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Abstract

Constrained learning is prevalent in many statis-
tical tasks. Recent work proposes distance-to-set
penalties to derive estimators under general con-
straints that can be specified as sets, but focuses
on obtaining point estimates that do not come
with corresponding measures of uncertainty. To
remedy this, we approach distance-to-set regular-
ization from a Bayesian lens. We consider a class
of smooth distance-to-set priors, showing that
they yield well-defined posteriors toward quanti-
fying uncertainty for constrained learning prob-
lems. We discuss relationships and advantages
over prior work on Bayesian constraint relaxation.
Moreover, we prove that our approach is opti-
mal in an information geometric-sense for finite
penalty parameters ρ, and enjoys favorable sta-
tistical properties when ρ → ∞. The method is
designed to perform effectively within gradient-
based MCMC samplers, as illustrated on a suite
of simulated and real data applications.

1 INTRODUCTION

Constrained learning is ubiquitous in statistical tasks when
seeking to impose desired structure on solutions. Concretely,
consider the task of estimating a parameter x ∈ Rd by mini-
mizing some loss function f(x) where x needs to satisfy a
set of constraints encoded by a set C. Then we seek:

min
x

f(x) s.t. x ∈ C (1)

A simple but powerful observation that will make this
amenable to effective algorithms is to equivalently express
the restriction in terms of the Euclidean distance between
the point x and the constraint set as dist(x, C) = 0. In many
instances, it is enough to only approximately satisfy the
constraints. A recent framework accomplishes this kind of
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constraint relaxation through distance-to-set penalization
(Chi et al., 2014; Xu et al., 2017): for ρ ∈ (0,∞),

x∗ ∈ argminx

[
f(x) +

ρ

2
dist(x, C)2

]
.

Solutions to this problem can be obtained using a
majorization-minimization (MM) scheme known as the
proximal distance algorithm (Keys et al., 2019; Xu and
Lange, 2022; Landeros et al., 2022), and it is so called
because the iterative updates are defined via proximal oper-
ators (Parikh and Boyd, 2014). However, despite its ability
to deliver point estimates effectively, it is very difficult to
derive measures of uncertainty, and so a general theory of
inference is difficult to obtain. Toward filling this method-
ological gap, we recast the optimization problem in a con-
strained Bayesian setting by an analog of these penalties
that we term distance-to-set priors.

Our approach draws previously underexplored connections
between this optimization framework and the broader con-
strained Bayesian inference literature (Ghosh, 1992; Gra-
macy et al., 2016), an area that continues to grow with
exciting recent ideas. We focus on a tradition of sam-
pling through gradient-based samplers such as Hamiltonian
Monte Carlo, or HMC (Neal et al., 2011; Betancourt and
Girolami, 2015). Lan et al. (2014) utilize a spherical HMC,
mapping constraints that can be written as norms onto the
hypersphere. Related recent work uses a Riemannian HMC
under a manifold setup (Kook et al., 2022), extending a line
of work pioneered by Byrne and Girolami (2013). Duan
et al. (2020) replace a support constraint with a term that
decays exponentially outside of the support, while Sen et al.
(2018) project sample draws from unconstrained posteriors
to the constraint set to approximate the original posterior.
Recently, Xu et al. (2021) propose using priors based on
proximal mappings related to the constraint sets. Concurrent
work in Zhou et al. (2022) propose using the Moreau-Yosida
envelope in a more general manner, using a class of epigraph
priors toward regularized and constrained problems suited
for proximal MCMC (Pereyra, 2016).

Distance-to-set priors build upon this line of inquiry, pro-
viding an effective, practical way to consider constrained
inference problems. The framework is more general than
many of the previous methods in that it essentially only
requires that the constraint can be written as a set, and



Distance-to-Set Priors and Constrained Bayesian Inference

that projection onto that set is feasible. These priors are
then easy to evaluate, and work well within gradient-based
samplers due to our smooth formulation. This improves
computational stability compared to previous approaches
using posterior sampling algorithms such as HMC, as we
investigate in an empirical study. Moreover from a theoret-
ical perspective, this class of priors admits posteriors that
converge in distribution to the original constrained problem
along with their maximum a posteriori (MAP) estimates
as we increase the parameter governing the degree of con-
straint enforcement. Finally, we draw a connection between
Bayesian constraint relaxation and information geometry,
revealing how distance-to-set priors are optimal in a certain
sense, while simultaneously yielding a way to select the
regularization parameter ρ systematically.

2 THEORY AND METHODS

We begin by briefly reviewing distance-to-set penalties and
some of their key properties.

Distance-to-Set Penalties Let C ⊂ Rn be convex, and
let f : C → R be a convex function. Many constrained
programming problems of the form (1) may be intractable
in their original form, but can be converted to a sequence
of simpler subproblems. To make progress, denote the Eu-
clidean distance from any x ∈ Rn to C by dist(x, C) :=
infy∈C ∥x − y∥2: then the condition x ∈ C can be equiv-
alently written as dist(x, C) = 0. Note that while the dis-
tance operator is not necessarily smooth, its square is dif-
ferentiable as long as the projection of x onto C, denoted
PC(x) := argminy∈C ∥x − y∥2, is single-valued (Lange
(2016)). Thus, we may reformulate the problem by instead
considering the smooth unconstrained optimization task:

min
x

[
f(x) +

ρ

2
dist(x, C)2

]
,

where ρ > 0 is a penalty parameter. To solve the result-
ing problem, Lange (2016) propose a method termed the
proximal distance algorithm which makes use of the MM
principle to create surrogate functions based on distance
majorization (Chi et al., 2014). Its namesake derives from
the fact that the minimization of the surrogate functions

gρ(x | xk) = f(x) +
ρ

2
∥x− PC(xk)∥2

is related to the proximal operator of f (Parikh and Boyd
(2014)): recall for a function f , the proximal mapping with
parameter λ is defined

proxλf (y) ≡ argmin
x

[
f(x) +

1

2λ
∥x− y∥22

]
,

which relates to our problem with y the projection at iterate
k and λ = ρ−1. Under this formulation, to recover the
solution to the original optimization problem, it is necessary

for ρ → ∞ at some appropriate rate (Wright et al. (1999)).
Conversely, fixing a finite ρ results in a solution where
x is close to C, but not strictly inside of the set. Both
cases may be of interest depending on the modeling context.
We will discuss primarily the latter in this paper but also
establish theoretical relationships to the former. As our
primary setting is statistical, we may think of f(x) as a
convex loss function.

2.1 Distance-to-Set Priors

The proximal distance algorithm mentioned above provides
a method for obtaining point estimates under distance-to-
set penalization. However, to the best of our knowledge,
the current literature does not provide results pertaining to
uncertainty quantification for these estimators. As a step
toward understanding their uncertainty properties, our first
contribution is to link these ideas to a Bayesian constraint
relaxation framework. Identifying a penalized estimation
problem with a Bayesian problem has been done at least
as early as the seminal LASSO paper (Tibshirani, 1996).
Consider data y | θ ∈ Rn that has likelihood L(θ | y) and
is parameterized by some parameter θ with prior π(θ) that
is absolutely continuous with respect to Lebesgue measure,
with support Rd but constrained to Θ ⊂ Rd. Since θ is
constrained to Θ, Bayes’ Theorem gives the posterior for θ:

π(θ | y) ∝ L(θ | y)π(θ)1θ∈Θ

∝ L(θ | y)π(θ)1dist(θ,Θ)=0

where the second line follows from the discussion of
distance-to-set penalties. Since sampling from a pos-
terior sharply constrained on Θ may be difficult, we
can replace the indicator representing the constraint with
exp

(
−ρ

2dist(θ,Θ)2
)
. An illustration is given in Figure 1.

This term is equal to the indicator on Θ and rapidly de-
cays to zero as the distance from θ to Θ grows larger. We
choose to square the distance-to-set operator to align with
the distance-to-set optimization and to improve sampling
performance, which we discuss in Section 2.4.

