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Abstract

Online matrix vector multiplication is a fundamen-
tal step and bottleneck in many machine learning
algorithms. It is defined as follows: given a ma-
trix at the pre-processing phase, at each iteration
one receives a query vector and needs to form the
matrix-vector product (approximately) before ob-
serving the next vector. In this work, we study a
particular instance of such problem called the on-
line projection matrix vector multiplication. Via a
reduction, we show it suffices to solve the inverse
maintenance problem. Additionally, our frame-
work supports dimensionality reduction to speed
up the computation that approximates the matrix-
vector product with an optimization-friendly error
guarantee. Moreover, our unified approach can
handle both data-oblivious sketching and data-
dependent sampling. Finally, we demonstrate the
effectiveness of our framework by speeding up
the empirical risk minimization solver.

1 INTRODUCTION

Online matrix-vector multiplication (OMv) (Henzinger
et al., 2015; Larsen and Williams, 2017) is a fundamental
problem in machine learning, e.g., gradient descent, acceler-
ated method, and Netwon method (Nesterov, 1983, 1998;
Boyd and Vandenberghe, 2004). The problem can be de-
fined as follows: given a matrix A ∈ Rn×n (with possible
pre-processing). Let T denote the number of rounds, or the
number of vectors we will receive. The goal of OMv is, in
each round t ∈ [T ], we receive a query vector ht ∈ Rn and
we need to output the product Aht for each round. Note
that the key difficulty of this problem is to output the matrix-
vector each iteration. Otherwise, one can delay and batch
the vectors into a matrix and apply fast matrix multiplication
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in nω time for T = n query vectors.

A particular instance of online matrix-vector multiplication
task is when the matrix A is a projection matrix. We refer
this problem to online projection matrix-vector multiplica-
tion (OPMv). OPMv is a crucial sub-task in many funda-
mental optimization problems, such as linear programming
and empirical risk minimization. Prior works on speeding
up OPMv can be dated back as early as thirty years ago. The
pioneer work of (Vaidya, 1989) shows that efficient linear
program solver is essentially equivalent to OPMv, and can
be solved in O(n2) time. Coupled with the required

√
n

iterations, (Vaidya, 1989) offers an LP solver that runs in
O(n2.5) time. This runtime is improved in 2019 due to (Co-
hen et al., 2019b), which speeds it up further by combining
with fast rectangular matrix multiplication to achieve nω

time for solving a general linear program where ω ≈ 2.373.

The major breakthrough of (Cohen et al., 2019b) leverages
two central techniques: 1). update the projection matrix in
a lazy fashion and 2). using a novel sampling approach to
sparsify the vector-to-multiply so that the sparsity of the
target vector is only k instead of n. For linear programming,
they show that it suffices to choose k =

√
n. Following their

work, many new approaches have emerged to realize similar
speedup. In (Lee et al., 2019), they give a comparable
running time for empirical risk minimization (ERM) via
the use of a sketching matrix. Specifically, they apply a
sketching matrix on the left of the projection, so that in
each iteration, one only needs to compute RPh which is a
matrix-vector product between

√
n× n matrix and length n

vector. (Song and Yu, 2021) presents an alternative approach
in which one can do this sketching trick on the right: at each
iteration, one maintains the “left matrix” PR⊤ and perform
the product between PR⊤ and Rh.

While most of these works obtain similar and comparable
results in terms of running time, their approaches are drasti-
cally different, and their analysis requires various guarantees
of the dimensionality reduction tool. Moreover, projection
maintenance itself is hard to analyze and generalize in a
unified fashion due to its sophisticated form.

Our paper demonstrates a different approach. We show that
solving OPMv is equivalent to solving the inverse mainte-



An Online and Unified Algorithm for Projection Matrix Vector Multiplication with Application to Empirical Risk Minimization

nance problem via a reduction. Specifically, we make use
of Schur complement and show that by carefully arranging
a large matrix, (part of) its inverse can be used to perform
the projection matrix and vector product.

This equivalence result can even allow us to apply dimen-
sionality reduction tools to the inverse maintenance prob-
lem to OPMv, such as sketching and sampling, to speed
up the computation. We show that one can either add the
sketching matrices directly into the inverse matrix we are
to maintain, and during query time, it is enough to query
a subset of rows and columns. Alternatively, when using
data-dependent sampling as in (Cohen et al., 2019b), we
can use the sampling matrix to sparsify the vector first, then
use the inverse matrix to multiply a properly designed vec-
tor, to obtain a fast running time. Our reduction provides
a concrete pipeline on solving the OPMv and we hope its
detailed design can help future works on this problem.

Another important result is an ultimate unification of the
data-dependent sparsification approach (Cohen et al., 2019b)
into the coordinate-wise embedding framework, introduced
in (Song and Yu, 2021). Roughly speaking, we say a random
matrix R that might be oblivious or data-dependent satisfy-
ing the coordinate-wise embedding property if for fixed vec-
tors g, h, the approximate inner product g⊤R⊤Rh is close
to the true inner product g⊤h with high probability. In other
words, the matrix R behaves like a Johnson-Lindenstrauss
transform (Johnson and Lindenstrauss, 1984). While it is
appealing to design a data-oblivious distribution on R, we
show that once R can be data-dependent, it obtains an op-
timal set of parameters. We believe such a data-dependent
coordinate-wise embedding will find more applications in
which ℓ∞ guarantees are desirable.

Finally, we show a concrete application of our approach
to empirical risk minimization. In (Lee et al., 2019), Lee,
Song and Zhang show that ERM can be solved in the current
matrix multiplication time, but its running time has an extra
dependence on log6(log(1/δ)), where δ is the error param-
eter. Using our unified framework, we show that this factor
is a consequence of sketching on the left, i.e., RPh. This
causes the central path to be infeasible and subsequently, the
data structure has to be restarted to balance off the variance.
We remove this poly log(log(1/δ)) factor via sketching on
the right, which is also the Song and Yu (2021) approach
for solving linear program. Our result also provides a more
structural understanding of the OPMv sub-task in the ERM
solver, as the goal is to preserve the product between P and
h instead of I and Ph.

We list our contributions as follows:

• For the online projection matrix-vector product prob-
lem, we provide a unified solution to that problem. Our
approach is compatible with both data-oblivious ap-
proach (Lee et al., 2019; Song and Yu, 2021) and the

data-dependent approach (Cohen et al., 2019b).

• We improve the running time of (Lee et al., 2019). We
crucially shave off an unnatural log6(log(1/δ)) factor
in their result by adopting a better sketching strategy.

• We present a novel sketching-based dynamic projec-
tion inverse data structure, which unifies the algorithm
in (Cohen et al., 2019b; Lee et al., 2019; Song and Yu,
2021).

1.1 Related Work

Empirical Risk Minimization The problem of empirical
risk minimization (ERM) is critical for various machine
learning workloads (Nesterov, 1983; Polyak and Juditsky,
1992; Nemirovski et al., 2009; Nesterov, 2013; Brownlees
et al., 2015; Zhang and Lin, 2015; Donini et al., 2018; Huang
et al., 2020). One important line of work is to use first-order
methods to improve ERM (Johnson and Zhang, 2013; Xiao
and Zhang, 2014; Frostig et al., 2015; Mokhtari and Ribeiro,
2017; Jin et al., 2018; Wang et al., 2019).

Linear Programming Linear programming is an old
topic in computer science. Simplex algorithm (Dantzig,
1947) is one of the most important algorithms in the history
of linear programming, and it has an exponential running
time. The Ellipsoid method reduced the running time to poli-
nomial (Khachiyan, 1980), however, it is in practice slower
than simplex method. The interior point method (Karmarkar,
1984) is a major breakthrough because it has theoretical
polynomial running time and stably fast practical perfor-
mance on real-world problems. Assuming d is the num-
ber of constraints and n is the number of variables, when
d = Ω(n), Karmarkar’s algorithm has a running time of
O∗(n3.5). The running time is further improved to O∗(n3)
in (Vaidya, 1987; Renegar, 1988) and O∗(n2.5) in (Vaidya,
1989).

Sketching Sketching is a well-known technique to im-
prove performance or memory complexity (Clarkson and
Woodruff, 2013). It has wide applications in linear alge-
bra, such as linear regression and low-rank approxima-
tion(Clarkson and Woodruff, 2013; Nelson and Nguyên,
2013; Meng and Mahoney, 2013; Razenshteyn et al., 2016;
Song et al., 2017; Haupt et al., 2017; Andoni et al., 2018;
Song et al., 2019a,b; Diao et al., 2019), training over-
parameterized neural network (Song et al., 2021b,c; Zandieh
et al., 2021), generative adversarial networks (Xiao et al.,
2018), projected gradient descent (Hanzely et al., 2018; Xu
et al., 2021), kernel methods (Avron et al., 2017; Ahle et al.,
2020; Chen and Yang, 2021; Song et al., 2021a), tensor
decomposition Song et al. (2019c), trace estimation (Jiang
et al., 2021a), John Ellipsoid computation (Cohen et al.,
2019a; Song et al., 2022), semi-definite programming (Gu
and Song, 2022), cutting plane method Jiang et al. (2020),
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federated learning (Rothchild et al., 2020), distributed prob-
lems Woodruff and Zhong (2016); Boutsidis et al. (2016),
clustering (Esfandiari et al., 2021), reinforcement learn-
ing (Andreas et al., 2017; Wang et al., 2020; Shrivastava
et al., 2023) and linear programming Lee et al. (2019); Jiang
et al. (2021b); Song and Yu (2021).

Roadmap We first present an overview of techniques we
leverage in this paper in Section 2. We present several tools
in Section 3. We discuss the dynamic inverse maintenance
algorithm and its application to the sketching setting in
Section 4. We then show how to combine sketching with
inverse maintenance in Section 5. We show how to unify
the importance sampling method under the coordinate-wise
embedding guarantee in Section 6. We present an improved
algorithm for empirical risk minimization application in
Section 7. We summarize the limitation of our paper in
Section 8. We conclude our paper in Section 9.

Notations For any positive integer n, we use [n] to denote
the set {1, 2, · · · , n}. We use E[·] to denote the expectation,
Var[·] to denote the variance and Pr[·] to denote the proba-
bility. For a vector x, we use ∥x∥2 to denote its ℓ2 norm. We
use 0n to denote the all-0 vector of dimension n. For any
matrix A, we use A⊤ to denote the transpose of matrix A.
For any square matrix and invertible matrix A, we use A−1

to denote its inverse. For any positive diagonal matrix W ,
we use

√
W and W 1/2 to denote a diagonal matrix where

the (i, i)-th entry on the diagonal is
√
Wi,i. We use W−1/2

to denote the diagonal matrix where the (i, i)-th entry on di-
agonal is 1/

√
Wi,i. We use I to denote the identity matrix.

For a function f , we use Õ(f) to denote f · poly(log f).
For a matrix A, we use ∥A∥ to denote its spectral norm. We
use ∥A∥F to denote its Frobenius norm.

2 TECHNICAL OVERVIEW

We first give a brief review of the projection maintenance
formulation in (Cohen et al., 2019b; Lee et al., 2019; Song
and Yu, 2021). Given a projection matrix P ∈ Rn×n and a
vector h ∈ Rn,

• In (Cohen et al., 2019b), they design a sampling ma-
trix D ∈ Rn×n that depends on the vector h, at each
iteration, they update the projection matrix P and com-
pute PDh. By design, D has

√
n nonzero entries in

expectation.

• In (Lee et al., 2019), they preprocess a batch of sketch-
ing matrices R =

[
R⊤

1 R⊤
2 . . . R⊤

T

]
∈ Rn×n and

pre-compute RP . During the update, it updates the rep-
resentation RP , and during a query, it picks one sketch
Rl and computes RlPh first, then computes R⊤

l RlPh.
Each of Rl ∈ R

√
n×n.

• In (Song and Yu, 2021), they use similar sketching
matrices R ∈ Rn×n and pre-compute PR⊤. During a
query, it picks a sketch Rl and computes Rlh, PR⊤

l ,
then compute PR⊤

l Rlh. Again, each Rl ∈ R
√
n×n.

To give an ultimate unification, we need to take care of two
parts: 1). update the projection matrix P and 2). compute
the (approximate) product Ph.

Maintain and Update Projection P via Schur Comple-
ment. Given

P =
√
WA⊤(AWA⊤)−1A

√
W,

it is usually hard to understand its form under some changes
to the diagonal matrix W . Instead, we show that one can
carefully design a matrix L whose blocks consist of W 1/2,
W−1 and A. Using the well-known Schur complement, the
inversion L−1 contains information for us to “recover” the
projection matrix to maintain. By multiplying L−1 with a
crafted but easy to compute vector v, L−1v will give exactly
Ph, the quantity we care about.

Schur complement also gives us much flexibility to furnish
the design of L. In fact, we can also include the batched
sketching matrix R into the correct locations of L and ex-
actly recover the construction RP in (Lee et al., 2019) and
PR⊤ in (Song and Yu, 2021). In this way, the originally
complicated maintenance and update procedure has been
reduced to a very generic matrix inverse maintenance data
structure that certain parts can be updated and queried.

Our framework has much freedom for whether to include
the sketching matrix and vector into L. This is in fact crucial
for our unification: to recover the result of (Cohen et al.,
2019b), we cannot include the sampling matrix D and vector
h into L, since both of them are dynamically changing. On
contrary, (Lee et al., 2019) requires us to maintain both
R and h into L, otherwise we’ll have to require to many
columns from the data structure during the query.

Unifying Sketching and Sampling via Coordinate-wise
Embedding. The approximate projection-vector product
takes in three different forms:

• PDh (see Figure 2) for (Cohen et al., 2019b),

• R⊤
l RlPh (see Figure 3) for (Lee et al., 2019) and

• PR⊤
l Rlh (see Figure 4) for (Song and Yu, 2021).

At first glance, it is not obvious how can they achieve com-
parable results: for example, the sampling matrix D is de-
pendent on the vector h, but the sketching matrix Rl is
independent of both P and h. Also, (Lee et al., 2019) main-
tains the sketch on the left but (Song and Yu, 2021) puts it
on the right.
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=P
√
W A⊤ ( A W A⊤ )

−1

A
√
Wn

n

Figure 1: P =
√
WA⊤(AWA⊤)−1A

√
W . W ∈ Rn×n is a diagonal matrix. P ∈ Rn×n is the projection matrix.

A ∈ Rd×n is the matrix with rank d in online matrix vector multiplication. We can carefully design a matrix L whose
blocks consist of W 1/2, W−1 and A. Using the well-known Schur complement, the inversion L−1 contains information for
us to “recover” the projection matrix to maintain.

To unify these approaches, we consider the so-called
coordinate-wise embedding: roughly speaking, given a ran-
dom matrix R ∈ Rb×n, we say it satisfies coordinate-wise
embedding property if for any two vectors g, h ∈ Rn

• In expectation, g⊤R⊤Rh is an unbiased estimator of
g⊤h.

• The variance of g⊤R⊤Rh is small.

• With high probability, g⊤R⊤Rh is close to g⊤h in
absolute value.

This notion gives us a powerful tool to analyze their ap-
proaches: for example, we can view g as a row of the projec-
tion P , and such a guarantee tells us that PR⊤Rh is close
to Ph in both ℓ2 and ℓ∞ norm, which is exactly the prop-
erty they need to show the convergence of the algorithm.
Alternatively, view g to be ei and righthand side vector to
be Ph, we view the result of (Lee et al., 2019) as preserv-
ing the product between I and Ph so that it is close to Ph.
This is a somewhat odd guarantee and we want to point out
that this might be the main reason the central path in (Lee
et al., 2019) is infeasible and their algorithm is sub-optimal
— they use the wrong tool to approximate the product Ph.

One might ask: can we use this unification for the sampling
scheme of (Cohen et al., 2019b)? The answer is positive.
We show that, if we set D = R⊤R, then the sampling
matrix satisfies coordinate-wise embedding. In fact, it gives
the optimal parameters for this property. This should not
be surprising, since D is dependent on the data, it should
have stronger properties compared to the data-oblivious
approach.

To compute the “sketching matrix” R in this case, we set
it as a short and fat matrix consisting of the square root of
the nonzero entries of D. However, the number of nonzero
entries of D can only be guaranteed in expectation. This
means that, while enjoying the optimality brought up by
data-dependent sampling, the running time can only be
guaranteed in expectation, which is the major downside of
this method.

P D hn

n

Figure 2: Approximate projection-vector product form
PDh. P =

√
WA⊤(AWA⊤)−1A

√
W is the projection

matrix. D ∈ Rn×n is the sampling matrix and D has
√
n

nonzero entries in expectation. h ∈ Rn is the query vector.
This is an illustration of (Cohen et al., 2019b).

Put things together: Faster ERM Solver. Now that we
have simplified the data structure task in (Cohen et al.,
2019b; Lee et al., 2019; Song and Yu, 2021) and unified
the speedup tools they use, we develop a new algorithm for
empirical risk minimization (ERM). More specifically, the
state-of-the-art result by Lee, Song and Zhang (Lee et al.,
2019) has a sub-optimal convergence rate induced by their
algorithm design, or more concretely, the way they approx-
imate Ph. They use the “left sketch”, i.e., R⊤

l RlPh, by
coordinate-wise embedding, this is not the right notion to
approximate projection-vector product. We adapt the “right
sketch” approach by computing PR⊤

l Rlh. By doing so,
the central path is no longer infeasible and we do not need
to restart the algorithm after a few iterations to control the
variance.

3 PRELIMINARY

Theorem 3.1 (Rectangular matrix multiplication (Gall and
Urrutia, 2018)). Let the dual exponent of matrix multipli-
cation α be the supremum among all a ≥ 0 such that it
takes n2+o(1) time to multiply an n×n matrix by an n×na

matrix. Then, for any n ≥ r, multiplying an n× r with an
r × n matrix or n× n with n× r takes time

n2+o(1) + r
ω−2
1−αn2−α(ω−2)

1−α +o(1).

Furthermore, we have α > 0.31389.
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R⊤
l

Rl
P hn

n

n

√
n

Figure 3: Approximate projection-vector product form
R⊤

l RlPh. P =
√
WA⊤(AWA⊤)−1A

√
W is the projec-

tion matrix. Rl ∈ R
√
n×n is the sketching matrix. h ∈ Rn

is the query vector. This is an illustration of (Lee et al.,
2019).

P
Rl

R⊤
l hn

n

n

√
n

Figure 4: Approximate projection-vector product form
PR⊤

l Rlh. P =
√
WA⊤(AWA⊤)−1A

√
W is the projec-

tion matrix. Rl ∈ R
√
n×n is the sketching matrix. h ∈ Rn

is the query vector. This is an illustration of (Song and Yu,
2021).

Lemma 3.2 (Chernoff bound). Let X =
∑n

i=1 Xi, where
Xi = 1 with probability pi and Xi = 0 with probability
1 − pi, and all Xi are independent. Let µ = E[X] =∑n

i=1 pi. Then

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0;

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ < 1

Lemma 3.3 (Hoeffding bound). Let X1, · · · , Xn denote
n independent bounded variables in [ai, bi]. Let X =∑n

i=1 Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− 2t2∑n
i=1(bi − ai)2

).

