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Abstract

Counterfactual explanations utilize feature per-
turbations to analyze the outcome of an original
decision and recommend an actionable recourse.
We argue that it is beneficial to provide several
alternative explanations rather than a single point
solution and propose a probabilistic paradigm to
estimate a diverse set of counterfactuals. Specif-
ically, we treat the perturbations as random vari-
ables endowed with prior distribution functions.
This allows sampling multiple counterfactuals
from the posterior density, with the added ben-
efit of incorporating inductive biases, preserving
domain specific constraints and quantifying uncer-
tainty in estimates. More importantly, we leverage
Bayesian hierarchical modeling to share informa-
tion across different subgroups of a population,
which can both improve robustness and measure
fairness. A gradient based sampler with superior
convergence characteristics efficiently computes
the posterior samples. Experiments across sev-
eral datasets demonstrate that the counterfactuals
estimated using our approach are valid, sparse,
diverse and feasible.

1 INTRODUCTION

Large-scale adoption of decision critical AI solutions re-
quires explaining the rationale for a particular prediction.
Counterfactual explanations (Wachter et al., 2017) provide
an intuitive mechanism to reason even over complex models
by defining a set of feature perturbations that would change
the outcome to a favourable decision, thereby explaining
the factors that led to the original decision.

Many counterfactuals are possible since there are several
paths for an instance to achieve the desired outcome. Af-
ter all, a loan applicant could qualify for a mortgage with
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different combinations of increasing the collateral amount,
obtaining an educational degree or working longer hours.
The focus traditionally (Dhurandhar et al., 2018; Pawelczyk
et al., 2020; Looveren and Klaise, 2021) though has been on
finding a unique path that is defined by the smallest possible
perturbation of an instance. We argue that a theoretically
ideal single explanation is overly restrictive and propose
a mechanism to offer multiple alternative counterfactual
explanations in a Bayesian framework.

While there has been some investigations before (Rodrı́guez
et al., 2021; Mothilal et al., 2020; Russell, 2019) on gener-
ating diverse counterfactuals, they have largely been cast
in the frequentist optimization setting producing point-
estimates. In contrast, we follow a Bayesian approach that
models the perturbations in a probabilistic paradigm and
regard them as random variables with distribution functions.

This probabilistic treatment offers a variety of benefits over
traditional models as summarized in Figure 1. For example,
the posterior distribution of the perturbations can be directly
used to sample a diverse set of counterfactuals in a single
shot without resorting to the use of ensemble models or ex-
otic post-hoc selection constraints. A distribution oriented
approach (Gelman et al., 1995) is asymptotically unbiased,
can natively handle multimodal parameters and quantify
the uncertainty in predictions using variances, interquar-
tile ranges, credible intervals and entropy. Such variability
measures can help in producing robust counterfactual es-
timates Dutta et al. (2022), thereby improving the overall
reliability.

Another appealing aspect of our approach is the ability to
customize the counterfactual generation (Watson, 2022)
through appropriate prior distributions. Consider a user
who is less likely to take a Sales job when compared with
other job types. We can encode this belief through an asym-
metric categorical prior that places reduced probability mass
on the Sales type, and vary this mass depending on the rel-
ative extent of the user’s preference. The incorporation of
such specific knowledge through informative priors enables
greater flexibility and personalization in counterfactual gen-
eration.

The generated counterfactuals must respect the inherent
dependencies between the features in order to produce ex-
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Figure 1: Advantages of Bayesian approach to counterfactual estimation. Several alternative explanations can be sampled
from the posterior distribution, the uncertainty in predicted variables can be summarized through credible intervals, user
specific customization can be formalized using informative priors and the hierarchical structure can capture relative effects.

amples that are feasible (Mahajan et al., 2019; Poyiadzi
et al., 2020) in the real world. For example, we may want to
preserve the correlation between Age and Salary variables
in the observed data. Our solution allows the introduction
of conditional distributions that can capture the causal struc-
ture relating the variables, thereby modeling the feature
interactions explicitly.

When presenting a counterfactual, it is useful to compare
the magnitude of change in the feature value of an instance
with population level counterfactuals. For example, in the
spirit of fairness (Wu et al., 2019), it may be of interest
to determine whether the education level suggested by the
counterfactual to get a loan is discriminative or not relative
to other typical instances. These comparisons could also
span across multiple hierarchical levels considering demo-
graphic subgroups within the population such as Male and
Female or White, Black and Asian. A natural way to model
these dependencies across instances is by using a Bayesian
hierarchical structure that can share information across data
groups and yet capture variations at different levels of the
data, thereby improving the quality of the estimates and
enabling fairness evaluation.