We propose to use distance-to-set priors, defined as follows:

π̃(θ) := π(θ) exp
(
−ρ

2
dist(θ,Θ)2

)
,

where ρ > 0 is a hyperparameter in our treatment.

To bridge this with the optimization setting, we can define
f(θ) := − log(L(θ | y)π(θ)). However, it should be noted
that although every likelihood function gives us a loss by
taking the negative-log, the converse is not always true.
Thus, one could generalize our approach by considering
more general loss functions and incorporating them into
the Bayesian framework via Gibbs posteriors (Bissiri et al.,
2016); see also Jacob et al. (2017). Ignoring the constraint
for a moment, we obtained the unconstrained posterior:

π(θ | y) ∝ L(θ | y)π(θ). (2)
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Figure 1: Schematic of distance-to-set prior for the set Θ =
[−1, 1]. The blue dashed line represents the indicator 1Θ,
and the red solid line represents the relaxation of 1Θ that
we consider in this paper.

Combining this with constraint relaxation, we obtained what
we call the constraint relaxed posterior:

π̃(θ | y) ∝ L(θ | y)π(θ) exp
(
−ρ

2
dist(θ,Θ)2

)
(3)

The relaxed form avoids the discontinuity implied by the
indicator function in the sharply constrained posterior :

π(θ | y) ∝ L(θ | y)π(θ)1θ∈Θ (4)

For the remainder of this paper, we make the following
assumptions:

Assumption 1. All probability measures are absolutely
continuous with respect to d-dimensional Lebesgue measure
with densities supported in Rd.

Assumption 2. The unconstrained posterior π(θ | y) is

proper; that is,
∫
Rd

L(θ | y)π(θ) dθ < ∞.

Assumption 3. Unless stated otherwise, the support ∅ ̸=
Θ ⊂ Rd is a closed and convex set.

We make Assumption 1 because we will have an interest in
the performance of samplers, like HMC, that are designed to
perform on continuous distributions and to simplify the set-
ting. Assumption 2 guarantees the original posterior is not
ill-posed, and ensures we are sampling from a well-defined
distribution. Assumption 3 plays an integral role toward the
smoothness properties of the constraint relaxation; they lead
to continuity of the projection as well as a unique gradient
of the squared distance.

These natural conditions asure that the object of interest is
well-defined. The following proposition, as well as all theo-
rems in the following section, are proven in the Supplement.

Proposition 1. Under Assumptions 1 and 2, the constraint
relaxed posterior π̃(θ | y) (Equation 3) is a proper density.

2.2 Statistical Properties

Distance-to-set regularization and the underlying con-
strained problem are inextricably linked, so one would nat-
urally hope that the constraint relaxed posterior behaves
approximately like the constrained posterior when ρ is large.
Fortunately, this is the case as we formalize in the guarantees
below. Our first result shows that this class of distance-to-set
priors also possess the desirable property that the sequence
of MAP estimators of the relaxed posterior (indexed by the
penalty parameter ρ) converge to the the MAP estimator of
the non-relaxed problem as ρ grows large when the posterior
is log-concave.
Theorem 1. Suppose the unconstrained posterior π(θ | y)
(Equation 2) is strictly log-concave. Let {π̃ρk

(θ | y)}k∈N
(Equation 3) be a sequence of constraint-relaxed posterior
distributions where ρk ↑ ∞ as k → ∞. Further, define the
following MAP estimators

θ̂
M

= argmaxθ π(θ | y), θ̂
M

ρk
= argmaxθ π̃ρk

(θ | y).

Then the sequence θ̂
M

ρk
→ θ̂

M
as k → ∞.

In addition to convergence of a point estimate, we can say
more about the behavior of the entire distribution.
Theorem 2. Let Π be the constrained posterior distribution
with density π(θ | y), and let {Π̃ρk

}k∈N be a sequence
of constraint-relaxed posterior distributions with densities
{π̃ρk

(θ | y)}k∈N, respectively, where ρk ↑ ∞ as k → ∞.

Then ∥Π̃ρk
−Π∥TV → 0 as k → ∞. It follows that Π̃ρk

D→
Π as k → 0.

Theorem 2 is consistent with concurrent work by Zhou et al.
(2022), who show convergence in total variation distance
for posterior distributions under a more general class of
epigraph priors.

Information Projection The preceding results primarily
concern the limiting setting where ρ grows large, confirm-
ing that the relaxed posteriors under our priors tend to the
sharply constrained posterior. However, a common mod-
eling application in practice entails selecting a finite value
ρ < ∞ to promote structure encoded in the constraint C.
The next contribution highlights a connection between con-
strained and constraint-relaxed posterior distributions from
an information geometric perspective, with practical impli-
cations on this use case.

Consider the special case of the moment-constrained infor-
mation projection problem, originally studied by Csiszár
(1975):

p∗(θ) = argmin
p(θ)

∫
p(θ) log

(
p(θ)

π(θ | y)

)
dθ (5)

s.t. Eθ∼p

[
1

2
dist(θ,Θ)2

]
= D
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Thus we are interested in finding the closest density p∗(θ)
to the unconstrained posterior π(θ | y) in terms of KL
divergence such that the expected square distance of θ to Θ
under p∗(θ) is equal to some given value D.

Theorem 3. Suppose that Eθ∼π(θ|y)[dist(θ,Θ)2/2] > D.
Then the constraint-relaxed posterior distribution π̃(θ |
y) (Equation 3) is the solution to the moment-constrained
information projection problem (Equation 5):

p∗(θ) ∝ π(θ | y) exp
(
−λ

2
dist(θ,Θ)2

)
,

where λ > 0 is a Lagrange multiplier that satisfies the
moment constraint under p∗(θ).

The solution given in Theorem 3 is known as exponential
tilting (West, 2020; Tallman and West, 2022). Observe that
for λ = 0, p∗(θ) = π(θ | y). Moreover, D and λ are
inversely related (see Supplementary Material for additional
details), so in particular, if D → 0, then λ → ∞ and
p∗(θ) → π(θ | y). Exponential tilting therefore creates a
spectrum of constraint relaxation with the unconstrained pos-
terior on one end, the constrained posterior on the other end,
and the constraint-relaxed posterior as the optimal choice in
the sense that it is the closest to π(θ | y) while maintaining
a specified distance from Θ in expectation.

This perspective has practical implications. A common chal-
lenge in regularization problems involves specifying the
penalty parameter when it does not have an interpretable
scale. Theorem 3 suggests a systematic solution by identify-
ing the Lagrange multiplier λ from the information projec-
tion with the penalty ρ. We can solve for λ given a value for
D, and then use that value as the corresponding value for
ρ in the distance-to-set regularization or the corresponding
Bayesian constraint relaxation. Thought it appears we’ve
simply swapped specifying ρ with D, it’s important to note
that D is often interpretable in practice as it lives on the
same scale as θ, so we can choose the level of relaxation
based on real-world inputs or units in application.

2.3 Prior work on Bayesian Constraint Relaxation

The task our contributions address is closely related to the
Bayesian constraint relaxation work by Duan et al. (2020).
There, the authors also consider relaxing a sharply con-
strained prior by quantifying the distance to the desired
constraint, with particular attention to the case when the
constraint sets which they denote D lie in a lower dimen-
sional subspace of the full space Rd. They construct poste-
riors of the form π̃λ ∝ ℓ(θ;Y )πR(θ)exp{−λ−1∥νD(θ)∥},
where s < d denotes the dimension of the constraint set
D, which is represented algebraically as a solution to the
system of equations {νj(θ) = 0}sj=1. Duan et al. (2020)
choose to measure the constraint violation explicitly using
the function ∥νD(θ)∥ =

∑s
j=1 |νj(θ)|.

