r cRM . |7l =land 7w > 0}. Finally, let
fu = hgogy with ¢ = (¢, 0) be parameters of our deep net,
wherein g4 is the feature extractor and hy is the classifier
on top of feature representations.

Constructing Challenging Samples: As explained below,
our method involves the construction of a random variable Z
with distribution P and another random variable Z with dis-
tribution P, “containing” anchor samples (X inv Y,f; ) XTI
(X8, ¥,) X5 (see Fig-
ure 1 for the illustration). The inclusion of both anchor
samples and perturbed samples allows us to define a uni-
fying cost function containing local regularization, global
regularization, and classification loss.

and their perturbed counterparts

Concretely, we first start with the construction of Z, con-

taining repeated anchor samples as follows:

B{

S
n Trn
7 = “[X;fij,)kij}k__l} :| _ 0, |:[XijL_—1
=

i=1

Here, each source sample is repeated n° + 1 times
(X,fij, Y,gj) = (X¢.,Y,5), Vj, while each target sample
is repeated n” + 1 times X = X[, Vj. The correspond-
ing distribution of this random variable is denoted as IP. In
contrast to Z, we next define random variable 7 ~ I@’ whose

form is
[ R G

Here we note that for X ,fl ;» the index k specifies the k-th
source domain, the index ¢ specifies an example in the k-th
source batch, while the index j specifies the j-th perturbed
example to the source example X ,fl Similarly, for XE; , the
index ¢ specifies an example in the target batch, while the
index j specifies the j-the perturbed example to the target
example X[ .

S
K By, BT

7 =

k=1 i=1

[%2,072)

=1

We would like Z to contain both: i) anchor examples, i.e.,
(X]i(ﬁ ?ks;0> = (X]f,” Yk’s;) and X;l(; = XT

T i) n® per-
~ ~ nS
turbed source samples {(X ,fij, Y ]>}

j=1
T

to (X, Y5)

n
K2

and n” perturbed target samples {X E;} to X In order
i=1

to impose this requirement, we only consider sampling Z
from distribution IP inside the Wasserstein-ball of I?, i.e., sat-
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Q=

isfying W, (JP, f@) = weip%f»,@(z%w [p (Z, Z)] <e

where the cost metric p is defined as

K B
(Z Z) *OOZZ ‘Xmo szO
k=1 1=1
. +zzzuxm i,
=11i= 1] 1
+Z Z H (Ykzy Ykz])
i=1 j=1 =1li=1}

where p; is a metric on the label simplex Ay; and ¢ > 1.
Here we slightly abuse the notion by using ¥ € )Y to
represent its corresponding one-hot vector. By defini-
tion, this cost metric almost surely: i) enforces all 0-th
(i.e., j = 0) samples in Z to be anchor samples, i.e.,

X5 wio = Xrio = X3 ii) allows perturbations on the in-
put data, i.e., ka # X, and X}; # X, for Vj # 0;
iii) restricts perturbations on labels, i.e., Yk‘j = Yk‘s; y for
Vj (see Figure | for the illustration). The reason is that if
either (i) or (iii) is violated on a non-zero measurable set

then W, (IE”, ]f”) becomes infinity.

Learning Robust Classifier: Upon clear definitions of Z
and P, we wish to learn good representations and regularize
the classifier fy,, via the following DR problem:

rgu(;l r?;);)_EEZN@ [7‘ (Z, QS,Q)} . ®)

The cost function r (Z;(/),H) = art (Z;d),&) +
Bro (Z;¢, 9) ny (Z;¢,9) with a, 8 > 0 is defined
as the weighted sum of a local-regularization function
rt (Z; o, 9), a global-regularization function r9 (Z; o, 9),
and the loss function L (Z ; ¢, 0], whose explicit forms are
dependent on the task (DA, SSL, DG, and AML).

Intuitively, the optimization in Eq. (5) iteratively searches
for the worst-case P w.r.t. the cost r (-; ¢, 6), then changes
the network fy, to minimize the worst-case cost.

We now define

reUrER), 3 p(22)]" <

and show that the inner max problem in Eq. (5) is equivalent
to searching in I'.

S

Lemma 3.1. The optimization problem in Eq. (5) is equiva-
lent to the following optimization problem:

Ig,id? glealzi (Z,IZE)N’Y [’I‘ (Z; o, 9)] . (6)

To tackle the optimization problem (OP) in Eq. (6), we add
the entropic regularization and arrive at the following OP:

w5 [(Ze0]+m0). o

where A > 0 is the entropic regularization parameter and H
returns the entropy of a given distribution.

It is worth noting that minimizing the entropy H () encour-
ages more uniform . Moreover, when A becomes bigger,
the optimal solution of the OP in Eq. (7) gets closer to that
of (6). Additionally, the following theorem indicates the
optimal solution of the inner max in the OP in Eq. (7).

Theorem 3.2. Assuming r (Z;w) = arl (Z;z/}) +
Brd (Z,T/J) + L (Z,’L/)) with ¢ = (¢,0). In addition, Z

and Z are constructed as in Eq.(3) and Eq.(4), respectively.
Let ¢ denote the loss function, so the expected classification
loss becomes

L (Z ; 1/)) =
Moreover, let the global-regulazation 19 <Z,1/1) =

9 ([lezo} i [X%L ;w) depend only on anchor sam-

ples, while the local-regularization depend on the differ-
ences between anchor samples and perturbed samples,

7t (Z;’L/}) =
K B,f nf

SO (R X5 0)

k=11i=1 j=1

K B,‘f nf

S ().

k=1i=1 j=0

BT nT

>3 s (X XGw) +

i=1 j=1

where s (XO, X i3 LZJ) measures the difference between 2

input samples, and s (X, X ;1) = 0,VX. To this end, the
inner max in the OP when q = oo has the following solution

