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Abstract

We present a methodology for formulating sim-
plifying abstractions in machine learning sys-
tems by identifying and harnessing the util-
ity structure of decisions. Machine learning
tasks commonly involve high-dimensional out-
put spaces (e.g., predictions for every pixel in
an image or node in a graph), even though a
coarser output would often suffice for down-
stream decision-making (e.g., regions of an im-
age instead of pixels). Developers often hand-
engineer abstractions of the output space, but nu-
merous abstractions are possible and it is un-
clear how the choice of output space for a model
impacts its usefulness in downstream decision-
making. We propose a method that configures
the output space automatically in order to min-
imize the loss of decision-relevant information.
Taking a geometric perspective, we formulate a
step of the algorithm as a projection of the prob-
ability simplex, termed fold, that minimizes the
total loss of decision-related information in the
H-entropy sense. Crucially, learning in the ab-
stracted outcome space requires less data, lead-
ing to a net improvement in decision quality. We
demonstrate the method in two domains: data ac-
quisition for deep neural network training and a
closed-loop wildfire management task.

1 INTRODUCTION

Modern machine learning systems process high-
dimensional data such as gigapixel images (Litjens
et al., 2022) or graphs with billions of nodes (Zheng et al.,
2020). How can machine learning efforts and outputs at
this scale be most appropriately matched to predictions
made in support of real-world decision-making? Further,
how does one go about handling domains where the
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dimensionality of the problem is so large that one cannot
simply collect enough data for a predictive model to
“explore” its ambient space?

It has been shown that if collecting a sufficient amount of
data is possible, deep learning provides effective methods
to compress the information content into a set of parame-
ters (Bommasani et al., 2021) which can then be adapted
to overcome data constraints in other similar tasks. We fo-
cus on domains where it is not possible to acquire enough
data for systematic generalization of large models to occur,
based in the intrinsic properties of the domain, e.g., suf-
ficient data simply does not exist (Hersbach et al., 2020)
or is too expensive to acquire. We introduce and develop a
framework to tame this fundamental challenge with the tra-
ditional collect-data-and-compute–first approach by incor-
porating knowledge about downstream tasks. The key di-
rection of distilling ideal abstractions for decision-focused
machine learning is inspired by earlier work on utility, ab-
straction, and information selection in a decision-making
setting (Horvitz and Klein, 1993; Poh et al., 1994; Horvitz
and Barry, 1995; Bach et al., 2006a; Kapoor and Horvitz,
2009; Azuma et al., 2006).

In this work, we adopt a decision-theoretic perspective to
machine learning. We derive a computationally efficient
method to abstract away information that is not relevant
to the decision task at hand, harnessing clues about prob-
lem structure, and in the process, reduce the dimensionality
of upstream prediction problems. Concretely, we cast the
search for the right abstractions into an optimization prob-
lem based on a geometric perspective. We introduce a class
of algorithms we refer to as ORIGAMI that iteratively ag-
gregate sets of outcomes through projections, termed folds,
of the probability simplex. Such projections are driven by
the information content of each outcome with respect to the
downstream task, which can be naturally measured via the
Bayes loss of an optimal decision maker (DeGroot, 1962;
Zhao et al., 2021). Each fold hides information from down-
stream agents, gradually coarsening the support of context
random variables, and allowing upstream predictive mod-
els to learn over sets with less data. The method notably
decouples upstream prediction with downstream decision-
making, allowing inspection of the learned abstractions
used to drive policies.



The structure of the paper and key contributions are as fol-
lows. §3 contains background on decision-theoretic in-
formation, and describes the operational primitives of the
novel class of ORIGAMI algorithms. We also discuss the
choice of projection operators and extensions of decision
losses to sets. In §4, we detail three different objective
functions to drive the projections, outlining computation-
accuracy trade-offs. We further discuss a deep neural net-
work surrogate for ORIGAMI that can be trained to approx-
imate the algorithm over a class of decision losses. In §5 we
validate ORIGAMI in data-limited deep active learning as
in a closed-loop decision task involving wildfire manage-
ment, where policies based on predictions over ORIGAMI
abstractions are shown to perform with lower losses.

2 BACKGROUND

Notation Let p(x, z) denote the underlying data generat-
ing process relating variables x and outcome variables z,
and p(z|x) the conditional distribution over a finite set Z
of size |Z| = C. An agent observes x, and given a model
pθ(z|x) of p(z|x), returns an action a following the pol-
icy π(Z). Domain-knowledge about the task is represented
as a loss function ℓ : Z × A → R measuring the cost of
performing action a when the outcome is z.

As both outcome and action spaces are assumed to be of fi-
nite dimensions, the loss function can be conveniently rep-
resented by a matrix L ∈ R|A|×C defined as

Lij = ℓ(zi, aj).

Further, p = {p(zi|x)}i is a vector in RC taking values
in the probability simplex ∆C . In practice p(x, z) is not
known and we are given a dataset {xk, zk} of samples, in
addition to a decision loss ℓ, with the final objective of iden-
tifying the best policy.