The authors briefly comment that users may flexibly choose
a measure of constraint violation: along this line, our
method not only shows how the squared Euclidean distance
is preferable in many ways over their choice of ∥νD(θ)∥, but
makes a departure from defining constraints algebraically
and component-wise by grounding in a projection-based
framework. That is, even when a constraint set D has
measure zero in Rd, for any point x ∈ Rd, its projection
PD(x) ∈ Rd also lives in the ambient space. By exploiting
the projection-based characterization of the distance from
points to sets, our formulation handles constraints implic-
itly, yielding effective algorithms that stay in the original
space. Not only does this avoid having to explicitly write
constraints algebraically, but obviates technical geometric
measure theoretic arguments by avoiding the need to oper-
ate directly in the subspace containing D and resolve the
mismatch in dimension when mapping back into Rd. The
next section provides transparent intuition for why simply
squaring the penalty makes a big difference in practice on
the performance of gradient-based samplers.

Our work shares a connection with recent work that pro-
poses a class of nondifferentiable priors called epigraph
priors, presented in the context of Bayesian trend filtering
(Heng et al., 2023). Though connections to proximal dis-
tance algorithms and distance majorization are not explicitly
referenced by the authors, projection onto the epigraph of
a regularization function g depends on the proximal map-
ping of g (Xu et al., 2021), and the success of their frame-
work hinges on the same algorithmic primitives and known
projection operators or proximal maps that make compu-
tation attractive in our case. Indeed, the proximal map
of an indicator function 1C(x) of a set C is given by the
projection PC(x) onto C. From another perspective, the
Moreau-Yosida envelope of 1C(x) is given by the squared
distance between x and C. While neither of these discusses
the Bayesian constraint framework of Duan et al. (2020),
they can be seen as a general context for this work, and
concurrent work by Zhou et al. (2022) also remarks on the
connection between such epigraph prior approaches and
distance regularization from the optimization perspective.

2.4 Sampling via Hamiltonian Monte Carlo

Having established some of its properties, we now discuss
how to draw samples from the posterior distribution effec-
tively. We advocate Hamiltonian Monte Carlo (HMC) (Neal
et al., 2011; Betancourt and Girolami, 2015), a popular
gradient-based MCMC algorithm that leverages Hamilto-
nian dynamics to generate informed parameter proposals.

We briefly review the HMC framework: to sample from a
posterior π(θ | y) ∝ L(θ | y)π(θ), where the posterior
has support on Rd, HMC begins by embedding θ into R2d

via the introduction of an independent, auxiliary momentum
parameter p ∈ Rd. The parameter of interest θ plays the
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role of the position vector; the sampler then explores their
joint posterior: π(θ,p | y). Define the Hamiltonian func-
tion H : R2d → R by H(θ,p) := − log π(θ,p). By the
independence of θ and p, we can write

H(θ,p) = K(p) + U(θ),

where one can take the kinetic energy to take the form
K(p) := 1

2p
⊺M−1p + C for some constant C and mass

matrix M, and the potential energy U(θ) := − log π(θ | y).
The Hamiltonian dynamics that describe how the parame-
ters evolve over “time” impose structure on the manifold
containing (θ,p):{

dθ
dt = ∇θH(θ,p) = ∇θ log π(θ | y)
dp
dt = −∇pH(θ,p) = −M−1p

Generally, there is no analytical tractable solution for this
PDE, so we rely on what is known as the leap-frog integrator
to discretize the PDE as follows. Given some step size ε
and a number of steps L, we iterate for l = 1, . . . , L:

1. pt+ε/2 = pt − ε
2∇θ log π(θ | y)

∣∣
θ=θt

2. θt+ϵ = θt + εM−1pt+ε/2

3. pt+ε = pt+ε/2 − ε
2∇θ log π(θ | y)

∣∣
θ=θt+ε

To incorporate this into a sampling algorithm, suppose we
start with a current parameter draw θ(s). Draw p0 ∼
Nd(0,M). Perform the leap-frog integrator to obtain a
proposal (θ(s+1),p∗). After reversing the direction of mo-
mentum −p∗ 7→ p∗, we perform an accept-reject step to
correct discretization error: accept (θ∗,p∗) with probability

α = min

{
1,

e−H(θ(s+1),p∗)

e−H(θ(s),p0)

}
.

Computational Advantages Duan et al. (2020) report
instability in the HMC algorithm, particularly when con-
straints are tightly enforced (i.e., ρ is large) under their
Bayesian constraint relaxation formulation. This section
provides a simple explanation for this behavior by exam-
ining the gradients under each approach, and also reveals
how our formulation avoids these pitfalls by yielding con-
tinuously differentiable gradients. In doing so, we greatly
improve stability in HMC implementations so that adequate
mixing is not restricted to narrow parameter ranges.

Proposition 2. The log constraint-relaxed posterior
log π̃(θ | y) (Equation 3) is continuously differentiable
as long as the log-posterior log π(θ | y) (Equation 2) is
continuously differentiable in θ.

The proof is detailed in the supplement, but follows readily
from continuity and uniqueness of the projection, which are

given by convexity. In particular, we see that the gradient

∇θ

[
1

2
dist(θ,Θ)2

]
= θ − PΘ(θ)

converges continuously to 0 on the boundary of the con-
straint as desired.

To better understand advantages over prior work, we ex-
amine how the gradient would behave had we relaxed the
constraint without squaring a distance-to-set penalty, akin
to the focus on ℓ1 approaches in (Duan et al., 2020). The
log-posterior, denoted by π̂(θ) would be of the form:

log π̂(θ | y) = logL(y | θ)π(θ)− ρ

2
dist(θ,Θ),

which is not smooth in general. In particular, examining the
subdifferential with respect to θ yields

∂θ log π̂(θ) = ∂θ logL(θ | y)π(θ)−

{
θ−PΘ(θ)

∥θ−PΘ(θ)∥2
, θ ̸∈ Θ

0, θ ∈ Θ

Observe that the ∥∇θdist(θ,Θ)∥2 = 1 for θ /∈ Θ, and
0 otherwise: the distance fails to be continuously differ-
entiable at the boundary, instead sharply transitioning at
a jump discontinuity. Computationally, this manifests as
instability and poor mixing when the sampler is close to
the constraint, as whenever θ ≈ PΘ(θ), the denominator
becomes numerically close to 0. This agrees with empirical
findings reported by Duan et al. (2020) and their remarks
on instability in the Supplemental Materials.
Remark. We may weaken Assumption 3 so that Θ is closed
but not necessarily convex. In this case, Proposition 7 of
Keys et al. (2019) assures that for a nonempty closed subset
of Rn, the projection operator is multi-valued on a set of
measure zero, so the gradient formula for the squared dis-
tance function holds and is uniquely defined almost surely.

3 RESULTS AND PERFORMANCE

In this section, we investigate the performance of distance-
to-set priors on increasingly more involved empirical studies.
We find that our priors result in improved sampling perfor-
mance relative to existing constraint relaxation methods.

Regression over the ℓ2-Ball We illustrate our approach to
measuring the uncertainty of distance-to-set penalization by
considering a simple constrained formulation of the ridge
regression problem. Here the constraint set C = B2(0, 1) is
the Euclidean unit ℓ2-ball. From an estimation perspective,
the proximal distance algorithm aims to solve the problem

min
β∈C

∥y −Xβ∥22,

where y ∈ Rn, X ∈ Rn×p, and β ∈ Rp, by considering a
relaxed version. For a fixed ρ ∈ (0,∞),

min
β∈Rp

∥y −Xβ∥22 +
ρ

2
dist(β, C)2
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Applying the iterations from the proximal distance algo-
rithm without taking ρ ↑ ∞ will solve this problem, the
solution of which we denote by β̂. To obtain correspond-
ing uncertainty as measured by a posterior, consider the
Gaussian model: y | β ∼ N(Xβ, σ2I) with a flat prior
π(β) ∝ 1. Then the constraint relaxed posterior is given by

π̃(β | y) ∝ exp

(
− 1

2σ2
∥y −Xβ∥22

)
exp

(
−ρ

2
dist(β, C)2

)

Clearly, the MAP estimator β̂MAP is equal to β̂. Since
we have a fully-specified posterior, we can supplement the
estimator β̂ with uncertainty quantification. Moreover, a
more subtle point is that we can use the proximal distance
algorithm to compute MAP estimates for the corresponding
Bayesian model, which would normally be very difficult to
obtain simply from drawing samples from the posterior.