We propose here a three-level hierarchical counterfactual
model in which the perturbations of a local instance depends
on its corresponding subgroup, which in turn depends on the
population. We account both for continuous and categorical
variables, treating the latter as first-class citizens. Due to
the intractable nature of the posterior distribution, we utilize
Hamiltonian Monte Carlo (HMC) (Betancourt and Giro-
lami, 2015) to derive the posterior samples. HMC makes
use of the geometric information estimated via first-order
derivatives of the target distribution and this enables us to
efficiently explore the parameter space.

We use three public tabular datasets namely Adult Income
(Kohavi and Becker, 1996), German Credit (Hofmann,
1994) and HELOC (FICO, 2018) for demonstrating the
efficacy of our approach. In particular, we show that the
Bayesian model compares well with point-estimate based so-
lutions in measures such as validity, proximity and sparsity,

with the added benefit of its support for diversity, robustness,
causality, personalization and borrowing strength.

To summarize, our main contributions are: (a) A distribu-
tion oriented approach to counterfactual generation that can
produce diverse alternatives and quantify uncertainty, (b)
Incorporation of inductive biases through informative priors,
and (c) A hierarchical formulation that preserves feature
dependencies, promotes information sharing and enables
subgroup analysis.

2 RELATED WORK

Counterfactual explanations has several research
themes (Verma et al., 2020) and our primary focus
is on the diversity angle. While most methods produce a
single counterfactual (Dhurandhar et al., 2018; Pawelczyk
et al., 2020; Looveren and Klaise, 2021), the generation
of multiple counterfactuals had been considered before.
The preferred route to support alternate examples is to
incorporate an explicit term in the optimization objective
function or perform an efficient search. For example in
Mothilal et al. (2020), a diversity constraint is included in
the loss function by building on detrimental point processes,
while in Rodrı́guez et al. (2021), a collection of latent
perturbations are searched to identify the attributes that
will change the decision. Dandl et al. (2020) formalize
the search as a multi-objective optimization problem that
returns a Pareto set of counterfactuals. Differently, Russell
(2019) employs a mixed-integer programming solver that
is integrated with a set of constraints to generate diverse
explanations. Smyth and Keane (2022); Albini et al. (2022)
follow a nearest neighbour search to generate multiple
counterfactuals.

The primary difference with the above methods is that we
cast counterfactual generation as sampling from posterior
distributions. Even methods that claim to be distribution-
aware deal with the empirical data distribution (Kanamori
et al., 2020) or the distribution of classifier model parame-
ters (Bui et al., 2021), unlike our focus on the counterfactual
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generation process.

A distribution-centric framework such as ours produces un-
certainty estimates that can be used to measure the stability,
reliability and consistency of the generated counterfactu-
als. Few recent works such as the extensions to LIME and
SHAP in Slack et al. (2021b), the latent variable deep gen-
erative model in Ley et al. (2022) and the optimal transport
for Gaussian mixtures in Nguyen et al. (2022) do consider
uncertainty estimates. However, their focus is either on gen-
erating local explanations of a classifier prediction or on the
predictive uncertainty of the classification model.

Recommending a set of actions that can achieve favourable
outcomes in practice often requires treating algorithmic re-
course as a causal problem (Barocas et al., 2017). Karimi
et al. (2022) perform causal reasoning for recourse under
imperfect knowledge by employing Gaussian processes and
conditional variational autoencoders while Dominguez-
Olmedo et al. (2022) study adversarial robustness of re-
course from the lens of causality. The causal relationship
between features are used to capture downstream effects
of recourse actions and enforce fairness in von Kügelgen
et al. (2022). While causal recourse is not our primary fo-
cus, causal dependencies can be incorporated in our model
through conditional distributions.

A distinguishing aspect of our work is the treatment of
counterfactuals in a hierarchical setting. Existing methods
that can provide explanations at local and global levels such
as Plumb et al. (2020); Becker et al. (2021) lack a principled
framework that can inherently support multiple levels as
ours does. Works that can potentially support several levels,
as in Rawal and Lakkaraju (2020); Kanamori et al. (2022),
differ from ours in their objective and technique.

3 MODEL

Let x = (x1, ..., xdcont , xdcont+1, ..., xdcont+dcat) be an
observed instance that contains dcont number of contin-
uous values and dcat number of categorical values with
|x| = dcont + dcat = d. Each instance is associated with
one of K different groups and let k be the subgroup cor-
responding to x. Let f : x → [0, 1] be a binary classifier
function that is differentiable.