Problem setting We are interested in domains where the
space of outcomes Z for the random variable Z is high-
dimensional, e.g., the set of all possible medical conditions,
or the space of geographical locations. As an example, con-
sider the setting where a clinician is tasked with choosing
an optimal treatment for a patient given the distribution pθ

over a set of patient states, given measurements x. Here,
optimizing a model for pθ or the policy π can be challeng-
ing and require a large number of samples from p(x, z). To
overcome this limitation, we propose to reduce the dimen-
sionality of Z in a way that preserves as much useful infor-
mation as possible for downstream decision-making. Our
main targets are scalable methods, including approaches
that generate explainable abstractions to enable compati-
bility with human decision-makers.

The core insight behind our approach is that not all the
information contained in pθ is necessary for decision-
making. We take inspiration from human decision-making,
where action under uncertainty appears to be taken swiftly

Figure 2.1: Folding the probability simplex can introduce a sub-
optimality gap in downstream decision-making. Some distribu-
tions p remain on the same side of the decision boundary (in
white), whereas others switch sides.

with redundant information being abstracted away (Lindig-
León et al., 2019; Ho, 2019).

3 DECISION-THEORETIC
INFORMATION

Our goal to find a complete partition for the support of
p(z|x) i.e., P(Z) = {Zk}, Zi

⋂
Zj = ∅ for any i ̸= j and⋃

Zk = Z. Out of all possible partitions of the set, we seek
those that minimally affect decision-making, as measured
by the loss ℓ. In other words, we aim to hide information
that is not relevant to the decision task. A natural quantity
to consider is the H-entropy (DeGroot, 1962; Zhao et al.,
2021) of p(z|x):

Hℓ(p) = inf
a∈A

Ep(z|x)[ℓ(Z, a)]

= min
a

(Lp).
(1)

where Lp ∈ R|A|. H-entropy is the Bayes optimal loss for
an agent required to select an optimal action a in expecta-
tion over p(z|x), and generalizes other notions of informa-
tion.

For convenience of notation, we will henceforth denote
vectors p(z|x) with p. Defining a partition P(Z) naturally
induces a distribution q with support P(Z). Thus, we can
quantify the increase of H-entropy caused by partitioning
the support Z:

δ(q,p) = Hℓ̃(q)−Hℓ(p)

which we refer to as the H-entropy suboptimality gap of
P(Z). For the above to be well-defined, we require a de-
cision loss over the sets in P(Z), denoted as ℓ̃. We detail
how to define set extensions of ℓ in Sec. 3.2.

3.1 How to Fold a Simplex

We cast the search for a partitionP(Z) through a geometric
lens, leveraging the structure of the simplex ∆C . Our basic



operation will involve folding the simplex:

Definition 3.1 (Simplex fold). A fold is a map fi→j :
∆C → ∆C−1; p 7→ q defined as

fi→j =

{
qk = pk ∀k ̸= i,∀k ̸= j

qj = pi + pj otherwise

A fold projects elements of ∆C onto ∆C−1. There is an
intuitive interpretation for the output of a folding operation:
two outcomes zi, zj are grouped together into a set, and qj
is the probability that either zi or zj occur.

Example: Consider a three-dimensional simplex
∆3, i.e., with |Z| = 3, and a loss function

L =

[
1 0 0
0 0 1

]
The simplex and decision boundaries are visual-
ized in Fig. 2.1. Along each side of the simplex,
we show the decision loss over three projections to
∆2 obtained by summing the probabilities of out-
comes z1, z2, z3 pairwise. Some points p ∈ ∆C

do not cross the decision boundary after the projec-
tion, whereas others do, introducing a suboptimality
gap. The decision boundary is linear in this exam-
ple since |A| = 2a.

aThe general case studied in this paper is |A| > 2,
where the decision boundaries are piecewise-linear.

Partition as a sequence of folds We uniquely identify a
partition P(Z) via the sequence of folds

fiN→jN ◦ · · · ◦ fi1→j1

where in, jn are the folding indexes at algorithm iteration
n. Consider the example in Figure 3.1, where the partition
P(Z) = {1, {2, 3}, {4, 5}} is identified through f4→5 ◦
f3→2.

1 2 3 4 5

お り が み

a b c

Figure 3.1: P(Z) = {1, {2, 3}, {4, 5}} identified via two folds
of ∆5. Name changes to classes indicate the implicit change of
probability space at every folding.

Iterative folding constructs a tree, starting from the C ver-
tices of ∆C as leaves. Every fold adds a level, merging
two nodes. At termination, each top-level node defines a
set in the final partition P(Z), with elements identified as
the leaves reachable from it.

3.2 Computing Decision Losses on Sets

We seek an algorithmic procedure that iteratively folds the
simplex until a reaching a stopping condition. We require
an extension to ℓ that admits set-valued inputs. In the fol-
lowing, we consider the natural worst-case extension,

ℓ̃(S, a) = max
z∈S

ℓ(z, a), S ⊂ Z.