We examine the performance in this model on simulated
data. In this case, there is a simple closed-form expression
for the projection:

PC(β) =

{
β/∥β∥2, β ̸∈ C
0, β ∈ C

.

−1

0

1

−2 −1 0 1 2
β1

β 2

Sample Draws from Posterior

Figure 2: Draws from relaxed
posterior, ridge regression.

We choose p = 2
for easy of visualization,
and generate the true
β = (−1.295,−0.532)
to lie outside of C. We
then draw n = 100 ob-
servations from a linear
model under β. To sam-
ple from the posterior
distribution, we use the
stan functionality in
R that leverages NUTS-
HMC (Hoffman et al., 2014), and set the hyperparameter
ρ = 103 to tightly enforce the constraint.

Figure 2 displays the sample draws. At a glance, one can
see that the posterior posterior distribution is concentrated
near the boundary in the bottom-left quadrant since the true
β, denoted as a red point, lies in that direction. The poste-
rior samples allow one to conduct inference. For instance,
the 95% equi-tailed credible intervals for β1 and β2 are
(−0.99,−0.54) and (−0.65, 0.11), respectively.

We further examine the impact of squaring the distance-
to-set operator on posterior sampling performance in this
context. Figure 3 depicts the trace plots and autocorrelation
function (ACF) under a squared and unsquared distance-
to-set term in the prior. The trace plots suggest better mix-
ing and slightly less stickiness in the sampling trajectories.
Moreover, there is a noticeable reduction in dependence
between sample draws when using the squared distance-
to-set priors based on the ACF plots. Overall, this is a
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Figure 3: (Regression) Trace plots and ACF plots for both
the unsquared (left) and squared (right) distance-to-set priors
for β1. Plots for β2 look similar and are omitted.

relatively simple example—the dimension of the constraint
set matches the dimensions of the ambient space within
which it is embedded. In fact, both squared and unsquared
priors perform well, and the samples from the latter look
essentially the same as Figure 2, though we already see
computational improvements by examining properties of
the chain. These differences become more pronounced as
we consider more challenging settings, such as a lower di-
mensional constraint set in the next example.

Sampling along a Lower-Dimensional Surface The von
Mises-Fisher distribution vMF(α,F) is supported on the
sphere Sp with α ≥ 0 and F ∈ Sp. When α = 0, this
reduces to the uniform distribution on the sphere (Fisher,
1953). One can then envision the von Mises-Fisher distribu-
tion as being a spherical distribution concentrated around a
unit vector. Duan et al. (2020) observe that this distribution
can be described as a multivariate normal with mean vec-
tor F ∈ Rp+1 constrained to the unit sphere. They further
consider a generalization in which the multivariate normal
likelihood is replaced with a multivariate Student-t distri-
bution with m degrees of freedom, mean vector F ∈ Rp+1,
and variance σ2Ip+1. Using distance-to-set priors, we re-
visit this setting and relax the constraint so that the points
have to lie close to the constraint surface, targeting sampling
from the following distribution:

π̃(θ | y) ∝
(
1 +

∥F− θ∥22
mσ2

)−m+p
2

exp
(
−ρ

2
dist(θ, Sp)2

)

Observe that S2 has a smaller dimension that the space
within which it is embedded, namely R3. We demonstrate
how one would use distance-to-set constraint relaxation in
this setting, we specify the the projection PSp , which maps
0 ̸= θ ∈ Rn to θ/∥θ∥. Thus, dist(θ, Sp) = ∥θ− PSp(θ)∥.
In Duan et al. (2020), the distance from the constraint is
considered algebraically by ν(θ) = |θ⊺θ − 1|. In essence,
the distance from θ to Sp is given by the distance in the
level curve it lies on θ⊺θ and the level curve defining Sp.
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As such, we refer to this as the level set relaxation prior in
comparisons reported here.

We now compare these two Bayesian constraint relaxation
approaches using stan. For sampling using the relaxation
ν(θ), we use publicly accessible code obtainable in Duan.
For our distance-to-set prior, we only need to update the con-
straint relaxation term. We summarize how these Bayesian
constraint relaxation methods perform below for p = 2 (the
sphere that forms the boundary of the Euclidean ℓ2 unit
ball in R3). Figure 4 plots results after drawing 2000 sam-
ples points using the peer algorithms, thinned by a factor
of 10 for visual clarity. The distance-to-set prior mimics
the theoretical draws from the vMF distribution, with some
deviation due to a mild degree of constraint relaxation and
slightly different tail behavior. In contrast, the level set
relaxation prior leads to a chain that gets stuck during sam-
pling, and the range of samples do not appear to be near the
target constraint surface.

Table 1: Sampling Performance for Level Set Prior vs.
Distance-to-Set Prior on Robust vMF Distribution

Level Set Relaxation Prior Distance-to-Set Prior
ρ Axis Mean 2.5% 97.5% ESS Mean 2.5% 97.5% ESS

1000 x 0.59 0.18 0.94 31.55 0.52 -0.02 0.93 853.22
y 0.54 0.05 0.86 9.38 0.52 -0.08 0.93 736.91
z 0.48 0.04 0.88 11.78 0.53 -0.11 0.96 728.31

10000 x 0.26 -0.10 0.57 1.35 0.51 -0.13 0.92 750.94
y 0.41 -0.13 0.78 1.05 0.51 -0.14 0.93 650.81
z -0.75 -1.00 -0.47 1.02 0.51 -0.09 0.93 622.50

1e+05 x 0.27 0.07 0.46 1.00 0.50 -0.21 0.92 751.80
y 0.06 -0.88 0.99 1.00 0.50 -0.29 0.94 600.63
z -0.01 -0.14 0.12 1.00 0.49 -0.22 0.92 702.80

1e+06 x -0.38 -0.46 -0.30 1.00 0.52 -0.02 0.92 779.55
y 0.51 0.06 0.95 1.00 0.51 -0.15 0.92 559.85
z -0.40 -0.89 0.08 1.00 0.53 -0.06 0.93 542.38

Figure 4 shows a cluster of sample draws for the level set
relaxation prior, suggesting that sampler is sticky and does
not explore the space well. On the other hand, our distance-
to-set prior resembles draws from the theoretical distribution
fairly well. Table 1 further reinforces this point. As we
decrease λ (i.e., enforce the constraint more strictly), we
see that the distribution concentrates away from the mean
vector (1/

√
3, 1/

√
3, 1/

√
3), and the ESS (out of 1,000

post-warmup iterations per chain, 2 chains) is low. Our
novel distance-to-set prior concentrates around the mean
vector, and the ESS remains consistently high. Finally,
the acceptance rate for our method ranges between 0.932—
0.937, while it ranges between 0.766—0.815 for the level
set relaxation prior. As it is desirable for acceptance rates to
be close to 100% since Metropolis steps in HMC are meant
to correct only for numerical error, this makes a strong case
for the sampling performance under our approach.

3.1 Real Data Case Study

While the simulation studies highlight advantages of our
approach, the final example considers a case study whose
constraint is nontrivial to incorporate within prior methods.
We apply our distance-to-set priors to constraints imposed

on contingency tables imbued with isotonic constraints. We
follow the design introduced by Agresti and Coull (2002) in
which four treatment group doses were given (Placebo, Low
dose, Medium dose, High dose) to patients with subarach-
noid hemorrhage, and the outcomes were examined (Good
recovery, Minor disability, Major disability, Vegetative state,
and Death) to construct a dose-response curve. The data
appears in Agresti and Coull (2002), summarized in the
table below. The constraint on this table that is natural to
assume is for the outcome to stochastically increase with
respect to the treatment, which we formalize below.

