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Abstract

Forecasts at different time granularities are re-
quired in practice for addressing various business
problems starting from short-term operational to
medium-term tactical and to long-term strategic
planning. These forecasting problems are usually
treated independently by learning different ML
models which results in forecasts that are not con-
sistent with the temporal aggregation structure,
leading to inefficient decision making. While
prior work addressed this problem, this typically
uses a post-hoc reconciliation strategy, which
leads to sub-optimal results and cannot produce
probabilistic forecasts. In this paper, we present a
global model that produces coherent, probabilis-
tic forecasts for different time granularities by
learning joint embeddings for the different ag-
gregation levels with graph neural networks and
temporal reconciliation. Temporal reconciliation
not only enables consistent decisions for business
problems across different planning horizons but
also improves the quality of forecasts at finer time
granularities. A thorough empirical evaluation
illustrates the benefits of the proposed method.

1 INTRODUCTION

Time series prediction, or forecasting, has many impor-
tant applications ranging from retail demand forecast-
ing (Mukherjee et al.| 2018} |Croston| |1972), to labor plan-
ning (Bohlke-Schneider et al., [2020), traffic flow (Laptev
et al.,[2017), electrical load forecasting (Hong et al., 2019)
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and cloud capacity planning (Petropoulos et al., 2020).
Downstream decision makers need forecasts on different
temporal aggregations (or time scales) depending on the
nature of the decision. While strategic decisions require
forecasts for the next quarters or months, short-term opera-
tional decisions require forecasts on hourly granularity or
even lower. Tactical forecasts are somewhere in between
along this spectrum. So, a single forecasting problem like
demand forecasting in retail often has operational, tactical
and strategical facets (Januschowski and Kolassal 2019).
In practice, these different aspects of the same forecasting
problem are treated independently, often produced by differ-
ent organizations and by teams with different skill sets. This
leads to inconsistent results where the forecasts generated at
finer time granularities do not add up to the aggregated fore-
casts, inevitably leading to inefficient decision making. One
example is electrical demand forecasting where short-term
forecasts ensure stable operation of the electric grid while
long-term forecasts are important to plan and implement suf-
ficient electricity supply. Both problems interact with each
other in a non-trivial way. Having separate, independent
forecasts for both problems introduces potential conflicts
and inefficiencies.

The field of hierarchical forecasting explores how to deal
with these potential inefficiencies gracefully (Ben Taieb
et al., 2017; |Wickramasuriya et al.,|2015; Taieb et al., [2020;
Athanasopoulos et al., 2009; [Rangapuram et al., [2021).
Most work in this area has considered handling cross-
sectional hierarchies as induced by meta data (e.g., product
hierarchies). Considerably less work is devoted to temporal
hierarchies (Athanasopoulos et al.,[2017; Theodosiou and!
Kourentzes| 2021)). Building on recent work (Rangapuram
et al., [2021), we present a novel method for probabilistic
forecasting with temporal hierarchies. Our method obtains
forecasts for a given univariate time series at different ag-
gregation levels, enables information sharing between the
aggregation levels, and incorporates the temporal aggrega-
tion structure into the overall model. We achieve this by
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sharing information between aggregation levels via a graph
neural network that leverages the temporal hierarchy and we
ensure coherence by reconciling the samples with orthogo-
nal projection. As a consequence of the end-to-end nature
of our framework, the probabilistic forecasts generated at
different time granularities are guaranteed to be consistent.
We show in empirical evaluations that the proposed model
reduces the forecasting error of noisy time series sampled
at finer granularities. In summary, our contributions are as
follows:

* We propose a unified global model that takes as input
a univariate time series at the given base frequency,
learns joint embeddings, and generates coherent, prob-
abilistic forecasts for any required aggregation fre-
quency.

* We provide empirical evidence that forecasts of (noisy)
time series sampled at finer time granularities can be
improved by simultaneously generating consistent fore-
casts for aggregated time series; this enables applica-
tion of forecasting methods for finer frequencies, e.g.,
1 minute data, which is usually considered too noisy
for forecasting and related applications.

The rest of the paper is organized as follows. We first pro-
vide the necessary background on temporal hierarchies (Sec-
tion2)), followed by reviewing related work in the general
area of hierarchical forecasting as well as specific methods
designed for temporal hierarchies (Section 3). We present
our method in Section 4 and describe how our model uses a
graph neural network to share information between aggrega-
tion levels and enforces temporal coherence in an end-to-end
setting. Our empirical evaluation is presented in Section 5]
Section 6] concludes the paper. Societal impact is discussed
in the Appendix.

2 BACKGROUND

2.1 Temporal Hierarchies

Consider a time series sampled at a given frequency, referred
to as base frequency. We can aggregate non-overlapping,
equally spaced values to arrive at a coarser frequency. For
instance, if the base frequency is 15 minutes, we can aggre-
gate the time series to half-hourly and hourly frequencies.
The relationship between such temporally aggregated time
series and the original time series can be described in terms
of a temporal hierarchy as shown in Figure[6] similarly to a
standard cross-sectional hierarchy notation (Hyndman et al.,
2011).

In the classical cross-sectional hierarchy, each node in the
tree corresponds to an individual item of the hierarchical
time series dataset. However, in temporal hierarchy, each
level of the tree shown in Figure [6] actually corresponds

lhr
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Figure 1: Example of temporal hierarchy for 15min
frequency, aggregated to 30min and 1h frequency.

to a single time series sampled at a different aggregated
frequency and nodes represent time points. The root level
corresponds to the highest or coarsest aggregation level. The
number of leaves of the temporal hierarchy is determined
by the coarsest aggregation frequency. For example, in the
case of 15-minute data, if the highest aggregation frequency
is hourly, then the number of leaves is 4.