If f(x) <= 0.5, we would like to generate a counterfactual
explanation x∗ for x such that f(x∗) > 0.5. We write

x∗ = z⊙ x+∆,

∆ = (δ1, ..., δdcont , ηdcont+1, ..., ηd),
(1)

where ∆ is a set of parameters that models the perturbations,
with δ being the change in value of continuous variables
and η the modified value of a categorical variable. Here z ∈
{0, 1}d is a vector of indicators that is set to 1 for continuous
variables and ⊙ denotes element-wise multiplication.

In traditional counterfactual frameworks, ∆ is a set of fixed
but unknown values that must be determined based on some
optimization function. Instead, in our Bayesian paradigm,
∆ is modeled as a random variable having a probability dis-
tribution. This allows the incorporation of problem specific
knowledge (or the lack of it) on these parameters through
appropriate prior distributions. Furthermore, we can sample
multiple values corresponding to different modes of the dis-
tribution, thereby generating a diverse set of explanations.

3.1 Hierarchical Bayes

The modular nature of a Bayesian framework allows simpli-
fying complex setups necessitated by counterfactual genera-
tion requirements. For example, we may wish to measure
how a counterfactual generated for a particular instance dif-
fers from other instances in its subgroup or across the groups.
This requirement to capture variations at different levels of
the data can be formulated naturally as a hierarchical model,
where we have a population level set of parameters that are
shared with the parameters at a group level which in turn are
shared at the individual instance level. Such a hierarchical
structure also enables borrowing of information from other
related data, through which the robustness of parameter
estimates can be improved.

We describe a three level hierarchical counterfactual model
with the population level being referred as L1, the group
level as L2 and the local instance level as L3. Each con-
tinuous variable δ is bestowed a Gaussian prior N (µ, σ),
with the mean µ being shared across the hierarchical levels
while the variance σ remains independent. Intuitively, the
parameter value of a subgroup is centered around the pop-
ulation level value but can still deviate from it. Similarly,
the parameters of all the local instances can take distinct
values, yet are dependent on its parent and remains within a
range of its corresponding subgroup. A level can optionally
be dropped, in which case the dependency shifts upwards.
Formally, the generative steps are defined as:

µL1
i ∼ N (µ0

i , σ
L1
i ) ∀i = 1...dcont (2)

µL2
k,i ∼ N (µL1

i , σL2
k,i) ∀i = 1...dcont, k = 1...K (3)

δi ∼ N (µL2
k,i, σ

L3
i ) ∀i = 1...dcont. (4)

The relationship between the variables are modeled using
conditional distributions. Given a causal model where vari-
able i is the parent of j, the dependency structure is defined
using a linear approximation with parameters m and c as

δj |δi ∼ N (mδi + c, σj). (5)

A categorical variable η is endowed with a scaled Dirichlet
prior Dir(αβ), where β ∈ RL

+ is a vector whose length
depends on the number of categories L and α is a scale
parameter. The categorical values themselves are sampled
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Figure 2: Hierarchical counterfactual model in plate notation. The left side of the figure corresponds to the dependency
graph of continuous variables while the right side reflects the categorical variables.

from the probabilities estimated from the Dirichlet prior
using a Multinomial distribution. Similar to the continuous
variables, each parameter depends on the parameter at its
corresponding parent level while still retaining the flexibility
to diverge. The generative steps here are formalized as:

βL1
i ∼ Dir(αL1

i ) ∀i = dcont+1...d (6)
βL2
k,i ∼ Dir(αL2

k,iβ
L1
i ) ∀i = dcont+1...d, k = 1...K (7)

η
′

i ∼ Dir(αL3
i βL2

k,i) ∀i = dcont+1...d (8)

ηi ∼ Mult(η
′

i) ∀i = dcont+1...d. (9)

The variance parameters σ are further assigned indepen-
dent inverse gamma priors with hyper-parameters (γa1, γb1).
Similarly, α follows a gamma prior with hyper-parameters
(γa2, γb2). The conditional dependency graph of the model
is illustrated in Figure 2.