K Bk "k BT T
k=1i=1j=0 1=135=0

K Bp ny BT nT
TTTITI @ (%8 1 X8 visie) [T o (551 x550),
k=11i=13j=0 i=1j=1

®)
where B.(X) := {X"HX’fXH §e} is the e-
ball around X, (X8, V5)"F M s g, xT_, %
PT, pg is the density functlon of P, pT is the

density function of PT, ¢, ( i | X2, 1551/’) x
exp {)\[as(X,fi,X,‘ij;lb) + K(inj, Yki;d))}} is the local
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distribution over B, (X;) around the anchor example
X,fi,andqiT(NT| )ocexp{)\as(XT X],dJ)}
is the local distribution over B, (X}") around the anchor
example X}

The optimal v* in Eq. (8) involves the local distributions q,fi
around the anchor example X3, and g7 around the anchor
example X' By substituting the optimal solution in Eq. (8)

back to Eq. (6), we reach the following OP with ¢ = (¢, 6):
min E [7’ (2;1/1)] ;)
Y vk (X,fl,YkS)Bk Mg XT L RPT

where r (Z ; 1/)) is defined as

e Eg (09K X ) + 88, )
+[)}£%qu Jas (X7 XT50)]
+pr ([X5],,, [XT],50)  (0)

with the local distribution qy; over B. (X};) and the local
distribution gl over B, (X T).

As shown in Eq. (10), the peIturbed examples XS i
pled from the local distribution q,ﬂ over the ball B (X ki),
while the perturbed examples X;"; are sampled from the
local distribution g over the ball B. (X]"). Due to the

formula of ¢, the perturbed examples X} ; tend to reach

- are sam-

the high-likelihood region of q,fl or high-valued region for
exp {)\[as(X,m, X5,50) + UK, V8] | We hence
can interpret X3 jij as adversarial examples that maxi-
mize Ajas( Xy, Xku $1) + £(X3 5, Yy ). Subsequently,
in (10) we update 7/ to minimize )\[as(X,i,ka,w) +

UXE;
K -
Similarly, we can interpret the perturbed examples X 5 .

Y;3:1))] w.r.t. the perturbed adversarial examples.

Additionally, we can equip the global-regularization func-
tion 79 ([X A hi [(XT], ;1/1) to suit various characteris-
tics for the task, e.g., bridging the distribution shift between
source and target domains in DA, between labeled and unla-
beled portions in SSL, and between benign and adversarial
data examples in AML, as well as learning domain invariant
features in DG. Moreover, our global and local regular-
ization terms can be naturally applied to the latent space
induced by the feature extractor g4. Furthermore, the theory
development for this case is similar to that for the data space
except replacing X in the data space by g, (X) in the latent
space.

3.2 Training Procedure of Our Approach

In what follows, we present how to solve the OP in
Eq. 9) efﬁciently Accordingly, we first need to sam-

ple (X,fi,Y,f;) ) IPS vk anXmTBT % PT. For each
nS

source anchor (in, Y,ﬂ.), we sample [X,fij} i q,f in
j=1

the ball B, (X i ) with the density function proportional
to exp {)\ as(XJ, &) + (e, Y5 ¢)]} Furthermore, for

iid

T

~ n

each target anchor X!, we sample [Xg;] ~ qf
=1

the ball B, (XZT ) with the density function proportional
to exp{Aas (X[, e;1) }.

To sample the particles from their local distributions, we use
Stein Variational Gradient Decent (SVGD) (Liu and Wang,
2016; Phan et al., 2022) with a RBF kernel with kernel width
o. Obtained particles X, and X7 are then utilized to min-
imize the objective function in Eq. (9) for updating ¢ =
(¢, 0). Specifically, we utilize cross-entropy for the classifi-
cation loss term ¢ and the symmetric Kullback-Leibler (KL)

divergence for the local regularization term s (X X w) as
LKL (£0 (X) 1f0 (X)) +3KL (£ (X) 152 (X))
Finally, the global-regularization function of interest

r9 ([X,i] oo [ XE L 1/1) is defined accordingly depending
on the task and explicitly presented in the sequel.

3.3 Setting for Domain Adaptation and
Semi-supervised Learning

By considering the single source domain as the labeled
portion and the target domain as the unlabeled portion, the
same setting can be employed for DA and SSL. Particularly,
we denote the data/label distribution of the source domain
or labeled portion by ]P’fll and the data distribution of target
domain or unlabeled portion by P1*. Notice that for SSL,
PT1* could be the marginal of PSI* by marginalizing out
the label dimension. Evidently, with this consideration,
DA and SSL are special cases of our general framework
in Section 3.1, where the global-regularization function of

interest 9 ( [ XF] ., [XT] w is defined as
(L

A
Wa ﬁ;%s,ﬁ;%; : (11)
1= Jj=

where US =[5 (X7) ho (96 (X9))]. UF =
(96 (XT) , h (94 (XT))]. and 4 is the Dirac delta distri-
bution. The cost metric d is defined as

d (U7, U}) = pa (96 (X7) 96 (X]))

+vpou (ho (96 (X; )) he (94 (XT))) g
(12)
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Table 1: Single domain generalization accuracy (%) on CIFAR-10-C and CIFAR-100-C datasets with different backbone
architectures. We use the bold font to highlight the best results.

Datasets Backbone  Standard Cutout CutMix AutoDA Mixup AdvTrain ADA ME-ADA GLOT-DR
AllConvNet 69.2 67.1 68.7 70.8 75.4 71.9 73 78.2 82.5
DenseNet 69.3 67.9 66.5 73.4 75.4 724 69.8 76.9 83.6
CIFAR-10-C | WideResNet 73.1 73.2 72.9 76.1 77.7 73.8 79.7 83.3 844
ResNeXt 72.5 71.1 70.5 75.8 774 73 78 83.4 84.5
|  Average 71 69.8 69.7 74 76.5 72.8 75.1 80.5 83.7
AllConvNet 43.6 432 44 449 46.6 44 45.3 51.2 54.8
DenseNet 40.7 404 40.8 46.1 44.6 44.8 452 47.8 53.2
CIFAR-100-C | WideResNet 46.7 46.5 47.1 50.4 49.6 449 50.4 52.8 56.5
ResNeXt 46.6 454 459 48.7 48.6 45.6 534 57.3 58.4
|  Average 444 439 44.5 47.5 474 44.8 48.6 52.3 55.7
where pg is a metric on the latent space and v > 0. where UP = [gs (X)) ho (90 (XT))]. U =

With the global term in Eq. (11), we aim to reduce the
discrepancy gap between the source (labeled) domain and
the target (unlabeled) domain for learning domain-invariant
representations. It is worth noting that this global term in
Eq. (11) was inspected in DeepJDOT (Damodaran et al.,
2018) for DA setting. Our approach is different from that
approach in the local regularization term.