Notation. We first fix the notation to make the exposition
clear. Given a time series at a base sampling frequency,
a k-aggregated time series is constructed by summing up
k successive non-overlapping values of the given time se-
ries. We assume that p such aggregated time series are
constructed using aggregate multiples, given in the descend-
ing order, {k,, ..., ka, k1}, with k; = 1, to form a temporal
hierarchy. Let m := k,, denote the highest aggregated mul-
tiple corresponding to the root of the hierarchy; note that
m is the number of leaves of the hierarchy. In case of the
temporal hierarchy given in Figure [§] p = 3 and the ag-
gregate multiples are {4,2,1}. We denote the time series
at an aggregated level corresponding to the k" aggregate
multiple as y*}, where k € {kp, ..., ks, ki1}; note the non-
consecutive indexing for the level.

Since each level of the hierarchy corresponds to a different
time granularity, the time index ¢ varies with each aggrega-
tion level. Hence, following the notation by |Athanasopoulos
et al. (2017), we define ¢ as the observation index of the
most aggregated series (i.e., root level), in order to use a
common index for all levels. More precisely, observations
at the k" aggregation level are denoted by

yl 5p € {1,2,..., My}

k(t—1)+05" 1Ly g

where M), = 7*. Here t — 1 denotes a decrement of one
step in the time granularity corresponding to the root level
and &, denotes increments at the k*" aggregation level. This
common indexing is illustrated for the 15-minute temporal
hierarchy in Figure[2]

Note that the rightmost leaf node and the root node corre-
spond to the same time point; however their time indices
are incremented differently. Whenever we speak of tempo-
ral hierarchy, we actually refer to sequences of time points
corresponding to different aggregation frequencies. For ex-
ample, in case of Figure [2] the temporal hierarchy refers
to one time point at hourly level, namely, at-the-hour, two
time points at 30-minute level, namely, half-past and the
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Figure 2: Temporal hierarchy for 15min frequency

specified using the common index ¢, where the aggrega-
tion levels correspond to 30min and hourly frequencies.

at-the-hour, and four time points at 15-minute level, namely
quarter-past, half-past, quarter-to, at-the-hour. Hence, we re-
fer to the temporal hierarchy by time index ¢ as the hierarchy
induced at time ¢.

For ease of notation, we denote by y; the vector of all ob-
servations in the hierarchy at time ¢ ordered according to
the pre-order of the hierarchical tree: y; := [yg\]j[]k( 1)+ 50>
ke {kp,...,2,1} and 6, € {1,2,..., M} }. For 15-min
base frequency with a 2 level hierarchy as depicted in Fig-
ure[2] y; is a vector of seven values.

Following |Athanasopoulos et al.|(2017)), we call the hierar-
chy given in Figure[2]a 2-level hierarchy; i.e., the number of
levels of the hierarchy, denoted by L, is given by the height
of the tree.

Similarly to the cross-sectional hierarchical time series, it
is convenient to represent the temporal hierarchy via an
aggregation or summation matrix. Recall that y; denotes
the vector of all observations in the hierarchy at time ¢. Let

by : [y7[7ll}(t71)+51]’61 e{1,2,...,m}, denqte the vecto.r of
all observations at the bottom level of the hierarchy at time
t. Then we have

Yt = Sbt7 (1)

where S is the standard summation matrix used in the cross-
sectional hierarchy (Hyndman et al., 2011).

In the following we denote by r the total number of aggre-
gated nodes in the temporal hierarchy, m the number of leaf
nodes and n the total number of nodes. We have n = r +m.

An equivalent representation of the aggregation constraint
(I) (Rangapuram et all [2021) is given by

Cy: =0, @)

where C' := [I, | — Ssum] € {0,1}7*", 0 is an r-vector
of zeros, and I, is the r x r identity, Sguy, is summation
matrix.

2.2 Temporal Hierarchical Forecasting

Temporal hierarchical forecasting refers to the problem of
producing forecasts simultaneously for all time granularities
exploiting the hierarchical structure. An important require-
ment is for forecasts to be coherent with the hierarchy apart

from being accurate. We follow (Rangapuram et al., 2021
in defining the coherence of probabilistic forecasts obtained
for different time granularities.

Definition 2.1. [Rangapuram et al.|(2021)). Let S C R™ be
a linear subspace defined as

S :={yly € null(C)}.

where C := [I, | — Squm] € {0,1}"*", and I, is the
r x r identity. A point forecast ¥, is said to be coherent
w.r.t. the corresponding hierarchy, iff 745 € S. Similarly,
a probabilistic forecast represented as samples {y74} is
coherent iff each of its samples is.

Thief. We now describe Thief |Athanasopoulos et al.
(2017), recent work that formalized the concept of temporal
hierarchies for time series forecasting. Thief, a shorthand
for Temporal hierarchical forecasting, is an approach to
forecasting with temporal hierarchies that produces tempo-
rally reconciled forecasts. It follows a two-step procedure:
first, it generates forecasts yrj independently for all the
required time granularities and second, it reconciles them
to generate coherent forecasts yr,,. Motivated by sev-
eral reconciliation techniques from cross-sectional hierar-
chical forecasting, Thief considers several reconciliation
approaches, which can be represented in the general form,

YT4+h = SPYyTin, 3)

where S is the aggregation matrix and P € R™*" is a
matrix that depends on the choice of the reconciliation tech-
nique. For instance, the Bottom-Up reconciliation returns
forecasts of aggregated time series by aggregating the fore-
casts of the bottom level, and hence P = [0y, x| Lo xcm)-
There are several choices possible for P resulting in differ-
ent variants of the method (Wickramasuriya et al.,[2019).