3.2 Posterior Inference

Let Θ = {∆, µ, σ, α, β} be the set of all parameters. The
central inference problem is to estimate these parameters
given an observed instance x and a training dataset

D = (χL2+
1 , ..., χL2+

K , χL2−
1 , ..., χL2−

K , χL1+, χL1−), (10)

where χL2+
k represents a set of training instances corre-

sponding to subgroup k such that f(.) > 0.5 while χL1+ is
the set of instances pooled across all the subgroups. Sim-
ilarly χL2−

k and χL1− denote the negative instances. The
posterior density of the parameters is given as

p(Θ|x,D) =

∫
f(x∗|Θ)p(x|x∗,Θ)∏
k

p(χL2
k |Θ)p(χL1|Θ)p(Θ)dΘ. (11)

Here x∗ is constructed as in equation (1) and p(Θ) is the
prior distribution for the parameters as defined in equations

(2) to (9). The first likelihood term in the above posterior
captures the probability of a counterfactual to be valid while
the second term encourages close proximity between an
original instance and its counterfactual. Specifically,

p(x|x∗,Θ) ∝ e
−∥x∗−x∥2

2λ , (12)

where λ is a bandwidth hyper-parameter.

The likelihood of the training instances at the population
level is written as

p(χL1|Θ) ∝
∏

y∈χL1−

f(y∗|Θ)e
−∥y∗−χ̄L1+∥2

2λ (13)

where y∗ is the counterfactual constructed from a negative
training instance based on the parameters at L1 and χ̄L1+

is the expected value of the positive instances in the feature
space. Intuitively, we wish to find the counterfactuals of neg-
ative training instances at the population level in such a way
that they are in close proximity to the positive instances of
the training data. A similar construct follows for p(χL2

k |Θ).

3.3 Sampling Mechanism

An approximation to equation (11) must be developed since
exact posterior inference is not feasible. Simulation tech-
niques such as Markov Chain Monte Carlo (MCMC) (Neal,
1993) methods allow drawing a sequence of correlated sam-
ples that can be used to estimate the intractable integrals.
However, considering the large number of parameters and
the complex nature of the posterior distribution induced by
the presence of the classifier function, traditional MCMC
methods such as Metropolis and Gibbs sampling will strug-
gle to converge to the target distribution.

Hamiltonian Monte Carlo (HMC) (Betancourt and Giro-
lami, 2015) sampling methods enable efficient exploration
of such complex parameter spaces by incorporating the
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gradient of the log posterior. The geometric information
provided by these gradients can guide the chain towards re-
gions of high posterior density, thereby reducing the number
of samples required for convergence. Exploiting the fact
that f(.) is differentiable, we use the No-U-Turn-Sampler
(NUTS) (Hoffman et al., 2014) variant of HMC for comput-
ing the posterior samples.

The (∆1, ...∆N ) samples produced by this sampling mech-
anism are used to derive N different x∗ that can serve as a
diverse set of counterfactuals for a given x. The uncertainty
in the generated samples can be quantified using measures
such as variances, interquartile ranges and credible intervals,
while a point-estimate if required can be obtained through
summaries or ranking the samples by cost metrics.

4 EXPERIMENTS

We discuss here the experiment setup, present counterfactual
evaluations and assess convergence properties. More details
can be found in the supplementary material.

4.1 Evaluation Setup

Datasets: To evaluate our approach, we consider the fol-
lowing datasets: (a) Adult Income (Kohavi and Becker,
1996) - a dataset containing the income factors of various in-
dividuals such as Gender, Race, Marital Status, Education,
Workclass, Occupation, Age and Hours. Except for Age
and Hours, the rest of the variables are categorical and the
classification objective is to predict whether an individuals’
income exceeds $50K. (b) German Credit (Hofmann, 1994)
- a dataset that includes 20 different attributes of persons
who takes a credit in a bank, with the vast majority of these
attributes being categorical and a binary label indicating if
an individual is a credit risk or not. and (c) HELOC (FICO,
2018) - a dataset with information on customers who re-
ceived a home equity line of credit. It has over 20 features
that are predominantly continuous and a binary label as to
whether a customer paid back the loan or not.

Classification Model: We train a non-linear neural-network
model with 2 layers and 200 hidden neurons as the classifier.
The categorical values are converted to a smoothed one-hot
encoded vector while the continuous values are normalized
to be between 0 and 1 in the feature space. We obtain
an accuracy of 80% for Adult Income, 75% for German
Credit and 72% for HELOC. We use only the instances that
are correctly classified by the model in ground-truth when
evaluating the counterfactuals.

Settings: Throughout the experiments, we used a burn-in of
5000 samples, and a target sample size of 1000, which is suf-
ficiently large. The standard normal distribution and a sym-
metric Dirichlet were used. The gamma hyper-parameters
were set to a unit value and a value of 0.7 was used for the
bandwidth.

4.2 Flattened Bayes Evaluation

We first focus on the assessment of a flattened model where
only the local instances are considered. This would allow
comparing the benefits of using a Bayesian model over a
traditional point-estimate based counterfactual model.