Lemma 3.4 (Bernstein inequality). Let X1, · · · , Xn be
independent zero-mean random variables. Suppose that
|Xi| ≤M almost surely, for all i. Then, for all positive t,

Pr

[
n∑

i=1

Xi > t

]
≤ exp

(
− t2/2∑n

j=1 E[X2
j ] +Mt/3

)
.

Lemma 3.5 (Woodburry matrix identity). The Woodburry
matrix identity is

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

where A,U,C and V are conformable matrices: A has size
n× n, C has size k × k, U has size n× k and V has size
k × n.

4 DYNAMIC INVERSE

In this section, we provide a detailed discussion of the dy-
namic inverse maintenance algorithm and its applications to
sketching settings.

Our inverse maintenance technology starts from the well-
known Schur complement:

Fact 4.1 (Schur complement). Given four matrices
A,B,C,D, we have the following identity assuming that
all inverses exist: [

A B
C D

]−1

=

[
A1 B1

C1 D1

]
where

A1 = A−1 +A−1B(D − CA−1B)−1CA−1

B1 = −A−1B(D − CA−1B)−1

C1 = − (D − CA−1B)−1CA−1

D1 = (D − CA−1B)−1

Schur complement implies that if we carefully design the
matrix-to-invert on the left hand side, we can make sure that
the target projection matrix, even with sketching matrix and
vector is at certain location of the inverse.

As the simplest example, consider matrix

L =


U−1 A⊤ U−1/2 0
A 0 0 0
0 0 −I 0

(U−1/2)⊤ 0 0 −I


by using Schur complement, one can show that

L−1 =

 M−1 M−1N 0
0 −I 0

N⊤M−1 N⊤M−1N −I


in which

M−1 =

[
U − UA⊤(AUA⊤)−1AU UA⊤(AUA⊤)−1

(AUA⊤)−1AU −(AUA⊤)−1

]
,

N =

[
U−1/2

0d×n

]

If we multiply L−1 with a vector in the form of0n+d

v
v


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we have that

L−1

0n+d

v
v

 =

 ⋆
⋆√

UA⊤(AUA⊤)−1A
√
Uv


We can also add sketching matrix, or even the vector in the
correct location of the L matrix to make sure its inverse
provides what we want. For example, for left and right
sketch, let R ∈ Rn×n denote the batched sketching matrices,
then we have

Lleft =


U−1 A⊤ U−1/2 0 0
A 0 0 0 0
0 0 −I 0 0

(U−1/2)⊤ 0 0 −I 0
0 0 0 R I


and

Lright =


U−1 A⊤ U−1/2 0 0
A 0 0 0 0
0 0 −I 0 R⊤

(U−1/2)⊤ 0 0 −I R⊤

0 0 0 0 I


One can also insert the query vector h into the correct lo-
cations in the rightmost column, this will be particularly
valuable for (Lee et al., 2019).

Now that we have shown the projection matrix, the sketching
matrix, and the vector can be maintained in a carefully
crafted matrix L, our data structure can be designed toward
maintaining a matrix inversion. We also observe that due to
this construction, we only need to modify certain parts of
the matrix L.

To this end, we develop a generic inverse maintenance and
update algorithm. Here we state an informal, and we refer
the readers to Section B and Section C.

Theorem 4.2 (Informal). Let L ∈ Rm×m be an invert-
ible matrix. There exists an algorithm with the following
procedures:

• INIT(L): It takes O(mω) time to compute the inverse
L−1 and initialize corresponding variables.

• UPDATE(∆ ∈ Rm×m): It takes a change matrix ∆
with at most ma nonzero entries in at most mb nonzero
columns and updates corresponding variables in time
O(ma+b +mb·ω).

• RESET(X,Y ∈ Rm×mc

): Given matrices X,Y ∈
Rm×mc

, it updates the inverse to (L+XY ⊤)−1 and
corresponding variables in time O(mω(c,1,1)).

• QUERY(I ⊂ [m], j ∈ [m]): Given I ⊂ [m] and an
index j ∈ [m], it outputs (L−1)I,j in time O(m2b +
|I| ·ma).

The intuition of the data structure is that, if the update only
affects a few columns/entries, then we can maintain an
implicit representation efficiently. If the change is too much,
we restart the data structure. The parameters a and b are
crucial to balance the running time: if we don’t maintain the
vector inside L, then one can simply set a = b. Otherwise,
we can maintain the vector in one column of L and update
the vector in a slower fashion.

5 SKETCHING

Sketching is one of the most important tools to obtain
speedup for central path method. Specifically, given a
projection matrix P ∈ Rn×n and a possibly dense vec-
tor h ∈ Rn, the goal is to approximate the product Ph in
o(m2) worst case time. Using sketching of size

√
n × n,

one either puts it on the left by maintaining RP ∈ R
√
n×n

so that the product becomes (RP )h which can be com-
puted in time O(n1.5), or puts it on the right by maintaining
PR⊤ ∈ Rn×√

n and compute (PR⊤)(Rh) also in time
O(n1.5). Hence, it is important to incorporate sketching
into the dynamic inverse maintenance data structure.

In this section, we show how to combine sketching with
inverse maintenance. We first present some definitions and
useful lemmas in Section 5.1. We present how we design
the left sketching matrix in Section 5.2. We present how we
design the right sketching matrix in Section 5.3.

5.1 Useful Tools

We first provide tools for matrix inverse in Lemma 5.2 and
Lemma 5.5. Then with the matrix inverse vector multi-
plication result in Lemma I.2, we carefully design the left
sketching matrix in Lemma 5.9 such that the matrix-vector
multiplication result is

Rt

√
UA⊤(AUA⊤)−1A

√
Uv.

Similarly, we present the right sketching matrix in
Lemma 5.10 such that the matrix-vector multiplication re-
sult is

√
UA⊤(AUA⊤)−1A

√
UR⊤

t Rtv.

Definition 5.1 (M matrix). Let A ∈ Rd×n with rank d and
U ∈ Rn×n be a diagonal matrix with non-zero elements on
the diagonal. We define the matrix M ∈ R(n+d)×(n+d) as
follows:

M =

[
U−1 A⊤

A 0

]
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U−1

(U− 1
2 )⊤

U− 1
2A⊤

A

−I

−I

IR

4n+ d

4n+ d

U−1

(U− 1
2 )⊤

U− 1
2A⊤

A

−I

−I

I

R⊤

R⊤4n+ d

4n+ d

Figure 5: Lleft ∈ R(4n+d)×(4n+d) and Lright ∈ R(4n+d)×(4n+d) matrice visualization. Here the R ∈ Rn×n denote the
batched sketching matrices. A ∈ Rd×n is the matrix in online matrix vector multiplication. U ∈ Rn×n is a diagonal matrix
with non-zero elements on the diagonal. I ∈ Rn×n is an identity matrix. The Lleft is the matrix corresponding to sketching
on the left and the Lright is the matrix corresponding to sketching on the right. We defer the more detailed discussion on
how to embed sketching into L to Section 5.

Lemma 5.2 (Informal version of Lemma F.1). Let M ∈
R(n+d)×(n+d) be defined as in Definition 5.1, then

M−1 =

[
U − UA⊤(AUA⊤)−1AU UA⊤(AUA⊤)−1

(AUA⊤)−1AU −(AUA⊤)−1

]

We delay the proof to Appendix F.

Definition 5.3 (L matrix). Let A ∈ Rd×n be rank d and
U ∈ Rn×n be a diagonal matrix with non-zero elements on
the diagonal. We define the matrix L ∈ R(3n+d)×(3n+d) as
follows

L =


U−1 A⊤ U−1/2 0
A 0 0 0
0 0 −I 0

(U−1/2)⊤ 0 0 −I


To get a better view of the inverse of L, we define the matrix
N first.

Definition 5.4 (N matrix). Let U ∈ Rn×n be a diagonal
matrix with non-zero diagonal element. We define the matrix
N ∈ R(n+d)×n as follows:

N =

[
U−1/2

0d×n

]

We can express the inverse of L ∈ R(3n+d)×(3n+d) using
M ∈ R(n+d)×(n+d) and N ∈ R(n+d)×n .

Lemma 5.5. Let L ∈ R(3n+d)×(3n+d) be defined in Defini-
tion 5.3. Then,

L−1 =

 M−1 M−1N 0
0 −I 0

N⊤M−1 N⊤M−1N −I


where M ∈ R(n+d)×(n+d) and N ∈ R(n+d)×n are defined
in Definition 5.1 and 5.4.

One important feature of the L ∈ R(3n+d)×(3n+d) matrix
is multiplying its inverse with a proper vector giving the
desired matrix-vector product of interest.

Lemma 5.6 (Restatement of Lemma I.2). Let L be defined
as in Definition 5.3. Then we have

L−1

0n+d

v
v

 =

 ⋆
⋆√

UA⊤(AUA⊤)−1A
√
Uv


Lemma 5.7 (Sketch on the left. Informal version of
Lemma F.2). Let R ∈ Rn×(3n+d), let L ∈ R(3n+d)×(3n+d)

be the matrix defined in Definition 5.3, consider the matrix[
L 0
R −I

]
,

then we have([
L 0
R −I

])−1

=

[
L−1 0
RL−1 −I

]
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We delay the proof to Appendix F.

Lemma 5.8 (Sketch on the right. Informal version of
Lemma F.3). Let R ∈ R(3n+d)×n, let L ∈ R(3n+d)×(3n+d)

be the matrix defined in Definition 5.3, consider the matrix[
L R
0 −I

]
,

then we have([
L R
0 −I

])−1

=

[
L−1 L−1R
0 −I

]

We delay the proof to Appendix F.

5.2 Design the Left Sketching Matrix

As we have shown, it is possible to multiply a conform-
ing matrix R either on the left or on the right of L−1 ∈
R(3n+d)×(3n+d). We now show how to design proper
sketching matrices. We start with the discussion on sketch-
ing on the left.

Lemma 5.9 (Informal version of Lemma F.4). Let R ∈
Rn×n be a collection of sketching matrices, define R ∈
Rn×(3n+d) to be the following matrix:

R =
[
0n×(2n+d) ItR

]
Then we have

([
L 0(3n+d)×n

R −In

])−1


0n+d

v
v
0n


=

[
⋆

Rt

√
UA⊤(AUA⊤)−1A

√
Uv

]
where It is a diagonal matrix whose n(t−1)

T -th to nt
T -th

diagonal entries are 1 and other diagonal entries are 0 such
that ItR = Rt.

We delay the proof to Appendix F.

5.3 Design the Right Sketching Matrix

Lemma 5.10 (Informal version of Lemma F.5). Let

R =
[
R⊤

1 R⊤
2 · · · R⊤

T

]
∈ Rn×n

be a collection of sketching matrices. Let T =
√
n. Define

B ∈ R(3n+d)×n to be the following matrix:

B =

0(n+d)×n

R⊤

R⊤



Then we have([
L B

0n×(3n+d) −In

])−1 [
03n+d

ItRv

]
=

[
⋆√

UA⊤(AUA⊤)−1A
√
UR⊤

t Rtv

]
where It is a diagonal matrix whose n(t−1)

T -th to nt
T -th

diagonal entries are 1 and other diagonal entries are 0 such
that R⊤ItR = R⊤

t Rt.

We delay the proof to Appendix F.

6 UNIFYING IMPORTANCE SAMPLING
WITH COORDINATE-WISE
EMBEDDING

While (Lee et al., 2019; Song and Yu, 2021) uses random-
ized sketching techniques to speed up the projection-vector
product, (Cohen et al., 2019b) uses an importance sampling
method depending on the vector h. The advantage of this
approach is it avoids preprocessing by batching sketches.

In this section, we show that the importance sampling
method can be unified under the coordinate-wise embedding
guarantee introduced in (Song and Yu, 2021). We first recall
the definition:

Definition 6.1 ((α, β, δ)-coordinate wise embedding). We
say a randomized matrix R ∈ Rb×n satisfying (α, β, δ)-
coordinate wise embedding if

1. E
R∼Π

[g⊤R⊤Rh] = g⊤h,

2. E
R∼Π

[(g⊤R⊤Rh)2] ≤ (g⊤h)2 +
α

b
∥g∥22∥h∥22,

3. Pr
R∼Π

[
|g⊤R⊤Rh− g⊤h| ≥ β√

b
∥g∥2∥h∥2

]
≤ δ.

Remark 6.2. Given a randomized matrix R ∈ Rb×n satis-
fying (α, β, δ)-coordinate wise embedding and any orthog-
onal projection P ∈ Rn×n, above definition implies

1. E
R∼Π

[PR⊤Rh] = Ph,

2. E
R∼Π

[(PR⊤Rh)2i ] ≤ (Ph)2i +
α

b
∥h∥22,

3. Pr
R∼Π

[
|(PR⊤Rh)i − (Ph)i| ≥

β√
b
∥h∥2

]
≤ δ.

since ∥P∥2 ≤ 1 implies ∥Pi,:∥2 ≤ 1 for all i ∈ [n].

In (Cohen et al., 2019b), they use a diagonal sampling matrix
D ∈ Rn×n with roughly b non-zero entries on the diagonal.
We design the matrix R ∈ Rb×n as follows: let S be the set
of indices of non-zeros in D, then we set Ri,i = Di,i for
i ∈ S.
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The matrix D is designed as follows: given h ∈ Rn, we
have

Di,i =

{
1
pi
, with probability pi := b ·

(
h2
i

∥h∥2
2
+ 1

n

)
;

0, otherwise.

We prove the above diagonal sampling matrix satisfies the
first two conditions of Definition 6.1.

Lemma 6.3 (Informal version of Lemma G.1). Let D ∈
Rn×n be the sampling matrix defined as above. For any
g ∈ Rn, we have

• ED[g⊤Dh] = g⊤h.

• ED[(g⊤Dh)2] = (g⊤h)2 + 1
b∥g∥22∥h∥22.

• PrD[|g⊤Dh− g⊤h| ≥ log(1/δ)√
b
∥g∥2∥h∥2] ≤ δ.

Remark 6.4. Our above argument shows that the sampling
matrix used in (Cohen et al., 2019b) is a (1, log(1/δ), δ)-
coordinate-wise embedding. This gives the optimal parame-
ter for this property, due to its data-dependence nature.

7 APPLICATION: EMPIRICAL RISK
MINIMIZATION

In this section, we give an improved algorithm for empiri-
cal risk minimization (ERM) studied in (Lee et al., 2019).
While they obtain an algorithm runs in the current matrix
multiplication time for ERM, the speedup used in (Lee et al.,
2019) comes from sketching on the left. Even though from
a per iteration running time perspective, it is comparable
to sketching on the right, or using the sampling-based ap-
proach, sketching on the left makes the central path infeasi-
ble. This means they have to restart their data structure after
some iterations. Hence, the number of iterations required
for their algorithm to converge is

O(
√
n log2 n log(n/δ) log6(log 1/δ)).

The unnatural

log6(log(1/δ))

the term is a direct consequence of the infeasibility of their
sketching approach. Namely, they compute R⊤RPh while
we maintain PR⊤Rh. Even though the per iteration cost
is similar, they have to pay extra log factors in number of
iterations to “correct” the infeasibility caused by this sketch.

We show that if we instead sketch on the right, the central
path will no longer be infeasible. In fact, as we have shown
in the prior section, importance-based sampling is also a
variant of the sketch on the right, and this approach is the
key to obtaining a fast linear program solver in (Cohen et al.,
2019b; Song and Yu, 2021).

Theorem 7.1 (Informal version of Theorem H.1). Given
matrix A ∈ Rd×n, two vectors b ∈ Rd, c ∈ Rn, and m com-
pact convex sets K1, . . . ,Km. Assume there’s no redundant
constraints and ni = O(1), for i ∈ [m]. There exists an
algorithm that solves

min
x∈∏m

i=1 Ki,Ax=b
c⊤x

up to δ precision and runs in the expected time

O(nω+o(1) + n2.5−α/2+o(1) + n2+1/6+o(1)) ·O(log(1/δ)).

Our approach gives the optimal result in terms of the number
of iterations required to converge. By using sketching on
the right, we shave off the log6 log(1/δ) term in (Lee et al.,
2019).

8 LIMITATION

There are two limitations of our approach. The first is that,
when applying to matrices, the guarantees are very depen-
dent on the spectral norm of the matrix. For the product
PR⊤Rh, we note that the second moment and high prob-
ability bound all depend on ∥P∥. This is one of the main
reasons we motivate with projection matrices, as they not
only be used in linear programs and ERMs, but ∥P∥ ≤ 1 as
well.

The second issue is that the guarantees are “coordinate-
wise”. For example, with high probability, we have

|(PR⊤Rh− Ph)i| ≤ ϵ∥h∥2.

This works well for frameworks seeking ℓ∞ guarantees but
is rather restrictive for other guarantees, e.g.,

∥PR⊤Rh∥2.

9 CONCLUSION

Online matrix-vector multiplication is an important problem,
and it is a basic building block for many machine learning
algorithms. We study this problem when the matrix of in-
terest is a projection matrix. We show that this problem
while having a complicated form can be reduced to solving
the inverse maintenance problem. Using this reduction, we
design a generic inverse maintenance data structure when
the projection is undergoing some multiplicative changes
which can both maintain the projection and support matrix-
vector product query efficiently. To implement a fast query
procedure, we study the notion of coordinate-wise embed-
ding, which can either be realized via data-oblivious dimen-
sionality reduction or data-dependent importance sampling.
Finally, we use our data structure to speed up empirical
risk minimization, an important class of problems in convex
optimization.
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Appendix

Roadmap. We first introduce some notations and preliminary definition and theorem in Section A. We present the
projection maintenance via inverse maintenance without vector and the sketch is on the left in Section B. We present the
projection maintenance via inverse maintenance without vector and the sketch is on the right in Section C. We present
the projection maintenance via inverse maintenance with vector and the sketch is on the left in Section D. We present the
projection maintenance via inverse maintenance with vector and the sketch is on the right in Section E. We provide proofs
for sketching matrix design in Section F. We analyze the error of applying sketching in Section G. We show our results on
faster empirical risk minimization in Section H. We provide some discussion in Section I.

A PRELIMINARY

In this section, we present some notations and preliminary definition and theorems.

Notations. For any positive integer n, we use [n] to denote the set {1, 2, · · · , n}. We use E[·] to denote the expectation,
Var[·] to denote the variance and Pr[·] to denote the probability. For a vector x, we use ∥x∥2 to denote its ℓ2 norm. We use
0n to denote the all-0 vector of dimension n. For any matrix A, we use A⊤ to denote the transpose of matrix A. For any
square matrix and invertible matrix A, we use A−1 to denote its inverse. For any positive diagonal matrix W , we use

√
W

and W 1/2 to denote a diagonal matrix where the (i, i)-th entry on diagonal is
√

Wi,i. We use W−1/2 to denote the diagonal
matrix where the (i, i)-th entry on diagonal is 1/

√
Wi,i. We use I to denote the identity matrix.