3 RELATED WORK

The field of hierarchical time series forecasting Hyndman!
and Athanasopoulos|(2018) takes advantage of information
present in time series that allows to define an aggregation
hierarchy. Traditionally, hierarchical time series forecasting
methods consists of two steps: first forecasts are generated
at each aggregation level, and second one reconciles the
computed forecasts so that forecasts from different aggre-
gations are consistent, e.g., Hyndman et al.| (201 1)); /Wickra{
masuriya et al.| (2015); Ben Taieb and Koo| (2019). Notable
departures from this include |[Han et al.[|(2021)) who rely on
regularization or |Abolghasemi et al.|(2019) who propose to
learn disaggregation proportions for parts of the hierarchy
in a middle-out approach. The vast majority of methods
for hierarchical time series forecasting is limited to point
forecasts. Probabilistic forecasts are studied by Ben Taieb
and Koo|(2019) with a two-step framework. In contrast, we
offer an end-to-end approach and do not make a Gaussianity
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assumption, similar to (Rangapuram et al.|[2021)). [Han et al.
(2021])) use quantile losses for probabilistic forecasts but do
not guarantee coherency, contrary to our approach. Our ap-
proachs build on (Rangapuram et al.,2021) and extends it to
temporal hierarchies with more flexible output distribution
models (Gasthaus et al.| [2019).

While most work in hierarchical forecasting considers cross-
sectional aggregation hierarchies defined by meta-data such
as product hierarchies or geographies Hyndman and Athana+
sopoulos|(2018)), temporal hierarchical forecasting has also
been studied (Athanasopoulos et al.,2017)). This extends the
notion of hierarchical time series to the case where the ag-
gregation is done on the temporal component, and hence one
obtains forecasts of different temporal aggregations that are
coherent. |Ben Taieb|(2017) introduces smooth and sparse
adjustments to satisfy the aggregation constraints by solving
a generalized lasso problem. Temporal aggregation of time
series in is also studied in (Amemiya and Wu, |1972; Tiaol
1972} |Liitkepohl, [1987). A number of surveys are avail-
able on the topic Silvestrini and Veredas| (2008)); Liitkepohl
(2011); [Clemen| (1989). Another line of work takes the fore-
cast from multiple temporal aggregation levels to produce
an optimal final forecast using the insight (Hibon and Evge/
niou, 2005) that the average forecast from different models
provides a forecast quality similar to the best individual
forecast, and hence reduces model uncertainty (Kourentzes
et al.l 2019). For instance, in (Kourentzes et al., [2014)
MAPA is introduced and rather than combining forecasts
from different temporal aggregation levels, the forecasted
model parameters of each level are aggregated to generate a
single forecast.

Further approaches in temporal hierarchical forecasting in-
clude (Nystrup et al., [2020) which proposes different es-
timates for autocorrelation, whereas |[Nystrup et al.| (2020)
provide an approach based on dimensionality reduction.
Recently, Theodosiou and Kourentzes| (2021)) introduce
DeepTHieF as an end-to-end extension of Thief where
both forecasts and reconciliation are executed in a sin-
gle deep learning model. However, contrary to Thief,
DeepTHieF cannot guarantee temporally coherent fore-
casts. In contrast to Thief and DeepTHieF, which gener-
ate point-forecasts, our proposed approach generates proba-
bilistic forecasts and further guarantees that the probabilistic
forecasts are coherent for the temporal hierarchy. |[Chung
et al. (2017) proposed a multiscale RNN approach for learn-
ing the hierarchy and the temporal relation in sequence data.
However, this work aims to learn the hierarchy in general
sequence tasks, while our method specifically focuses on
producing coherent probabilistic forecasts with a fixed hier-
archy given by the temporal aggregation structure.

4 END-TO-END FORECASTER FOR
TEMPORAL HIERARCHIES

Rangapuram et al.|(2021)) provide an end-to-end model for
forecasting time series with hierarchical structure given by
item meta-data, which we refer to here as cross-sectional hi-
erarchies. The main idea behind this approach is to combine
the forecasting step and the reconciliation step in a single
trainable model. They use an autoregressive neural network
model (RNN) for the forecasting step and orthogonal projec-
tion for the reconciliation step. Since the reconciliation step
is a part of the end-to-end training procedure, the underlying
forecaster directly minimizes the loss on the final coherent
forecasts. Consequently, this approach yields better results
than methods that perform forecasting and reconciliation
steps independently. However, this method is not directly
applicable to temporal hierarchies for the following reasons:

 All time series in the item hierarchy have same time
granularity and hence are processed by the same multi-
variate model (RNN). For temporal hierarchies, each
time series is of different length, possesses different
time dynamics and needs different seasonal features
and therefore a different, independent RNN model for
training.

* Because the embeddings are learned by independent
RNNS, there is no information transfer among time
series at different granularities. In the case of cross-
sectional hierarchical model|Rangapuram et al.| (2021},
the RNN embeddings that produce the final forecasts
are learnt jointly.

¢ In the autoregressive setting, the item hierarchy model
introduces a test-train time discrepancy when applied
to temporal hierarchies; see Section

Our model addresses these issues and brings further en-
hancement to the end-to-end approach by introducing a
graph neural network layer for better information sharing
across different granularities. This could also be directly
applied to item hierarchies.

Figure [3] presents the overall architecture of the proposed
end-to-end model for temporal hierarchies. For illustration,
we use the temporal hierarchy given in Figure[6] for 15-min
base frequency, as the running example. Our model consists
of three main blocks:

* A univariate RNN model for each level of the temporal
hierarchy: each RNN uses (batches of) time series at a
given time granularity as input and outputs the embed-
dings needed for one-step ahead forecast at every time
step.

* Graph Neural Network layer: this layer applies mes-
sage passing on the embeddings obtained by individual
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Figure 3: Proposed model illustrated for temporal hierarchy where the base time series (y!*)) is sampled at 15-min frequency

and aggregation levels y[? and y!*

at 30-min and hourly frequencies respectively. On each level of the hierarchy, the model

applies an independent RNN to produce embeddings required for generating forecasts for time points at that level. Given the
embeddings H; for all time points in the hierarchy, joint learning is then facilitated by the graph convolutional network.
These joint embeddings are then transformed to the parameters of ©; of the predictive distribution. To generate coherent
forecasts, we draw samples y; from this predictive distribution and reconcile them using orthogonal projection. The model
is trained by minimizing the CRPS loss on coherent samples y¢. During prediction, we autoregressively unroll all RNNs to

produce forecasts.