Qualitative: Table 1 shows a few examples of counterfac-
tual samples that were generated for an instance in Adult
Income dataset, where a realistic setting is followed in which
variables such as Age, Gender, Race and Marital Status are
frozen while the values of other variables are allowed to
change. The generated samples provide a wider range of
options to the target user and highlights the various possibil-
ities to have an income above $50K. For example, the first
sample indicates an option where the user can continue to re-
tain the current values of Workclass, Occupation and Hours,
while the second sample allows to retain only Workclass and
Education. The samples also help address questions such
as ”What if I have to work fewer hours than I currently do”.
Contrast this with a point-estimate model where the counter-
factual must be re-generated for each what-if question and
the potential set of options for the user may not be evident.

Quantitative: We also perform a quantitative comparison
of the Bayesian method with the traditional point-estimate
(Wachter et al., 2017) technique over various measures such
as validity, sparsity and proximity for all the three datasets
in Table 2. All the features are assumed to be mutable
here and the ADAM optimizer (Kingma and Ba, 2015)
is used to obtain the point estimates. The validity metric
captures the percentage of negative instances in the test set
for which a valid counterfactual was generated, and the
coverage appears nearly identical between the two methods.
The sparsity metric highlights the percentage of features
being used, while proximity is a measure of the closeness
between the counterfactual and the original instance in the
feature space. The point-estimates seem to perform slightly
better for these two attributes. This is unsurprising because
the variety in samples is an important consideration of the
Bayesian method and this requires an increase both in the
number and change in magnitude of the features.

Diversity: A key benefit of the Bayesian counterfactual
method is its ability to generate multiple options for the
user. It is desirable for the counterfactual samples not to
be trivial modifications and rather be a diverse choice. We
compare the diversity of the counterfactuals produced by
the Bayesian model with a point-estimate model that is ini-
tialized with different random seeds similar to Mothilal
et al. (2020). The diversity metric is computed by calculat-
ing the distance between a counterfactual and all its peer
samples and averaging over them. For a continuous variable
the distance is based on the l1 norm scaled by median ab-
solute deviation in the training set, while for a categorical
variable it is based on whether the value has changed or
not. Figure 3 illustrates this comparison by plotting the
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Table 1: Examples of generated counterfactual samples for a negative label instance in Adult Income dataset.

Immutable Mutable
Age Gender Race Marital Workclass Education Occupation Hours Label

Original 69 Male White Married Self-emp HS-grad Sales 30 <=50K

Counterfactual
Samples –

Self-emp Prof-School Sales 30 >50K
Self-emp HS-grad Blue-Collar 43 >50K
Gov HS-grad Professional 42 >50K
Private Masters White-Collar 25 >50K

Table 2: Comparison of generated counterfactuals between Bayesian Posteriors and Point Estimates.

Bayesian Posterior Point Estimates
Dataset Validity % ↑ Sparsity % ↑ Proximity ↓ Validity % ↑ Sparsity % ↑ Proximity ↓
Adult Income 100 50 1.8 100 38 1.2
German Credit 97 50 2.8 100 35 2.5
HELOC 94 48 3.3 91 36 2.3

Figure 3: Diversity comparison between Bayesian Posteriors and randomly initialized Point-Estimates for different datasets.
Larger distances imply greater diversity between the counterfactual samples of an instance.

Figure 4: Inductive bias for categorical values in the generated counterfactuals of Adult Income dataset. left: Posterior
samples from a symmetric Dirichlet prior on the Occupation categorical variable. right: Asymmetric prior with negligible
mass on Sales and White-Collar values.



Natraj Raman, Daniele Magazzeni, Sameena Shah

Figure 5: Unary constraint that dissuades a counterfactual
Age value to be lower than its original in the AdultIncome
dataset. The model with a truncated prior produces feasible
counterfactuals.

mean distance and their variance. The optimization function
used in point-estimate models seem to converge towards a
narrow region despite random initialization. In contrast, it
is evident that across datasets the Bayesian methods owing
to their distribution oriented approach produce considerably
diverse samples.