A model for the order-based constraints on this contingency
table is described by Sen et al. (2018). Following this treat-
ment, suppose we have n observations exhaustively dis-
tributed over an I × J contingency table with entries nij

for i ∈ [I] and j ∈ [J ], where [m] := {1, . . . ,m}. We
let the rows represent the doses, and the columns represent
the outcomes. Suppose further that the probability of each
observation ending up in the (i, j) cell is given by θij . Let
n[i] :=

∑
i∈[I] nij , and similarly, θ[i] := (θi1, . . . , θiJ):

Recovery Minor Disability Major Disability Vegetative State Death
Placebo θ11 θ12 θ13 θ14 θ15

Low Dose θ21 θ22 θ23 θ24 θ25
Medium Dose θ31 θ32 θ33 θ34 θ35

High Dose θ41 θ42 θ43 θ44 θ45

Then we take the following model: for each i ∈ [I] suppose

(ni1, . . . , niJ)
⊥⊥∼ Multi(n[i],θ[i]), θ[i]

⊥⊥∼ Dir(α).

We impose the stochastic dominance constraint on the prob-
abilities governing the contingency table as follows: for all
i ∈ [I], for all j ∈ [J ],

j∑
k=1

θi+1,k ≥
j∑

k=1

θik.

We may write the set of such probabilities obeying this
stochastic dominance as the following isotonic constraint:

ΘCT :=

(θij)i∈I,j∈J

∣∣∣∣∣
j∑

k=1

θi+1,k ≥
j∑

k=1

θik for i ∈ [I], j ∈ [J]


As with any application of distance-to-set penalties or pri-
ors, a crucial subroutine requires computing the projec-
tion onto ΘCT . It is not clear whether implementing the
projection directly in a Stan file (Stan Development Team,
2022) is possible; instead, we implement our HMC-based
sampler directly in R. We use a quadratic programming
algorithm (Goldfarb and Idnani, 1982, 1983) available in
the quadprog library (Turlach and Weingessel, 2013) to
compute the projections that appear in the gradient of the
log-posterior, and include the complete implementation de-
tails to the Supplement. It is worth noting that despite four
seemingly independent multinomial-Dirichlet models, the
stochastic dominance constraints entangle the distributions.
The resulting constrained problem is complex, and distinct
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Figure 4: Exact draws using the using the rvmf function in the rFast package compared to samples using the method of
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Figure 5: (Contingency Table) 95% posterior credible inter-
vals under distance-to-set priors with ρ = 7.5× 105.

from a standard setting with separate isotonic constraints
(Chatterjee et al., 2015), which can be handled using the
simpler pooled adjacent violators algorithm (PAVA).

Figure 5 displays the 95% credible intervals for the proba-
bilities governing the contingency tables; detailed numerical
values are tabulated in the Supplement. As we consider a
large value of ρ = 7.5 × 105, it is not surprising that the
isotonic constraints are well-respected at the quantiles.

Despite the high degree of constraint enforcement, Figure 6
shows that our approach to constraint relaxation maintains
strong performance despite a naı̈ve implementation.

4 DISCUSSION

In this work, we revisit distance-to-set regularization from
a Bayesian perspective, and advocate a flexible class of
distance-to-set priors to allow uncertainty quantification un-
der a well-defined posterior. Our class of priors is smooth,
which is a crucial factor in the improved sampling perfor-

0.21

0.22

0.23

0 2500 5000 7500 10000
Iteration

θ 1
1

Traceplot of θ11

Figure 6: (Contingency Table) The trace plot of samples for
the parameter θ1,1 in the contingency table.

mance under implementations such as HMC. Empirical
results reflect this design, so that performance does not dete-
riorate even when the constraint set is a lower-dimensional
manifold, the parameter ρ is large, or PΘ(θ) cannot be ex-
pressed analytically in closed form. When ρ → ∞, distance-
to-set priors agree with the sharply constrained Bayesian
inference problem, and when ρ < ∞, constraint-relaxed
posteriors are optimal approximations in terms of KL diver-
gence, while respecting the constraint to a specified amount
in expectation.

There are a number of open extensions and inferential ques-
tions that remain interesting directions for future work in
view of distance-to-set regularization. For instance, loss
functions do not always originate from likelihoods. Al-
though there is no longer a valid posterior distribution in
such instances, Bissiri et al. (2016) proposes using loss
functions in place of likelihoods to obtain Gibbs posteriors.
Rigon et al. (2023) proposed using these for clustering more
recently. We believe distance-to-set priors can similarly
incorporate constraint information into these generalized
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posteriors rather seamlessly.

We show how to incorporate a relaxed constraint into a prior
in a way that is amenable to posterior computation, but
have in a sense taken the original prior “for granted”. The
meaning of resulting analyses after imposing constraints
on the prior may not be straightforward depending on the
context (Stark, 2015), and unintuitive phenomena may arise
as a result of mathematical artifacts; see for example the
discussion in Section 3 of Gelman (1996). More statistical
implications such as posterior concentration behavior under
particular prior choices are also worthy of further study.

We use an ℓ2 metric throughout, largely motivated by the
smoothness of the distance-to-set operator. However, it
may be more natural to consider non-Euclidean measures
of nearness in many settings. For instance, when one seeks
a prior to constrain a class of probability distributions to a
subdomain of the probability simplex, KL divergence may
be preferable. Bregman divergences (Bregman, 1967) more
generally are a natural choice worth exploring further. A
related and more general task is to more closely examine
distance-to-set priors when the constraints comprise Rie-
mannian manifolds. Algorithms such as RM-HMC (Giro-
lami and Calderhead, 2011) allow the modeler to explore a
highly non-Euclidean space using data locally encoded via
Riemannian metrics, but it is not always easy to constrain
samplers to operate exactly on the surface at each iteration.
Incorporating distance-to-set priors into these more general
modeling settings is an exciting direction to investigate.

A core computational subroutine in pursuing these exten-
sions involves preserving the ability to efficiently compute
projections. Convenient expressions are available for some
constraint sets under these non-Euclidean settings, though
we expect further investigation is critical to broaden the
classes of projections and approximate projections we can
consider in generality.

While we begin to examine the information geometric un-
derpinnings along these lines via exponential tilting, these
connections remain underexplored. There are likely deeper
insights in these directions that may reveal further proper-
ties or motivate new classes of priors. We invite readers to
consider future investigation into these promising research
directions.
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bel, Herbert KH Lee, Pritam Ranjan, Garth Wells, and
Stefan M Wild. Modeling an augmented lagrangian for
blackbox constrained optimization. Technometrics, 58(1):
1–11, 2016.

Qiang Heng, Hua Zhou, and Eric C. Chi. Bayesian trend
filtering via proximal Markov chain Monte Carlo. Journal
of Computational and Graphical Statistics, In press, 2023.
doi: 10.1080/10618600.2023.2170089.

Matthew D Hoffman, Andrew Gelman, et al. The No-U-
Turn sampler: adaptively setting path lengths in Hamil-
tonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593–
1623, 2014.

Pierre E Jacob, Lawrence M Murray, Chris C Holmes,
and Christian P Robert. Better together? Statistical
learning in models made of modules. arXiv preprint
arXiv:1708.08719, 2017.

Kevin L Keys, Hua Zhou, and Kenneth Lange. Proximal
distance algorithms: Theory and practice. The Journal of
Machine Learning Research, 20(1):2384–2421, 2019.

Yunbum Kook, Yin Tat Lee, Ruoqi Shen, and Santosh S
Vempala. Sampling with Riemannian Hamiltonian
Monte Carlo in a constrained space. arXiv preprint
arXiv:2202.01908, 2022.