Definition A.1. We define gi as:

gi =

{
n−a if r < na

i
ω−2
1−a −1n− a(ω−2)

1−a if r ≥ na

Remark A.2. The update time in (Cohen et al., 2019b) is O(rgrn
2+o(1)) = O(

∑r
i=1 gin

2+o(1)) for any r ≥ na. If r = na,
update time is O(n2+o(1)). If r = n, update time is O(nω+o(1))

B PROJECTION MAINTENANCE VIA INVERSE MAINTENANCE: ONE LAYER AND
LEFT SKETCH WITHOUT VECTOR

We present a framework where we design a matrix M that contains the sketched projection R⊤√UA⊤(AUA⊤)−1A
√
U .

When we need to perform the approximate matrix vector product, we have to query
√
n rows and n columns, yields to a

slower running time than (Lee et al., 2019).

We present initialization, update, reset and query functions in Algorithm 1, Algorithm 2, Algorithm 3 and Algorithm 4.
The INITIALIZE operation construct a left sketching matrix M from Lemma 5.9 and compute the inverse N = M−1 . The
UPDATE operation updates the inverse matrix such that Q = (I + Y ⊤M−1X)−1. The RESET operation reset the value of
N such that N = M−1. QUERY operation takes I ⊂ [n] and an index j ∈ [n] as input and computes v such that

v = (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I .

UPDATEONESTEP operation takes an update matrix W ∈ Rn×n and decides to call either UPDATE or RESET to maintain
the inverse of the matrix. QUERYONESTEP calls QUERY operation for n times and obtain the projected sketching result y
and z such that:

y = R⊤
l RlP̃ h

z = R⊤
l Rl(I − P̃ )h

where the projection matrix P̃ =
√
ŨA⊤(AŨA⊤)−1A

√
Ũ where Ũ is output from the last UPDATEONESTEP.

B.1 Main Result

In this section, we show how to implement the projection matrix maintenance task as an inverse maintenance problem.
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Theorem B.1 (Sketching on left without vector). Given a matrix R ∈ Rn×n where R =
[
R⊤

1 R⊤
2 · · · R⊤

T

]
. Let

T =
√
n. Let m = 4n+ d.

Let A ∈ Rd×n of rank d and let U ∈ Rn×n be a diagonal matrix with non-zero diagonal entries, v ∈ Rn and R ∈ Rn×n be
a sketch matrix. There exists a data structure PROJECTIONMAINTENANCELEFT (Algorithm 1 and 2) which supports the
following operations:

• public:INIT(a ∈ (0, 1), b ∈ (0, 1), u0 ∈ Rn,R ∈ Rn×n, A ∈ Rd×n, h ∈ Rn, ϵmp ∈ (0, 1/4)): Given thresholds
a, b ∈ (0, 1) with b ≤ a, a vector u0 ∈ Rn, a sketching matrix R ∈ Rn×n, a matrix A ∈ Rd×n, a vector h ∈ Rn and a
tolerance parameter ϵmp ∈ (0, 1/4) as input, INIT (Algorithm 1) operation runs in O(nω) time.

• public:UPDATEONESTEP(W ∈ Rn×n). Given a positive block diagonal psd matrix W ∈ Rn×n, the output of
UPDATEONESTEP(Algorithm 3) updates a diagonal block matrix Ṽ such that

(1− ϵmp)∥wi∥F ⪯ ∥ṽi∥F ⪯ (1 + ϵmp)∥wi∥F ,

where wi, ṽi denote the i-th block of W, Ṽ respectively.

With the definition of gr in Definition A.1, the time complexity of UPDATEONESTEP is:{
O(na+b + nb·ω) if r < na

O(rgrn
2+o(1)) if r ≥ na

• public:QUERYONESTEP(h ∈ Rn). Given a query vector h ∈ Rn, the output of QUERYONESTEP(Algorithm 3)
satisfies:

y = R⊤
l RlP̃ h

z = R⊤
l Rl(I − P̃ )h

where the projection matrix P̃ =
√
ŨA⊤(AŨA⊤)−1A

√
Ũ where Ũ is output from the last UPDATEONESTEP. And

the time complexity of QUERYONESTEP is O(n3/2 + n2b+1 + n3/2+a).

• private:UPDATE(unew ∈ Rn): Given a vector unew ∈ Rn as input, the UPDATE (Algorithm 1) operation runs
O(na+b + nb·ω) time.

• private:QUERY(I ⊂ [n], j ∈ [n]): Given I ⊂ [n] and an index j ∈ [n] as input, the QUERY (Algorithm 2) operation
runs in O(n2b + |I| · na) time.

• private:RESET(Xnew, Y new): Give matrices Xnew, Y new ∈ Rn×nc

, RESET (Algorithm 2) operations runs in
O(nω(c,1,1)) time.

Remark B.2. Note that the above theorem is not strong enough to reproduce the result of (Lee et al., 2019). Specifically,
note the query takes time O(n3/2+a), by picking a = min(α, 1/3) where α ≈ 0.31, this gives an overall running time of

O(nω + n2+1/3).

This is due to the fact that we need to query
√
n rows and n columns. Later, we will see how to store h into M so that we

only need to query one column, thus recover the result of (Lee et al., 2019).

Proof. The correctness follows from combining Lemma B.3, Lemma B.4 and Lemma B.5.

The running time follows from combining Lemma B.6, Lemma B.7, Lemma B.8 and Lemma B.9.
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Algorithm 1 1-layer projection maintenance by inverse maintenance with Sketching on the left. Note that we store the
inverse of M , but only update it during the procedure RESET. For UPDATE, we assume the change happens for at most na

entries in at most nb columns.
1: data structure PROJECTIONMAINTENANCELEFT ▷ Theorem B.1
2: members
3: U ∈ Rn×n

4: A ∈ Rd×n

5: R =
[
R⊤

1 R⊤
2 . . . R⊤

T

]
∈ Rn×n

6: M ∈ R(4n+d)×(4n+d)

7: a ∈ (0, 1) ▷ Threshold 1
8: b ∈ (0, 1) ▷ Threshold 2
9: ϵmp ∈ (0, 1/4) ▷ Tolerance

10: X,Y ∈ R(4n+d)×nb

▷ Each column of Y has only one nonzero entry
11: Q ∈ Rnb×nb

12: N ∈ R(4n+d)×(4n+d) ▷ Inverse of M
13: v, ṽ ∈ Rn

14: l ∈ N
15: end members
16: private:
17: procedure INIT(a, b ∈ (0, 1), u0 ∈ Rn,R ∈ Rn×n, A ∈ Rd×n, ϵmp) ▷ Lemma B.6
18: a← a, b← b, A← A, ϵmp ← ϵmp

19: U ← diag(u0)
20: R← R

21: M ←


U−1 A⊤ U−1/2 0 0
A 0 0 0 0
0 0 −I 0 0

(U−1/2)⊤ 0 0 −I 0
0 0 0 R I

 ▷ Left sketching matrix construction from Lemma 5.9

22: X,Y ← 0(4n+d)×nb

23: N ←M−1 ▷ Takes O(nω) time
24: Q← Inb

25: l← 0
26: end procedure
27: private:
28: procedure UPDATE(unew ∈ Rn) ▷ Lemma B.3 and Lemma B.7
29: ▷ To run this procedure, we require that unew has at most nb non-zero entries
30: if ∥unew∥0 > nb then
31: return error
32: end if

33: ∆←


(Unew)−1 0 (Unew)−1/2 0 0

0 0 0 0 0
0 0 0 0 0

((Unew)−1/2)⊤ 0 0 0 0
0 0 0 0 0


34: Let ∆ = XY ⊤ where X ∈ R(4n+d)×nb

and Y ∈ R(4n+d)×nb

▷ X consists of nonzero entries, Y is a column
selection matrix

35: ▷ Each row of Y has only 1 nonzero entry
36: X ← X,Y ← Y
37: S ← I + Y ⊤NX ▷ Compute Y ⊤N takes O(nb) time and Y ⊤NX takes O(na+b) time
38: Q← S−1 ▷ Takes O(nb·ω) time
39: end procedure
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Algorithm 2 Query and Reset

1: data structure PROJECTIONMAINTENANCELEFT ▷ Theorem B.1
2: private:
3: procedure QUERY(I ⊂ [n], j ∈ [n]) ▷ Lemma B.5 and Lemma B.8
4: ▷ Compute query using matrix Woodbury formula
5: ▷ Return (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I
6: v1 ← Y ⊤ ·N · ej ▷ Takes O(nb) time, v1 ∈ Rnb

7: v2 ← Qv1 ▷ Takes O(n2b) time
8: L← (NX)I ▷ Takes O(|I| · na) time, L ∈ R|I|×nb

9: v3 ← Lv2 ▷ Takes O(|I| · nb) time
10: v ← NI,j − v3
11: return v
12: end procedure
13: private:
14: procedure RESET(Xnew ∈ R(4n+d)×k, Y new ∈ R(4n+d)×k) ▷ Lemma B.4 and Lemma B.9
15: ▷ To run this procedure, we require that k ≥ na

16: ▷ Compute M−1 explicitly by matrix Woodbury formula
17: ▷ (M +XY ⊤)−1 = M−1 −M−1X(I + Y ⊤M−1X)−1Y ⊤M−1

18: ▷ Let k = nc

19: L1 ← (Y new)⊤N ▷ Takes O(nω(c,1,1)) time
20: Q← (I + (Y new)⊤M−1Xnew)−1 ▷ Takes O(nω(1,1,c)) time
21: L2 ← QL1 ▷ Takes O(nω(c,c,1)) time
22: L3 ← NXnewL2 ▷ Takes O(nω(1,1,c)) time
23: L← N − L3

24: N ← L
25: M ←M +Xnew(Y new)⊤

26: X ← 0, Y ← 0
27: Q← I
28: end procedure
29: end data structure

B.2 Correctness

In this section, we first present the correctness proof for UPDATE in Lemma B.3. Then we present the correctness proof for
RESET in Lemma B.4. We present the correctness proof for QUERY in Lemma B.5.

Lemma B.3 (Update correctness). The output of UPDATE(unew) in Algorithm 1 satisfies:

Q = (I + Y ⊤M−1X)−1

Proof. This follows directly from the invariant that N = M−1. Note that by storing the quantity (I + Y ⊤M−1X)−1, we
can compute the query quickly, as we will show later.

Lemma B.4 (Reset correctness). The output of RESET(Xnew, Y new) in Algorithm 2 satisfies:

N =M−1

Proof.

Nnew = N −NXQY ⊤N

= M−1 −M−1X(I + Y ⊤M−1X)−1Y ⊤M−1

= (M +XY ⊤)−1

= (Mnew)−1

where the first step follows from N = M−1, the second step follows the matrix Woodbury formula, and the third step
follows from Line 25 in Algorithm 1.
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Algorithm 3 Restatement of Algorithm 2 and 3 in (Lee et al., 2019).

1: data structure PROJECTIONMAINTENANCELEFT ▷ Theorem B.1
2: procedure UPDATEONESTEP(W ∈ Rn×n) ▷ Lemma B.10
3: yi = v

−1/2
i wiv

−1/2
i − 1,∀i ∈ [n]

4: r ← the number of indices i such that ∥yi∥F ≥ ϵmp

5: if r < na then
6: vnew ← v
7: l← l + 1
8: else
9: Let π : [n] −→ [n] be a sorting permutation such that ∥yπ(i)∥F ≥ ∥yπ(i+1)∥F

10: while 1.5 · r < n and ∥yπ(⌈1.5·r⌉)∥F ≥ (1− 1/ log(n))∥yπ(r)∥F do
11: r ← min(⌈1.5 · r⌉, n)
12: end while

13: vnew
π(i) ←

{
wπ(i) i ∈ {1, 2, · · · , r}
vπ(i) i ∈ {r + 1, · · · , n}

14: ∆←


(V new)−1 0 (V new)−1/2 0 0

0 0 0 0 0
0 0 0 0 0

((V new)−1/2)⊤ 0 0 0 0
0 0 0 0 0


15: Let ∆ = Xnew(Y new)⊤ where Xnew ∈ R(4n+d)×k and Y new ∈ R(4n+d)×k ▷ Xnew consists of nonzero

entries, Y new is a column selection matrix
16: RESET(Xnew, Y new)
17: l← 1
18: end if
19: v ← vnew

20: ṽi ←
{
vi if (1− ϵmp)vi ⪯ wi ⪯ (1 + ϵmp)vi

wi otherwise
21: if r < na then ▷ This is put small update in UPDATEONESTEP

22: UPDATE(ṽ) ▷ Update the matrix with


(Ṽ )−1 0 (Ṽ )−1/2 0 0

0 0 0 0 0
0 0 0 0 0

(Ṽ )−1/2 0 0 0 0
0 0 0 0 0


23: end if
24: end procedure
25: procedure QUERYONESTEP(h ∈ Rn) ▷ Lemma B.12
26: ▷ We query the rows corresponding to Rl

27: I ← rows corresponding to Rl

28: x← 0√n

29: for j = 1→ n do
30: x← x+ QUERY(I, j) · hj

31: end for
32: y ← R⊤

l x ▷ y is R⊤
l RlPh

33: z ← R⊤
l Rlh− y ▷ z is R⊤

l Rl(I − P )h
34: return (y, z)
35: end procedure
36: end data structure
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Algorithm 4 Restatement of Algorithm 5 in (Lee et al., 2019)

1: procedure CENTRALPATHSTEP(x, s, t, λ, α)
2: for i = 1→ n do
3: µt

i ← si/t+∇ϕi(xi)
4: γt

i ← ∥µt
i∥∇2ϕi(xi)−1

5: cti ← exp(λγt
i )/γ

t
i

(
∑n

i=1 exp(2λγt
i ))

1/2 if γt
i ≥ 96

√
α and cti ← 0 otherwise

6: hi ← −α · cti · µt
i

7: end for
8: W ← (∇2ϕ(x))−1

9: return h,W
10: end procedure
11:
12: procedure ONESTEP(mp, xinit, sinit, t, λ, α)
13: h,W ← CENTRALPATHSTEP(xinit, sinit, t, λ, α)
14: mp.UPDATEONESTEP(W,h)
15: (x, s)← mp.QUERYONESTEP(h)
16: return (x, s)
17: end procedure

Note at the end of RESET, N and M are updated with the new value. This completes the proof.

Lemma B.5 (Query correctness). The output of QUERY(I ⊂ [n], j ∈ [n]) in Algorithm 2 satisfies:

v = (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I

Proof. We have

v = NI,j − (NX)IQY ⊤Nej

= (M−1)I,j − (M−1XQY ⊤M−1ej)I

= (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I

where the first step follows from N = M−1, and the second step follows from Q = (I+Y ⊤NX)−1 = (I+Y ⊤M−1X)−1.

This completes the proof.

B.3 Running Time

In this section, we first present the INIT running time in Lemma B.6. Then we present the UPDATE running time in
Lemma B.7. We present the QUERY running time in Lemma B.8. We present the RESET running time in Lemma B.9.

B.3.1 Initialization time

Lemma B.6 (Initialization Time). Taking a threshold a ∈ (0, 1), a positive block diagonal matrix U0 ∈ Rn×n, a sketching
matrix R ∈ Rn×n, a matrix A ∈ Rd×n a vector h ∈ Rn and a tolerance parameter ϵmp ∈ (0, 1/4) as input, INIT
(Algorithm 1) operation takes O(nω) time to complete.

Proof. The running time of INIT (Algorithm 1) operation consists of the following component:

• N ←M−1 takes O(nω) to compute the matrix inverse of M ∈ R(4n+d)×(4n+d).

Therefore, we complete the proof.
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B.3.2 Update time

Lemma B.7 (Update Time). Taking a positive block diagonal matrix Unew ∈ Rn×n as input, the UPDATE (Algorithm 1)
operation takes O(na+b + nb·ω) time to complete.

Proof. The running time of UPDATE operation consists of the following components:

• Y ⊤N takes O(nb) time to compute the matrix multiplication between a sparse matrix Y ⊤ ∈ Rnb×(4n+d) where each
column of Y only has one non-zero entry and matrix N ∈ R(4n+d)×(4n+d).

• (Y ⊤N) · X takes O(na+b)) time to compute the matrix multiplication between Y ⊤N ∈ Rnb×(4n+d) and X ∈
R(4n+d)×nb

.

• Q← S−1 takes o(nbω) time to compute the matrix inverse of S ∈ Rnb×nb

.

Therefore, we have:

O(nb) +O(na+b) +O(nbω)

= O(na+b + nbω)

This completes the proof.

B.3.3 Query time

Lemma B.8 (Query Time). Taking I ⊂ [n] and an index j ∈ [n] as input, the QUERY (Algorithm 2) operation takes
O(n2b + |I| · na) time to complete.

Proof. The running time of QUERY operation consists of the following components:

• v1 ← Y ⊤Nej takes O(nb) time to compute Y ⊤Nej where Y only contains one non-zero entry per column and ej
only has non-zero entry on jth element.

• v2 ← Qv1 takes O(n2b) time to compute the matrix vector multiplication between Q ∈ Rnb×nb

and v1 ∈ Rnb

.

• L ← (NX)I takes O(|I| · na) time to compute the matrix multiplication between N ∈ R(4n+d)×(4n+d) and
X ∈ R(4n+d)×nb

with na nonzero entries, for |I| rows.

• v3 ← Lv2 takes O(|I| · nb) time to compute the matrix vector multiplication between L ∈ R|I|×nb

and v2 ∈ Rnb

.

Therefore, we have:

O(nb) +O(n2b) +O(|I| · na) +O(|I| · nb)

= O(n2b + |I| · na)

This completes our proof.

B.3.4 Reset time

Lemma B.9 (Reset Time). Let Xnew, Y new ∈ R(4n+d)×nc

be the inputs to RESET (Algorithm 2), then RESET takes
O(nω(c,1,1)) time to complete.

Proof. For the simplicity of notation, we use X and Y to denote Xnew and Y new.

The running time of RESET operation consists of the following components:

• L1 ← Y ⊤N takes O(nω(c,1,1)) time to compute the multiplication between a nc × (4n+ d) matrix and a (4n+ d)×
(4n+ d) matrix.
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• Q← (I + Y ⊤M−1X)−1, it takes O(nω(c,1,1)) time to compute the product Y ⊤M−1X and O(ncω) time to compute
the inverse.

• L2 ← QL1 takes O(nω(c,c,1)) time to compute the matrix multiplication between Q ∈ Rnc×nc

and L1 ∈ Rnc×(4n+d).

• L3 ← NXL2 takes O(nω(1,1,c)) time to compute the matrix multiplication between N ∈ R(4n+d)×(4n+d) and
X ∈ R(4n+d)×nc

and O(nω(1,c,1)) time to compute the matrix multiplication between NX ∈ R(4n+d)×nc

and
L2 ∈ Rnc×(4n+d). Therefore, the total time for L3 ← NXL2 is O(nω(1,1,c)).

Therefore, we have:

O(nω(c,1,1)) +O(nω(c,c,1)) +O(nω(1,1,c))

= O(nω(c,1,1))

This completes the proof.