Inductive Bias: When generating the counterfactuals for
an instance, we may want to incorporate customizations
that are driven by apriori beliefs. For instance, a user may
be less inclined to change their education levels beyond a
Masters degree or would prefer not working longer hours.
Such beliefs can be naturally inducted through asymmet-
ric and truncated Bayesian priors. Figure 4 presents the
samples generated from two different priors for the cate-
gorical variable Occupation in Adult Income dataset. The
left side figure uses a symmetric Dirichlet prior with all the
categories being equally likely. The right side figure uses
an asymmetric prior that reduces the mass on White-Collar
category (i.e. it is less likely than others) while the mass
on Sales variable is set to a negligible value. Consequently,
the figure on the right side doesn’t produce any samples for
Sales category and only a few samples for White-Collar cat-
egory. Such targeted customizations are difficult to achieve
in traditional models.

Feature Constraints: We evaluate feasibility by validating
whether the counterfactuals satisfy constraints entailed by
a given causal model. Similar to Mahajan et al. (2019),
we consider an unary constraint where it is infeasible for
the Age variable to decrease in the generated counterfactual
and a binary constraint where there is a monotonic trend
between the Age and Hours variables. The former is mod-
eled using a truncated prior while the latter uses the linear
approximation in (5) and the counterfactuals are generated
for a subset of data points. Figure 5 highlights that the
counterfactual Age values are consistently greater than the
original when incorporating the constraint through a domain

Figure 6: Binary constraint with a monotonic trend between
Hours and Age variable pairs in the AdultIncome dataset.
The model with a conditional prior preserves the feature
relationship in generated counterfactuals.

specific prior. Similarly, Figure 6 shows that when Hours
and Age are negatively correlated, modeling their feature de-
pendency explicitly generates counterfactuals that preserve
their relationship.

4.3 Multi-level Bayes Evaluation

Hierarchical models provide the advantage of allowing rel-
ative comparisons of counterfactuals generated across dif-
ferent levels in the hierarchy and thus help assess counter-
factual fairness. We first consider a two-level hierarchy, and
in Figure 7 compare the values of counterfactual samples
generated at the local instance level to the global popula-
tion level. The left figure uses a box plot to display the
median and whiskers of samples from the ordinal Education
variable in Adult Income dataset. The middle figure plots
the mode and dispersion of the nominal Workclass variable
while the right figure displays the median and credible in-
tervals for the continuous variable Hours. The population
level aggregated counterfactual values for these variables
are shown in a red dashed line. These illustrations allow
drawing inferences such as the education levels required for
a local counterfactual seems lower than the global average,
or that the work category required for local instances is
compatible with global standards and so on.

For the three-level hierarchy, we focus on the Hours vari-
able and consider two different groups corresponding to
the Gender and Race categorical variables. The top part of
Figure 8 plots the median and credible intervals for Hours,
along with the values at population level (red dashed line)
and subgroups level (green dashed line). This enables the
simultaneous visualization of how the values at local levels
compare against the global values and the Male and Female
subgroups. The bottom part of Figure 8 contrasts the values
for Hours against Black, White and Other race categories.
See supp. for more results.
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Figure 7: Global vs Local Counterfactuals in Adult Income. left: Box plot of ordinal variable Education with the median
value of samples for different instances mostly below the global value 13. middle: The samples mode coincides with the
global for nominal variable Workclass. right: The credible interval region for continuous variable Hours covers the global
value.

Figure 8: Multi-level hierarchical model showing whether the counterfactual of a local instance coincides with or deviates
from subgroups within the data (Level 2) and the entire dataset (Level 1) for Hours variable in Adult Income. top: Subgroups
Male and Female of Gender variable. bottom: Subgroups Black, White and Other of Race variable.

Figure 9: Convergence of samples for Hours variable in Adult Income dataset. left: Density estimate of the posterior
samples for four different chains. right: Rank plots of posterior draws showing no substantial difference across the chains.
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4.4 Convergence Diagnostics

It is critical to monitor whether the samples produced using
an MCMC method converges (Roy, 2020) to the target
posterior distribution. The generated samples maybe de-
generate if they are strongly correlated with each other and
are not effectively independent. To assess convergence, we
run 4 different chains initialized at various starting points
and check if the obtained distribution is similar across the
chains. The most widely used convergence diagnostic is the
scale reduction factor R̂, which compares the variance of
all the chains mixed together with the variance of individ-
ual chains. The observed R̂ was well under 1.1, thus not
detecting any convergence problems. We also inspected the
effective sample size and found it to be large, confirming
the absence of auto-correlations in the chains. Figure 9
displays two other convergence metrics. In the left side, the
kernel density estimates of the posterior draws are shown for
the Hours variable and it can be seen that the distributions
appear similar across the chains. Additionally, we visualize
the histograms of ranked posterior draws for each chain in
the right figure, and as advocated in Vehtari et al. (2021) ob-
serve that the rank plots of all chains appear similar thereby
indicating a good mixing of the chains.