3.4 Setting for Domain Generalization

By setting BT = 0 (i.e., not use any target data in train-
ing), our general framework in Section 3.1 is applicable to
DG, wherein the global-regularization function of interest

v <[X’§Z]kw (X7, ﬂﬁ) is

M K 1
> 3 W (B Bu).

m=1k=1

13)

where the cost metric d = pq is a metric on the latent

space, Py, is the empirical distribution over g4 (X7;) with
- K -

Ykg =m,and P, = % > k1 Prm.

3.5 Setting for Adversarial Machine Learning

For AML, we have only single source domain and need
to train a deep model which is robust to adversarial ex-
amples. We denote the data/label distribution of the
source domain by P; and propose using a dynamic and
pseudo target domain of the on-the-fly adversarial examples

san
[(X7] » . In addition to the local and loss terms as
lijl;—1 1

in Eq. (9), to strengthen model robustness, we propose the
following global term to move adversarial examples (~ PT)
to benign examples (~ PY):

nS

1 BY 1 BY
Wi | == E 0ys, == g E é ,
"\ B =7 Bfnd vi

i=1 j=1

(14)

(96 (X0i;) + ho (90 (XT3;))]. and the metric d is
d (Uis ) Uz@) =Iys—vs [ﬂd (9¢ (XT1) 90 (Xf]))

i (o ) 0 o (32))) ] 19

where [ is the indicator function. Here we note that X 1S;j is
an adversarial example of X % which has the ground-truth
label Yg , hence by using the cost metric as in Eq. (15), we
encourage the adversarial example X % to move to a group
of the benign examples with the same label.

Finally, to tackle the WS-related terms in equations. (11,13,
and 14), we employ the entropic regularization dual form
of WS, which was demonstrated to have favorable computa-
tional complexities (Lin et al., 2020, 2019a,b).

4 Experiments

To demonstrate the effectiveness of our proposed method,
we evaluate its performance on various experiment proto-
cols, including DG, DA, SSL, and AML. Due to the space
limitation, the detailed setup regarding the architectures and
hyperparameters are presented in the supplementary mate-
rial'. We tried to use the exact configuration of optimizers
and hyper-parameters for all experiments and report the
original results in prior work, if possible.

4.1 Experiments for DG

In DG experiments, our setup closely follows (Zhao et al.,
2020). In particular, we validate our method on the CIFAR-
C single domain generalization benchmark: train the model

'Our codes are available at https://github.com/
VietHoangl512/GLOT
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Table 2: Multi-source domain generalization accuracy (%) on PACS datasets. Each column title indicates the target domain

used for evaluation, while the rest are for training.

| DSN | L-CNN | MLDG | Fusion | MetaReg | Epi-FCR | AGG | HEX | PAR | ADA | ME-ADA | GLOT-DR

At | 611 | 629 | 662 | 641 | 69.8 647 | 634 | 668 | 66.9 | 643 | 67.1 66.1
Cartoon | 66.5 | 67.0 | 669 | 668 | 704 723 | 66.1 | 69.7 | 67.1 | 69.8 | 69.9 723
Photo | 833 | 895 | 880 | 902 | 91 86.1 | 885 | 87.9 | 88.6 | 851 | 886 90.4
Sketch | 58.6 | 57.5 | 590 | 60.1 | 59.2 650 | 56.6 | 563 | 62.6 | 604 | 63.0 65.4
Average | 674 | 692 | 700 | 703 | 726 | 720 | 687|702 | 713|699 | 722 | 735

on either CIFAR-10 or CIFAR-100 dataset (Krizhevsky
et al., 2009), then evaluate it on CIFAR-10-C or CIFAR-
100-C (Hendrycks and Dietterich, 2019), correspondingly.
In terms of network architectures, we use the exact back-
bones from (Zhao et al., 2020) to examine the versatility
of our method that can be adopted in any type of classifier.
GLOT-DR is compared with other state-of-the-art methods
in image corruption robustness: Mixup (Zhang et al., 2018),
Cutout (DeVries and Taylor, 2017) and Cutmix (Yun et al.,
2019), AutoDA (Cubuk et al., 2019), ADA (Volpi et al.,
2018), and ME-ADA (Zhao et al., 2020).

Table 1 shows the average accuracy when we alternatively
train the model on one category and evaluate on the rest.
In every setting, GLOT-DR outperforms other methods by
large margins. Specifically, our method exceeds the second-
best method ME-ADA (Zhao et al., 2020) by 3.2% on
CIFAR-10-C and 3.4% on CIFAR-100-C. The substantial
gain in terms of the accuracy on various backbone architec-
tures demonstrates the high applicability of our GLOT-DR.

Furthermore, we examine multi-source DG where the classi-
fier needs to generalize from multiple source domains to an
unseen target domain on the PACS dataset (Li et al., 2017).
Our proposed method is applicable in this scenario since it
is designed to better learn domain invariant features as well
as leverage the diversity from generated data. We compare
GLOT-DR against DSN (Bousmalis et al., 2016), L-CNN
(Lietal., 2017), MLDG (Li et al., 2018), Fusion (Mancini
et al., 2018), MetaReg (Balaji et al., 2018), Epi-FCR, AGG
(Lietal., 2019), HEX (Wang et al., 2019b), and PAR (Wang
et al., 2019a). Table 2 shows that our GLOT-DR outper-
forms the baselines for three cases and averagely surpasses
the second-best baseline by 0.9%. The most noticeable im-
provement is on the Sketch domain (= 2.4%), which is
the most challenging due to the fact that the styles of the
images are colorless and far different from the ones from
Art Painting, Cartoon or Photos (i.e., larger domain shift).