The matrix representation follows by replacing, for each
row k, column i with the maximum of columns i and j:
L̃kj ← max{Lki,Lkj}, in time Θ(|A|).

We note that, while theoretically possible, other free-form
(mass preserving) projections may not have a sensible
physical interpretation. Folding the simplex, as prescribed
by (3.1), has the effect of grouping two outcomes together
into a set, such that is remains possible to reason about
worst-case decision losses. Numerically, this choice is key
to preserving fast updates Θ(|A|) to the decision loss ma-
trix L required to compute ℓ over sets.

Properties of partitions Assume to be given a perfect
model of p and a perfect decision making policy. Hiding
information by partitioning its support can never improve
the policy. Intuitively, this is due to the fact that informa-
tion about events is now conveyed at a coarser level via sets
{Z}k in the partition, rather than at the finer level of indi-
vidual events.
Proposition 1 (Folding increases H-entropy). Let p ∈ ∆C

and q = f ◦ f · · · ◦ f(p) be any sequence of folds. Then,
Hℓ(p) ≤ Hℓ̃(q).

In words, partitioning the support of p raises the optimal
lower bound decision loss. Specifically, the Bayes optimal
loss lower bound increases due to the worst-case set exten-
sion.

Remark: Other set extensions for ℓ are available.
We discuss a weighted sum extension where

ℓ̃(S, a) =
∑

k:zk∈S

ℓ(zk, a)pk∑
k:zk∈S pk

.

In this case, prop. 1 holds with equality: H-entropy
is preserved by folding. How can the optimal de-
cision loss not be affected by projecting the sim-
plex down to a smaller dimension, effectively hid-
ing information? This paradox is explained by not-
ing that, through a fold and corresponding choice
of set extension, one affects not only the informa-
tion content but also the downstream task. For
example, a summing extension

ℓ̃(S, a) =
∑
z∈S

ℓ(z, a).

penalizes an outcome based on other outcomes in
the same set, regardless of whether they occur or
not. This results in penalizing larger sets in the par-



tition P(Z), biasing the projections found by the
algorithm.

Interestingly, we observe that the utility of decisions can
improve if one optimizes a model qθ on the lower resolu-
tion support given by sets in P(Z) rather than on the origi-
nal support, particularly in data-limited regimes. An inter-
pretation of this phenomenon is that partitioning into sets
acts as a form of regularization for qθ by hiding informa-
tion not relevant to the downstream task.

4 ORIGAMI: ALGORITHMIC FOLDING

Each fold renders two outcomes indistinguishable from
the perspective of the decision-maker. If Hℓ(p) =
Hℓ̃(fi→j(p)), zi and zj are already equivalent for the deci-
sion task induced by ℓ, and can thus be treated as a unique
outcome without suboptimality. We have thus established
a high-level desideratum for a folding algorithm: minimize
at each step the suboptimality gap δ(p, q) induced by the
projection. However, the gap discussed so far is local in
the simplex, evaluating δ on two vectors p ∈ ∆C and
q ∈ ∆C−1.

In practice, we have access to a dataset with samples from
p(z, x), yielding conditionals p(z|x) ∈ ∆C . Here, ap-
plying a fold fi→j introduces a suboptimality gap at each
point.

Folding objective Following this reasoning, one can cast
each ORIGAMI step as the following program:

i∗, j∗ = arg min
i,j,i ̸=j

L(i, j,L) (2)

where i∗, j∗ are the indices of the optimal fold fi∗→j∗ . The
following discussion details three choices of objectives L
that take into account different global information about
the suboptimality induced by fi→j : total, worst-case, and
vertex-only.

4.1 Integral Objective

The first objective relies on evaluating δ over the entire sim-
plex:

L =
1

λ

∫
∆C

[
Hℓ̃(fi→j(p))−Hℓ(p)

]
dp. (3)

where Hℓ̃ denotes the H-entropy endowed with the folded
loss matrix, Hℓ̃(fi→j(p)) = mina(L̃q). This choice of
objective corresponds to the L1 norm of H-entropy in-
crease and can be evaluated via Monte Carlo (MC) inte-
gration, thus requiring computationally costly sampling of
N vectors p in ∆C and evaluation of δ(fi→j(p),p) for all
choices of i, j. By standard Law of Large Numbers argu-
ments, the variance V of a Monte Carlo estimate µ̂N of the

total integral loss (3)

µ̂N (i, j) =
1

N

N∑
k=1

[
Hℓ̃(fi→j(pk))−Hℓ(pk)

]
can be shown to converge linearly i.e., V[µ̂N (i, j)] =
O(1/N) in the number of samples regardless of the dimen-
sion C.

Proposition 2 (Integral objective cost). ORIGAMI driven
by the objective (3), with an ϵ requirement V[µ̂N ] ≤ ϵ has
an asymptotic time cost of O( 1ϵ |A|C

2).