RNN models in order to promote cross-learning across
different granularities. The output of this layer is then
mapped to the parameters of the forecast distribution
with a dense layer.

* Reconciliation: given the parameters of the forecast
distribution, we sample from these (unreconciled) dis-
tributions and reconcile the samples via orthogonal
projection (as in (Rangapuram et al.,[2021)).

The output of the model is a sample-based forecast where
each sample is coherent with respect to the temporal hier-
archy. The overall model is trained by minimizing CRPS
loss (Gasthaus et al.|(2019) on these coherent samples.

4.1 Univariate Forecaster

We use a standard RNN-based sequence-to-sequence model,
DeepAR (Salinas et al.,|2020), as the univariate forecaster.
Our choice is based on ease of implementation, but readily
extends to other architectures including the sequence-to-
sequence model family with the only assumption that the
model transforms the input time series to an embedding.
DeepAR is a nonlinear generalization of the classical autore-
gressive model and uses a recurrent neural network (RNN)
to generate probabilistic predictions for the future values of
the time series given its past values, known as lags.

Let us assume we are given p aggregated time series
with the corresponding aggregate multiples given by
{kp,... ko, k1}, with ky = 1 and k, = m, the number

of leaves of the hierarchy. Then, we have p RNNs each
processing batches of time series at one of the time granular-
ities of the hierarchy. We unroll all p RNNs simultaneously
by incrementing ¢ by one step, where ¢ refers to the time
index of the most aggregated time series (see Section 2] for
notation). This means the RNN for time series at bottom
level is unrolled for m steps where as the RNN for the most
aggregated time series is unrolled for only one step. More
precisely, the RNN corresponding to the k" aggregation
level is unrolled for m /k steps. This is illustrated in Figure
for 15-min temporal hierarchy.

Each such unrolling at time ¢ produces embeddings for all
nodes (i.e., time points) in the corresponding temporal hier-
archy . Recall that we denote by y; € R", the vector of all
observations in the hierarchy at time ¢: y; := [yg\’z (t—1)+ P
ke{ky,...,2,1} and 6y € {1,2,..., M }. Using this no-
tation, RNN embeddings for all nodes in the hierarchy can
be expressed as

Ho=¥(Xoyen Hog{®l,), @

H, € R"*? where n is the total number of nodes in the
hierarchy and d is the embedding dimension. Here X; €
R™*P is the feature matrix specifying features for all nodes
in the hierarchy, y;_; € R™ is the lag input, a vector of all
observations in the temporal hierarchy at time ¢ — 1 and @
are the parameters of RNN at level &.

A crucial difference to (Rangapuram et al., [2021) is that
when unrolling RNNs at time ¢, the lag input always comes
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from the observations in the temporal hierarchy correspond-
ing to previous time step ¢ — 1. None of the observations in
the hierarchy at time ¢ is used as a lag input when unrolling
the RNNs at time step ¢, even though some RNNs (e.g.,
bottom level) are unrolled for more than one step.

4.2 GNN Layer

The embeddings H; produced by the RNNs are learned
independently without considering the hierarchical structure
of the data. Graph convolutional networks (GCN, for short)
are a natural way to incorporate such hierarchical structure
into the learning process. Given the embeddings H; €
R™*? at all nodes of the temporal hierarchy and a matrix
A € R™*™ representing the underlying tree structure, we
learn the joint embeddings via a non-linear transformation:

HI* = f(H;, A).

In our case f is a single neural network layer with learnable
weights W € R%*? and a ReLU activation function and is
given by

f(Ht7 A) = O'(AHtW) .

Note that before applying the non-linear activation, the
linearly transformed embeddings H W are pre-multiplied
by the matrix A representing the tree structure. This pre-
multiplication, depending on the definition of A, corre-
sponds to exchanging embeddings at each node with the
immediate neighbours. Since one would like to have the
embeddings at any node to be propagated to every other
node in the graph, this function is often applied repeatedly
for several times. In our case, because of the tree structure,
we only need to apply f for L times to achieve this effect,
where L is the number of levels of the hierarchy.

Thus, starting with independent embeddings HS” = H,,
we have

H'™ = a1YW), 1=0,1,....L—1. (5

Matrix A. We define the matrix A in such a way that the
embeddings at any node are propagated proportionately to
every other node in the tree. This can be achieved efficiently
by decomposing A into three components:

o Auc.: this is the standard adjacency matrix of the hier-
archy tree where the undirected edges are replaced by
directed edges pointing downwards; pre-multiplying
any embedding H € R7xd by A, amounts to re-
placing the embedding at every node by sum of the
embeddings of its children. This means, the embed-
dings of leaves in this case are replaced by zeros.

o Agis.: this is the normalized (by columns) adjacency
matrix of the directed tree where the edges now point
upwards; pre-multiplying any embedding H € R"*¢

by Agis. amounts to replacing the embedding at every
node by (the correct) fraction of the embedding of its
parent. The fraction depends on the number of children
of the parent and is the reason for normalizing this
adjacency matrix. Again, this operation replaces the
embeddings of the root node by zeros.

o A this is the identity matrix that retains the embed-
dings at every node.

With this, we define the structure of matrix A as
A= (Aacc + Agist. + Aret.)/3~

Pre-multiplying any embedding by A corresponds to updat-
ing the embedding at every node by the average of its own
current embedding, sum of the embeddings of it children
and a fraction of the embedding from its parent.

4.3 Sampling & Reconciliation

Given the joint embeddings HEL) € R™*4 according to Eq.
(E]), we would like to produce forecasts for all nodes in the
hierarchy at time ¢. Since we are interested in producing
probabilistic forecasts, we transform the joint embeddings
into parameters of the predictive distribution via a dense
layer,

0, = NN(H"; Wy).