B.4 Update One Step

Lemma B.10 (UpdateOneStep correctness). Given an update matrix W ∈ Rn×n, the output of UPDATEONESTEP satisfies:

Q = (I + Y ⊤M−1X)−1

Proof. When r < na, by Lemma B.3, we have Q = (I + Y ⊤M−1X)−1.

When r ≥ na, RESET is called. X and Y are reset as zero matrice and Q is reset as identity matrix. Therefore, we have:

Q = I

= (I + Y ⊤M−1X)−1

where the first step follows that Q is reset as identity matrix, and the second step follows that Y ⊤M−1X = 0.

This completes our proof.

Lemma B.11 (UpdateOneStep Time). Taking a vector w ∈ Rn as input, the UPDATEONESTEP (Algorithm 3) operation
takes {

O(na+b + nb·ω) if r < na

O(rgrn
2+o(1)) if r ≥ na

time to complete.

Proof. When r < na, the time is dominant by UPDATE operation. By Lemma B.7, we know the time complexity is
O(na+b + nb·ω).

When r ≥ na, the time is dominant by RESET operation. By Lemma B.4, we know the time complexity is O(nω(c,1,1))
where r = nc. By the definition of gr in Definition A.1 and Theorem 3.1, we know the time complexity is O(rgrn

2+o(1)).

This completes the proof.

B.5 Query One Step

Lemma B.12 (QueryOneStep correctness). Given a query vector h ∈ Rn, the output of QUERYONESTEP satisfies:

y = R⊤
l RlP̃ h

z = R⊤
l Rl(I − P̃ )h

where the projection matrix P̃ =
√
ŨA⊤(AŨA⊤)−1A

√
Ũ where Ũ is output from the last UPDATEONESTEP.
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Proof. We have:

x =

n∑
j=1

QUERY(I, j) · hj

=

n∑
j=1

((M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I) · hj

= (M +XY ⊤)−1
I · h

= Rl

√
ŨA⊤(AŨA⊤)−1A

√
Ũh

= RlP̃ h

where the first step follows the execution of QUERYONESTEP, the second step follows from the output of QUERY in
Lemma B.5, the third step comes from matrix Woodbury formula, the fourth step comes from Lemma 5.9, and the fifth step
follows that P̃ =

√
ŨA⊤(AŨA⊤)−1A

√
Ũ .

Therefore, we have:

y = R⊤
l x = R⊤

l RlP̃ h

z = R⊤
l Rlh− y = R⊤

l Rl(I − P̃ )h

This completes our proof.

Lemma B.13 (QueryOneStep Time). Given a query vector h ∈ Rn as input, the QUERYONESTEP (Algorithm 3) operation
takes O(n3/2 + n2b+1 + n3/2+a) time to complete.

Proof. The QUERYONESTEP operation contains three steps:

• It takes O(n2b+1 + n3/2+a) time to call QUERY operation for n times.

• It takes O(n3/2) time to compute the multiplication between R⊤
l ∈ Rn×√

n and x ∈ R
√
n.

• It takes O(n3/2) time to compute the multiplication between Rl ∈ R
√
n×n and h ∈ Rn and O(n3/2) time to compute

the multiplication between R⊤
l ∈ Rn×√

n and Rlx ∈ R
√
n.

Therefore, we have the overall time complexity of QUERYONESTEP operation:

O(n2b+1 + n3/2+a) +O(n3/2) +O(n3/2) +O(n3/2)

= O(n3/2 + n2b+1 + n3/2+a)

This completes the proof.

Remark B.14. In the query phase, we have to query a
√
n× n submatrix, which takes O(n1.5+a) time per iteration. Sum

over
√
n iterations, we need to pay O(n2+a) time in total. After balancing, we observe that a = 1/3, and this algorithm is

slower than (Lee et al., 2019).

C PROJECTION MAINTENANCE VIA INVERSE MAINTENANCE: ONE LAYER AND
RIGHT SKETCH WITHOUT VECTOR

We show how to design M so that its inverse contains the right sketched projection
√
UA⊤(AUA⊤)−1A

√
UR⊤.

We present the corresponding initialization, update, reset and query functions in Algorithm 5, Algorithm 6, Algorithm 7 and
Algorithm 8. The INITIALIZE operation construct a right sketching matrix M from Lemma 5.10 and compute the inverse
N = M−1. The UPDATE operation updates the inverse matrix such that Q = (I + Y ⊤M−1X)−1. The RESET operation
reset the value of N such that N = M−1. QUERY operation takes I ⊂ [n] and an index j ∈ [n] as input and computes v
such that

v = (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I .
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UPDATEONESTEP operation takes an update vector w ∈ Rn and decides to call either UPDATE or RESET to maintain the
inverse of the matrix. QUERYONESTEP calls QUERY operation for n times and obtain the projected sketching result y and z
such that:

y = P̃R⊤
l Rlh

z = (I − P̃ )R⊤
l Rlh

where the projection matrix P̃ =
√
ŨA⊤(AŨA⊤)−1A

√
Ũ where Ũ is output from the last UPDATEONESTEP.

C.1 Main Result

In this section, we show how to implement the projection matrix maintenance task as an inverse maintenance with the sketch
on the right problem.

Theorem C.1. Given a matrix R ∈ Rn×n where R =
[
R⊤

1 R⊤
2 · · · R⊤

T

]
. Let T =

√
n. Let m = 4n+ d.

Let A ∈ Rd×n of rank d and let U ∈ Rn×n be a diagonal matrix with non-zero diagonal entries, v ∈ Rn and R ∈ Rn×n be
a sketch matrix. There exists a data structure PROJECTIONMAINTENANCERIGHT (Algorithm 5 and 6) which supports the
following operations:

• public:INIT(a ∈ (0, 1), u0 ∈ Rn,R ∈ Rn×n, A ∈ Rd×n): Given a threshold a ∈ (0, 1), a vector u0 ∈ Rn, a
sketching matrix R ∈ Rn×n and a matrix A ∈ Rd×n as input, INIT (Algorithm 5) operation runs in O(nω) time.

• public:UPDATEONESTEP(w ∈ Rn). Given an update vector w ∈ Rn, the output of UPDATEONESTEP(Algorithm 7)
satisfies:

Q = (I + Y ⊤M−1X)−1

With the definition of gr in Definition A.1, the time complexity of UPDATEONESTEP is:{
O(na+b + nb·ω) if r < na

O(rgrn
2+o(1)) if r ≥ na

• public:QUERYONESTEP(h ∈ Rn). Given a query vector h ∈ Rn, the output of QUERYONESTEP(Algorithm 7)
satisfies:

y = P̃R⊤
l Rlh

z = (I − P̃ )R⊤
l Rlh

where the projection matrix P̃ =
√
ŨA⊤(AŨA⊤)−1A

√
Ũ where Ũ is output from the last UPDATEONESTEP. And

the time complexity of QUERYONESTEP is O(n3/2 + n2b+1/2 + n3/2+a).

• private:UPDATE(unew ∈ Rn): Given a vector unew ∈ Rn as input, the UPDATE (Algorithm 5) operation runs O(naω)
time.

• private:QUERY(I ⊂ [n], j ∈ [n]): Given I ⊂ [n] and an index j ∈ [n] as input, the QUERY (Algorithm 6) operation
runs in O(n2b + |I| · na) time.

• private:RESET(Xnew ∈ R(4n+d)×nc

, Y new ∈ R(4n+d)×nc

): RESET (Algorithm 6) operations runs in O(nω(c,1,1))
time.

Proof. The correctness follows from combining Lemma C.2, Lemma C.3 and Lemma C.4.

The running time follows from combining Lemma C.5, Lemma C.6, Lemma C.7 and Lemma C.8.
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Algorithm 5 1-layer projection maintenance by inverse maintenance with Sketching on the right. Note that we store the
inverse of M , but only update it during the procedure RESET

1: data structure PROJECTIONMAINTENANCERIGHT ▷ Theorem C.1
2: members
3: u ∈ Rn

4: U ∈ Rn×n

5: A ∈ Rd×n

6: R =
[
R⊤

1 R⊤
2 . . . R⊤

T

]
∈ Rn×n

7: M ∈ R(4n+d)×(4n+d)

8: a ∈ (0, 1) ▷ Threshold 1
9: X,Y ∈ R(4n+d)×3na

▷ Each column of Y has only one nonzero entry
10: Q ∈ R3na×3na

11: N ∈ R(4n+d)×(4n+d) ▷ Inverse of M
12: end members
13:
14: procedure INIT(a ∈ (0, 1), u0 ∈ Rn,R ∈ Rn×n, A ∈ Rd×n) ▷ Lemma C.5
15: a← a, u← u0, A← A
16: U ← diag(u)
17: R← R

18: M ←


U−1 A⊤ U−1/2 0 0
A 0 0 0 0
0 0 −I 0 R⊤

(U−1/2)⊤ 0 0 −I R⊤

0 0 0 0 I

 ▷ Right sketching matrix construction from Lemma 5.10

19: X,Y ← 0(4n+d)×3na

20: N ←M−1 ▷ Takes O(nω) time
21: Q← 03na×3na

22: end procedure
23:
24: procedure UPDATE(unew ∈ Rn) ▷ Lemma C.2 and Lemma C.6
25: ▷ unew has at most na non-zero entries

26: ∆←


(Unew)−1 0 (Unew)−1/2 0 0

0 0 0 0 0
0 0 0 0 0

((Unew)−1/2)⊤ 0 0 0 0
0 0 0 0 0


27: Let ∆ = XY ⊤ where X ∈ R(4n+d)×3na

and Y ∈ R(4n+d)×3na

▷ X consists of nonzero entries, Y is a column
selection matrix

28: ▷ Each row of Y has only 1 nonzero entry
29: X ← X,Y ← Y
30: S ← I + Y ⊤NX ▷ Compute Y ⊤N takes O(na) time and Y ⊤NX takes O(n2a) time
31: Q← S−1 ▷ Takes O(naω) time
32: end procedure

C.2 Correctness

In this section, we first present the correctness proof for UPDATE in Lemma C.2. Then we present the correctness proof for
RESET in Lemma C.3. We present the correctness proof for QUERY in Lemma C.4.

Lemma C.2 (Update correctness). The output of UPDATE(unew) in Algorithm 5 satisfies:

Q = (I + Y ⊤M−1X)−1

Proof. This follows directly from the invariant that N = M−1. Note that by storing the quantity (I + Y ⊤M−1X)−1, we
can compute the query quickly, as we will show later.
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Algorithm 6 Query and Reset

1: data structure PROJECTIONMAINTENANCERIGHT ▷ Theorem C.1
2: procedure QUERY(I ⊂ [n], j ∈ [n]) ▷ Lemma C.4 and Lemma C.7
3: ▷ Compute query using matrix Woodbury formula
4: ▷ Return (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I
5: v1 ← Y ⊤ ·N · ej ▷ Takes O(nb) time, v1 ∈ Rnb

6: v2 ← Qv1 ▷ Takes O(n2b) time
7: L← (NX)I ▷ Takes O(|I| · na) time, L ∈ R|I|×nb

8: v3 ← Lv2 ▷ Takes O(|I| · nb) time
9: v ← NI,j − v3

10: return v
11: end procedure
12:
13: procedure RESET(Xnew ∈ R(4n+d)×k, Y new ∈ R(4n+d)×k) ▷ Lemma C.3 and Lemma C.8
14: ▷ To run this procedure, we require that k ≥ na

15: ▷ Compute M−1 explicitly by matrix Woodbury formula
16: ▷ (M +XY ⊤)−1 = M−1 −M−1X(I + Y ⊤M−1X)−1Y ⊤M−1

17: ▷ Let k = nc

18: L1 ← (Y new)⊤N ▷ Takes O(nω(c,1,1)) time
19: Q← (I + (Y new)⊤M−1Xnew)−1 ▷ Takes O(nω(1,1,c)) time
20: L2 ← QL1 ▷ Takes O(nω(c,c,1)) time
21: L3 ← NXnewL2 ▷ Takes O(nω(1,1,c)) time
22: L← N − L3

23: N ← L
24: M ←M +Xnew(Y new)⊤

25: X ← 0, Y ← 0
26: Q← I
27: end procedure
28: end data structure

Lemma C.3 (Reset correctness). The output of RESET(Xnew, Y new) in Algorithm 6 satisfies:

N = M−1

Proof.

Nnew = N −NXQY ⊤N

= M−1 −M−1X(I + Y ⊤M−1X)−1Y ⊤M−1

= (M +XY ⊤)−1

= (Mnew)−1

where the first step follows from N = M−1, the second step follows the matrix Woodbury formula, and the third step
follows from the UPDATE in Algorithm 5.

Note at the end of RESET, N and M are updated with the new value. This completes the proof.

Lemma C.4 (Query correctness). The output of QUERY(I ⊂ [n], j ∈ [n]) in Algorithm 6 satisfies:

v = (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I

Proof. We have

v = NI,j − (NX)IQY ⊤Nej

= (M−1)I,j − (M−1XQY ⊤M−1ej)I
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Algorithm 7 Restatement of Algorithm 9 and 10 in (Song and Yu, 2021).

1: data structure PROJECTIONMAINTENANCERIGHT ▷ Theorem C.1
2: procedure UPDATEONESTEP(W ∈ Rn×n) ▷ Lemma C.9
3: yi = v

−1/2
i wiv

−1/2
i − 1,∀i ∈ [n]

4: r ← the number of indices i such that |yi| ≥ ϵmp/2
5: if r < na then
6: vnew ← v
7: l← l + 1
8: else
9: Let π : [n] −→ [n] be a sorting permutation such that |yπ(i)| ≥ |yπ(i+1)|

10: while 1.5 · r < n and |yπ(⌈1.5·r⌉)| ≥ (1− 1/ log(n))|yπ(r)| do
11: r ← min(⌈1.5 · r⌉, n)
12: end while

13: vnew
π(i) ←

{
wπ(i) i ∈ {1, 2, · · · , r}
vπ(i) i ∈ {r + 1, · · · , n}

14: ∆←


(V new)−1 0 (V new)−1/2 0 0

0 0 0 0 0
0 0 0 0 0

((V new)−1/2)⊤ 0 0 0 0
0 0 0 0 0


15: Let ∆ = Xnew(Y new)⊤ where Xnew ∈ R(4n+d)×k and Y new ∈ R(4n+d)×k ▷ Xnew consists of nonzero

entries, Y new is a column selection matrix
16: RESET(Xnew, Y new)
17: l← 1
18: end if
19: v ← vnew

20: ṽi ←
{
vi if | lnwi − ln vi| < ϵmp/2

wi otherwise
21: if r < na then ▷ This is put small update in UPDATEONESTEP

22: UPDATE(ṽ) ▷ Update the matrix with


(Ṽ )−1 0 (Ṽ )−1/2 0 0

0 0 0 0 0
0 0 0 0 0

(Ṽ )−1/2 0 0 0 0
0 0 0 0 0


23: end if
24: return ṽ
25: end procedure
26: procedure QUERYONESTEP(h ∈ Rn) ▷ Lemma C.11
27: ▷ We query the columns corresponding to Rl

28: I ← {3n+ d+ 1, . . . , 4n+ d}
29: x← Rlh
30: y ← 0n
31: J ← columns corresponding to R⊤

l ▷ |J | = O(
√
n)

32: for j ∈ J do
33: y ← y + QUERY(I, j) · xj

34: end for
35: ▷ y is PR⊤

l Rlh
36: z ← R⊤

l Rlh− y ▷ z is (I − P )R⊤
l Rlh

37: return (y, z)
38: end procedure
39: end data structure
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Algorithm 8 Restatement of Algorithm 7 in (Song and Yu, 2021)

1: procedure ONESTEP(mp, x, s, δµ, bsketch, ϵ)
2: w ← x

s , ṽ ← mp.UPDATEONESTEP(w)

3: x← x
√

ṽ
w , s← s ·

√
w
ṽ

4: repeat
5: px, ps ← mp.QUERYONESTEP( 1√

XS
δµ)

6: δ̃s ← S√
XS

ps

7: δ̃x ← X√
XS

px

8: until ∥s−1δ̃s∥∞ ≤ 1
100 logn and ∥x−1δ̃x∥∞ ≤ 1

100 logn

9: return (x+ δ̃x, s+ δ̃s)
10: end procedure

= (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I

where the first step follows from N = M−1, and the second step follows from Q = (I+Y ⊤NX)−1 = (I+Y ⊤M−1X)−1.

This completes the proof.

C.3 Running Time

In this section, we first present the INIT running time in Lemma C.5. Then we present the UPDATE running time in
Lemma C.6. We present the QUERY running time in Lemma C.7. We present the RESET running time in Lemma C.8.

C.3.1 Initialization time

Lemma C.5 (Initialization Time). Taking a threshold a ∈ (0, 1), a vector u0 ∈ Rn, a sketching matrix R ∈ Rn×n and a
matrix A ∈ Rd×n as input, INIT (Algorithm 5) operation takes O(nω) time to complete.

Proof. The running time of INIT (Algorithm 5) operation consists of the following component:

• N ←M−1 takes O(nω) to compute the matrix inverse of M ∈ R(4n+d)×(4n+d).

Therefore, we complete the proof.

C.3.2 Update time

Lemma C.6 (Update Time). Taking a vector unew ∈ Rn as input, the UPDATE (Algorithm 5) operation takes O(naω) time
to complete.

Proof. The running time of UPDATE operation consists of the following components:

• Y ⊤N takes O(na) time to compute the matrix multiplication between a sparse matrix Y ⊤ ∈ R3na×(4n+d) where each
column of Y only has one non-zero entry and matrix N ∈ R(4n+d)×(4n+d).

• (Y ⊤N) · X takes O(n2a)) time to compute the matrix multiplication between Y ⊤N ∈ R3na×(4n+d) and X ∈
R(4n+d)×3na

.

• Q← S−1 takes o(naω) time to compute the matrix inverse of S ∈ R3na×3na

.

Therefore, we have:

O(na) +O(n2a) +O(naω)

= O(naω)

This completes the proof.
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C.3.3 Query time

Lemma C.7 (Query Time). Taking I ⊂ [n] and an index j ∈ [n] as input, the QUERY (Algorithm 6) operation takes
O(n2b + |I| · na) time to complete.

Proof. The running time of QUERY operation consists of the following components:

• v1 ← Y ⊤Nej takes O(nb) time to compute Y ⊤Nej where Y only contains one non-zero entry per column and ej
only has non-zero entry on jth element.

• v2 ← Qv1 takes O(n2b) time to compute the matrix vector multiplication between Q ∈ Rnb×nb

and v1 ∈ Rnb

.

• L ← (NX)I takes O(|I| · na) time to compute the matrix multiplication between N ∈ R(4n+d)×(4n+d) and
X ∈ R(4n+d)×nb

with na nonzero entries, for |I| rows.

• v3 ← Lv2 takes O(|I| · nb) time to compute the matrix vector multiplication between L ∈ R|I|×nb

and v2 ∈ Rnb

.