Proof. We report here a proof sketch. For each pair of ver-
tices in the simplex ∆C , 1

2C(C − 1), we incur a cost C2

to compute Lp and |A| to find its minimum entry. This
process has to be repeated 1/ϵ for the variance of the MC
estimate to be smaller than ϵ.

The minimization of the empirical estimate of (3) is then
practically achieved by constructing the upper triangular
portion of the matrix Mij = µN (i, j) and subsequently
choosing the indices (i∗, j∗) of the smallest entry of M .
We report pseudocode below1.

# Fold with integral objective.
# Input: ∆c, L, N.
M = zeros(c, c) #
M = M + 10^4 # large initial distance
p = uniform_sample(N, c) # on the simplex
for (i, j) in combinations(range(c), 2):

H_p = einsum("ac,bc->ba", L, p).min(dim=1)
q, Lt = fold(p, L, i, j)
H_q = einsum("ac,bc->ba", Lt, q).min(dim=1)
M[i, j] = (H_q - H_p).mean(dim=0)

i_fold, j_fold = argmin2d(M)

We further note that importance sampling and other vari-
ance reduction techniques may offer slight improvement to
the convergence rate of µ̂N (i, j), reducing the overall cost
of an ORIGAMI fold. Instead, we leverage the structure of
Hℓ to develop alternative formulations to the integral ob-
jective.

4.2 Max-Increase Objective

Instead of the total loss of H-entropy (in a L1 sense), we
can choose folds that minimize the worst-case increase:

L = sup
p∈∆C

[
Hℓ̃(fi→j(p))−Hℓ(p)

]
⇔

= max
p∈∆C

[
min
a

(L̃q)−min
a

(Lp)
]
.

(4)

That is, the infinity norm of H-entropy increase induced by
a fold i → j. To find i∗, j∗ = mini,j L(i, j,L) one has
to solve, for each pair of indices, the inner optimization

1The inner for-loop is fully parallelizable.



problem

max
p∈∆C

min
a

(L̃q)︸ ︷︷ ︸
concave

−min
a

(Lp)︸ ︷︷ ︸
concave

 (5)

which belongs to the class of difference of convex or con-
cave (DC) problems (Hartman, 1959). Here, we employ
the concave-convex procedure (Lipp and Boyd, 2016), a
class of heuristic algorithms to find local solutions to DC
problems.

Solving the inner-loop problem The simplest variant of
a concave-convex procedure to compute L starts by sam-
pling an initial candidate maximizer p0 ∈ ∆C . Then, the
candidate maximizer pk is updated as follows: the convex
part of the problem is linearized around pk,

Ĥℓ(p,p
k) = min

a
Lpk + g⊤k (p− pk)

where gk is a subgradient of Hℓ i.e., gk ∈ ∂Hℓ(p
k). The

candidate maximizer is then updated by solving the con-
cave problem resulting from substituting Hℓ(p) with its
linearization, i.e.

pk+1 = arg max
p∈∆C

[
min
a

L̃q − Ĥℓ(p,p
k)
]

The algorithm is iterated until convergence, e.g., when the
improvement in the true objective is less than a specified
threshold. This adaptation of the convex-concave proce-
dure to compute the objective for ORIGAMI folding lever-
ages on the assumption that, at each step, the concavi-
fied problems can be solved efficiently (see Lipp and Boyd
(2016) for further details and variants of this method).

Similar to the integral loss case, the objective needs to be
computed for each unordered tuple (i, j) in order to chose
the optimal folding.

# Fold with max-increase objective.
# Input: ∆c, L.
M = zeros(c, c) #
M = M + 10^4 # large initial distance
for (i, j) in combinations(range(c), 2):

p = solve_inner_dc_problem(c)
H_p = einsum("ac,bc->ba", L, p).min(dim=1)
q, Lt = fold(p, L, i, j)
H_q = einsum("ac,bc->ba", Lt, q).min(dim=1)
M[i, j] = H_q - H_p

i_fold, j_fold = argmin2d(M)

Note that if |A| = 1, L ∈ R1×C is a vector and the inner
problem is the linear program maxp∈∆C [L̃q − Lp].

4.3 Vertex Objective

Not all points on the simplex carry the same information
for ORIGAMI. Due to concavity, H-entropy is always min-
imized at a vertex of the simplex:

Proposition 3 (H–entropy is minimized on vertices). The
minimizer p∗ = argminp∈∆C Hℓ(p) is a vertex of ∆C .

Therefore, we may wish to focus on the regions of the sim-
plex corresponding to confident (peaked) predictions of the
upstream model pθ(z|x) i.e., close to the vertices. We pro-
pose an objective for ORIGAMI where folding indices are
obtained after comparing the H-entropy at all vertices:
L = |Hℓ(p

(i))−Hℓ(p
(j))| = |min

a
(Li)−min

a
(Lj)| (6)

where p(i) and p(j) are in the vertex set of the simplex.
The vertex loss can be computed efficiently in Θ(|A|C2).
In particular, it does not require updating L for each pair
i, j: the decision matrix is updated to L̃ only after optimal
pair i∗, j∗ is found, in contrast to integral and max-increase
objectives.