5 LIMITATIONS

A valid criticism of the Bayesian methods is the inordi-
nate number of computational steps required for conver-
gence. For collecting N samples of V variables, HMC has
a complexity of O(NV 5/4). Even though the cost can be
amortized for higher levels in the hierarchy and efficient
parallelization can scale out the computations, the inference
duration may still be intractable for real-time performance.
The use of HMC also implies that the classifier function
must be differentiable. Consequently, our solution is not
purely model agnostic. While alternate sampling methods
that can handle black box models exist, such solutions may
pose challenges in convergence. The advent of AutoGrad
and the prevalence of deep learning though makes our differ-
entiable assumption reasonable. Finally, in order to model
feature dependencies, we assume that the structural causal
model is known apriori. However, in practice this informa-
tion may not be available and learning them automatically
is preferable. It must also be noted that we do not support
complex causal relationships over multiple features.

6 SOCIETAL IMPACT

Recent studies (Kasirzadeh and Smart, 2021; Slack et al.,
2021a) have highlighted the importance of understanding
the vulnerabilities and potential for misuse of counterfactu-
als. In particular, sufficient attention must be paid to ensure
that the generated counterfactuals provide actionable rec-
ommendations (Karimi et al., 2021). Our work contributes

positively towards allowing people to act, by providing a di-
verse choice to the users instead of patronizing them with a
single ideal option, and personalizing the generation process
with informative priors that can offer tailor made solutions.
It is also important in a social context to verify whether
the interventions vary based on protected attributes (Coston
et al., 2020). The multi-level setup described here opens
a pathway to perform such assessments by comparing the
extent of deviations across different subgroups.

7 CONCLUSION

We presented a mechanism to generate multiple alternative
counterfactuals in a probabilistic setting and characterized
the perturbations at several levels of abstraction. Our formu-
lation can support prior beliefs, handle multimodal param-
eters, furnish uncertainty metrics and compare across pop-
ulation levels, all while producing a diverse set of choices.
The experiment results confirm the benefits offered by the
proposed Bayesian framework. In future, we wish to include
complex causal relationships between the features, enforce
fair recourse and extend to black box classification models.
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Supplementary Material:
Bayesian Hierarchical Models for Counterfactual Estimation

A EVALUATION METRICS

We formally define the quantitative metrics validity, proximity, sparsity and diversity that were used in the experiments here
for completeness. Given a test set of negative outcomes χ−, these metrics are computed as

validity =
|{x ∈ χ− | ∃x∗ : f(x∗) > 0.5}|

|χ−|

proximity =
1

|χ−|
∑
x∈χ−

min
x∗∈xcfs

∥x∗ − x∥2

sparsity =
1

|χ−|
∑
x∈χ−

1

|xcfs|
∑

x∗∈xcfs

∑dcont

l=1 I(Q(x∗
l ), Q(xl)) +

∑d
l=dcont+1 I(x∗

l , xl)

d

diversity(xcfs) =
1

|xcfs|2

|xcfs|−1∑
i=1

|xcfs|∑
j=i+1

[ dcont∑
l=1

|xi
l − xj

l |
MADl

+

d∑
l=dcont+1

I(xi
l, x

j
l )
]

where xcfs is the set of counterfactual samples of x, I is an indicator function that evaluates to 1 if both arguments are
equal, Q is a quantization function that coarsely bins a continuous feature into 10 discrete intervals and MAD is the median
absolute deviation computed from 80% of the dataset that was marked as training data.

B ROBUSTNESS EVALUATION

We hypothesize that the multi-level Bayes structure enables information sharing through which the quality of parameter
estimates can be improved. While there are several themes for quality such as robustness of the estimates w.r.t input
perturbations or classification model changes, we focus here on whether using the hierarchical structure enables the
counterfactuals to lie in dense regions of the data manifold. Data supported counterfactuals tend to be model invariant and
result in realistic recourses, and hence data density is an important metric for counterfactual robustness.

We consider two measures namely the distance of a counterfactual to its k nearest neighbors and the local outlier factor,
which computes the deviation of the local density of a counterfactual with respect to its neighbors. The data points within
the positive class in the training dataset is used as the neighborhood. The distance between any two data points i and j uses
the same metric defined above for diversity (the term within the square brackets).