Shiwei Lan, Bo Zhou, and Babak Shahbaba. Spherical
Hamiltonian Monte Carlo for constrained target distribu-
tions. In International Conference on Machine Learning,
pages 629–637. PMLR, 2014.

Alfonso Landeros, Oscar Hernan Madrid Padilla, Hua Zhou,
and Kenneth Lange. Extensions to the proximal distance
method of constrained optimization. Journal of Machine
Learning Research, 23(182):1–45, 2022.

Kenneth Lange. MM optimization algorithms. SIAM, 2016.

James R Munkres. Topology, volume 2. Prentice Hall Upper
Saddle River, 2000.

Radford M Neal et al. MCMC using Hamiltonian dynamics.
Handbook of Markov chain Monte Carlo, 2(11):2, 2011.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foun-
dations and Trends in optimization, 1(3):127–239, 2014.

Marcelo Pereyra. Proximal Markov Chain Monte Carlo
algorithms. Statistics and Computing, 26(4):745–760,
2016.

Tommaso Rigon, Amy H Herring, and David B Dunson. A
generalized Bayes framework for probabilistic clustering.
Biometrika, 2023. ISSN 1464-3510. doi: 10.1093/biomet/
asad004.

John C Robertson, Ellis W Tallman, and Charles H White-
man. Forecasting using relative entropy. Journal of
Money, Credit, and Banking, 37(3):383–401, 2005.

Deborshee Sen, Sayan Patra, and David Dunson. Con-
strained inference through posterior projections. arXiv
preprint arXiv:1812.05741, 2018.

Stan Development Team. RStan: the R interface to Stan,
2022. URL https://mc-stan.org/. R package
version 2.21.5.

Philip B Stark. Constraints versus priors. SIAM/ASA Journal
on Uncertainty Quantification, 3(1):586–598, 2015.

Emily Tallman and Mike West. On entropic tilting and pre-
dictive conditioning. arXiv preprint arXiv:2207.10013,
2022.

Robert Tibshirani. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society: Series
B (Methodological), 58(1):267–288, 1996.

Berwin A Turlach and Andreas Weingessel. quadprog:
Functions to solve quadratic programming problems. r
package version 1.5-5, 2013.

Mike West. Perspectives on Bayesian decision anal-
ysis and constrained forecasting. arXiv preprint
arXiv:2007.11037, 2020.

Stephen Wright, Jorge Nocedal, et al. Numerical optimiza-
tion. Springer Science, 35(67-68):7, 1999.

Daniel Eliot Wulbert. Continuity of metric projections.
Transactions of the American Mathematical Society, 134
(2):335–341, 1968.

Jason Xu and Kenneth Lange. A proximal distance algo-
rithm for likelihood-based sparse covariance estimation.
Biometrika, 109(4):1047–1066, 2022.

Jason Xu, Eric Chi, and Kenneth Lange. Generalized linear
model regression under distance-to-set penalties. Ad-
vances in Neural Information Processing Systems, 30,
2017.

Maoran Xu, Hua Zhou, Yujie Hu, and Leo L Duan. Bayesian
inference using the proximal mapping: Uncertainty quan-
tification under varying dimensionality. arXiv preprint
arXiv:2108.04851, 2021.

Xinkai Zhou, Eric C Chi, and Hua Zhou. Proximal MCMC
for Bayesian inference of constrained and regularized
estimation. arXiv preprint arXiv:2205.07378, 2022.

https://mc-stan.org/


Rick Presman, Jason Xu

Supplementary Materials

A NUMERICAL DATA FOR STOCHASTIC ORDERING CASE STUDY

We provide numerical data supporting the credible intervals shown in Figure 5 of the paper.

2.5th Percentile
j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.2161 0.3126 0.5496 0.8229 1.0000
i = 2 0.2194 0.3131 0.5527 0.8272 1.0000
i = 3 0.2365 0.3134 0.5544 0.8300 1.0000
i = 4 0.2900 0.3137 0.5566 0.8306 1.0000

50th Percentile
j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.2234 0.3194 0.5581 0.8297 1.0000
i = 2 0.2266 0.3199 0.5605 0.8329 1.0000
i = 3 0.2456 0.3202 0.5621 0.8356 1.0000
i = 4 0.2983 0.3206 0.5646 0.8360 1.0000

97.5th Percentile
j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 0.2310 0.3265 0.5663 0.8358 1.0000
i = 2 0.2346 0.3268 0.5683 0.8384 1.0000
i = 3 0.2546 0.3271 0.5698 0.8412 1.0000
i = 4 0.3065 0.3277 0.5734 0.8418 1.0000

B PROOFS

B.1 Proof of Proposition 1

Proposition 1. Under Assumptions 1 and 2, the constraint relaxed posterior π̃(θ | y) is a proper density.

Proof. Noting that exp
(
−ρ

2dist(θ,Θ)2
)
≤ 1 for all θ ∈ Rd, we immediately obtain from Assumption 2∫

Rd

L(θ | y)π(θ) exp
(
−ρ

2
dist(θ,Θ)2

)
dθ ≤

∫
Rd

L(θ | y)π(θ) dθ < ∞.
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B.2 Proof of Theorem 1

Theorem 1. Suppose the unconstrained posterior π(θ | y) is strictly log-concave. Let {π̃ρk
(θ | y)}k∈N be a sequence of

constraint-relaxed posterior distributions where ρk ↑ ∞ as k → ∞. Further, define the following MAP estimators

θ̂
M

= argmaxθ π(θ | y), θ̂
M

ρk
= argmaxθ π̃ρk

(θ | y).

Then the sequence θ̂
M

ρk
→ θ̂

M
as k → ∞.

Proof. We closely follow the argument of (Wright et al., 1999, Theorem 17.1). Let θ∗ be a limit point of the sequence of

MAP estimates
{
θ̂
M

ρk

}
k∈N

corresponding to the constraint-relaxed posterior distributions π̃ρk
(θ | y), and let θ̂

M
be the

MAP estimate corresponding to the constrained posterior distribution π(θ | y). For the remainder of the proof, we drop the
superscript M to ease notation.

We start with the basic inequality log π̃ρk

(
θ̂ | y

)
≤ log π̃ρk

(
θ̂ρk

| y
)

and expand:

log π
(
θ̂ | y

)
− ρ

2
dist

(
θ̂,Θ

)2

︸ ︷︷ ︸
=0

+ logCρk
≤ log π

(
θ̂ρk

| y
)
− ρk

2
dist

(
θ̂ρk

,Θ)2
)
+ logCρk

,

where Cρk
=

(∫
Rd π̃ρk

(θ | y) dθ
)−1

is the normalizing constant for π̃(θ | y). Simplifying the above expression gives

log π
(
θ̂ | y

)
≤ log π

(
θ̂ρk

| y
)
− ρk

2
dist

(
θ̂ρk

,Θ
)2

. (*)

A bit of algebra shows that

0 ≤ dist
(
θ̂ρk

,Θ
)2

≤ 2

ρk

(
log π

(
θ̂ρk

| y
)
− log π

(
θ̂ | y

))
Since ρk ↑ ∞ as k → ∞ and log π(· | y) is continuous, we have that

2

ρk

(
log π

(
θ̂ρk

| y
)
− log π

(
θ̂ | y

))
k→∞−→ 0,

which implies that
dist(θ∗,Θ) = lim

k→∞
dist

(
θ̂ρk

,Θ
)
= 0.

The equality in the above expression follows from the continuity of dist(·,Θ) (Lange, 2016, Proposition 2.7.1(a)). Thus,
θ∗ ∈ Θ.