# Fold with vertex objective.
# Input: ∆c, L.
M = zeros(c, c) #
M = M + 10^4 # large initial distance
for (i, j) in combinations(range(c), 2):

p, q = one_hot(i, c), one_hot(j, c)
H_p = einsum("ac,bc->ba", L, p).min(dim=1)
H_q = einsum("ac,bc->ba", L, q).min(dim=1)
M[i, j] = H_q - H_p

i_fold, j_fold = argmin2d(M)

Setting a stopping condition ORIGAMI iterations may be
stopped after a predetermined number of folds, or alterna-
tively after the total suboptimality gap δ reaches a tolerance
threshold. Interestingly, other ORIGAMI runs may also be
recursively initialized within each set in the output partition
of the first run, yielding a hierarchical tree-of-sets abstrac-
tion of Z.

5 NUMERICAL EXPERIMENTS

We now showcase how ORIGAMI and set abstractions can
be used in different learning contexts. The goal is to val-
idate the scalability of ORIGAMI to settings with thou-
sands of outcomes, and to investigate whether abstractions
improve downstream policies. If not specified, we use
ORIGAMI with the vertex objective.

5.1 Folding for Decision Problems

We evaluate support folding and ORIGAMI in decision-
making pipelines as a way to improve downstream policies.
We consider wildfire management (Jain et al., 2020), and
seek, in the frame of the definition of the problem, to iden-
tify a policy to minimize the damage caused by a wildfire
at a given location.

Experimental details We design and construct a new
wildfire dataset named FIRE! that contains information
on active fires from Visible Infrared Imaging Radiometer
Suite (VIIRS), as well as climate (Hersbach et al., 2020),
vegetation, and topographic information (Rollins, 2009).



Historical Data

Predictive 
model

Coordinate 
prediction

Historical data

Set prediction

1

2

3

Decision 
making

Baseline

ORIGAMI

Data

Predictor + Policy Direct Policy 
Parametrization

ORIGAMI Pipeline:
Set Predictor + Policy

Predict location 
of event

Predict set (region)
 of event

Predictive 
model

Coordinate 
prediction

Set prediction

1

2

3

Decision 
making Set prediction

1

2

3

ORIGAMI

Figure 4.1: Applying ORIGAMI to wildfire management, from prediction to action. [Left] Location predict uses a location-
level event predictor, then picks the best action that the predicted location [Middle] policy directly parameterizes the distribution over
actions [Right] ORIGAMI uses a region predictor, then picks the best action in the predicted region.

FIRE! includes 1.3 million fire instances collected over
the years 2020 and 2021. We focus on a region in Cali-
fornia. The overall dataset contains 29 features, spanning
climate and climate variables such as temperature and wind
speeds, vegetation types and the radiative power of a given
wildfire at each location. We aggregate temporal data in
weekly periods, resulting with 102 weeks between 2020
and 2021. In this case, the variable Z indicates a geograph-
ical location, and we consider 1600 possible locations (a
discretized 40 by 40 grid). Additional details on the FIRE!
dataset are provided in the Appendix.

Predictive task Each predictive model takes as input a
snapshot x (1 week, aggregated as described above) and
is tasked with predicting whether the largest wildfire will
occur in that particular location in the next week. Given
a prediction, a policy picks among three wildfire manage-
ment strategies: (1) sending a land team to actively sup-
press the fire, (2) sending aircraft, or (3) applying an indi-
rect approach to slow down the spread (Group, 1996). For
our example challenge problem, we craft a decision loss
based on insights provided by (Group, 1996), where each
strategy is weighted depending on various factors. For in-
stance, sending a land team in regions with high altitudes
and slopes might incur larger losses due to challenging ter-
rain.2

We formulate three different decision-making pipelines:
Direct policy parametrizes directly the distribution
over actions, given x; Location predict introduces
a location predictor pθ(z|x) trained on historical data, and
a downstream policy π(x) = argmina Epθ(z|x)ℓ(Z, a).
ORIGAMI is equivalent to Location predict except the
model qθ(Z|x) is trained on sets generated by folding geo-
graphical locations. The policy in this case involves com-
puting the Bayes optimal action in each location z ∈ Z
of the predicted partition, then keeping the one most fre-
quently optimal. Fig.4.1 provides an overview of different

2We note that our choice of decision loss serves as a proxy for
expert decision losses and is not meant to be optimal or take into
account every available factor.

Vegetation Height Terrain Slope sets

Figure 5.1: [Left, Center]: two features of the wildfire manage-
ment dataset. [Right]: sets (regions) output of ORIGAMI given
a decision loss based on different features, including vegetation
height and terrain slope. As is visible, the sets share common
characteristics that are indicative of the features on the left e.g.,
red highlights regions of no slope and low vegetation, whereas
blue highlights areas of tall vegetation.