4.2 Experiments for DA

In this section, we conduct experiments on the commonly
used dataset for real-world unsupervised DA - Office-31
(Saenko et al., 2010), comprising images from three do-
mains: Amazon (A), Webcam (W) and DSLR (D). Our

proposed GLOT-DR is compared against baselines: ResNet-
50 (He et al., 2016), DAN (Long et al., 2015), RTN (Long
etal., 2016), DANN (Ganin et al., 2016), JAN (Long et al.,
2017b), GTA (Sankaranarayanan et al., 2018), CDAN (Long
etal., 2017a), DeepJDOT (Damodaran et al., 2018) and ETD
(Li et al., 2020). For a fair comparison, we follow the train-
ing setups of CDAN and compare with other works using
this configuration. As can be seen from Table 3, GLOT-DR
achieves the best overall performance among baselines with
87.8% accuracy. Compared with ETD, which is another
OT-based domain adaptation method, our performance sig-
nificantly increase by 4.1% on A—W task, 2.1% on W—A
and 1.6% on average.

Table 3: Accuracy (%) on Office-31 (Saenko et al., 2010)
of ResNet50 model (He et al., 2016) in unsupervised DA
methods.

Method | AW D—W W=D A—=D D—A W—A | Avg
ResNet | 684 967 993 689 625 607 | 761
DAN 805 971 996 786 636 628 | 80.4
RTN 702 966 955 663 549 531 | 728
DANN 845 968 994 775 662 648 | 816
JAN 82 969 991 797 682 674 | 822
GTA 895 979 998 877 728 714 | 865

CDAN 93.1 98.2 100 89.8 70.1 68 86.6
Deep]DOT | 88.9 98.5 99.6 88.2 72.1 70.1 | 86.2
ETD 92.1 100 100 88 71 67.8 | 86.2

| 87.8

GLOT-DR ‘ 96.2 98.9 100 90.6 69.9 69.6

We further extensively investigate the role of different com-
ponents in GLOT-DR. Specifically, the elimination of the
global-regularization term in equation (11) downgrades our
method to Local Optimal Transport based Distributional
Robustness (LOT-DR). Similarly, when discarding the local
distribution robustness term, the attained method is denoted
by GOT-DR. We then compare these 2 variants of GLOT-
DR to the well-known adversarial machine learning method
VAT (Miyato et al., 2018). To be more specific, in the ad-
versarial samples generation, we apply VAT by perturbing
on the: (i) input space, (ii) latent space. Figure 2 shows that
the employment of VAT on latent space (orange) is more
effective than on the input space (purple), 83% and 80.6%.
However, using GOT-DR or LOT-DR is even more effective:
performance is boosted to 84.3% and 85.4%, respectively.
Lastly, using the full method GLOT-DR yields the highest
average accuracy score among all.
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Figure 2: Average accuracy of ResNet50 (He et al., 2016)
on Office-31: Comparision between GLOT-DR’s variants
and VAT (Miyato et al., 2018) on the input and latent spaces.

4.3 Experiments for SSL

Sharing a similar objective with DA, which utilizes the un-
labeled samples for improving the model performance, SSL
methods can also benefit from our proposed technique. We
present the empirical results on CIFAR-10 benchmark with
ConvLarge architecture, following VAT’s protocol (Miyato
et al., 2018), which serves as a strong baseline in this exper-
iment. We refer readers to the supplementary material for
more details on the architecture of ConvLarge. Results in
Figure 3 (when training with 1,000 and 4,000 labeled exam-
ples) demonstrate that, with only n° = n” = 1 perturbed
sample per anchor, the performance of LOT-DR slightly
outperforms VAT with ~ 0.5%. With more perturbed sam-
ples per anchor, this gap increases: approximately 1% when
n® =nT = 2and 1.5% when n® = n” = 4. Similar to the
previous DA experiment, adding the global regularization
term helps increase accuracy by ~ 1% in this setup.

76

[l VAT
@ LOT-DR
[ GLOT-DR

1000 labels

Accuracy
<
B

~
N

70
Number of particles (n®=n")

90
4000 labels

2
Number of particles (n°=n")

Figure 3: Accuracy (%) on CIFAR-10 of ConvLarge model
in SSL settings when using 1,000 and 4,000 labeled exam-
ples (i.e. 100 and 400 labeled samples each class). Best
viewed in color.

4.4 Experiments for AML

Table 4 shows the evaluation against adversarial examples.

We compare our method with PGD-AT (Madry et al., 2018)
and TRADES (Zhang et al., 2019), two well-known defense
methods in AML and SAT (Bouniot et al., 2021). For the
sake of fair comparison, we use the same adversarial train-
ing setting for all methods, which is carefully investigated
in (Pang et al., 2020). We also compare with adversarial dis-
tributional training methods (Dong et al., 2020) (ADT-EXP
and ADT-EXPAM), which assume that the adversarial distri-
bution explicitly follows normal distribution. It can be seen
from Table 4 that our GLOT-DR method outperforms all
these baselines in both natural and robustness performance.
Specifically, compared to PGD-AT, our method has an im-
provement of 0.8% in natural accuracy and around 1% ro-
bust accuracies against PGD200 and AA attacks. Compared
to TRADES, while achieving the same level of robustness,
our method has a better performance with benign examples
with a gap of 2.5%. Especially, our method significantly
outperforms ADT by around 7% under the PGD200 attack.

Table 4: Adversarial robustness evaluation on CIFAR10 of
ResNet18 model. PGD, AA and B&B represent the robust
accuracy against the PGD attack (with 10/200 iterations)
(Madry et al., 2018), Auto-Attack (Croce and Hein, 2020)
and B&B attack (Brendel et al., 2019), respectively, while
NAT denotes the natural accuracy. Note that * results are
taken from Pang et al. (Pang et al., 2020), while © results
are our reproduced results.