Next, since ρ > 0 and dist(·,Θ) ≥ 0, we have for all k ∈ N,

log π (θ∗ | y) ≥ log π (θ∗ | y)− ρk
2
dist

(
θ̂ρk

,Θ
)2

,

so we must have

log π (θ∗ | y) ≥ lim
k→∞

(
log π (θ∗ | y)− ρk

2
dist

(
θ̂ρk

,Θ
)2

)
= log π (θ∗ | y)− lim

k→∞

ρk
2
dist

(
θ̂ρk

,Θ
)2

(**)

Taking k → ∞ on both sides of (*), we obtain

log π
(
θ̂ | y

)
≤ lim

k→∞

(
log π (θ∗ | y)− ρk

2
dist

(
θ̂ρk

,Θ
)2

)
= log π (θ∗ | y)− lim

k→∞

ρk
2
dist

(
θ̂ρk

,Θ
)2

(***)

Combining (**) and (***), we obtain the inequality:

log π (θ∗ | y) ≥ log π
(
θ̂ | y

)
.

By the strict log-concavity of π(θ | y) and the convexity of Θ (Assumption 3), we have that θ̂ is the unique global maximum
of π(θ | y). Therefore, θ∗ = θ̂, and the conclusion follows.
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B.3 Proof of Theorem 2

Theorem 2. Let Π be the constrained posterior distribution with density π(θ | y), and let {Π̃ρk
}k∈N be a sequence of

constraint-relaxed posterior distributions with densities {π̃ρk
(θ | y)}k∈N, respectively, where ρk ↑ ∞ as k → ∞. Then

∥Π̃ρk
−Π∥TV → 0 as k → ∞. It follows that Π̃ρk

D→ Π as k → 0.

Proof. By Assumption 1, the constrained distribution Π and the constrained relaxed posterior distributions Π̃ρk
, k ∈ N, are

absolutely continuous, so they have densities π(θ | y) and π̃ρk
(θ | y), respectively. Write these as

π(θ | y) = CL(θ | y)π(θ)1θ∈Θ

π̃ρk
(θ | y) = Cρk

L(θ | y)π(θ) exp
(
−ρk

2
dist(θ,Θ)2

)
,

where C and Cρk
are normalizing constants. Since 1Θ ≤ exp

(
−ρ

2dist(θ,Θ)2
)

for all θ ∈ Rd (with equality on Θ), we
have

C−1
ρk

=

∫
Rd

L(θ | y)π(θ) exp
(
−ρk

2
dist(θ,Θ)2

)
dθ

≥
∫
Θ

L(θ | y)π(θ) exp
(
−ρk

2
dist(θ,Θ)2

)
dθ

=

∫
Θ

L(θ | y)π(θ)1θ∈Θdθ

= C−1

Thus, Cρk
≤ C for all k ∈ N. By a similar calculation, we have

C−1
ρk+1

=

∫
Rd

L(θ | y)π(θ) exp
(
−ρk+1

2
dist(θ,Θ)2

)
dθ

≥
∫
Rd

L(θ | y)π(θ) exp
(
−ρk

2
dist(θ,Θ)2

)
dθ

= C−1
ρk

.

We then have Cρk+1
≤ Cρk

≤ C for all k ∈ N. Therefore, Cρk
↑ C. Partition Rd = Θ∪ΘC , and observe that for θ ∈ ΘC ,

π̃ρk
(θ | y) ≥ 0 = π(θ | y).

For θ ∈ Θ, for all k ∈ N,

π(θ | y) = CL(θ | y)π(θ) ≥ Cρk
L(θ | y)π(θ) = π̃ρk

(θ | y)

Thus, we have

ΘC = {θ : π̃ρk
(θ | y) ≥ π(θ | y)}, Θ = {θ : π̃ρk

(θ | y) ≤ π(θ | y)}, k ∈ N.

Using this fact about the partition, we examine the TV distance:

∥Π̃ρk
−Π∥TV =

1

2

∫
Rd

|π̃ρk
(θ | y)− π(θ | y)| dθ

=
1

2

∫
ΘC

π̃ρk
(θ | y)− π(θ | y) dθ +

1

2

∫
Θ

π(θ | y)− π̃ρk
(θ | y) dθ

=
1

2

∫
ΘC

π̃ρk
(θ | y) dθ︸ ︷︷ ︸

(a)

+
1

2
(C − Cρk

)

∫
Θ

L(θ | y)π(θ) dθ︸ ︷︷ ︸
(b)

For the first integral (a), observe that
lim
k→∞

exp
(
−ρk

2
dist(θ,Θ)2

)
= 1θ∈Θ
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in a pointwise manner for all θ ∈ Rd, so for all θ ∈ Rd, π̃ρk
(θ | y) ↓ 0 as k → ∞. Note that

π̃ρk
(θ | y) = Cρk

L(θ | y)π(θ) exp
(
−ρk

2
dist(θ,Θ)2

)
≤ CL(θ | y)π(θ) ∈ L1

by Assumption 2. Therefore, by the Monotone Convergence Theorem, we have

lim
k→∞

1

2

∫
ΘC

π̃ρk
(θ | y) dθ =

1

2

∫
ΘC

lim
k→∞

π̃ρk
(θ | y) dθ = 0.

For the second integral (b), we have:

lim
k→∞

1

2
(C − Cρk

)

∫
Θ

L(θ | y)π(θ) dθ = 0

Putting this all together, we obtain
∥Π̃ρk

−Π∥TV → 0 as k → ∞.

This shows that Π̃ρk
converges to Π in total variation distance. An equivalent way of writing this is to say that

lim
k→∞

sup
S∈B(Rd)

|Π̃ρk
(S)−Π(S)| = 0,

where we take the supremum over all Borel sets B(Rd). Let A ⊂ B(Rn) be the collection of Π-continuity sets (i.e., for all
A ∈ A, Π(∂A) = 0). Clearly,

lim
k→∞

sup
A∈A

|Π̃ρk
(A)−Π(A)| ≤ lim

k→∞
sup

A∈B(Rd)

|Π̃ρk
(A)−Π(A)| = 0.

Then by the Portmanteau Theorem (Billingsley, 2013, Theorem 2.1), we conclude that Π̃ρk

D→ Π.

B.4 Proof of Theorem 3

Theorem 3. Suppose that Eθ∼π(θ|y)[dist(θ,Θ)2/2] > D. Then the constraint-relaxed posterior distribution π̃(θ | y) is
the solution to the moment-constrained information projection problem:

p∗(θ) ∝ π(θ | y) exp
(
−λ

2
dist(θ,Θ)2

)
,

where λ > 0 is a Lagrange multiplier that satisfies the moment constraint under p∗(θ).

Proof. The general form of the moment-constrained information projection problem can be stated as follows:

min
p

KL(p ∥ q) :=
∫

p log

(
p

q

)
s.t. Ep[g(X)] = g0,

where p and q are density functions, X ∈ Rm is a random vector, g : Rm → Rd is a function of X , and g0 ∈ Rd is some
given vector. The optimal solution is given by West (2020) to be

p∗(x) ∝ q(x) exp (λ⊺g(x)) .

See also Csiszár (1975) and Robertson et al. (2005). The optimal form of the solution is known as exponential tilting, and
one can solve for the vector λ using the moment constraint:

Ep∗ [g(X)] =

∫
Rm

g(x)q(x) exp (λ⊺g(x)) dx = 0.
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Specializing to our case, we take x = θ, q(θ) = π(θ | y), g(θ) = 1
2dist(θ,Θ)2, and g0 = D. This gives

p∗(θ) ∝ π(θ | y) exp
(
λ

2
dist(θ,Θ)2

)
,

where λ ∈ R. Moreover, note that by (Tallman and West, 2022, Equation 5) and the remark immediately proceeding it, we
have the relationship

∂

∂λ
Ep∗

[
1

2
dist(θ,Θ)2

]
> 0.

Moreover, observe that λ = 0 if and only if p∗(θ) = π(θ | y). Thus, if we assume Eπ(θ|y)[dist(θ,Θ)2/2] > D, then
λ < 0. Reparameterizing, we have

p∗(θ) ∝ π(θ | y) exp
(
−λ

2
dist(θ,Θ)2

)
,

where λ > 0, and this gives the desired result.