Therefore, we have:

O(nb) +O(n2b) +O(|I| · na) +O(|I| · nb)

= O(n2b + |I| · na)

This completes our proof.

C.3.4 Reset time

Lemma C.8 (Reset Time). Let Xnew, Y new ∈ R(4n+d)×nc

be the inputs to RESET (Algorithm 6), then RESET takes
O(nω(c,1,1)) time to complete.

Proof. For the simplicity of notation, we use X and Y to denote Xnew and Y new.

The running time of RESET operation consists of the following components:

• L1 ← Y ⊤N takes O(nω(c,1,1)) time to compute the multiplication between a nc × (4n+ d) matrix and a (4n+ d)×
(4n+ d) matrix.

• Q← (I + Y ⊤M−1X)−1, it takes O(nω(c,1,1)) time to compute the product Y ⊤M−1X and O(ncω) time to compute
the inverse.

• L2 ← QL1 takes O(nω(c,c,1)) time to compute the matrix multiplication between Q ∈ Rnc×nc

and L1 ∈ Rnc×(4n+d).

• L3 ← NXL2 takes O(nω(1,1,c)) time to compute the matrix multiplication between N ∈ R(4n+d)×(4n+d) and
X ∈ R(4n+d)×nc

and O(nω(1,c,1)) time to compute the matrix multiplication between NX ∈ R(4n+d)×nc

and
L2 ∈ Rnc×(4n+d). Therefore, the total time for L3 ← NXL2 is O(nω(1,1,c)).

Therefore, we have:

O(nω(c,1,1)) +O(nω(c,c,1)) +O(nω(1,1,c))

= O(nω(c,1,1))

This completes the proof.
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C.4 Update One Step

Lemma C.9 (UpdateOneStep correctness). Given an update vector w ∈ Rn, the output of UPDATEONESTEP satisfies:

Q = (I + Y ⊤M−1X)−1

Proof. When r < na, by Lemma C.2, we have Q = (I + Y ⊤M−1X)−1.

When r ≥ na, RESET is called. X and Y are reset as zero matrice and Q is reset as identity matrix. Therefore, we have:

Q = I

= (I + Y ⊤M−1X)−1

where the first step follows that Q is reset as identity matrix, and the second step follows that Y ⊤M−1X = 0.

This completes our proof.

Lemma C.10 (UpdateOneStep Time). Taking a vector w ∈ Rn as input, the UPDATEONESTEP (Algorithm 7) operation
takes {

O(na+b + nb·ω) if r < na

O(rgrn
2+o(1)) if r ≥ na

time to complete.

Proof. When r < na, the time is dominant by UPDATE operation. By Lemma C.6, we know the time complexity is
O(na+b + nb·ω).

When r ≥ na, the time is dominant by RESET operation. By Lemma C.3, we know the time complexity is O(nω(c,1,1))
where r = nc. By the definition of gr in Definition A.1 and Theorem 3.1, we know the time complexity is O(rgrn

2+o(1)).

This completes the proof.

C.5 Query One Step

Lemma C.11 (QueryOneStep correctness). Given a query vector h ∈ Rn, the output of QUERYONESTEP satisfies:

y = P̃R⊤
l Rlh

z = (I − P̃ )R⊤
l Rlh

where the projection matrix P̃ =
√

ŨA⊤(AŨA⊤)−1A
√
Ũ where Ũ is output from the last UPDATEONESTEP.

Proof. We have:

y =

n∑
j=1

QUERY(I, j) · (Rlh)j

=

n∑
j=1

((M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I) · (Rlh)j

= (M +XY ⊤)−1
I ·Rlh

=
√

ŨA⊤(AŨA⊤)−1A
√
ŨR⊤

l Rlh

= P̃R⊤
l Rlh
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where the first step follows the execution of QUERYONESTEP, the second step follows from the output of QUERY in
Lemma C.4, the third step comes from matrix Woodbury formula, the fourth step comes from Lemma 5.10, and the fifth
step follows that P̃ =

√
ŨA⊤(AŨA⊤)−1A

√
Ũ .

Therefore, we have:

z = R⊤
l Rlh− y = (I − P̃ )R⊤

l Rlh

This completes our proof.

Lemma C.12 (QueryOneStep Time). Given a query vector h ∈ Rn as input, the QUERYONESTEP (Algorithm 7) operation
takes O(n3/2 + n2b+1/2 + ·n3/2+a) time to complete.

Proof. The QUERYONESTEP operation contains three steps:

• It takes O(n3/2) time to compute the matrix multiplication x← Rlh.

• It takes O(n2b+1/2 + |I| · n1/2+a) time to call QUERY for |J | = O(
√
n) times.

• It takes O(n3/2) time to compute the multiplication between Rl ∈ R
√
n×n and h ∈ Rn and O(n3/2) time to compute

the multiplication between R⊤
l ∈ Rn×√

n and Rlh ∈ R
√
n.

Therefore, we have the overall time complexity of QUERYONESTEP operation:

O(n3/2) +O(n2b+1/2 + |I| · n1/2+a) +O(n3/2) +O(n3/2)

= O(n3/2 + n2b+1/2 + |I| · n1/2+a)

= O(n3/2 + n2b+1/2 + ·n3/2+a)

where the last step follows that |I| = n. This completes the proof.

Remark C.13. Unlike sketching-on-the-left, here we need to query a submatrix of size n × √n. This yields a similar
running time as sketching-on-the-left which is slower than (Cohen et al., 2019b; Song and Yu, 2021).
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D SKETCH DATA STRUCTURE WITH VECTOR, ON LEFT

In this section, we show that we can directly store the approximate projection vector product inside M , i.e., M−1 contains
R⊤√UA⊤(AUA⊤)−1A

√
Uh.

We present the corresponding initialization, update, reset and query functions in Algorithm 9, Algorithm 10, Algorithm 11
and Algorithm 12. Similar to Section B, The INITIALIZE operation construct a right sketching matrix M from Lemma 5.9
with the query vector h embedded inside, and compute the inverse N = M−1. The UPDATE operation updates the inverse
matrix such that Q = (I + Y ⊤M−1X)−1. The RESET operation reset the value of N such that N = M−1. QUERY
operation takes I ⊂ [n] and an index j ∈ [n] as input and computes v such that

v = (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I .

UPDATEONESTEP operation takes an update vector w ∈ Rn and decides to call either UPDATE or RESET to maintain the
inverse of the matrix. QUERYONESTEP calls QUERY operation for n times and obtain the projected sketching result y and z
such that:

y = R⊤
l RlP̃ h

z = R⊤
l Rl(I − P̃ )h

where the projection matrix P̃ =
√
ŨA⊤(AŨA⊤)−1A

√
Ũ where Ũ is output from the last UPDATEONESTEP.

Theorem D.1 (Sketching on left with vector). Given a matrix R ∈ Rn×n where R =
[
R⊤

1 R⊤
2 · · · R⊤

T

]
. Let T =

√
n.

Let m = 4n+ d.

Let A ∈ Rd×n of rank d and let U ∈ Rn×n be a diagonal matrix with non-zero diagonal entries, v ∈ Rn and R ∈ Rn×n

be a sketch matrix. There exists a data structure PROJECTIONMAINTENANCELEFTWITHVECTOR (Algorithm 9 and 10)
which supports the following operations:

• INIT(a ∈ (0, 1), b ∈ (0, 1), u0 ∈ Rn,R ∈ Rn×n, A ∈ Rd×n): Given thresholds a, b ∈ (0, 1) with b ≤ a, a vector
u0 ∈ Rn, a sketching matrix R ∈ Rn×n and a matrix A ∈ Rd×n as input, INIT (Algorithm 9) operation runs in O(nω)
time.

• UPDATE(unew ∈ Rn, hnew ∈ Rnew): Given a vector unew ∈ Rn as input, the UPDATE (Algorithm 9) operation runs
O(na+b + nb·ω) time.

• QUERY(I ⊂ [n], j ∈ [n]): Given I ⊂ [n] and an index j ∈ [n] as input, the QUERY (Algorithm 10) operation runs in
O(n2b + |I| · na) time.

• UPDATEONESTEP(W ∈ Rn×n, h ∈ Rn). Given an positive block diagonal matrix W ∈ Rn, UPDATEON-
ESTEP(Algorithm 11) updates a block diagonal matrix Ṽ ∈ Rn×n

(1− ϵmp)∥wi∥F ⪯ ∥ṽi∥F ⪯ (1 + ϵmp)∥wi∥F ,

where wi, ṽi denote the i-th block of W, Ṽ respectively. With the definition of gr in Definition A.1, the time complexity
of UPDATEONESTEP is: {

O(na+b + nb·ω) if r < na

O(rgrn
2+o(1)) if r ≥ na

• QUERYONESTEP(h ∈ Rn). Given a query vector h ∈ Rn, the output of QUERYONESTEP(Algorithm 11) satisfies:

y = R⊤
l RlP̃ h

z = R⊤
l Rl(I − P̃ )h

where the projection matrix P̃ =
√
ŨA⊤(AŨA⊤)−1A

√
Ũ where Ũ is output from the last UPDATEONESTEP. And

the time complexity of QUERYONESTEP is O(n1.5 + n2b).
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• RESET(Xnew, Y new): Give matrices Xnew, Y new ∈ Rn×nc

, RESET (Algorithm 10) operations runs in O(nω(c,1,1))
time.

Proof. The proof follows Lemma D.2, Lemma D.3, Lemma D.4, Lemma D.5, Lemma D.6, Lemma D.7, Lemma D.8,
Lemma D.9 and Lemma D.10.

D.1 Correctness

In this section, we first present the correctness proof for UPDATE in Lemma D.2. We present the correctness proof for
QUERY in Lemma D.3. Then we present the correctness proof for RESET in Lemma D.4.

Lemma D.2 (Update correctness). The output of UPDATE(unew ∈ Rn, h ∈ Rn) in Algorithm 9 satisfies:

Q = (I + Y ⊤M−1X)−1

Proof. This follows directly from the invariant that N = M−1. Note that by storing the quantity (I + Y ⊤M−1X)−1, we
can compute the query quickly, as we will show later.

Lemma D.3 (Query correctness). The output of QUERY(I ⊂ [n], j ∈ [n]) in Algorithm 10 satisfies:

v = (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I

Proof. We have

v = NI,j − (NX)IQY ⊤Nej

= (M−1)I,j − (M−1XQY ⊤M−1ej)I

= (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I

where the first step follows from N = M−1, and the second step follows from Q = (I+Y ⊤NX)−1 = (I+Y ⊤M−1X)−1.

This completes the proof.

Lemma D.4 (Reset correctness). The output of RESET(Xnew, Y new) in Algorithm 10 satisfies:

N = M−1

Proof.

Nnew = N −NXQY ⊤N

= M−1 −M−1X(I + Y ⊤M−1X)−1Y ⊤M−1

= (M +XY ⊤)−1

= (Mnew)−1

where the first step follows from N = M−1, the second step follows the matrix Woodbury formula, and the third step
follows from UPDATE in Algorithm 5.

Note at the end of RESET, N and M are updated with the new value. This completes the proof.

D.2 Running Time

In this section, we first present the INIT running time in Lemma D.5. Then we present the UPDATE running time in
Lemma D.6. We present the QUERY running time in Lemma D.7. We present the RESET running time in Lemma D.8.

We remark that we will store the dense vector h into matrix M , hence, the threshold parameter a becomes 1. This yields a
slower update time of O(n1+b) and a query time of O(n1.5). This is enough to reproduce the result in (Lee et al., 2019).



An Online and Unified Algorithm for Projection Matrix Vector Multiplication with Application to Empirical Risk Minimization

Algorithm 9 1-layer projection maintenance by inverse maintenance with Sketching on the left. Note that we store the
inverse of M , but only update it during the procedure RESET. For UPDATE, we assume the change happens for at most na

entries in at most nb columns.
1: data structure PROJECTIONMAINTENANCELEFTWITHVECTOR ▷ Theorem D.1
2: members
3: U ∈ Rn×n

4: A ∈ Rd×n

5: R =
[
R⊤

1 R⊤
2 . . . R⊤

T

]
∈ Rn×n

6: M ∈ R(4n+d)×(4n+d)

7: a ∈ (0, 1) ▷ Threshold 1
8: b ∈ (0, 1) ▷ Threshold 2
9: X,Y ∈ R(4n+d)×nb

▷ Each column of Y has only one nonzero entry
10: Q ∈ Rnb×nb

11: N ∈ R(4n+d)×(4n+d) ▷ Inverse of M
12: end members
13:
14: procedure INIT(a, b ∈ (0, 1), u0 ∈ Rn,R ∈ Rn×n, A ∈ Rd×n, h ∈ Rn) ▷ Lemma D.5
15: a← a, b← b, A← A
16: U ← diag(u)
17: R← R

18: M ←


U−1 A⊤ U−1/2 0 0 0
A 0 0 0 0 0
0 0 −I 0 0 h

(U−1/2)⊤ 0 0 −I 0 h
0 0 0 R I 0
0 0 0 0 0 −1

 ▷ Left sketching matrix construction from Lemma 5.9

19: X,Y ← 0(4n+d)×nb

20: N ←M−1 ▷ Takes O(nω) time
21: Q← 0nb×nb

22: end procedure
23:
24: procedure UPDATE(unew ∈ Rn, hnew ∈ Rn) ▷ Lemma D.2 and Lemma D.6
25: ▷ To run this procedure, we require that unew has at most nb non-zero entries
26: if ∥unew∥0 > nb then
27: return error
28: end if

29: ∆←


(Unew)−1 0 (Unew)−1/2 0 0 0

0 0 0 0 0 0
0 0 0 0 0 hnew

((Unew)−1/2)⊤ 0 0 0 0 hnew

0 0 0 0 0 0
0 0 0 0 0 0


30: Let ∆ = XY ⊤ where X ∈ R(4n+d+1)×nb

and Y ∈ R(4n+d+1)×nb

▷ X consists of nonzero entries, Y is a column
selection matrix.

31: ▷ Each row of Y has only 1 nonzero entry
32: X ← X,Y ← Y
33: S ← I + Y ⊤NX ▷ Compute Y ⊤N takes O(nb) time and Y ⊤NX takes O(na+b) time
34: Q← S−1 ▷ Takes O(nb·ω) time
35: end procedure

D.2.1 Initialization time

Lemma D.5 (Initialization Time). Taking a threshold a ∈ (0, 1), a vector u0 ∈ Rn, a sketching matrix R ∈ Rn×n and a
matrix A ∈ Rd×n as input, INIT (Algorithm 9) operation takes O(nω) time to complete.
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Algorithm 10 Query and Reset

1: data structure PROJECTIONMAINTENANCELEFTWITHVECTOR ▷ Theorem D.1
2: procedure QUERY(I ⊂ [n], j ∈ [n]) ▷ Lemma D.3 and Lemma D.7
3: ▷ Compute query using matrix Woodbury formula
4: ▷ Return (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I
5: v1 ← Y ⊤ ·N · ej ▷ Takes O(nb) time, v1 ∈ Rnb

6: v2 ← Qv1 ▷ Takes O(n2b) time
7: L← (NX)I ▷ Takes O(|I| · na) time, L ∈ R|I|×nb

8: v3 ← Lv2 ▷ Takes O(|I| · nb) time
9: v ← NI,j − v3

10: return v
11: end procedure
12:
13: procedure RESET(Xnew ∈ R(4n+d)×k, Y new ∈ R(4n+d)×k) ▷ Lemma D.4 and Lemma D.8
14: ▷ To run this procedure, we require that k ≥ na

15: ▷ Compute M−1 explicitly by matrix Woodbury formula
16: ▷ (M +XY ⊤)−1 = M−1 −M−1X(I + Y ⊤M−1X)−1Y ⊤M−1

17: ▷ Let k = nc

18: L1 ← (Y new)⊤N ▷ Takes O(nω(c,1,1)) time
19: Q← (I + (Y new)⊤M−1Xnew)−1 ▷ Takes O(nω(1,1,c)) time
20: L2 ← QL1 ▷ Takes O(nω(c,c,1)) time
21: L3 ← NXnewL2 ▷ Takes O(nω(1,1,c)) time
22: L← N − L3

23: N ← L
24: M ←M +Xnew(Y new)⊤

25: X ← 0, Y ← 0
26: end procedure
27: end data structure

Proof. The running time of INIT (Algorithm 5) operation consists of the following component:

• N ←M−1 takes O(nω) to compute the matrix inverse of M ∈ R(4n+d+1)×(4n+d+1).

Therefore, we complete the proof.

D.2.2 Update time

Lemma D.6 (Update Time). Taking vectors unew ∈ Rn and h ∈ Rn as input, the UPDATE (Algorithm 9) operation takes
O(na+b + nb·ω) time to complete.

Proof. The running time of UPDATE operation consists of the following components:

• Y ⊤N takes O(na) time to compute the matrix multiplication between a sparse matrix Y ⊤ ∈ R3na×(4n+d+1) where
each column of Y only has one non-zero entry and matrix N ∈ R(4n+d+1)×(4n+d+1).

• (Y ⊤N) · X takes O(n2a)) time to compute the matrix multiplication between Y ⊤N ∈ R3na×(4n+d+1) and X ∈
R(4n+d+1)×3na

.

• Q← S−1 takes o(naω) time to compute the matrix inverse of S ∈ R3na×3na

.

Therefore, we have:

O(na) +O(n2a) +O(naω)

= O(naω)

This completes the proof.
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D.2.3 Query time

Lemma D.7 (Query Time). Taking I ⊂ [n] and an index j ∈ [n] as input, the QUERY (Algorithm 10) operation takes
O(n2b + |I| · na) time to complete.

Proof. The running time of QUERY operation consists of the following components:

• v1 ← Y ⊤Nej takes O(na) time to compute Y ⊤Nej where Y only contains one non-zero entry per column and ej
only has non-zero entry on jth element.

• v2 ← Qv1 takes O(n2a) time to compute the matrix vector multiplication between Q ∈ R3na×3na

and v1 ∈ R3na

.

• L ← (NX)I takes O(|I| · na) time to compute the matrix multiplication between N ∈ R(4n+d+1)×(4n+d+1) and
X ∈ R(4n+d+1)×3na

for |I| rows.

• v3 ← Lv2 takes O(|I| · na) time to compute the matrix vector multiplication between L ∈ R|I|×3na

and v2 ∈ R3na

.

Therefore, we have:

O(na) +O(n2a) +O(|I| · na) +O(|I| · na)

= O(n2a + |I| · na)

This completes our proof.

D.2.4 Reset time

Lemma D.8 (Reset Time). Let Xnew, Y new ∈ R(4n+d)×nc

be the inputs to RESET (Algorithm 10), then RESET takes
O(nω(c,1,1)) time to complete.

Proof. The running time of RESET operation consists of the following components:

• L1 ← Y ⊤N takes O(nω(c,1,1)) time to compute the multiplication between a nc × (4n + d + 1) matrix and a
(4n+ d+ 1)× (4n+ d+ 1) matrix.

• L2 ← QL1 takes O(nω(c,c,1)) time to compute the matrix multiplication between Q ∈ Rnc×nc

and L1 ∈
Rnc×(4n+d+1).