Method ‘ NAT PGD10 PGD200 AA B&B
PGD-AT* 82.52 5358 - 48.51 -
TRADES* 8145 5351 - 49.06 -
PGD-AT® 8336 53.52 52.21 49.00 48.50
TRADES® 81.64 53.73 53.11 49.77  49.02
ADT-EXP 83.02 - 45.80  45.80 46.50

ADT-EXPAM | 84.11 - 46.10 4450 45.83
SAT 8345 5395 51.37 48.80 49.40
GLOT-DR ‘ 84.13 5413 53.18 49.94 49.40

5 Conclusion

Although DR is a promising framework to improve neural
network robustness and generalization capability, its current
formulation shows some limitations, circumventing its ap-
plication to real-world problems. Firstly, its formulation is
not sufficiently rich to express a global regularization effect
targeting many applications. Secondly, the dual form is
not readily trainable to incorporate into the training of deep
learning models. In this work, we propose a rich OT based
DR framework, named Global-Local Optimal Transport
based Distributional Robustness (GLOT-DR) which is suf-
ficiently rich for many real-world applications including
DG, DA, SSL, and AML and has a closed-form solution.
Finally, we conduct comprehensive experiments to compare
our GLOT-DR with state-of-the-art baselines accordingly.
Empirical results have demonstrated the merits of our GLOT-
DR on standard benchmark datasets .
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Supplement to ‘“Global-Local Regularization Via Distributional Robustness™

These appendices provide supplementary details and results of GLOT, including our theory development and additional
experiments. This consists of the following sections:

* Appendix A contains the proofs of our theory development.

* Appendix B contains the network architectures, experiment settings of our experiments and additional ablation studies.

A Proofs of Our Theory Development

We here give the proof for the equivalence in optimizing two equations (5) and (6) in Section A.1. Then, we detail how to
derive the optimization formulations (3.2) and (9) for solving the problems discussed in Section 3.1.

A.1 Proof of Lemma 3.1
Let _
v* =argmax E {r (Z; o, 9)}

yiere (Z,Z)~y

be the optimal solution of the inner max in equation (6). Denote P* as the distribution obtained from * by maginalizing
the dimensions of Z. We prove that P* is the optimal solution of the inner max in equation (5). Let P be a feasible

solution of the inner max in equation (5), meaning that W, (IP’, I@) < €. Therefore, there exists v € I‘(IP’, I@) such that

N1/
E [p(Z,Z)} qgeor’yEFe.Wehave

(2,2)~
r(Zio0)| =l (Zio0)] < B[ (z10.0) = B[ (2:0.9)]

We reach the conclusion that P* is the optimal solution of the inner max in equation (5). That concludes our proof.

=i

A.2 Proof of Theorem 3.2

Given v € I',, we first prove that if ( IE,) [p (Z, Z)} is finite Vg > 1 then
Z,Z )~y

S &S
Xiii — Xidij

smax | X7~ X7
P 3

J

~\11/a
M, := lim E {p (Z7 Z)} = sup max {max
4700 (2,2)~ (2.2)esupp(~) R

Let denote A, as the set of (Z7 Z) € supp (7y) such that

S &3
Xiii — Xiij

,maXHXiT» - Xk
p i

max 4 max
k3,5

b=,
P

We have

1/q

LB Dh(22)]"- [ [ o(z2)mn(22)+ [ o(2.2)ar(2.2)

Y ¥




Global-Local Regularization Via Distributional Robustness

It is obvious that if (Z, Z ) ~ ~y then

BT nT
0 (ZZ) =33 HX —xz|”
i=1 j=1

T ZZZ s - %)

Therefore, for (Z, 7 ) € Ai, we have

o\ Z, Z)
L, MI 0,
while for (Z, Z) € A,, we have
(22
qlggo M1 =1

We derive as
QILI& (Z,IZ”E)W {p <Z’ Z)} - =M, qhﬁngc /Aw p(Z‘ZZqZ)dV (Z7 Z) " / p<Z72)dV (Z7 Z>

= M, lim ~(A,)"? = M,.

q—)OO

Therefore, v € T, with ¢ = oo is equivalent to the fact that the support set supp () is the union of Bz with Z € supp (P),
where Bz is defined as follows:

KBk nf nT KB,C nf nT
5o UL 2 (i) T 2 () - T2 (e T o 60
k=1i=175=0 i=1j=1 k=11i=175=0 i=1j=1

We can equivalently turn the optimization problem in equation (7) as follows:

max E {7‘ (Z;qzﬁ,@)} + lIHI(ﬂy) s.t. s supp (v) = U By. (16)

ver (Z’Z)N’Y A Z € supp(P)
where I' = UpI’ ( )

Because y € T’ (IP’ P) for some P, we can parameterize its density function as:

v(2.2) =p(2)5(212),
where p (Z) is the density function of P’ and p (Z | Z ) has the support set B. Please note that the constraint for p (Z | Z )
is [, 5(Z12)dZ =1.
The Lagrange function for the optimization problem in equation (16) is as follows:
. - -1 . . -
L= /7« (Z; ¢,9) p(2)p (Z|Z) dzdZ - 5 /p(Z)ﬁ (Z\Z) log [p(Z);a (Z\Z)} dzdZ
+ /a(Z) [p (Z | Z) dZ — 1} dZdZ,

where the integral w.r.t Z over on supp (IP) and the one w.r.t. Z over By.
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Taking the derivative of £ w.r.t. p (Z | Z ) and setting it to 0, we obtain

0=r (Z;¢,9)p(2) Ya(Z) - &AZ) [logp(Z)—Flogﬁ (Z\Z) +1} ,

5(217) - e {A[r (Z:0.0) + 58] -1}

p(Z)

Taking into account fBz p (Z | Z) dZ = 1, we achieve

/BZ exp{)\r (Z;QXG)}dZ = exp{f‘E(ZZ)) - 1}.

p(Z)

Therefore, we arrive at

. (Z|Z) ) exp{)\r (Z;qs,o)}

fBz exp{)\r (Z;¢,9)}d27

exp {)\r (Z: o, 9)} ~ a7
[y, oxp {)\r (Z; o, 9) } 4z

o (Z, Z) =p(2)

Finally, by noting that

S

ﬁﬁﬁpk X,”,Y,ﬂ Hﬁp XT exp{)\r(Z o, )}
k=11i=13j=0 i=135=0
K By np BT nT
:exp{)\ﬁrg (Z;w)}HHHexp{ as X,”,ka,w)—i—é(XkU,Y,ﬁ,w }HHeXp{/\as(X XZ, )}
k=11=1j=0 i=1j=1
And
/Bzexp{)\r (Z;¢,9)}d2
ny
o (v (20} TTTITL /) o ottt 0 58, )
k=1i=1j=0

L, oo (5850 o

we reach the conclusion.