For simplicity, we assume that the predictive distribution
is Gaussian. In order to generate coherent forecasts, we
follow the approach of Rangapuram et al.| (2021) where
we first produce a set of N Monte Carlo samples from
the predictive distribution and reconcile each sample. As
mentioned in Section [2] the space of all coherent target
values is the null space of the matrix C' (see Eq. (2)); hence
one way to enforce coherence is by projecting samples onto
the null space of C. The projection step is essentially a
matrix-vector multiplication and is differentiable w.r.t. the
model parameters. The sampling step also does not pose
any problem as far as the differentiability w.r.t. the model
parameters is concerned, because of the re-parameterization
trick, which is available for various parametric distributions
(Figurnov et al.} 2018; Jankowiak and Obermeyer, |[2018)).

4.3.1 Enforcing Non-negativity

It turns out that in some cases one needs to guarantee that the
forecasts generated are non-negative. However, reconciling
samples via projection, as mentioned above, might result
in samples with negative values even if the unreconciled
samples are non-negative. One way to address this issue is
to treat the problem of enforcing both coherence and non-
negativity as a single problem and then project the samples
on to the intersection of the null space of the matrix C' and
the non-negative orthant. This way one guarantees that the
projected samples are both coherent and non-negative.
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Unlike the projection onto the null space, there is no ana-
lytical solution for the problem of projection onto the in-
tersection of convex sets. However, one can use Dykstra’s
method (Boyle and Dykstral [1986)), a variant of alternating
projection method, that alternately projects on to each of
the convex sets until convergence. In our case, this results
in a simple iterative procedure where each step involves
projection on to the null space of C' and the non-negative
orthant, both of which have analytical solutions.

4.4 Training

To summarize, each unrolling of the RNNs first produces
independent embeddings for all the nodes in the hierarchy
at time ¢, which are combined via a graph neural network
to obtain a joint embedding. This joint embedding is then
transformed to coherent sample-based forecasts for all nodes
in the hierarchy at time ¢. To train our model, we unroll the
RNNss for all time steps where the observations are available.
We define the loss directly on the coherent samples produced
by our model, for which the continuous ranked probability
score (CRPS) Matheson and Winkler (1976) is a natural
candidate. It can be defined as the sum of the quantile losses
evaluated at all possible quantile levels (Laio and Tamea,
2007). Let {Q;k]} denote N coherent samples obtained for
time point corresponding to node j at the k** aggregation
level and let yjm be the corresponding true target. Since
there is a finite number of unique quantiles in the forecast
based on the empirical samples, the CRPS loss is given by

CRPS (7 {31 = > AwGs). ©

sie{gi )

where «; is the quantile level of the sample s; and A, (g, z)
is the quantile loss given by A, (g, 2) = (@ —Z.<q)(2 —q).

4.5 Prediction

Since DeepAR is an auto-regressive model, it needs its own
predictions as lag inputs if the forecast is required for more
than one time step. In case of end-to-end approach, recon-
ciled samples are only available after having predicted for
m consecutive time steps, where m is the number of leaves
of the temporal hierarchy. This impedes a direct applica-
tion of the model proposed in Rangapuram et al.| (2021) for
cross-sectional hierarchies to the temporal setting, because
during inference incoherent predictions would be used as
lags whereas the model was trained using coherent lags
(original target). This leads to a detrimental train-test set
discrepancy. However, as mentioned in Section 1] by de-
sign, our method does not use any of the observations in the
hierarchy at time ¢ as a lag input when unrolling the RNNs
at time step ¢. This enables us to do a full forward pass of the
model, including applying the GCN layer and performing
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Figure 4: Visualization of forecasts on the Taxi-5min
dataset at different granularities. Top left: forecasts of
DeepAR on 5-minutes frequency; top right: forecasts of
COPDeepAR on 5-minutes frequency. Note that our model
is able to capture the prediction interval well despite the
noisy nature of the time series. This is because our model
simultaneously learns from the half-hourly and hourly data
and produces forecasts that are consistent across levels. The
bottom two plots show the forecasts of our model for the ag-
gregated frequencies (half-hourly and hourly, respectively).

reconciliation, before we feed the output obtained at time ¢
for the next time step.

S EXPERIMENTS

We evaluate the proposed method empirically on public
time series datasets where the time granularities range from
1-min to 1-day; see Table[3]in the supplement for a dataset
summary. The Taxi-1min data for January 2021E| con-
tains pick-up and drop-off times of 1.3 million individual

'The raw taxi data is available at:
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

Figure 5: Calibration plot for all datasets: this shows what
fraction of the actual data lies below the predicted quantiles,
and is a crucial quality metric for probabilistic forecasts (the
ideal profile lies on the diagonal).


https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Coherent Probabilistic Forecasting of Temporal Hierarchies

TAXI-1MIN TAXI-5MIN ELEC-15MIN SoLar-1H TRAFFIC—1H EXCHANGERATE-1D
ARIMA - 0.594 0.140 0.522 0.268 0.008
ETS 0.677 0.886 0.371 0.609 0.359 0.008
THETA 0.649 0.973 0.212 1.083 0.331 0.007
THIEF-ARIMA-NAIVEBU - - 0.161 0.733 0.896 0.009
THIEF-ARIMA-MSE - - 0.157 0.73 0.89 0.009
THIEF-ARIMA-OLS - - 0.153 0.739 0.891 0.01
THIEF-ARIMA-STRUCT - - 0.154 0.731 0.89 0.009
THIEF-ETS-NAIVEBU 0.53 0.646 0.414 0.813 0.939 0.009
THIEF-ETS-MSE 0.507 0.565 0.261 0.777 0.908 0.009
THIEF-ETS-OLS 0.52 0.567 0.163 0.785 0.891 0.01
THIEF-ETS-STRUCT 0.443 0.503 0.192 0.777 0.897 0.01
THIEF-THETA-NAIVEBU 0.553 0.633 0.27 1.0 0.892 0.009
THIEF-THETA-MSE 0.537 0.569 0.25 0.749 0.892 0.009
THIEF-THETA-OLS 0.569 0.582 0.183 0.813 0.897 0.01
THIEF-THETA-STRUCT 0.486 0.544 0.206 0.774 0.895 0.01
DEEPTHIEF 1.000 0.771 0.383 1.000 0.445 0.329
LOGSPARSE 1.466 £ 0.194 1.351 £0.172 0.310 + 0.039 0.739 £ 0.062 0.943 £+ 0.057 0.028 + 0.062
TIMEGRAD 0.346 4+ 0.003 0.459 + 0.034 0.141 + 0.004 0.416 £ 0.032 0.149 + 0.002 0.009 + 0.001
DEEPAR 0.447 4+ 0.047 0.688 + 0.089 0.127 + 0.009 0.364 £ 0.008 0.124 + 0.003 0.016 + 0.015
COPDEEPAR 0.327 £+ 0.007 0.374+0.011 0.114 + 0.004 0.353 +0.003 0.12 % 0.005 0.011 £ 0.003