B.5 Proof of Proposition 2

Proposition 2. The log constraint-relaxed posterior log π̃(θ | y) is continuously differentiable as long as the log-posterior
log π(θ | y) is continuously differentiable in θ.

Proof. By Assumption 3, Θ is convex, so PΘ(θ) is single-valued. We then have ∇θ

[
1
2dist(θ,Θ)2

]
= θ − PΘ(θ) (Lange,

2016) for any θ.

It remains to show that the gradient is continuous. It suffices to show that the projection operator PΘ(θ) is continuous. One
way to see this is to observe that Pθ(θ) is firmly nonexpansive (i.e., 1-Lipschitz) when Θ is closed and convex, and we
immediately draw the conclusion.

However, we record here a slightly more general result that is useful for more general settings. For this we define the term
Chebyshev set (Wulbert, 1968); a set C is Chebyshev if for all x ∈ C, PC(x) is a singleton. Theorem 3 of Wulbert (1968)
provides one characterization of continuity which occurs for Chebyshev sets: if C ⊂ X is a locally compact, Chebyshev set
in a Banach space, then PC is continuous if and only if C is convex.

Θ ⊂ Rn is convex, and so it is Chebyshev, and Rn is a Banach space. Moreover, it is easy to check that Rn is locally
compact and Hausdorff. Since Θ is closed, Corollary 29.3 of Munkres (2000) gives us that Θ is locally compact. Thus, by
the above theorem, we can conclude that PΘ is continuous.

Thus, for any point θ0 ⊂ Θ,

lim
θ→θ0

∇θ

[
1

2
dist(θ,Θ)2

]
= lim

θ→θ0

[θ − PΘ(θ)] = θ0 − PΘ(θ0)

We also have that dist(θ,Θ) is identically 0 on Θ, so it’s gradient there will be 0. In particular, if θ0 ∈ ∂Θ ⊂ Θ, then

lim
θ→θ0

∇θ

[
1

2
dist(θ,Θ)2

]
= θ0 − PΘ(θ0) = θ0 − θ0 = 0 = ∇θ

[
1

2
dist(θ,Θ)2

]∣∣∣∣
θ=θ0∈∂Θ

C HMC IMPLEMENTATION, STOCHASTIC ORDERING CASE STUDY

We outline the details of the HMC sampler used in the contingency table application. Suppose the prior distribution is

θ[i]
⊥⊥∼ Dir(α[i]), i ∈ [I],

where the entries of α[i] are positive. By a small abuse of notation, let us also denote the matrix of θij by θ. Also, let ∆
denote the (J + 1)-simplex. Then the posterior distribution with the distance-to-set prior is given by
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π(θ | n[1], . . . , n[I]) ∝

 I∏
i=1

J∏
j=1

θ
nij

ij

 I∏
i=1

J∏
j=1

θ
αij−1
ij

 exp
(
−ρ

2
dist(θ,ΘCT )

)
1⋂I

i=1{θ[i]∈∆}

∝

 I∏
i=1

J∏
j=1

θ
nij+αij−1
ij

 exp
(
−ρ

2
∥θ − PΘCT

(θ)∥2F
)
1⋂I

i=1{θ[i]∈∆}

As mentioned above, given some θ, PΘCT
(θ) can be computed using the quadprog library in R. For the HMC algorithm,

the (negative) potential energy is defined by the log-posterior, which is given by

log π(θ | n[1], . . . , n[I]) = C +

I∑
i=1

J∑
j=1

(nij + αij − 1) log θij −
ρ

2
∥θ − PΘCT

(θ)∥2F + log
(
1⋂I

i=1{θ[i]∈∆}

)
,

where C is a constant that does not depend on θ. Additionally, we need to compute the gradient of the (negative) log-potential
with respect to θ. We set θiJ = 1−

∑J−1
j=1 θij for i ∈ [I]. Let us denote the matrix θ with the J th column removed by θ̃ and

the corresponding posterior by π̃. Denote the space of I × (J − 1) matrices θ̃ that satisfy the desired isotonic constraint by

Θ̃CT :=

{
(θij)i∈[I],j∈[J−1]

∣∣∣∣∣
j∑

k=1

θi+1,k ≥
j∑

k=1

θik for i ∈ [I], j ∈ [J − 1]

}

Note that the entries of elements of Θ̃CT are non-negative. However, the rows do not sum to less than 1. Then the reduced
(negative) log-potential becomes:

log π̃(θ̃ | n[1], . . . , n[I]) = C +

I∑
i=1

(niJ + αiJ − 1) log

1−
J−1∑
j=1

θij

+

J−1∑
j=1

(nij + αij − 1) log θij


︸ ︷︷ ︸

=:f(θ̃)

− ρ

2
∥θ̃ − PΘ̃CT

(θ̃)∥2F

We compute the gradient of the first term component-wise and obtain

∂f(θ̃)

∂θij
=

nij + αij − 1

θij
− niJ + αiJ − 1

1−
∑J−1

j=1 θij

To compute the gradient of the second (penalty) term, we note that the projection may be trickier because of the above
substitution for θiJ . However, we show this is not the case. Define Θ̂CT to be the canonical embedding of Θ̃CT into the
space of I × J matrices where the isotonic constraint only holds for the first J − 1 columns in each row; more formally,
Θ̃CT ↪→ Θ̂CT , and

Θ̂CT :=

{
(θij)i∈[I],j∈[J]

∣∣∣∣∣
j∑

k=1

θi+1,k ≥
j∑

k=1

θik for i ∈ [I], j ∈ [J − 1]

}
Note that since each row of θ is a probability distribution, we have

∑J
k=1 θik = 1 holds for all i ∈ [I]. Thus, the following

condition holds trivially for all i ∈ [I]
J∑

k=1

θi+1,k ≥
J∑

k=1

θik.

Thus, we immediately obtain Θ̂CT = ΘCT . As a corollary, projecting onto Θ̂CT is equivalent to simply projecting onto the
original parameter space ΘCT because the last column of θ, which we removed with our substitution, does not have an
impact on the projection. This means we can project onto Θ̃CT by projecting onto ΘCT and ignoring the last column of
elements. Finally, we ensure that each row of θ sums to 1 manually once we have determined a proposal for the first J − 1
columns as described above.The gradient of the second term (the penalty term) is obtained then as:

∇θ

(ρ
2
dist(θ̃, Θ̃CT

)
= ∇θ

(ρ
2
dist(θ,ΘCT )

2
)
= ρ(θ − PΘCT

(θ)),
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where we ignore the J th column of θ. We can use the potential function and the gradient to obtain proposals θ; we ensure
that each row of θ sums to 1 manually once we have determined a proposal for the first J − 1 columns using the procedure
described above.

Next, it is worth noting that the first term of the gradient has properties akin to the log-barrier function technique (Boyd and
Vandenberghe, 2004). In particular, note that

lim
θij→0+

∂f(θ̃)

∂θij
= +∞ and lim

θij→1−

∂f(θ̃)

∂θij
= −∞.

Thus, our sampler will deviate away from the boundary of the simplex that supports the Dirichlet prior. However, due to the
fact that in practice we use a discretized leapfrog integrator to solve the Hamilton PDEs along with the fact that the gradients
can be wildly different for each θij but we have a constant scalar ϵ step-size, it may be that the behavior of f(θ̃) may
overshoot the simplex when updating the position and momentum in an HMC proposal. As a result, we address this using a
rather simple approach by rejecting any proposals that fall outside of the simplex. We also terminate any position-momentum
updates that by chance fall outside of the simplex since the log-posterior is not defined outside of the simplex. While
these solutions may offer some recourse with implementing this sampler, more sophisticated techniques, such as Spherical
HMC Lan et al. (2014) or through spherical transformation of the simplex (Betancourt, 2012), may result in an improved
implementation. However, the main purpose here is to demonstrate how one may incorporate a distance-to-set prior rather
than construct the best-performing sampler for this particular problem.
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