A.3 Proof of the optimization problem in equation (9)
By substituting ~* (Z Z ) in equation (17) back to the objective function in (6), we obtain

min min max E [r (Z, o, 9)} .
b 0.6 i€l (7,7)nnr



Global-Local Regularization Via Distributional Robustness

By referring to the construction of Z and Z and noting that for (Z 7 ) ~ y*

~ BT n' B B K B,‘f nf . )
rl (Z;w) = ZZS (X%,Xg;;’t/]) + ZZZ‘S (XI?;OﬂXIij;¢)
1=1j=1 k=1i=1 j=1
BT nT K BS nf
=33 s (X KTw) + 303> s (X Kiiw).
i=1 j=1 k=11i=1 j=1
K Bi ni
c(Z:0) =33 (X5, vie).
k=1i=1 j=0

As a consequence, we gain the final optimization problem.

B Implementation Details

In this section, we provide the detailed implementation for all of our experiments along with some additional experimental
results. We begin with presenting the pseudo code used to sample from local distributions of our method.

Algorithm 1 Projected SVGD.

Input: A local distribution around X with an unnormalized density function f(-) and a set of initial particles { X?}7 ;.
Output: A set of particles { X, }_; that approximates the local distribution corresponding to p(+).
for/ =1to L do

Xitt = Is.x) [le + quS*(Xf)}
where ¢*(X) = 1 Z?Zl[k(le., X)VXJ; log p(X}) + VXJz_k(le., X)] and n, is the step size at the [ iteration.
end for

B.1 Entropic Regularized Duality for WS

To enable the application of optimal transport in machine learning and deep learning, Genevay et al. developed an entropic
regularized dual form in (Genevay et al., 2016). First, they proposed to add an entropic regularization term to the primal
form:

YEL(QP) | (x,¥)~7

W; (P7 Q) ‘= min { E [d (X’Y)] + 6l)KL (’YH]P) ® Q)}

where € is the regularization rate, D, (||-) is the Kullback-Leibler (KL) divergence, and P ® Q represents the specific
coupling in which Q and PP are independent. Note that when ¢ — 0, W (P, Q) approaches W; (P, Q) and the optimal
transport plan v of equation (18) also weakly converges to the optimal transport plan v* of the primal form. In practice,
we set € to be a small positive number, hence v is very close to v*. Second, using the Fenchel-Rockafellar theorem, they
obtained the following dual form w.r.t. the potential ¢

Wi(e.Q) = max{ [t 02060 + [o)aF )]
—max {60l + B0 ]} s

where ¢2 (X) = —Glog (]% |:eXp {M}})

In order to calculate the global WS-related regularization terms in equations. . (11, 13, and 14), we apply the above entropic
regularized dual form. The Kantorovich potential network ¢ is a simple network with two fully connected layers with
ReLU activation in the middle: FCatent dimxs12 — ReLU — FCsi12x1 is used throughout experiments. Note that the
latent_dim depends on the main network.
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Additionally, the distance py in equation (12) used in all experiments is the Euclidean distance d(x1,x2) = ||x1 — X2]|3 ,
the prediction discrepancy trade-off + is set equal to 0.5, and the entropic regularization parameter A in equation (7) is 0.1.

B.2 Projected SVGD Setting
For Projected SVGD in Algorithm 1, we employ an RBF kernel
2
x|
|
202 ’

k (X,X) = exp

where the kernel width is set according to the main paper (Liu and Wang, 2016).

B.3 Experiments for DG

B.3.1 Network Architecture and Hyperparamters

As mentioned in the main paper, we incorporate well-studied backbones for our experiments, following the implementation
of for single domain generalization tasks in (Zhao et al., 2020). In particular:

* LeNet5 (LeCun et al., 1989) is employed in the MNIST experiment. We first pre-train the network on the MNIST
dataset without applying any DG method for 100 iterations, then on each iteration 100, 200, 300 we generate particles
with n® = nT =n € {1,2,4} by running the Projected SVGD sampling] in L = 15 iterations, step size 7 = 0.002.
We use Adam optimizer (Kingma and Ba, 2014) with learning rate 10~° and train for 15000 iteration in total with
batch size of 32.

» CIFAR-C ? experiment uses 4 different backbone architectures, namely: All Convolutional Network (AllConvNet)
(Springenberg et al., 2014), DenseNet (Huang et al., 2017) , WideResNet (Zagoruyko and Komodakis, 2016), and
ResNeXt (Xie et al., 2017). We set n® = nT = n = 2 particles, L = 15 iterations, step size 7 = 0.001 and minimize
the loss with SGD optimizer with initial learning rate of 0.1 and batch size 128. Similar to MNIST experiment, we
first pretrain the network for 10 epochs then generate augmented images on epoch 10 and 20, number of total epochs
required for training are 150 in the case of AllConvNet and WideResNet, 250 epochs for DenseNet and ResNeXt.

* We used an AlexNet (Krizhevsky et al., 2012) pretrained on ImageNet (Russakovsky et al., 2015) in the PACS
experiment. Different from the two above experiments, which generate augmented images and append them directly to
the training set, we generate the augmented images in each mini-batch and calculate the local/global regularization
terms. n° = n” are set qual to 2, L = 15 iterations, step size 7 = 0.007. The initial global and local trade-off are

3.107° and 50, these parameters are is adjusted by m in iter-th iteration. We train AlexNet for 45.000 iterations

with SGD optimizer and 10~ learning rate.