Table 1: The CRPS loss (the lower, the better) for all datasets and models. For LogSparse, TimeGrad, DeepAR and
COPDeepAR we average over 5 runs and report the mean and standard deviation. COPDeepAR has the lowest loss for most
datasets and always does better than its base model DeepAR. In addition, the model variance is also reduced by introducing
temporal hierarchies for most datasets. Some of the ARTIMA variants failed to finish within 24 hours and are not reported.

COPDEEPAR BEST OF THIEF VARIANTS

DATASET LEVEL
TAXI-1MIN 1 HOUR 0.235 £+ 0.008 0.308 (THIEF-ETS-STRUCT)

30 MIN 0.263 £+ 0.007 0.353 (THIEF-ETS-STRUCT)

1 MIN 0.327 4+ 0.007 0.443 (THIEF-ETS-STRUCT)
TAXI-5MIN 1 HOUR 0.307 + 0.014 0.399 (THIEF-ETS-STRUCT)

30MIN | 0.330 & 0.013 0.437 (THIEF-ETS-STRUCT)

5 MIN 0.374 + 0.011 0.503 (THIEF-ETS-STRUCT)
ELEC-15MIN 1 HOUR | 0.106 &+ 0.006 0.139 (TEIEF-ARIMA-OLS)

30 MIN | 0.109 &+ 0.005 0.154 (THIEF-ARIMA-OLS)

15MIN | 0.114 4 0.004 0.153 (THIEF-ARIMA-OLS)
SoLAaR-1H 8 HOUR | 0.343 £ 0.008 0.703 (TH1EF-ARIMA-MSE)

1 HOUR | 0.353 £+ 0.003 0.730 (THTEF-ARIMA-MSE)
TRAFFIC-1H 8 HOUR | 0.083 £ 0.003 0.769 (TH1EF-ARIMA-MSE)

1 HOUR 0.12 4 0.005 0.890 (THIEF-ARIMA-MSE)
EXCHANGERATE-1D 1 WEEK 0.011 + 0.003 0.009 (TeIEF-ARIMA-NAIVEBU)

1 DAY 0.011 + 0.003 0.009 (TEIEF-ARIMA-NAIVEBU)

Table 2: CRPS loss (the lower, the better) for all aggregation levels.

taxi rides. To convert the data to evenly-spaced time se-
ries we quantized the whole month into one minute in-
tervals (five minutes for Taxi—5min) and counted the
number of active taxis for each interval grouped by the
drop-off location. By removing locations with a count
smaller than 200 we ended up with 185 time series. The
Elec-15min dataset contains time series on electricity
consumption of 370 clients at 15-minute frequency and is
downloaded from (Dua and Graffl, 2017). Here we dis-
carded all time series with no data before 2012 resulting
in a total of 319 time series. The Solar-1H dataset
contains hourly photovoltaic production of 137 stations
in Alabama State as used in [Salinas et al.| (2019). The
Traffic-1H dataset contains hourly occupancy rates (be-
tween 0 and 1) of San Francisco Bay area free-ways (Lai
et al.| [2017). The ExchangeRate—-1D dataset contains
daily exchange rate between 8 currencies as used in|Lai et al.

(2017).

To evaluate the accuracy of our forecasting models we use
the continuous ranked probability score (CRPS) (Matheson
and Winkler, [1976)). We use a discrete version of the CRPS
loss Eq. () implemented in GluonTs [Alexandrov et al.
(2019)), where the loss is computed over a finite quantile set
and is normalized by the sum of the absolute values of the
observations. We use the quantile range from 0.05 to 0.95
in steps of 0.05.

We compare against the following categories of models:

e state-of-the-art univariate local models that do not
incorporate temporal hierarchies; these include
ETS (Hyndman et al.| 2008)), ARIMA (Box and Jenkj;
ins} [1968)), Theta (Assimakopoulos and Nikolopou+
los, [2000),
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* state-of-the-art deep-learning based global models that
do not incorporate temporal hierarchies; these include
DeepAR (Salinas et al., 2020), an RNN based uni-
variate autoregressive model, TimeGrad (Rasul et al.,
2021), an RNN based multivariate autoregressive de-
noising diffusion model, LogSparse (Liet al.;[2019),
a memory-efficient transformer model suitable for time
series at finer granularities, and

* models that explicitly incorporate temporal hierar-
chies; Thief (Athanasopoulos et all [2017) and
DeepTHieF (Theodosiou and Kourentzes, [2021)). For
Thief, we consider various combinations of base
model and reconciliation strategies as separate models.