Figure 10 plots the neighborhood distance and local outlier factor for different values of k, from the HELOC dataset. We
partition the dataset into different numbers of clusters using the standard k-Means algorithm, and evaluate the generated
counterfactual in the neighborhood of its corresponding cluster in the ground-truth. We can see in the top figure that the
neighborhood distance is consistently smaller when using a hierarchical model. Similarly, the bottom figure shows that the
outlier percentage is reduced when a multi-level Bayes model is utilized. This confirms that using a hierarchical model
encourages the desired behavior of a counterfactual to reside in the neighborhood of its subgroup.

C FAIRNESS EVALUATION

Our solution computes the perturbations at different levels of abstraction and it can be exploited to compare the counterfactual
of an instance directly with group level counterfactuals. When the groups correspond to protected attributes such as Gender
or Race, it provides a mechanism to verify whether the distributions are identical for each protected group and thereby
assess counterfactual fairness.
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Figure 10: Data support for generated counterfactuals in HELOC dataset. top: Neighborhood distances. bottom: Percentage
of outliers. In both cases, the hierarchical model exhibits the desired behavior of a smaller value.

Table 3: Recourse cost at the subgroup level (left) and at the instances level (right) in AdultIncome dataset. The difference
in cost can be used to determine recourse fairness.

Group Sub Group Cost
Gender Male 5.42 ± 1.05
Gender Female 5.09 ± 1.01
Race White 5.32 ± 1.02
Race Black 5.44 ± 0.99
Race Other 5.53 ± 1.20

Instance Gender Race Age Occupation Workclass Cost
1 Male White 69 Sales Self-Emp 6.74
2 Male White 28 Blue-Collar Private 6.54
3 Female White 52 White-Collar Gov 5.96
4 Female Black 44 Sales Private 4.93
5 Male Other 23 White-Collar Private 7.41

In Table 3 we present the cost of recourse both at the subgroup level (left side) and at the instance level (right side) for the
AdultIncome dataset. The costs are aggregated using the mean function to handle multiple counterfactual samples. While
there maybe many problem specific definitions of recourse cost, we restrict ourselves to the distance function as a proxy for
the cost. As before, the distance between an original data point i and its counterfactual j is computed from the l1 norm
scaled by medium absolute deviation for continuous features and the change in value for categorical features.

The recourse fairness at a group level is the difference in cost between the subgroups, while at an instance level it is the
difference between the cost for a particular instance and the protected group for which we wish to compare against. For
example, we can see that the Race - Other subgroup has a cost greater than its peers. Similarly, the cost for Instance 4 is less
than both the Female and Black subgroups the instance belongs to. Given a problem defined scalar threshold for the cost
difference, we can now calculate the demographic parity and thus measure fairness.

D PARAMETER ANALYSIS

Besides convergence, the number of posterior samples is also relevant for the diversity in generated counterfactuals. We
plot the diversity measure against different numbers of samples in Figure 11. The initial burn-in samples that were used
for tuning is ignored and only the samples in equilibrium are considered. We observe that the counterfactual diversity in
general increases with the number of samples used across the three datasets. However, they do plateau indicating that only a
selected number of truly divergent recourse options is available. In practice, a top-k ranking of these samples based on a
domain specific metric maybe necessary before presenting the recommendations to the user.



Bayesian Hierarchical Models for Counterfactual Estimation

Figure 11: Sensitivity analysis on the number of posterior samples. The counterfactual diversity increases with the sample
size.

Figure 12: Control over the generated counterfactual properties. top: Change in the perturbation variance parameter for the
HELOC dataset. bottom: Modifications to the importance for proximity in Adult Income dataset.

The extent of perturbations can be controlled using the prior values. In particular, by adjusting the variance parameter σ of a
continuous feature’s normal distribution, we can influence the generated counterfactuals. The top part of Figure 12 shows
how validity, sparsity and proximity changes with σ for the HELOC dataset. When the perturbation variance is high, there
are more options for constructing the counterfactuals and consequently the number of instances for which a counterfactual
can be generated increases (top left). However, it also implies that the percentage of features used (top center) and the
distance between an original and counterfactual point (top right) also increases.

Modifying the prior parameters for perturbations maybe inconvenient, especially when there is a mixture of categorical and
continuous features. An alternate mechanism to vary the generation process is to scale the second term that encourages
proximity in equation (11). The bottom part of Figure 12 plots the change in validity, sparsity and proximity for different
weights assigned to this term in the Adult Income dataset. As the importance assigned to the proximity between an original
and its counterfactual increases, this constrained setting results in the reduction of validity (bottom left) and the number of
features used (bottom center). However, the counterfactual point is now more closer to the original data point (bottom right).
Both the variance and proximity weight parameters provide effective control to tailor the outcomes based on a problem
specific scenario.
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