B.3.2 Datasets and Baselines

We present the details on each dataset used in domain generalization experiments in Table. 5. Digits datasets: MNIST
(LeCun et al., 1998), SVHN (Netzer et al., 2011), MNIST-M (Ganin and Lempitsky, 2015), SYN (Ganin and Lempitsky,
2015), USPS (Denker et al., 1989) - each contains 10 classes from 0 — 9, which are resized to 32 x 32 images in our
experiment. CIFAR-10-C (Hendrycks and Dietterich, 2019), and CIFAR-100-C (Hendrycks and Dietterich, 2019) consist
of corrupted images from the original CIFAR (Krizhevsky et al., 2009) datasets with 15 corruptions types applied. In
terms of multi-source domain generalization, we test our proposed model on PACS dataset (Li et al., 2017), which includes
3 X 224 x 224 images from four different datasets, including Photo, Art painting, Cartoon, and Sketch.

In the digits experiment, 10000 images are sellected from MNIST dataset as the training set for the source domain and the
other four data sets as the target domains: SVHN , MNIST-M, SYN , USPS. We compare our method with the following
baselines: (i) Empirical Risk Minimization (ERM), (ii) PAR (Wang et al., 2019a), (iii) ADA (Volpi et al., 2018) and (iv)
ME-ADA (Zhao et al., 2020). For a fair comparison, we did not use any data augmentation in this digits experiment, all the
samples are considered as RGB images (we duplicate the channels if they are grayscale images).

Note that in both CIFAR-C and MNIST experiments, we are provided with only a single source domain, thus GLOT-DR downgrades
exactly to LOT-DR.
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Table 5: Details on the domain generalization benchmark datasets

Dataset | #classes | Shape

MNIST (LeCun et al., 1998) 10 32x32

SVHN (Netzer et al., 2011) 10 32x32

MNIST-M (Ganin and Lempitsky, 2015) 10 32x32

SYN (Ganin and Lempitsky, 2015) 10 32x32

USPS (Denker et al., 1989) 10 32x32
CIFAR-10-C (Hendrycks and Dietterich, 2019) 15 3x32x%x32
CIFAR-100-C (Hendrycks and Dietterich, 2019) 15 3x32x%x32

PACS (Li et al., 2017) 7 3 x 224 x 224

B.3.3 Experimental Results

Table 6: Average classification accuracy (%) on MNIST benchmark, we first train the LeNetS (LeCun et al., 1989)
architecture on MNIST then evaluate on SVHN, MNIST-M, SYN, USPS. We repeat experiment for 10 times and report the

mean value and standard deviation.

| SVHN | MNISTM | SYN USPS | Average

Standard (ERM) | 31.95% 1.91 | 55.96x 1.39 | 43.85+1.27 | 79.92+0.98 | 52.92+0.98
PAR 36.08+1.27 | 61.16£0.21 | 45.48+035 | 79.95+ 1.18 | 55.67 +0.33
ADA 3570 £2.00 | 58.65+ 1.72 | 47.18+0.61 | 80.40+ 1.70 | 55.48+0.74
ME-ADA | 42.00 1.74 | 63.98+1.82 | 49.80+1.74 | 79.10+1.03 | 58.72+ 1.12
GLOT-DRn=1 | 4270+ 1.03 | 67.72+0.63 | 50.53 £ 0.88 | 82.32+0.63 | 60.82+0.79
GLOT-DRn=2 | 4235+ 1.44 | 67.95+0.56 | 50.53£0.99 | 82.33=0.61 | 60.81%0.90
GLOT-DRn=4 | 43.10 + 1.16 | 68.44 £ 0.46 | 50.49 + 1.04 | 82.48 £ 0.51 | 61.13 % 0.79

Table. 6 shows that our model achieves the highest average accuracy compared to the other baselines for all values of
n® =nT =n € {1,2,4}, with the highest overall score when n = 4. In particular, we observe the highest improvement in
MNIST-M target domain of = 5%, and =~ 2.5% overall. Our GLOT-DR also exhibits more consistent with smaller variation

in terms of accuracy between runs compared to the second-best method, (0.79% — 1.12%).

B.4 Experiments for DA
B.4.1 Network architectures and Hyperparameters

The ResNet50 (He et al., 2016) architecture pretrained on ImageNet, followed by a two fully connected layers classifier.
is the same as that of the previous work. We evaluate GLOT-DR on the standard object image classification benchmarks
in domain adaptation: Office-31 and ImageCLEF-DA. The proposed method is employed on the latent space, trade-off
parameters for global and local terms are set equal to 0.02 and 5 throughout all the DA experiments. We train the ResNet50
model for 20000 steps with batch size of 36, following the standard protocols in (Long et al., 2017a), with data augmentation
techniques like random flipping and cropping.

B.4.2 Dataset

The Office-31 (Saenko et al., 2010) dataset consists of 4, 110 images, divide into 31 classes from three domains as presented
in the main paper, we conduct one more experiment on another dataset: ImageCLEF-DA, containing 12 categories from
three public datasets: Caltech-256 (C), ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P). Each of these domains
includes 50 images per class and 600 in total, which were resized to 3 x 224 x 224 in our experiment. We evaluate all
baselines in 6 adaptation scenarios as in previous studies: DAN (Long et al., 2015), DANN (Ganin et al., 2016), JAN (Long
et al., 2017b), CDAN (Long et al., 2017a), and ETD (Li et al., 2020).

B.4.3 Experimental Results

As reported in Table. 7, the GLOT-DR approach outperforms the comparison methods on nearly all settings, except the
pairs of [P and C—1, where our scores are equal to ETD (Li et al., 2020). Our proposed method achieves 90.4% average
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accuracy overall, which is the highest compared to all baselines.