Our model uses DeepAR as the base forecasting model
and is referred to here as COPDeepAR (shorthand for
COherent Probabilistic DeepAR) We implement our model
in GluonTS, an open-source forecasting library (Alexan{
drov et al.l 2019) and also use the GluonTS implemen-
tations of DeepAR and LogSparse in our experiments.
For TimeGrad, we use the implementation available in
PyTorchTS (Rasull [2021)). For other competing methods,
including ETS, ARIMA, Theta and Thief variants, we
use the open source implementations (Hyndman et al., | 2008;
Athanasopoulos et al.,[2017). For DeepTHieF we use the
implementation provided by one of the authors of [Theo{
dosiou and Kourentzes| (2021). Note that our model has
the same base model hyper-parameters as DeepAR. We use
default hyper-parameter values for running all models. For
Solar—1H, which is a non-negative dataset with a lot of
zero values, we enforce non-negativity of forecasts along
with temporal coherence via Dykstra’s projection method
as described in Section Since Dykstra’s method is
iterative and more expensive (in contrast to the single-step
projection on to null space needed to guarantee coherence),
we divide the training in two parts: in the first half, we do
not enforce coherence or non-negativity and instead use
the negative log-likelihood loss directly on the parameters
O, of the predictive (Gaussian) distribution; then in the
second part of the training we switch to enforcing both co-
herence and non-negativity by generating samples from ©,
and projecting them via Dykstra’s method. We run all of our
experiments on Amazon SageMaker (Liberty et al.,2020)).
We train and evaluate stochastic models five times and eval-
uate the CRPS with 100 samples. We report the mean and
standard deviation over these five runs. For deterministic
models, we report the result of a single run. We supply code
as part of the Appendix.

Table|[T] provides the results of all models. The best perform-
ing model per dataset is highlighted in bold. COPDeepAR
outperforms all the compared models in five out of the six
datasets. We find that COPDeepAR consistently outper-
forms its base model DeepAR. COPDeepAR also reduces
the variance of DeepAR in all cases. Example forecasts
plotted in Figure |4 further show that our model is able to

capture the true target by narrower prediction intervals com-
pared to DeepAR; see also Figure [5 for calibration plots.
Moreover, by being probabilistic in nature, in comparison
to the Thief-methods, COPDeepAR is also able to pro-
vide uncertainty estimates to their forecasts, an important
requirement in business applications.

Table ] shows the accuracy at different aggregations levels
of the temporal hierarchy. For better readability, we choose
the best performing method from all the variants of Thief
and report its performance. Column LEVEL indicates the
aggregated frequency. Coarser granularities result in lower
error, which might be due to noise cancellation through
aggregation. Again, COPDeepAR outperforms all Thief
variants in five of the six datasets considered.

An additional qualitative experiment and an ablation study
that analyze the effectiveness of the GNN layer are presented
in the Appendix.

6 CONCLUSION

We presented an end-to-end model for simultaneously fore-
casting at different time granularities of a given temporal
hierarchy by learning joint embeddings with a graph neu-
ral network while respecting the aggregation structure. We
demonstrated that this strategy reduces the forecasting er-
ror of noisy time series sampled at finer frequencies. Two
limitations of our method are that the computational cost of
the reconciliation grows with the number of samples and
that we require parametrizable distributions. These could
be overcome by considering other reconciliation methods
and non-parametric distributions. Our method could also be
extended to joint cross-sectional and temporal hierarchies.
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A Potential Negative Societal Impact

Our method itself is generic and can be applied to any forecasting problem with temporal hierarchies. One of our
contributions is that our method improves the forecast on noisy time series sampled at fine granularities. One particular
instance of these fine granularity time series could be data of individuals (for example, user data). Therefore, our method
could be used to make decisions on individuals because these decisions are in line with strategic considerations at higher
aggregation levels. These decisions could lead to negative consequences for individuals that are not grounded because our
method does not consider causality.

B Comments on Matrix A used in Graph Neural Network

Here, we would like to illustrate the new variant of the adjacency matrix introduced in our paper using an example temporal
hierarchy shown in Figure[6] Recall that we defined the structure of the matrix A for the underlying GNN layer as

A= (Aacc, + Agist. + Aret-)/37 2

where A, is the standard adjacency matrix corresponding to the hierarchy tree where the undirected edges are replaced by
directed edges pointing downwards, while Ag;. is the normalized adjacency matrix but for the directed tree where the edges
are pointing upwards. And A, is the identity matrix.

For the temporal hierarchy given in Figure[6] we have

0110000 0o 0 0 00 0O
0001 10O 05 0 0 0 0 0 O
0000011 05 0 0 0 0 0 O
Asee. =10 0 0 0 0 0 O0f, Agse.=]0 05 0 0 0 0 O
000 0 O0O0O 0 05 0 0 0 0 O
000 0 O0O0O 0 0 05 0 0 0 O
00 0 0 O0O0O 0O 0 05 0 0 0O

We want to highlight the connection between these matrices and the typical top-down, bottom-up reconciliation strategies
used in the hierarchical literature. In the standard top-down approach, only the values of the root are distributed to every other
node in the tree, where as in our case, every level distributes its own values to the upper level as well as to the lower level.
The examples matrices shown above are quite different from the matrices used for top-down and bottom-up reconciliation
strategies (see Chapter 10 in[Hyndman and Athanasopoulos|(2018))). Essentially, multiplying by A corresponds to doing
top-down, bottom-up and middle-out (at every middle level) reconciliations simultaneously.

C Dataset Summary & Experiment Details

The summary of the datasets is given in Table[3] Note that we do evaluation on rolling-predictions; i.e., at a time, each model
produces forecasts for 7 time steps given data until the beginning of forecast horizon and then the data is rolled over to
obtain forecasts for the next 7 time steps. This is repeated for k times; this number is given under the column No. Rolls
in TableE} In case of local models (i.e., non-deep learning based models), we retrain the model for every roll, whereas for
deep learning models DeepTHieF, LogSparse, TimeGrad, DeepAR and COPDeepAR we use a single model that is
trained using the data until the beginning of forecast start time corresponding to the first roll.

Choice of temporal hierarchy. We chose the temporal hierarchy with the following heuristics depending on the granularity
of the base time series: (i) the coarsest aggregation level (i.e., root of the temporal hierarchy) should still preserve the
seasonal patterns present in the base time series; e.g., not aggregating hourly time series to daily aggregation if there is a
clear day vs night patterns in the hourly data, (ii) there is relative continuity between the successive aggregation levels;

lhr
30ming 30ming Figure 6: Example of temporal hierarchy for 15min

/ \ / \ frequency, aggregated to 30min and 1h frequency.