Pipeline Predict acc. ↑ Decision loss ↓

Random action N/A 0.820
Direct policy N/A 0.731

Location predict 0 0.723

ORIGAMI (5) 67.4 0.707
ORIGAMI (10) 54.2 0.701

Table 5.1: Benchmarking ORIGAMI on wildfire management.
Predicting sets of regions by quantizing space via ORIGAMI fold-
ing induces higher quality downstream policy (as measured by the
decision loss ℓ). in ORIGAMI (n), n refers to number of sets left
at termination of the algorithm (we perform C − n folds).

approaches. Models pθ and qθ are parametrized as UNets
(Zhou et al., 2019).

Results Summary results are provided in Table 5.1. We
observe policies based on predictions over ORIGAMI sets
to achieve lower decision losses on our test data. Notably,
Location predict fails to correctly predict any wildfire lo-
cation during testing, suggesting generalization at the fine-
grained scale with the amount of data available is not pos-
sible. Predicting ORIGAMI set membership (5 and 10 sets)
reaches a considerably higher accuracy. Fig.5.1 provides
an example of the sets produced by ORIGAMI: the regions
(in shades of grey) are indicative of features the decision
loss is based on.



Acquisition All classes bot-50 bot-20

Random 17.6% 6.5% 2.8%
Worst-1 30.3% 12.4% 6.1%
Worst-3 30.4% 14.3% 7.0%

ORIGAMI 35.7% 19.4% 10.6%

Table 5.2: Performance of different acquisition methods in the
deep active learning experiments. We report average test accuracy
across: all 100 classes, worst 20 classes, and worst 50 classes.
Worst-classes are identified by ordering based on marginal test
accuracy.

5.2 Active Learning

We apply ORIGAMI to large neural network supervised
training with limited data. In particular, we use the aver-
age H-entropy of sets generated by folding the simplex of
classes as guidance to acquire additional data. The active
learning setting typically involves two interleaved stages: a
training stage, where the network is optimized given avail-
able data, and an acquisition stage, where a new batch is
acquired3.

Experimental details In each run, we optimize an en-
semble of 3 ViT (Dosovitskiy et al., 2020) models for im-
age classification on the standard CIFAR100 dataset. We
start with a single batch of images, and each epoch we ex-
tend the dataset with an additional batch of 128 images
constructed following a particular procedure. We com-
pare three different acquisition strategies: (1) random, in
which we sample a new batch of images uniformly from all
classes, (2) worst-n class, which constructs a new sample
of images from the n classes with lowest marginal accuracy
(3) ORIGAMI, where we sample uniformly from the top set
in the partition generated by ORIGAMI, ranked by highest
average H-entropy. To build ORIGAMI sets, we use a deci-
sion loss where each model is an action, such that |A| = 3,
C = 100, and each entry in L is the average loss of each
model on all instances of a given class.

Results We provide results in Table 5.2. With 100 epochs
and training and a total dataset of ≈ 10k images, we reach
35.7% accuracy when ORIGAMI is used as the acquisi-
tion method. We observe a quick drop off when inspecting
test performance on the worst classes ordered by marginal
accuracy, with ORIGAMI having an overall higher worst-
case accuracy. Sampling according to highest H-entropy
ensures marginal accuracy across classes is balanced, with
new data acquired for classes on which the ensemble is
struggling.

3See (Wang et al., 2016) for other acquisition strategies in
deep active learning.

5.3 Amortized ORIGAMI

The vertex objective introduced in §4.3 considerably im-
proves the computation cost of obtaining good abstractions
by means of iterative folding when compared to the other
methods discussed. An alternative solution is to instead
amortize the cost of computing the Bayes optimal objective
(3) by pre-training a neural network approximator to match
it on a dataset of loss matrices. In the following, we discuss
preliminary results and observations, emerging from train-
ing a simple neural network to fit the map L → L(L, i, j)
on synthetic loss matrices L.

With S(C) the space of all C×C upper triangular matrices
(S(C) ≡ RC(C−1)/2), we define the neural network aCθ :
R|A|×C → S(C) with parameters θ.

We perform training by providing supervision to the model
in the form of tuples (L,Mij), where the Mij are pro-
duced offline by the Monte Carlo approximation of the
integral objective feeding L ∼ p(L) with p(L) =
U([0, 1]|A|×C).

The neural network parameters are then optimized via stan-
dard gradient methods to minimize a relative mean-square
error objective between the model’s predictions and target
Bayes optimal folding costs. Such a model can be then
invoked during iterative folding as a surrogate for other
ORIGAMI variants. Time and compute resources to build
a dataset and train the model are thus traded for speedups
at inference time when fast evaluation of the folding algo-
rithm is prioritized.