• L3 ← NXL2 takes O(nω(1,1,c)) time to compute the matrix multiplication between N ∈ R(4n+d+1)×(4n+d+1) and
X ∈ R(4n+d+1)×nc

and O(nω(1,1,c)) time to compute the matrix multiplication between NX ∈ R(4n+d+1)×nc

and
L2 ∈ Rnc×(4n+d+1). Therefore, the total time for L3 ← NXL2 is O(nω(1,1,c)).

Therefore, we have:

O(nω(c,1,1)) +O(nω(c,c,1)) +O(nω(1,1,c))

= O(nω(c,1,1))

This completes the proof.

D.3 Implementing OneStep

Note that the time of QUERYONESTEP is O(n1.5 + n2b) since we only need to query one column with
√
n rows.

UPDATEONESTEP makes use of UPDATE. Hence the overall running time is O(n1+a) if r < na and O(rgrn
2+o(1)) if

r ≥ na.

Lemma D.9 (QueryOneStep Time). Given a query vector h ∈ Rn as input, the QUERYONESTEP (Algorithm 11) operation
takes O(n1.5 + n2b) time to complete.
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Proof. The QUERYONESTEP operation contains three steps:

• It takes O(n2b + |I| · na) time to call QUERY operation for 1 times.

• It takes O(n3/2) time to compute the multiplication between R⊤
l ∈ Rn×√

n and x ∈ R
√
n.

• It takes O(n3/2) time to compute the multiplication between Rl ∈ R
√
n×n and h ∈ Rn and O(n3/2) time to compute

the multiplication between R⊤
l ∈ Rn×√

n and Rlx ∈ R
√
n.

Therefore, we have the overall time complexity of QUERYONESTEP operation:

O(n2b + |I| · na) +O(n3/2) +O(n3/2) +O(n3/2)

= O(n3/2 + n2b)

This completes the proof.

Lemma D.10 (UpdateOneStep Time). Given an update matrix W ∈ Rn×n as input, the UPDATEONESTEP (Algorithm 11)
operation takes {

O(na+b + nb·ω) if r < na

O(rgrn
2+o(1)) if r ≥ na

time to complete.

Proof. When r < na, the time is dominant by UPDATE operation. By Lemma D.6, we know the time complexity is
O(na+b + nb·ω).

When r ≥ na, the time is dominant by RESET operation. By Lemma D.4, we know the time complexity is O(nω(c,1,1))
where r = nc. By the definition of gr in Definition A.1 and Theorem 3.1, we know the time complexity is O(rgrn

2+o(1)).

This completes the proof.

Remark D.11. We observe the reason we can recover (Lee et al., 2019) is due to the fact that vector h is also stored,
therefore we only need to query one column of M−1 instead of n columns, which is too slow. We will observe similar
phenomenon in the right sketch case.

E SKETCH DATA STRUCTURE WITH VECTOR, ON RIGHT

Similar to Appendix D, we show how to design M so that M−1 contains
√
UA⊤(AUA⊤)−1A

√
UR⊤Rh. When updating

the righthand side vector Rh, we note that it is sufficient to store IlRh where Il is the matrix with only diagonal corresponding
to indices in [l] is 1 and all others 0. This selects the sketching matrix we need to query Rl.

We present the corresponding initialization, update, reset and query functions in Algorithm 13, Algorithm 14, Algorithm 15
and Algorithm 15. Similar to Section C, The INITIALIZE operation construct a right sketching matrix M from Lemma 5.10
with the query vector h embedded inside, and compute the inverse N = M−1. The UPDATE operation updates the inverse
matrix such that Q = (I + Y ⊤M−1X)−1. The RESET operation reset the value of N such that N = M−1. QUERY
operation takes I ⊂ [n] and an index j ∈ [n] as input and computes v such that

v = (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I .

UPDATEONESTEP operation takes an update vector w ∈ Rn and decides to call either UPDATE or RESET to maintain the
inverse of the matrix. QUERYONESTEP calls QUERY operation for n times and obtain the projected sketching result y and z
such that:

y = P̃R⊤
l Rlh

z = (I − P̃ )R⊤
l Rlh

where the projection matrix P̃ =
√
ŨA⊤(AŨA⊤)−1A

√
Ũ where Ũ is output from the last UPDATEONESTEP.
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Algorithm 11 Restatement of Algorithm 2 and 3 in (Lee et al., 2019).

1: data structure PROJECTIONMAINTENANCELEFTWITHVECTOR ▷ Theorem D.1
2: procedure UPDATEONESTEP(W ∈ Rn×n, h ∈ Rn) ▷ Lemma D.10
3: yi = v

−1/2
i wiv

−1/2
i − 1,∀i ∈ [n]

4: r ← the number of indices i such that ∥yi∥F ≥ ϵmp

5: if r < na then
6: vnew ← v
7: l← l + 1
8: else
9: Let π : [n] −→ [n] be a sorting permutation such that |yπ(i)| ≥ |yπ(i+1)|

10: while 1.5 · r < n and |yπ(⌈1.5·r⌉)| ≥ (1− 1/ log(n))|yπ(r)| do
11: r ← min(⌈1.5 · r⌉, n)
12: end while

13: vnew
π(i) ←

{
wπ(i) i ∈ {1, 2, · · · , r}
vπ(i) i ∈ {r + 1, · · · , n}

14: ∆←


(V new)−1 0 (V new)−1/2 0 0 0

0 0 0 0 0 0
0 0 0 0 0 h

((V new)−1/2)⊤ 0 0 0 0 h
0 0 0 0 0 0
0 0 0 0 0 0


15: Let ∆ = Xnew(Y new)⊤ where Xnew ∈ R(4n+d+1)×k and Y new ∈ R(4n+d+1)×k ▷ Xnew consists of nonzero

entries, Y new is a column selection matrix. h can change n entries.
16: RESET(Xnew, Y new)
17: l← 1
18: end if
19: v ← vnew

20: ṽi ←
{
vi if (1− ϵmp)vi ⪯ wi ⪯ (1 + ϵmp)vi

wi otherwise
21: if r < na then ▷ This is put small update in UPDATEONESTEP

22: UPDATE(ṽ) ▷ Update the matrix with


(Ṽ )−1 0 (Ṽ )−1/2 0 0 0

0 0 0 0 0 0
0 0 0 0 0 h

(Ṽ )−1/2 0 0 0 0 h
0 0 0 0 0 0
0 0 0 0 0 0


23: end if
24: end procedure
25: procedure QUERYONESTEP(h ∈ Rn) ▷ Lemma D.9
26: ▷ We query the rows corresponding to Rt

27: I ← rows corresponding to Rl

28: j ← 4n+ d+ 1
29: x← QUERY(I, j) ▷ x is RlPh
30: y ← R⊤

l x ▷ y is R⊤
l RlPh

31: z ← R⊤
l Rlh− y ▷ z is R⊤

l Rl(I − P )h
32: return (y, z)
33: end procedure
34: end data structure

Theorem E.1 (Sketching on right with vector). Given a matrix R ∈ Rn×n where R =
[
R⊤

1 R⊤
2 · · · R⊤

T

]
. Let T =

√
n.

Let m = 4n+ d.

Let A ∈ Rd×n of rank d and let U ∈ Rn×n be a diagonal matrix with non-zero diagonal entries, v ∈ Rn and R ∈ Rn×n be
a sketch matrix. There exists a data structure PROJECTIONMAINTENANCERIGHT (Algorithm 13 and 14) which supports
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Algorithm 12 Restatement of Algorithm 5 in (Lee et al., 2019)

1: procedure CENTRALPATHSTEP(x, s, t, λ, α)
2: for i = 1→ n do
3: µt

i ← si/t+∇ϕi(xi)
4: γt

i ← ∥µt
i∥∇2ϕi(xi)−1

5: cti ← exp(λγt
i )/γ

t
i

(
∑n

i=1 exp(2λγt
i ))

1/2 if γt
i ≥ 96

√
α and cti ← 0 otherwise

6: hi ← −α · cti · µt
i

7: end for
8: W ← (∇2ϕ(x))−1

9: return h,W
10: end procedure
11:
12: procedure ONESTEP(mp, xinit, sinit, t, λ, α)
13: h,W ← CENTRALPATHSTEP(xinit, sinit, t, λ, α)
14: mp.UPDATEONESTEP(W,h)
15: (x, s)← mp.QUERYONESTEP(h)
16: return (x, s)
17: end procedure

the following operations:

• INIT(a ∈ (0, 1), b ∈ (0, 1), u0 ∈ Rn,R ∈ Rn×n, A ∈ Rd×n): Given thresholds a, b ∈ (0, 1) with b ≤ a, a vector
u0 ∈ Rn, a sketching matrix R ∈ Rn×n and a matrix A ∈ Rd×n as input, INIT (Algorithm 13) operation runs in
O(nω) time.

• UPDATE(unew ∈ Rn, hnew ∈ Rnew): Given a vector unew ∈ Rn as input, the UPDATE (Algorithm 13) operation runs
O(na+b + nb·ω) time.

• QUERY(I ⊂ [n], j ∈ [n]): Given I ⊂ [n] and an index j ∈ [n] as input, the QUERY (Algorithm 14) operation runs in
O(n2b + |I| · na) time.

• RESET(Xnew, Y new): Give matrices Xnew, Y new ∈ Rn×nc

, RESET (Algorithm 14) operations runs in O(nω(c,1,1))
time.

E.1 Correctness

In this section, we first present the correctness proof for UPDATE in Lemma E.2. We present the correctness proof for
QUERY in Lemma E.3. Then we present the correctness proof for RESET in Lemma E.4.

Lemma E.2 (Update correctness). The output of UPDATE(unew ∈ Rn, h ∈ Rn) in Algorithm 13 satisfies:

Q = (I + Y ⊤M−1X)−1

Proof. This follows directly from the invariant that N = M−1. Note that by storing the quantity (I + Y ⊤M−1X)−1, we
can compute the query quickly, as we will show later.

Lemma E.3 (Query correctness). The output of QUERY(I ⊂ [n], j ∈ [n]) in Algorithm 14 satisfies:

v = (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I

Proof. We have

v = NI,j − (NX)IQY ⊤Nej

= (M−1)I,j − (M−1XQY ⊤M−1ej)I

= (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I
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Algorithm 13 1-layer projection maintenance by inverse maintenance with Sketching on the right. Note that we store the
inverse of M , but only update it during the procedure RESET. For UPDATE, we assume the change happens for at most na

entries in at most nb columns.
1: data structure PROJECTIONMAINTENANCERIGHTWITHVECTOR ▷ Theorem E.1
2: members
3: U ∈ Rn×n

4: A ∈ Rd×n

5: R =
[
R⊤

1 R⊤
2 . . . R⊤

T

]
∈ Rn×n

6: M ∈ R(4n+d)×(4n+d)

7: a ∈ (0, 1) ▷ Threshold 1
8: b ∈ (0, 1) ▷ Threshold 2
9: X,Y ∈ R(4n+d)×nb

▷ Each column of Y has only one nonzero entry
10: Q ∈ Rnb×nb

11: N ∈ R(4n+d)×(4n+d) ▷ Inverse of M
12: end members
13:
14: procedure INIT(a, b ∈ (0, 1), u0 ∈ Rn,R ∈ Rn×n, A ∈ Rd×n, h ∈ Rn) ▷ Lemma E.5
15: a← a, b← b, A← A
16: U ← diag(u0)
17: R← R

18: M ←


U−1 A⊤ U−1/2 0 0 0
A 0 0 0 0 0
0 0 −I 0 R⊤ h

(U−1/2)⊤ 0 0 −I R⊤ h
0 0 0 0 I 0
0 0 0 0 0 −1

 ▷ Left sketching matrix construction from Lemma 5.9

19: X,Y ← 0(4n+d)×nb

20: N ←M−1 ▷ Takes O(nω) time
21: Q← 0nb×nb

22: end procedure
23:
24: procedure UPDATE(unew ∈ Rn, hnew ∈ Rn) ▷ Lemma E.2 and Lemma E.6
25: ▷ To run this procedure, we require that unew has at most nb non-zero entries
26: if ∥unew∥0 > nb then
27: return error
28: end if

29: ∆←


(Unew)−1 0 (Unew)−1/2 0 0 0

0 0 0 0 0 0
0 0 0 0 0 hnew

((Unew)−1/2)⊤ 0 0 0 0 hnew

0 0 0 0 0 0
0 0 0 0 0 0


30: Let ∆ = XY ⊤ where X ∈ R(4n+d+1)×nb

and Y ∈ R(4n+d+1)×nb

▷ X consists of nonzero entries, Y is a column
selection matrix.

31: ▷ Each row of Y has only 1 nonzero entry
32: X ← X,Y ← Y
33: S ← I + Y ⊤NX ▷ Compute Y ⊤N takes O(nb) time and Y ⊤NX takes O(na+b) time
34: Q← S−1 ▷ Takes O(nb·ω) time
35: end procedure

where the first step follows from N = M−1, and the second step follows from Q = (I+Y ⊤NX)−1 = (I+Y ⊤M−1X)−1.

This completes the proof.



Lianke Qin, Zhao Song, Lichen Zhang, Danyang Zhuo

Algorithm 14 Query and Reset

1: data structure PROJECTIONMAINTENANCERIGHTWITHVECTOR ▷ Theorem E.1
2: procedure QUERY(I ⊂ [n], j ∈ [n]) ▷ Lemma E.3 and Lemma E.7
3: ▷ Compute query using matrix Woodbury formula
4: ▷ Return (M−1)I,j − (M−1X(I + Y ⊤M−1X)−1Y ⊤M−1ej)I
5: v1 ← Y ⊤ ·N · ej ▷ Takes O(nb) time, v1 ∈ Rnb

6: v2 ← Qv1 ▷ Takes O(n2b) time
7: L← (NX)I ▷ Takes O(|I| · na) time, L ∈ R|I|×nb

8: v3 ← Lv2 ▷ Takes O(|I| · nb) time
9: v ← NI,j − v3

10: return v
11: end procedure
12:
13: procedure RESET(Xnew ∈ R(4n+d)×k, Y new ∈ R(4n+d)×k) ▷ Lemma E.4 and Lemma E.8
14: ▷ To run this procedure, we require that k ≥ na

15: ▷ Compute M−1 explicitly by matrix Woodbury formula
16: ▷ (M +XY ⊤)−1 = M−1 −M−1X(I + Y ⊤M−1X)−1Y ⊤M−1

17: ▷ Let k = nc

18: L1 ← (Y new)⊤N ▷ Takes O(nω(c,1,1)) time
19: Q← (I + (Y new)⊤M−1Xnew)−1 ▷ Takes O(nω(1,1,c)) time
20: L2 ← QL1 ▷ Takes O(nω(c,c,1)) time
21: L3 ← NXnewL2 ▷ Takes O(nω(1,1,c)) time
22: L← N − L3

23: N ← L
24: M ←M +Xnew(Y new)⊤

25: X ← 0, Y ← 0
26: end procedure
27: end data structure

Lemma E.4 (Reset correctness). The output of RESET(Xnew, Y new) in Algorithm 14 satisfies:

N = M−1

Proof.

Nnew = N −NXQY ⊤N

= M−1 −M−1X(I + Y ⊤M−1X)−1Y ⊤M−1

= (M +XY ⊤)−1

= (Mnew)−1

where the first step follows from N = M−1, the second step follows the matrix Woodbury formula, and the third step
follows from UPDATE in Algorithm 13.

Note at the end of RESET, N and M are updated with the new value. This completes the proof.

E.2 Running Time

In this section, we first present the INIT running time in Lemma E.5. Then we present the UPDATE running time in
Lemma E.6. We present the QUERY running time in Lemma E.7. We present the RESET running time in Lemma E.8.

We remark that we will store the dense vector h into matrix M , hence, the threshold parameter a becomes 1. This yields a
slower update time of O(n1+b) and a query time of O(n1.5). This is still enough to reproduce the result in (Lee et al., 2019).
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Algorithm 15 This part should achieve the same power as Algorithm 9 and 10 in (Lee et al., 2019).

1: data structure PROJECTIONMAINTENANCERIGHTWITHVECTOR ▷ Theorem E.1
2: procedure UPDATEONESTEP(w ∈ Rn, h ∈ Rn) ▷ Lemma E.11 and Lemma E.12
3: yi = lnwi − ln vi,∀i ∈ [n]
4: r ← the number of indices i such that |yi| ≥ ϵmp/2
5: if r < na then
6: vnew ← v
7: l← l + 1
8: else
9: Let π : [n] −→ [n] be a sorting permutation such that |yπ(i)| ≥ |yπ(i+1)|

10: while 1.5 · r < n and |yπ(⌈1.5·r⌉)| ≥ (1− 1/ log(n))|yπ(r)| do
11: r ← min(⌈1.5 · r⌉, n)
12: end while

13: vnew
π(i) ←

{
wπ(i) i ∈ {1, 2, · · · , r}
vπ(i) i ∈ {r + 1, · · · , n}

14: h̃←
[

R1h
0n−√

n

]

15: ∆←



(V new)−1 0 (V new)−1/2 0 0 0
0 0 0 0 0 0

0 0 0 0 0 h̃

((V new)−1/2)⊤ 0 0 0 0 h̃
0 0 0 0 0 0
0 0 0 0 0 0


16: Let ∆ = Xnew(Y new)⊤ where Xnew ∈ R(4n+d)×k and Y new ∈ R(4n+d)×k ▷ Xnew consists of nonzero

entries, Y new is a column selection matrix
17: RESET(Xnew, Y new)
18: l← 1
19: end if
20: v ← vnew

21: ṽi ←
{
vi if | lnwi − ln vi| < ϵmp/2

wi otherwise
22: if r < na then ▷ This is put small update in UPDATEONESTEP

23: h̃← IlRh ▷ Select out Rlh, make all other entries 0

24: UPDATE(ṽ, h̃) ▷ Update the matrix with



(Ṽ )−1 0 (Ṽ )−1/2 0 0 0
0 0 0 0 0 0

0 0 0 0 0 h̃

(Ṽ )−1/2 0 0 0 0 h̃
0 0 0 0 0 0
0 0 0 0 0 0


25: end if
26: return ṽ
27: end procedure
28: procedure QUERYONESTEP(h ∈ Rn) ▷ Lemma E.9 and Lemma E.10
29: I ← [n]
30: y ← QUERY(I, 4n+ d+ 1) ▷ y is PR⊤

l Rlh
31: z ← R⊤

l Rlh− y ▷ z is (I − P )R⊤
l Rlh

32: return (y, z)
33: end procedure
34: end data structure
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Algorithm 16 Restatement of Algorithm 7 in (Song and Yu, 2021)

1: procedure ONESTEP(mp, x, s, δµ, bsketch, ϵ)
2: w ← x

s , ṽ ← mp.UPDATEONESTEP(w)

3: x← x
√

ṽ
w , s← s ·

√
w
ṽ

4: repeat
5: px, ps ← mp.QUERYONESTEP( 1√

XS
δµ)

6: δ̃s ← S√
XS

ps

7: δ̃x ← X√
XS

px

8: until ∥s−1δ̃s∥∞ ≤ 1
100 logn and ∥x−1δ̃x∥∞ ≤ 1

100 logn

9: return (x+ δ̃x, s+ δ̃s)
10: end procedure

E.2.1 Initialization time

Lemma E.5 (Initialization Time). Taking a threshold a ∈ (0, 1), a vector u0 ∈ Rn, a sketching matrix R ∈ Rn×n and a
matrix A ∈ Rd×n as input, INIT (Algorithm 13) operation takes O(nω) time to complete.