Table 7: Accuracy (%) on ImageCLEF-DA of ResNet50 model (He et al., 2016) in unsupervised domain adaptation methods
with results of related work are from original papers.

| I-P P=I I=C C—=I C—P P—C | Avg

ResNet 748 839 915 780 655 913 | 80.7
DAN 748 839 915 780 655 913 | 80.7
DANN 750 86.0 962 870 743 915 | &0
JAN 76.8 884 948 8.5 742 917 | 858
CDAN 7677 90.6 970 905 745 935 | 87.1
ETD 81.0 917 979 933 795 950 | 89.7

GLOT-DR | 81.0 938 980 933 797 963 | 90.4

Up till now, we have almost finished the needed experiments to examine the effectiveness of our method on domain
adaptation. In this ultimate experiment, we illustrate the strength of our proposed regularization technique by varying the
number of generated adversarial examples (i.e. n*and n”) from 1 to 16. Results are presented in Figure 4, where we
perform extensive experiment via comparing GLOT-DR against its variants on different values of n, n”. It can be easily
seen that, increasing the number of generated samples can consistently improves the performance in both LOT-DR and
GLOT-DR (note that in GOT-DR there is no local regularization term involved, thus there is no difference between different
number of samples). Setting n° = n” > 2 helps LOT-DR surpass the performance of GOT-DR.
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Figure 4: Classification accuracy (%) on on Office-31 (Saenko et al., 2010) of ResNet50 (He et al., 2016) model when
varying the number of generated examples sampled from Project SVGD Algorithm. 1.

B.5 Experiments for SSL

B.5.1 Network architectures and Hyperparameters

In the semi supervised learning experiment, our main competitor is Virtual Adversarial Training (VAT) (Miyato et al., 2018),
we thus replicate their Conv-Large® architecture as:

32 x 32 RGBimage — 3 x 3 conv.128 LReLLU

— 3 X 3conv.128 LReLU — 3 x 3 conv.128 LReLLU
— 2 x 2MaxPool, stride 2 — Dropout(0.5)

— 3 X 3conv.256 LReLU — 3 x 3 conv.256 LReLU
— 3 x 3conv.256 LReLU — 2 x 2 MaxPool, stride 2
— Dropout(0.5) - 3 x 3 conv.512 LReLU

— 1 x 1conv.256 LReLU — 1 x 1 conv.128 LReLLU
— Global Average Pool,6 x 6 — 1 x 1 - FCiagx10

SLReLU indicates the Leaky ReLU (Maas et al., 2013) activation function with the negative slope equal to 0.1.
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We train the Conv-Large network in 600 epochs with batch size of 128 using SGD optimizer and cosine annealing learning
rate scheduler (Loshchilov and Hutter, 2016). The global and local trade-off parameters are ajusted by exponential rampup
from (Samuli and Timo, 2017):

_5(1— cpoch___y2
. {exp ramup length epoch < rampup length

1 otherwise

with rampup length = 30 and initial trade-off for global and local terms are 0.1 and 10, respectively.

B.5.2 Experimental Results

In this section, we compare the training time in section 4.3 of LOT-DR and GLOT-DR against VAT in a single epoch. We
repeat this process several times to get the average results, which are plotted in Figure 5. While VAT and LOT-DR run in
almost equivalent time for all values of generated examples, GLOT-DR requires approximately 25% extra running time.
Note that this is worthy because of the superior performance and great flexibility it brings on different scenarios.
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Figure 5: Running time of our proposed approach on: Intel(R) Xeon(R) CPU @ 2.00GHz CPU and Tesla P100 16GB
VRAM GPU. Results are averaged over 3 runs.

Furthermore, we also compare our proposed GLOT-DR with VAT (Miyato et al., 2018) and Nguyen-Duc, et al. (Nguyen-Duc
et al., 2022) in the SSL scenario, utilizing the protocol from table 1 from their paper. As can be seen from Table 8, our
method is still better in all experiments (> 1%), especially when the number of particles n = 8, it outperforms all baselines
by large margins.

Table 8: Semi-supervised learning on Conv-Large backbone.

n particle(s) | 1 2 4 8
VAT 0.8601 0.8611 0.858 0.856
Nguyen-Duc, etal. | 0.867 0.876 0.883 0.872
GLOT-DR | 0.881 0.888 0.892 0.894

B.6 Experiments for AML

B.6.1 General setting

We follow the setting in (Pang et al., 2020) for the experiment on adversarial machine learning domain. Specifically, the
experiment has been conducted on CIFAR-10 dataset with ResNet18 architecture. All models have been trained with 110
epochs with SGD optimizer with momentum 0.9, weight decay 5 x 10~%. The initial learning rate is 0.1 and reduce at epoch
100-th and 105-th with rate 0.1 as mentioned in (Pang et al., 2020).
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B.6.2 Attack setting

We use different SOTA attacks to evaluate the defense methods including: (1) PGD attack (Madry et al., 2018) which is a
gradient based attack with parameter {k = 200, e = 8/255,) = 2/255} where k is the number of attack iterations, € is
the perturbation boundary and 7 is the step size of each iteration. (2) Auto-Attack (AA) (Croce and Hein, 2020) which
is an ensemble methods of four different attacks. We use standard version with ¢ = 8/255. (3) B&B attack (Brendel
et al., 2019) which is a decision based attack. Following (Tramer et al., 2020), we initialized with the PGD attack with
k = 20,e = 8/255,n = 2/255 then apply B&B attack with 200 steps. We use L, for measuring the perturbation size and
we use the full test set of 10k samples of the CIFAR-10 dataset in all experiments.

B.6.3 Baseline setting

We compare our method with PGD-AT (Madry et al., 2018) and TRADES (Zhang et al., 2019) which are two well-known
defense methods in AML. PGD-AT seeks the most violating examples that maximize the loss w.r.t. the true hard-label
Lcog(hg(z,),y) while TRADES seeks the most divergent examples by maximizing the KL-divergence w.r.t. the current
prediction (as consider as a soft-label) L1, (hg (z4) || ho ()). To be fair comparison, we use the same training setting for
all methods, and succesfully reproduce performance of PGD-AT and TRADES as reported in (Pang et al., 2020). We also
compare with adversarial distributional training (Dong et al., 2020) (ADT-EXP and ADT-EXPAM) which assume that the
adversarial distribution explicitly follows normal distribution.
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