Experimental Details We test the amortized procedure
on a dataset of 104 uniformly sampled loss matrices L.
The number of actions |A| is fixed to 2 while C ranges
from 3 (the minimum significant number of classes) to
64. This choice is due to the fact that all ORIGAMI algo-
rithms scale linearly with the number of actions and we
are mainly interested in amortizing the quadratic scaling
with C. The ground-truth integral folding objectives in the
form of the upper triangular matrices Mij have then com-
puted with the Monte Carlo procedure detailed in §4.1 us-
ing N = 103 particles. The neural network aCθ comprises
four layers with 64 neurons each. The loss matrices are
flattened and passed to aCθ which returns vectors of dimen-
sion C(C − 1)/2, corresponding to the predicted non-zero
entries of M .

Results The model, trained for 500 epochs for all val-
ues of C is evaluated via a test set of 103 additional tuples
(L,M) in terms of RMSE loss and accuracy in predicting
the optimal folding indices. We observe that the prediction
accuracy rapidly decreases with the number of classes C
while the test RMSE loss increases, as reported by Fig. 5.2.
This indicates that the learning problem becomes increas-
ingly difficult with C and the ORIGAMI folding cannot be
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Average (CPU) time required to obtain the optimal folding in-
dexes (i∗, j∗) for the integral (Monte Carlo), vertex and amor-
tized ORIGAMI.

amortized by a simple neural architecture. Nonetheless, in
the region where the amortized model is accurate, i.e. for
C < 8, we report a significant speedup (several orders of
magnitude) compared to ORIGAMI equipped with integral
and vertex objectives.

6 RELATED WORK

Multiple studies have taken a utility-theoretic perspective
on learning and inference. The utility structure of problems
has been leveraged in procedures for formulating abstrac-
tions of classes and actions as disjunctions (Horvitz and
Klein, 1993). A decision-making perspective has also been
used to guide abstraction for simplifying probabilistic in-
ference (Poh et al., 1994). Work includes efforts to drive
the heterogeneous costs of misclassification into the ob-
jective functions and machine learning training procedures
(Bach et al., 2006b). Recent work has explored the end-to-
end consideration of the quality of decisions in combinato-
rial optimization (Wilder et al., 2019) and in human-AI col-
laboration (Wilder et al., 2020). Dubois et al. (2021) pro-
pose to leverage knowledge of downstream tasks for com-
pression, improving compression rates over task-agnostic
methods. Zhao et al. (2021) formalize a new family of
divergences, where discrepancy between distributions is
measured through the optimal decision loss induced by
each. H-entropy has seen use in Bayesian optimization
(Neiswanger et al., 2022), where a new family of acqui-
sition functions is developed.

7 DISCUSSION

We identify and outline several extensions related to the
introduction of ORIGAMI algorithms in dynamic decision-
making problems and numerical simulation.

Dynamic ORIGAMI We have so far discussed static ab-
stractions synthesized by ORIGAMI as a fixed set of sets of
outcomes. However, as decision losses can change in time
e.g., if decision matrix Lt has an explicit dependence on
time, the abstractions should track these new preferences.

This can take place by applying a modified ORIGAMI algo-
rithm able to unfold and fold, instead of starting anew each
time.

Folding for simulation The process of quantization and
creation of abstractions via ORIGAMI can be loosely con-
nected to meshing and discretization techniques ubiquitous
in graphics and numerical simulation of differential equa-
tions (Plewa et al., 2005). Instead of standard metrics to
guide discretization, ORIGAMI is driven by utilities and is
not constrained to sets that are local in space or time. As
shown in our experiments, geographical regions found via
ORIGAMI can involve disjoint subregions. Locality can be
enforced or promoted via minimal changes to the method.

8 CONCLUSION

We presented methods that guide the formulation of ab-
stractions to simplify learning problems based on a care-
ful consideration of downstream decisions. The distillation
of abstractions enables data-efficient learning of predictive
models. We derive a class of iterative algorithms we refer
to as ORIGAMI that work to reduce the dimensionality of
the probability simplex while preserving information use-
ful for downstream decisions. In doing so, the method pro-
gressively hides information that is not necessary to imple-
ment optimal policies, allowing predictive models to learn
over sets rather than fine-grained outcomes without loss in
decision quality.
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A Derivations

Proposition 4 (Folding increases H-entropy). Let p ∈ ∆C and q = f ◦ f · · · ◦ f(p) be any sequence of folds. Then,
Hℓ(p) ≤ Hℓ̃(q).

Proof. We show the result for each row k = 1, . . . , C of Lp and a single fold:
C∑

m=1

Lmpm ≤
C−1∑
n=1

L̃nqn ⇔

Lkipi +Lkjpj ≤ max{Lki,Lkj}qj ⇔
Lkipi +Lkjpj ≤ max{Lki,Lkj}pi +

max{Lki,Lkj}pj .