Proof. The running time of INIT (Algorithm 13) operation consists of the following component:

• N ←M−1 takes O(nω) to compute the matrix inverse of M ∈ R(4n+d+1)×(4n+d+1).

Therefore, we complete the proof.

E.2.2 Update time

Lemma E.6 (Update Time). Taking vectors unew ∈ Rn and h ∈ Rn as input, the UPDATE (Algorithm 13) operation takes
O(na+b + nb·ω) time to complete.

Proof. The running time of UPDATE operation consists of the following components:

• Y ⊤N takes O(na) time to compute the matrix multiplication between a sparse matrix Y ⊤ ∈ R3na×(4n+d+1) where
each column of Y only has one non-zero entry and matrix N ∈ R(4n+d+1)×(4n+d+1).

• (Y ⊤N) · X takes O(n2a)) time to compute the matrix multiplication between Y ⊤N ∈ R3na×(4n+d+1) and X ∈
R(4n+d+1)×3na

.

• Q← S−1 takes o(naω) time to compute the matrix inverse of S ∈ R3na×3na

.

Therefore, we have:

O(na) +O(n2a) +O(naω)

= O(naω)

This completes the proof.

E.2.3 Query time

Lemma E.7 (Query Time). Taking I ⊂ [n] and an index j ∈ [n] as input, the QUERY (Algorithm 14) operation takes
O(n2b + |I| · na) time to complete.

Proof. The running time of QUERY operation consists of the following components:
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• v1 ← Y ⊤Nej takes O(na) time to compute Y ⊤Nej where Y only contains one non-zero entry per column and ej
only has non-zero entry on jth element.

• v2 ← Qv1 takes O(n2a) time to compute the matrix vector multiplication between Q ∈ R3na×3na

and v1 ∈ R3na

.

• L ← (NX)I takes O(|I| · na) time to compute the matrix multiplication between N ∈ R(4n+d+1)×(4n+d+1) and
X ∈ R(4n+d+1)×3na

for |I| rows.

• v3 ← Lv2 takes O(|I| · na) time to compute the matrix vector multiplication between L ∈ R|I|×3na

and v2 ∈ R3na

.

Therefore, we have:

O(na) +O(n2a) +O(|I| · na) +O(|I| · na)

= O(n2a + |I| · na)

This completes our proof.

E.2.4 Reset time

Lemma E.8 (Reset Time). Let Xnew, Y new ∈ R(4n+d)×nc

be the inputs to RESET (Algorithm 14), then RESET takes
O(nω(c,1,1)) time to complete.

Proof. The running time of RESET operation consists of the following components:

• L1 ← Y ⊤N takes O(nω(c,1,1)) time to compute the multiplication between a nc × (4n + d + 1) matrix and a
(4n+ d+ 1)× (4n+ d+ 1) matrix.

• L2 ← QL1 takes O(nω(c,c,1)) time to compute the matrix multiplication between Q ∈ Rnc×nc

and L1 ∈
Rnc×(4n+d+1).

• L3 ← NXL2 takes O(nω(1,1,c)) time to compute the matrix multiplication between N ∈ R(4n+d+1)×(4n+d+1) and
X ∈ R(4n+d+1)×nc

and O(nω(1,1,c)) time to compute the matrix multiplication between NX ∈ R(4n+d+1)×nc

and
L2 ∈ Rnc×(4n+d+1). Therefore, the total time for L3 ← NXL2 is O(nω(1,1,c)).

Therefore, we have:

O(nω(c,1,1)) +O(nω(c,c,1)) +O(nω(1,1,c))

= O(nω(c,1,1))

This completes the proof.

E.3 Implementing OneStep

Lemma E.9 (QueryOneStep correctness). Given a query vector h ∈ Rn, the output of QUERYONESTEP satisfies:

y = P̃R⊤
l Rlh

z = (I − P̃ )R⊤
l Rlh

where the projection matrix P̃ =
√

ŨA⊤(AŨA⊤)−1A
√
Ũ where Ũ is output from the last UPDATEONESTEP.

Proof. We have:

y = QUERY(I, 4n+ d+ 1)

= P̃R⊤
l Rlh
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where the first step follows the QUERYONESTEP algorithm, the second step follows from the output of QUERY in Lemma E.3
and P̃ =

√
ŨA⊤(AŨA⊤)−1A

√
Ũ .

Therefore, we have:

z = R⊤
l Rlh− y = (I − P̃ )R⊤

l Rlh

This completes our proof.

Lemma E.10 (QueryOneStep Time). Given a query vector h ∈ Rn as input, the QUERYONESTEP (Algorithm 15) operation
takes O(n1.5 + n2b + n1+a) time to complete.

Proof. The QUERYONESTEP operation contains three steps:

• It takes O(n2b + |I| · na) time to call QUERY operation for 1 time.

• It takes O(n3/2) time to compute the multiplication between Rl ∈ R
√
n×n and h ∈ Rn and O(n3/2) time to compute

the multiplication between R⊤
l ∈ Rn×√

n and Rlh ∈ R
√
n.

Therefore, we have the overall time complexity of QUERYONESTEP operation:

O(n2b + |I| · na) +O(n3/2) +O(n3/2)

= O(n3/2 + n2b + n1+a)

where the first step follows that |I| = n and a < 1. This completes the proof.

Lemma E.11 (UpdateOneStep correctness). Given an update vector w ∈ Rn, the output of UPDATEONESTEP satisfies:

Q = (I + Y ⊤M−1X)−1

Proof. When r < na, by Lemma E.2, we have Q = (I + Y ⊤M−1X)−1.

When r ≥ na, RESET is called. X and Y are reset as zero matrice and Q is reset as identity matrix. Therefore, we have:

Q = I

= (I + Y ⊤M−1X)−1

where the first step follows that Q is reset as identity matrix, and the second step follows that Y ⊤M−1X = 0.

This completes our proof.

Lemma E.12 (UpdateOneStep Time). Taking a vector w ∈ Rn as input, the UPDATEONESTEP (Algorithm 15) operation
takes {

O(na+b + nb·ω) if r < na

O(rgrn
2+o(1)) if r ≥ na

time to complete.

Proof. When r < na, the time is dominant by UPDATE operation. By Lemma E.6, we know the time complexity is
O(na+b + nb·ω).

When r ≥ na, the time is dominant by RESET operation. By Lemma E.4, we know the time complexity is O(nω(c,1,1))
where r = nc. By the definition of gr in Definition A.1 and Theorem 3.1, we know the time complexity is O(rgrn

2+o(1)).

This completes the proof.
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Remark E.13. Even though we need to query n rows instead of
√
n rows, it is still enough to recover the result in (Cohen

et al., 2019b; Song and Yu, 2021).

The advantage is UPDATEONESTEP is faster, in the left sketch case, we need to pay O(n1+a) time to update the dense
vector h. In contrary, by sketching-on-the-right, we only need to update a sparse vector with O(

√
n) entries, hence, the

update time is O(n0.5+a). This term is a small term, and will be hidden by other terms.

F MISSING PROOFS FOR SECTION 5

F.1 Summary of Our Results

INIT UPDATE QUERY RESET Solve (Lee et al., 2019) Solve (Cohen et al., 2019b; Song and Yu, 2021)
Theorem B.1 nω na+b + nb·ω n2b + |I| · na nω(c,1,1) n2+1/3

Theorem C.1 nω na+b + nb·ω n2b + |I| · na nω(c,1,1) n2+1/3

Theorem D.1 nω na+b + nb·ω n2b + |I| · na nω(c,1,1) n2+1/6

Theorem E.1 nω na+b + nb·ω n2b + |I| · na nω(c,1,1) n2+1/6

Table 1: Comparison between our results.

Solve |I| # queries per iter
Theorem B.1 (Lee et al., 2019)

√
n n

Theorem C.1 (Cohen et al., 2019b; Song and Yu, 2021) n
√
n

Theorem D.1 (Lee et al., 2019)
√
n 1

Theorem E.1 (Cohen et al., 2019b; Song and Yu, 2021) n 1

Table 2: For the first one, we need to balance the time (n2a + n0.5+a)n with n2−a/2. This leads to the optimal choice of
a = 1/3. This gives running time to be n2+1/3. For the second one, we need to balance the time (n2a + n1+a)n0.5 with
n2−a/2. This leads to optimal choice of a = 1/3. This gives running time to be n2+1/3.

Lemma F.1 (Formal version of Lemma 5.2). Let M ∈ R(n+d)×(n+d) be defined as in Definition 5.1, then

M−1 =

[
U − UA⊤(AUA⊤)−1AU UA⊤(AUA⊤)−1

(AUA⊤)−1AU −(AUA⊤)−1

]

Proof. We have

M−1 =

([
U−1 A⊤

A 0

])−1

=

[
U + UA⊤(0−AUA⊤)−1AU −UA⊤(0−AUA⊤)−1

−(0−AUA⊤)−1AU (0−AUA⊤)−1

]
=

[
U − UA⊤(AUA⊤)−1AU UA⊤(AUA⊤)−1

(AUA⊤)−1AU −(AUA⊤)−1

]
where the first step follows from Fact 4.1 and the second step comes from simplying the terms.

Lemma F.2 (Sketch on the left. Formal version of Lemma 5.7). Let R ∈ Rn×(3n+d), let L ∈ R(3n+d)×(3n+d) be the matrix
defined in Definition 5.3, consider the matrix [

L 0
R −I

]
,

then we have ([
L 0
R −I

])−1

=

[
L−1 0
RL−1 −I

]
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Proof. We have ([
L 0
R −I

])−1

=

[
L−1 0

−(−I)−1RL−1 (−I)−1

]
=

[
L−1 0
RL−1 −I

]
where the first step comes from Fact 4.1 and the second step comes from simplying the terms.

Lemma F.3 (Sketch on the right, Formal version of Lemma 5.8). Let R ∈ R(3n+d)×n, let L ∈ R(3n+d)×(3n+d) be the
matrix defined in Definition 5.3, consider the matrix [

L R
0 −I

]
,

then we have ([
L R
0 −I

])−1

=

[
L−1 L−1R
0 −I

]
Proof. We have ([

L R
0 −I

])−1

=

[
L−1 −L−1R(−I)−1

0 (−I)−1

]
=

[
L−1 L−1R
0 −I

]
where the first step comes from Fact 4.1 and the second step comes from simplying the terms.

Lemma F.4 (Formal version of Lemma 5.9). Let R ∈ Rn×n be a collection of sketching matrices, define R ∈ Rn×(3n+d) to
be the following matrix:

R =
[
0n×(2n+d) ItR

]
Then we have

([
L 0(3n+d)×n

R −In

])−1


0n+d

v
v
0n

 =

[
⋆

Rt

√
UA⊤(AUA⊤)−1A

√
Uv

]

where It is a diagonal matrix whose n(t−1)
T th to nt

T th diagonal entries are 1 and other diagonal entries are 0 such that
ItR = Rt.

Proof. By Lemma 5.7, we know ([
L 0(3n+d)×n

R −In

])−1

=

[
L−1 0(3n+d)×n

RL−1 −In

]
.

Compute the matrix vector product gives us

[
L−1 0(3n+d)×n

RL−1 −In

]
0n+d

v
v
0n

 =


⋆

RL−1

0n+d

v
v




We have

RL−1

0n+d

v
v

 = R

 ⋆
⋆√

UA⊤(AUA⊤)−1A
√
Uv


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=
[
0n×(2n+d) ItR

]  ⋆
⋆√

UA⊤(AUA⊤)−1A
√
Uv


= Rt

√
UA⊤(AUA⊤)−1A

√
Uv

where the first step follows that L−1

0n+d

v
v

 =

 ⋆
⋆√

UA⊤(AUA⊤)−1A
√
Uv

 by Lemma I.2, the second step follows from

the definition of R, and the final step comes from the matrix multiplication and ItR = Rt.

This completes the proof.

Lemma F.5 (Formal version of Lemma 5.10). Let R =
[
R⊤

1 R⊤
2 · · · R⊤

T

]
∈ Rn×n be a collection of sketching

matrices. Let T =
√
n. Define B ∈ R(3n+d)×n to be the following matrix:

B =

0(n+d)×n

R⊤

R⊤


Then we have ([

L B
0n×(3n+d) −In

])−1 [
03n+d

ItRv

]
=

[
⋆√

UA⊤(AUA⊤)−1A
√
UR⊤

t Rtv

]

where It is a diagonal matrix whose n(t−1)
T th to nt

T th diagonal entries are 1 and other diagonal entries are 0 such that
R⊤ItR = R⊤

t Rt.

Proof. By Lemma 5.8, we know ([
L B

0n×(3n+d) −In

])−1

=

[
L−1 L−1B

0n×(3n+d) −In

]
.

Compute the matrix vector product gives us[
L−1 L−1B

0n×(3n+d) −In

] [
03n+d

ItRv

]
=

[
⋆

L−1RItRv

]
We have

L−1BItRv = L−1

 0n+d

R⊤ItRv
R⊤ItRv


=

 ⋆
⋆√

UA⊤(AUA⊤)−1A
√
UR⊤ItRv


=

 ⋆
⋆√

UA⊤(AUA⊤)−1A
√
UR⊤

t Rtv



where the first step follows from the definition of B, the second step follows from Lemma I.2, and the final step follows that
R⊤ItR = R⊤

t Rt.

This completes the proof.
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G IMPORTANCE SAMPLING AS COORDINATE-WISE EMBEDDING

Lemma G.1 (Formal version of Lemma 6.3). Let D ∈ Rn×n be the sampling matrix defined as above. For any g ∈ Rn, we
have

• ED[g⊤Dh] = g⊤h.

• ED[(g⊤Dh)2] = (g⊤h)2 + 1
b∥g∥22∥h∥22.

• PrD[|g⊤Dh− g⊤h| ≥ log(1/δ)√
b
∥g∥2∥h∥2] ≤ δ.

Proof. In expectation, we have

E[Di,i] = pi ·
1

pi
+ (1− pi) · 0

= 1

hence, the matrix in expectation is identity.

For variance, we have

E[(g⊤Dh)2] = E[(
n∑

i=1

giDi,ihi)
2]

= E[
n∑

i=1

(giDi,ihi)
2 +

∑
i ̸=j

2giDi,ihigjDj,jhj ]

=

n∑
i=1

E[(giDi,ihi)
2]︸ ︷︷ ︸

A

+2
∑
i ̸=j

E[giDi,ihigjDj,jhj ]︸ ︷︷ ︸
B

.

We bound A (diagonal term) and B (off-diagonal term) separately.

For A, we have

A = E[
n∑

i=1

g2iD
2
i,ih

2
i ]

=
n∑

i=1

g2i E[D2
i,i]h

2
i

=

n∑
i=1

1

pi
g2i h

2
i

=
1

b

n∑
i=1

1
h2
i

∥h∥2
2
+ 1

n

g2i h
2
i

=
1

b

n∑
i=1

n∥h∥22
nh2

i + ∥h∥22
g2i h

2
i

≤ 1

b

n∑
i=1

n∥h∥22
nh2

i

g2i h
2
i

=
1

b
∥h∥22∥g∥22

For B, we have

B = E[
∑
i ̸=j

giDi,ihigjDj,jhj ]
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=
∑
i ̸=j

gihigjhj E[Di,iDj,j ]

=
∑
i ̸=j

gihigjhj

=
∑
i∈[n]

gihi

∑
j∈[n]\{i}

gjhj

=
∑
i∈[n]

gihi(
∑
j∈[n]

gjhj − gihi)

=
∑
i∈[n]

gihi(g
⊤h− gihi)

= (g⊤h)2 −
∑
i∈[n]

g2i h
2
i

≤ (g⊤h)2.

Put it together, we have

E[(g⊤Dh)2] ≤ (g⊤h)2 +
1

b
∥g∥22∥h∥22.

For probability, let Yi denote giDi,ihi − gihi, note that E[Yi] = 0 and the variance of Yi is

Var[Yi] = E[Y 2
i ]

= g2i E[(Di,i − 1)2]h2
i

= g2i h
2
i (E[D2

i,i]− 2E[Di,i] + 1)

= g2i h
2
i (

1

pi
− 1)

= g2i h
2
i

1

b

1
h2
i

∥h∥2
2
+ 1

n

= g2i h
2
i

1

b

n∥h∥22
nh2

i + ∥h∥22
≤ 1

b
g2i ∥h∥22.

We also need an absolute value bound:

|Yi| = |gi(Di,i − 1)hi|
≤ |gihi|.

By Bernstein inequality, we have

Pr[|
n∑

i=1

Yi| ≥
β√
b
∥g∥2∥h∥2] ≤ exp

(
−

β2

b ∥g∥22∥h∥22
1
b∥g∥22∥h∥22 +maxi∈[n]

β√
b
|gihi|∥g∥2∥h∥2/3

)

≤ exp

(
−

β2

b ∥g∥22∥h∥22
β
b ∥g∥22∥h∥22

)
= exp(−β),

picking β = log(1/δ), we obtain the desired result.

H FASTER EMPIRICAL RISK MINIMIZATION

In this section, we provide an improved algorithm for empirical risk minimization (ERM) via sketching-on-the-right.



Lianke Qin, Zhao Song, Lichen Zhang, Danyang Zhuo

H.1 Main Result

Theorem H.1 (Formal version of Theorem 7.1). Consider a convex problem

min
Ax=b,x∈∏m

i=1 Ki

c⊤x

where Ki are compact convex set. For each i ∈ [m], we are given a νi-self concordant barrier function ϕi for Ki. Also, we
are given x(0) = argminx

∑
i ϕi(xi). Assume that

• Diameter of the set: For any x ∈∏m
i=1 Ki, we have that ∥x∥2 ≤ R.

• Lipschitz constant of the program: ∥c∥2 ≤ L.

Then, the algorithm MAIN finds a vector x such that

c⊤x ≤ min
Ax=b,x∈∏m

i=1 Ki

c⊤x+ LR · δ,

∥Ax− b∥1 ≤ 3δ · (R
∑
i,j

|Ai,j |+ ∥b∥1),

x ∈
m∏
i=1

Ki.

in time

O(nω+o(1) + n2.5−α/2+o(1) + n2+1/6+o(1)) · Õ(log(
n

δ
))

where ω is the exponent of matrix multiplication, and α is the dual exponent of matrix multiplication.

Remark H.2. We get a comparable result as in (Lee et al., 2019), but our algorithm is more light-weighted, since we do not
need to restart the algorithm after

√
n iterations. By sketching on the right, we don’t need to worry about large variance

caused by sketching on the left.

H.2 Preliminary

We consider the following optimization problem:

min
x∈∏m

i=1 Ki,Ax=b
c⊤x

where
∏m

i=1 Ki is the direct product of m low-dimensional convex sets Ki. Let xi be the i-th block of x corresponding to
Ki, we solve this problem using interior point method, specifically, we consider the following path parametrization:

x(t) = arg min
Ax=b

c⊤x+ t

m∑
i=1

ϕi(xi) (1)

where ϕi : Ki → R is a self-concordant barrier function. This paramerization is the well-known central path.

We assume ni = O(1) and n :=
∑m

i=1 ni. The running time will be stated in terms of n.

Self-concordance barrier is defined as follows:

Definition H.3. We call a function ϕ a ν self-concordant barrier for K if domϕ = K and for any x ∈ domϕ and for any
u ∈ Rn

|D3ϕ(x)[u, u, u]| ≤ 2∥u∥3/2x and ∥∇ϕ(x)∥∗x ≤
√
ν,

where ∥v∥x := ∥v∥∇2ϕ(x) and ∥v∥∗x := ∥v∥∇2ϕ(x)−1 , for any vector v.

Remark H.4. It is known that ν ≥ 1 for any self-concordant barrier function.
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Algorithm 17 Robust IPM algorithm

1: procedure ROBUSTIPM(A, b, c, ϕ, δ)
2: λ← 216 · log(m), α← 2−20λ−2, κ← 2−10α
3: δ ← min( 1λ , δ)
4: ν =

∑m
i=1 νi where νi are the self-concordant parameters of ϕi.

5: Modify the convex problem and obtain an initial x and s according to Lemma H.7
6: t← 1
7: while t > δ2

4ν do
8: Find x̄ and s̄ such that ∥x̄i − xi∥xi

< α and ∥s̄i − si∥∗x̄i
< tα for all i

9: Find Ṽi such that (1− α)(∇2ϕi(x̄i))
−1 ⪯ Ṽi ⪯ (1 + α)(∇2ϕi(x̄i))

−1 for all i
10: Compute h = −α · cti(x̄, s̄)µt

i(x̄, s̄) where:

cti(x̄, s̄) =


exp(λγt

i (x̄,s̄))/γ
t
i (x̄,s̄)

(
∑m

i=1 exp(2λγt
i x̄,s̄)))

1/2 if γt
i (x̄, s̄) ≥ 96

√
α

0 otherwise

11: and µt
i(x̄, s̄) = s̄i/t+∇ϕi(x̄i) and γt

i (x̄, s̄) = ∥µt
i(x̄, s̄)∥∇2ϕi(x̄i)−1

12: Let P̃ ← Ṽ 1/2A⊤(AṼ A⊤)−1AṼ 1/2

13: Compute δx ← Ṽ 1/2(I − P̃ )Ṽ 1/2h and δs ← t · Ṽ −1/2P̃ Ṽ 1/2h
14: Move x← x+ δx, s← s+ δs
15: tnew ← (1− κ√

ν
)t.

16: end while
17: Return an approximation solution of the convex problem according to Lemma H.7
18: end procedure

H.3 An overview of Robust Central Path

In (Lee et al., 2019), they show how to solve ERM using a so-called Robust Central Path framework. Specifically, to follow
the path x(t), the optimality condition of Eq. (1):

s/t+∇ϕ(x) = 0,

Ax = b

A⊤y + s = c

where ∇ϕ(x) = (∇ϕ1(x1), . . . ,∇ϕm(xm)). Consider the incurred error in the above formulation: for some µ > 0:

s/t+∇ϕ(x) = µ,

Ax = b

A⊤y + s = c

where µ is the gap between the original central path and our approximate central path. At each iteration, we will decrease t
by a certain amount, and we need to reduce the norm of the gap µ. We follow the Newton step to move µ to µ+ h:

1

t
· δs +∇2ϕ(x) · δx = h,

Aδx = 0, (2)

A⊤δy + δs = 0,

where ∇2ϕ(x) is a block diagonal matrix in which each block is ∇2ϕi(xi). Use W to denote (∇2ϕ(x))−1, we have the
following:

δy = − t · (AWA⊤)−1AWh,
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δs = t ·A⊤(AWA⊤)−1AWh,

δx =Wh−WA⊤(AWA⊤)−1AWh.

Let P = W 1/2A⊤(AWA⊤)−1AW 1/2 denote the projection matrix, we can rewrite δs and δx as

δs = t ·W−1/2PW 1/2h,

δx = W 1/2(I − P )W 1/2h.

To speed up the computation of δs and δx, we define the following approximate version:

δ̃s = t ·W−1/2PR⊤RW 1/2h,

δ̃x =W 1/2(I − P )R⊤RW 1/2h,

where R ∈ Rbsketch×n is some random sketching matrix. δ̃s and δ̃x can be viewed as the solution to the following linear
system

1

t
· δ̃s +∇2ϕ(x) · δ̃x = h̃,

Aδ̃x = 0, (3)

A⊤δ̃y + δ̃s = 0,

where h̃ = W−1/2R⊤RW 1/2h. This makes sketching-on-the-right feasible, which means we do not need to restart the
algorithm.

The following lemma directly implies our discussion.

Lemma H.5. (x. and x̄ are close in term of Ṽ −1). With probability 1 − δ over the randomness of sketching matrix
R ∈ Rb×n, we have

∥x̄i − xi∥Ṽ −1
i
≤ ϵx

ϵx = O(α log2.5(n/δ) · n1/4
√
b
), b is the size of sketching matrix.

Proof. Recall the definition of δ̃x and δx, we have

δ̃x,i − δx,i = Ṽ
1/2
i (I − P̃ )R⊤RṼ 1/2h− Ṽ

1/2
i (I − P̃ )Ṽ 1/2h = Ṽ

1/2
i (I − P̃ )(R⊤R− I)Ṽ 1/2h.

For iteration t, the definition should be

δ̃
(t)
x,i − δ

(t)
x,i = (Ṽ

(t)
i )1/2(I − P̃ (t))((R(t))⊤R(t) − I)(Ṽ (t))1/2h.

For any i, let k be the current iteration, ki be the last when we changed the Ṽi. Then, we have that

x
(k)
i − x̄

(k)
i =

k∑
t=ki

δ̃
(t)
x,i − δ

(t)
x,i

because we have x
(ki)
i = x̄

(ki)
i (guaranteed by our algorithm). Since Ṽ

(t)
i did not change during iteration ki to k for the

block i. (However, the whole other parts of matrix Ṽ could change). We consider

(x
(k)
i − x̄

(k)
i )⊤ · (Ṽ (k)

i )−1 · (x(k)
i − x̄

(k)
i ) = (

k∑
t=ki

δ̃
(t)
x,i − δ

(t)
x,i)

⊤ · (Ṽ (k)
i )−1 · (

k∑
t=ki

δ̃
(t)
x,i − δ

(t)
x,i)



An Online and Unified Algorithm for Projection Matrix Vector Multiplication with Application to Empirical Risk Minimization

= ∥
k∑

t=ki

(I − P̃ (t))((R(t))⊤R(t) − I)(Ṽ (t))1/2h(t))i∥2

For the following discussion, we fix a block i ∈ [m] and consider block i and a coordinate j ∈ block i. We define random
vector Xt ∈ Rni as follows:

Xt = ((I − P̃ (t))((R(t))⊤R(t) − I)(Ṽ (t))1/2h(t)))i.

For notation simplicity, we ignore i in subsequent discussion and only use j as the index.

Let (Xt)j denote the j-th coordinate of Xt, for each j ∈ [ni]. Since we pick R(t) to pick a coordinate-wise embedding
(Def. 6.1), we have for each t,

E[Xt] = 0,

for second moment, note

E[(Xt)
2
j ] ≤

1

b
∥ej − P̃

(t)
j ∥22 · ∥(Ṽ (t))1/2h(t)∥22

≤ 4

b
∥(Ṽ (t))1/2h(t)∥22

and with probability 1− δ,

|(Xt)j | ≤ ∥ej − P̃
(t)
j ∥2 · ∥(Ṽ (t))1/2h(t)∥2

β√
b

≤ 2β√
b
∥(Ṽ (t))1/2h(t)∥2

:=M.

Now, we apply Bernstein inequality (Lemma 3.4),

Pr[
∑
t

(Xt)j > τ ] ≤ exp(− τ2/2∑
t E[(Xt)2j ] +Mτ/3

)

Choosing τ = 103
√
T√
b
β5/3 · ∥(Ṽ (t))1/2h(t)∥2,

Pr[
∑
t

(Xt)j > 103
√
T√
b
β5/3 · ∥Ṽ (t))1/2h(t)∥2]

≤ exp(− 106 T
b β

10/3 · ∥(Ṽ (t))1/2h(t)∥22/2
4αT
b ∥(Ṽ (t))1/2h(t)∥22 + 103

√
T
b β8/3∥Ṽ (t))1/2h(t)∥22/3

)

≤ exp(−100β2/3)

Now, taking a union, we have

∥
k∑

t=ki

(I − P̃ (t))((I − (R(t))⊤R(t))(Ṽ (t))1/2h(t))i∥2 = O(

√
T√
b
β5/3∥(Ṽ (t))1/2h(t))i∥2)
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≤ O(

√
T√
b
β5/3α)

= O(

√
T√
b
log2.5(n/δ)α)

where we use that ∥(P̃ (t)(Ṽ (t))1/2h(t))i∥2 ≤ ∥((Ṽ (t))1/2h(t))i∥2 = O(α), ni = O(1) and β = log1.5(n/δ).

This completes the proof.

A similar proof can be derived regarding s and s.

We wrap up this section with several technical lemmas that solves ERM.
Lemma H.6 (Theorem 4.1.7, Lemma 4.2.4 in (Nesterov, 1998)). Let ϕ be any ν-self-concordant barrier. Then, for any
x, y ∈ domϕ, we have

⟨∇ϕ(x), y − x⟩ ≤ ν

⟨∇ϕ(y)−∇ϕ(x), y − x⟩ ≥ ∥y − x∥2x
1 + ∥y − x∥x

.

Let x∗ = argminx ϕ(x). For any x ∈ Rn such that ∥x∗ − y∥x∗ ≤ 1, we have that x ∈ domϕ.

∥x∗ − y∥x∗ ≤ ν + 2
√
ν.

Lemma H.7 (Lemma D.2 in (Lee et al., 2019)). Consider a convex problem minAx=b,x∈∏m
i=1 Ki

c⊤x where Ki are
compact convex set. For each i ∈ [m], we are given a νi-self concordant barrier function ϕi for Ki. Also, we are given
x(0) = argminx

∑
i ϕi(xi). Assume that:

• Diameter of the set: For any x ∈∏m
i=1 Ki, we have that ∥x∥2 ≤ R.

• Lipschitz constant of the program: ∥c∥2 ≤ L.

For any δ > 0, the modified program min Āx̄ = b̄, x̄ ∈∏m
i=1 Ki × R+c̄

⊤x̄ with

Ā = [A | b−Ax(0)], b̄ = b, and c̄ = [
δ

LR · c
1

]

satisfies the following:

• x̄ = [
x(0)

1
], ȳ = 0d and s̄ = [

δ
LR · c
1

] are feasible primal dual vectors with ∥s̄ + ∇ϕ̄(x̄)∥∗x̄ ≤ δ where ϕ̄(x̄) =∑m
i=1 ϕi(x̄i)− log(x̄m+1).

• For any x̄ such that Āx̄ = b̄, x̄ ∈∏m
i=1 Ki × R+and c̄⊤x̄ ≤ minĀx̄=b̄,x̄∈∏m

i=1 Ki×R+
c̄⊤x̄+ δ2, the vector x̄1:n(x̄1:n.

is the first n coordinates of .x̄) is an approximate solution to the original convex program in the following sense:

c⊤x̄1:n ≤ min
Ax=b,x∈∏m

i=1 Ki

c⊤x+ LR · δ,

∥Ax̄1:n − b∥1 ≤ 3δ · (R
∑
i,j

|Ai,j |+ ∥b∥1)

x̄1:n ∈
m∏
i=1

Ki

Lemma H.8 (Lemma D.3 in (Lee et al., 2019)). Let ϕi(xi) be a νi-self-concordant barrier. Suppose we have si
t +∇ϕi(xi) =

µi for all i ∈ [m], A⊤y + s = c and Ax = b. Suppose that ∥µi∥∗x,i ≤ 1 for all i, we have that

⟨c, x⟩ ≤ ⟨c, x∗⟩+ 4tν

where x∗ = argminAx=b,x∈∏m
i=1 Ki

c⊤x and ν =
∑m

i=1 νi.
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I GENERALIZATION TO ASYMMETRIC PROJECTION

We present the original matrix inverse lemma in Section I.1. We present a matrix inverse lemma with extra diagonal matrice
in Section I.2.

I.1 The original reduction

Fact I.1. Given four matrice A,B,C,D, we have the inverse of matrix:[
A B
C D

]−1

=

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

Proof. We need to prove the following equation holds:[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

] [
A B
C D

]
= I (4)

For the upper left block in Eq. (4) we have:

(A−1 +A−1B(D − CA−1B)−1CA−1)A− (A−1B(D − CA−1B)−1)C

= I +A−1B(D − CA−1B)−1C −A−1B(D − CA−1B)−1C

= I

For the upper right block in Eq. (4) we have:

(A−1 +A−1B(D − CA−1B)−1CA−1)B − (A−1B(D − CA−1B)−1)D

= A−1B +A−1B((D − CA−1B)−1(CA−1B −D))

= A−1B −A−1B

= 0

For the lower left block in Eq. (4) we have:

− (D − CA−1B)−1CA−1A+ (D − CA−1B)−1C

= − (D − CA−1B)−1C + (D − CA−1B)−1C

= 0

For the lower right block in Eq. (4) we have:

− (D − CA−1B)−1CA−1B + (D − CA−1B)−1D

= (D − CA−1B)−1(D − CA−1B)

= I

Therefore, we know the Eq. (4) holds and complete the proof.

Lemma I.2 (Original version). Let A ∈ Rd×n be a matrix of rank d and let U ∈ Rn×n be a diagonal matrix with non-zero
diagonal entries and let v ∈ Rn. Then

U−1 A⊤ √
U

−1
0

A 0 0 0
0 0 −I 0

(
√
U

−1
)⊤ 0 0 −I


−1 

0n
0d
−v
−v

 =


⋆
⋆
⋆√

UA⊤(AUA⊤)−1A
√
Uv

 (5)

where ⋆ represents some entries that do not care about.
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Proof. If A = U−1 ∈ Rn×n, B = A⊤ ∈ Rn×d, C = A ∈ Rd×n, D = 0 ∈ nd×d in Fact I.1, then the matrix has full-rank
(i.e. it is invertible) and the top-left block of the inverse is U − UA⊤(AUA⊤)−1AU ∈ Rn×n. Further, consider the
following block-matrix and its inverse:M N 0

0 −I 0
N⊤ 0 −I

−1

=

 M−1 M−1N 0
0 −I 0

N⊤M−1 N⊤M−1N −I


Note that

M =

[
U−1 A⊤

A 0

]

By the Fact I.1 and set A = U−1 ∈ Rn×n, B = A⊤ ∈ Rn×d, C = A ∈ Rd×n, D = 0 ∈ Rd×d, then we have

M−1 =

[
U + UA⊤(0−AUA⊤)−1AU −UA⊤(0−AUA⊤)−1

−(0−AUA⊤)AU (0−AUA⊤)−1

]

When M ∈ R(n+d)×(n+d) is the previous block-matrix and N ∈ R(n+d)×n block-matrix (
√
U

−1
, 0n×d)

⊤, i.e.,

N =

[√
U

−1

0d×n

]

Then we compute the N⊤M−1N ∈ Rn×n:

N⊤M−1N =
√
U−1(U − UA⊤(AUA⊤)−1AU)

√
U−1

= I −
√
UA⊤(AUA⊤)−1A

√
U

Consider the matrix multiplication in Eq. (5) and its last n coordinates, we have

[
N⊤M−1 N⊤M−1N −I

] 0n+d

−v
−v

 = 0−N⊤M−1Nv + v

= − (I −
√
UA⊤(AUA⊤)A

√
U)v + v

=
√
UA⊤(AUA⊤)A

√
Uv

Therefore we know that Eq. (5) holds and complete the proof.

I.2 The U and W version

Lemma I.3 (U and W ). Let A ∈ Rd×n be a matrix of rank d and let U ∈ Rn×n be a diagonal matrix with non-zero
diagonal entries and let v ∈ Rn. Let W1 ∈ Rn×n and W2 ∈ Rn×n be two diagonal matrices. Then

U−1 A⊤ √
W2U

−1 0
A 0 0 0
0 0 −I 0

(
√
W1U

−1)⊤ 0 0 −I


−1 

0n
0d
v√

W1W2

U v

 =


⋆
⋆
⋆√

W1A
⊤(AUA⊤)−1A

√
W2v

 (6)

where ⋆ represents some entries that do not care about.
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Proof. If A = U−1 ∈ Rn×n, B = A⊤ ∈ Rn×d, C = A ∈ Rd×n, D = 0 ∈ nd×d in Fact I.1, then the matrix has full-rank
(i.e. it is invertible) and the top-left block of the inverse is U + UA⊤(AUA)−1A⊤U ∈ Rn×n. Further, consider the
following block-matrix and its inverse:M N2 0

0 −I 0
N⊤

1 0 −I

−1

=

 M−1 M−1N2 0
0 −I 0

N⊤
1 M−1 N⊤

1 M−1N2 −I


Note that

M =

[
U−1 A⊤

A 0

]

By the Fact I.1 and set A = U−1 ∈ Rn×n, B = A⊤ ∈ Rn×d, C = A ∈ Rd×n, D = 0 ∈ Rd×d, we have

M−1 =

[
U + UA⊤(0−AUA⊤)−1AU −UA⊤(0−AUA⊤)−1

−(0−AUA⊤)AU (0−AUA⊤)−1

]

When M ∈ R(n+d)×(n+d) is the previous block-matrix, and N1 ∈ R(n+d)×n, N2 ∈ R(n+d)×n such that,

N1 =

[√
W1U

−1

0d×n

]
, N2 =

[√
W2U

−1

0d×n

]
,

The bottom-center block of the inverse is

N⊤
1 M−1N2 =

√
W1U

−1(U + UA⊤(AUA⊤)−1AU)U−1
√

W2

=

√
W1W2

U
+
√
W1A

⊤(AUA⊤)−1A
√

W2

Consider the matrix multiplication in Eq. (6) and its last n coordinates, we have

[
N⊤

1 M−1 N⊤
1 M−1N2 −I

]  0n×d

v√
W1W2

U v


= 0 +N⊤

1 M−1N2v −
√
W1W2

U
v

= (

√
W1W2

U
+
√
W1A

⊤(AUA⊤)A⊤√W2)v −
√
W1W2

U
v

=
√
W1A

⊤(AUA⊤)A⊤√W2v

Therefore we know that Eq. (6) holds and complete the proof.
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