Proposition 5 (H–entropy is minimized on vertices). The minimizer
p∗ = arg min

p∈∆C
Hℓ(p)

is a vertex of ∆C

Proof. Let V∆ be the set of vertices of the simplex, i.e. the canonical basis e1, . . . , eC of RC . We need to show that
minp∈∆C Hℓ(p) = mini=1,...,C Hℓ(ei). Due to convexity of the simplex ∆C , the minimizer p∗ can be expresses as a
convex combination of the vertices, i.e.

p∗ =

C∑
i=1

αiei, αi ≥ 0,

C∑
i=1

αi = 1.

By Jensen’s inequality we have

Hℓ(p
∗) = inf

a
Lp∗ = inf

a
L

C∑
i=1

αiei ≥
C∑
i=1

αi inf
a
Lei

and
C∑
i=1

αi inf
a
Lei ≥ min

i=1,...,C
inf
a
Lei

so the minimum of Hℓ over p ∈ ∆C is bounded below by the minimum over the vertices. Since the vertices belong to ∆C ,
the result is proved.

B Experiments

B.1 Folding for Decision Problems

Dataset curation We design and build a new dataset named FIRE! that contains active fire information from Visible
Infrared Imaging Radiometer Suite (VIIRS) on a spatial resolution of 375 meters, as well as climate and vegetation data.

Fires: We consider 1, 339, 234 fire instances collected over the years 2020 and 2021. Each instance contains fire radiative
power, location (latitude and longitude) and auxiliary information such as time of day and confidence for the measurement.
We select the region spanned by latitude (36, 39) and longitude (−121.6,−118.6).

Vegetation: We collect data from the LANDFIRE program. In particular, we add the following features: existing vegeta-
tion height (EVH), existing vegetation cover (EVC), existing vegetation type (EVT), slope degrees (SlpD), slope percent
rise (slpP), roads, aspect (Asp). As these databases are updates at lower frequencies than VIIRs and climate, we have
access to 2019 and 2020 snapshots which we use as additional context for the model. The region is aligned with VIIRS
spatial coordinates.

Climate: We extract a set of climate and weather features from the large-scale ERA5 dataset. Weather and climate variables
describe a larger region than latitude (36, 39) and longitude (−121.6,−118.6) to provide context for the predictive model.
All data slices are aligned in time.



Predictive task The model takes as input a snapshot x (1 week, aggregated as described above) and is tasked with
predicting the location of the largest wildfire (measured in radiative power) in the following week. When using ORIGAMI,
spatial locations are clustered according to the decision loss, and thus the dimension of y is smaller than the dimension of
x. We optimize the parameters of all models using a standard binary cross entropy loss.

Decision making and decision loss We design a simple, deterministic closed-loop policy reliant on predictions made by
a deep learning model. Our goal is to investigate whether the quality of a decision policy can be improved by performing
upstream prediction on a "simplified" space of locations found as a decision–optimal clustering with ORIGAMI.

Wildfire management actions are: (1) land intervention, (2) aircraft intervention (3) indirect containment, according to the
location predicted by the wildfire location model. The decision loss is crafted according to insights extracted from (Group,
1996). The following factors are used: fire radiative power, existing vegetation height, roads, temperature, magnitude of
wind. In particular, action (1) incurs in high cost when slope and terrain height are larger, (2) when wind is strong, and (3)
when vegetation is dense. Since all features are on different scales, we normalized the decision loss to obtain values in a
comparable range. We note that the decision loss ℓ is not meant to encode all factors one may want to consider for wildfire
management, as the experiment is meant to showcase potential applications of ORIGAMI.

Training details We train the wildfire location predictive model for 100 epochs using the ADAMW optimizer (Loshchilov
and Hutter, 2017), with a learning rate of 0.001 and a cosine decay schedule to 0.0001. We set the batch size to 8 (each
element of the batch contains a temporal slice of context data, with the model asked to predict the location of the largest
wildfire in the following week). All models are standard ResNets with 18 layers.

When evaluating the policy, we pick the Bayes optimal wildfire strategy between: (1) land intervention, (2) aircraft inter-
vention (3) indirect containment, according to the location predicted by the wildfire location model.

B.2 Active Learning

Training details We train ensembles of 3 vision transformers ViT (Dosovitskiy et al., 2020) on the CIFAR100 dataset,
starting from a single random batch of data. Each epoch, we increase dataset size by sampling a new batch based on
different acquisition methods:

• random: a new batch of images is obtained by sampling uniformly from all 100 classes

• worst-n: the new batch is obtained by sampling data uniformly if the corresponding label belongs to the n classes
with lowest marginal accuracy

• ORIGAMI: we apply ORIGAMI to generate a partition of all classes. We select the set of classes in the partition with
highest average H-entropy, and sample uniformly.

We use ViT-base from the timm library (Wightman, 2019) with patch size 16 and latent dimension 224, and add the logits
of each model in the ensemble before computing the cross-entropy loss. We train all models 100 epochs using ADAMW
optimizer (Loshchilov and Hutter, 2017), a learning rate schedule with 20 epochs of linear warmup (0.0001 to 0.001)
followed by cosine decay down to 0.0001. We use batch size 128.
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