15ming 15ming 15ming 15ming
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Figure 7: First two PCA components of the time series embeddings at different aggregation levels of one forward pass of
COPDeepAR. The different aggregation levels are color coded. Diamonds denote the embeddings of a single time series
to illustrate that our findings also hold for a single time series example. Left: Before the GNN layer, the embedding are
clustered, which suggests that the embeddings are dissimilar to each other. Right: After the GNN layer, the embeddings at
different aggregation levels do not form clusters. This suggests that the GNN layer facilitates information sharing between
the aggregation levels.

e.g., not aggregating 1-min time series directly to daily aggregation without any intermediate aggregations. Using these
heuristics, we aggregated Taxi—1min and Taxi-5min and Elec—-15min datasets to 30-min & hourly aggregations.
These aggregations can be specified by aggregation multiples as depicted in Table [3Junder the column HIERARCHY. For
the Solar—1H dataset, we chose 8 as the aggregation multiple since eight hours constitute the night interval where the
observation values are zeros. Aggregating it to any coarser level will cancel the night vs day pattern present in this dataset.
We kept the same aggregation multiple for the hourly Traffic—-1H dataset as well. Finally ExchangeRate-1D is a
daily dataset and we aggregated it to the weekly level. Note that the base frequency of ExchangeRate-1D is "Business
day" and hence the corresponding aggregation multiple is 5, as five business days constitute one week. In general, the choice
of temporal hierarchy is application-dependent and in the absence of such a choice, experimenting with different hierarchies
might be beneficial. Automatically selecting the temporal hierarchy based on the data and systematic analysis of its impact
on forecast accuracy could be studied in future work.

DATASET NO. TIME SERIES HIERARCHY T NO. ROLLS FREQ
TAXI-1MIN 185 [60, 30, 1] 180 8 1-MIN
TAXTI-5MIN 185 [12,6, 1] 144 2 5-MIN
ELEC-15MIN 319 [4,2,1] 96 1 15-MIN
SoLaR-1H 137 [8, 1] 24 7 1-HOUR
TRAFFIC—1H 862 [8, 1] 24 7 1-HOUR
EXCHANGERATE-1D 8 [5, 1] 30 5 1-BUSINESS DAY

Table 3: Summary of the datasets used in this paper. Here 7 refers to the prediction length and the number of rolls refer
to the number of evaluation windows (where each window is of length 7). The hierarchy refers to the multiples used for

temporal aggregation. Note that for the ExchangeRate-1D dataset, the aggregation multiple is 5, since five business
days constitute one week.

D Additional Experiments

D.1 Qualitative Evaluation

We analyzed the embeddings obtained by our model before and after applying the GNN layer on the Taxi-5min dataset.
We took the embeddings of all time series in a batch at all nodes of the hierarchy corresponding to all sample-paths (32 x
100 samples x 15 nodes) and applied PCA to it. The first two principal components are visualized in Figure[7) (both before
& after the GNN layer) where the embeddings are coloured by the corresponding time granularity; we also highlighted
the embeddings of the first time series in the batch by a different marker (diamond). The embeddings before the GNN
layer clearly reveal the underlying cluster structure separating the three levels of the hierarchy, which shows that these
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embeddings at different aggregation levels are highly dissimilar (left-side plot). The GNN layer makes them more similar
(right-side plot) where the embeddings at different levels lie on top of each other, removing the cluster structure. This also
holds for a single time series (exemplary shown for one time series by diamonds) and shows that the GNN indeed facilitates
the sharing of information. Figure ]in the main paper depicts that this qualitatively leads to improved forecasts because
longer-running seasonality can be picked up more effectively.

D.2 Ablation Studies

In this section, we present ablations to study the effect of the proposed graph neural network layer in our model and the new
variant of the adjacency matrix A (see Eq. (7)), which we introduced for message passing within the GNN layer. Recall that
the GNN layer in our model takes as input the embeddings H§°) from the individual RNNs and successively applies the
following transformations L times, where the L is the number of levels of the hierarchy:

H§l+1) _ a(AHgl)W), 1=0,1,...,L—1.

Here W denotes the learnable weights of a neural network layer. We evaluate the proposed method COPDeepAR with the
following variants :

* WithoutGNN: In this variant, we completely remove the GNN layer from our model architecture. That is HEL) =
H.

* GNN-Std-Ad7j: In this variant, we keep the GNN layer but use the standard adjacency matrix, denoted Agy, in place
of the proposed matrix for A. Note that multiplication with the standard adjacency matrix simply adds up the features
vectors of all neighbours but not the node itself thus ignoring the own embeddings. It is standard practice (Kipf and
Welling, [2017)) to add an identity matrix to the adjacency matrix (equivalent of having self loops in the graph) and
hence we use the same:

A=Aw+I,

where I is the identity matrix. Note that we also tested variants where we do not add the identity matrix and the
corresponding results were worse than those obtained with the identity matrix.

* GNN-Norm-Adj: Since Ayyq is normalized, the scale of the features are changed when multiplied with A. Hence,
often in practice, the normalized adjacency matrix is used instead:

A =D (Au+I),
where D is the diagonal degree matrix corresponding to the adjacency matrix Agq +1.

* GNN-Symm-Norm-Adj: Since above normalization yields an asymmetric matrix, some works like Kipf and Welling
(2017) consider a symmetric version:
A=D ' (Aw+I)D7/?,

where D is again the diagonal degree matrix corresponding to the adjacency matrix Agq +1.

* GNN-Without-MLP: In the final variant, we keep the proposed matrix for A (Eq. (7)) but remove the learnable
neural network layer from the GNN. That is, the embeddings are transformed via non-learnable, linear transformation:

H£l+1):AH§l)a l:O,].,,L_]-

Comparing Without GNN versus the rest, we see that the use of the GNN layer helps in three out of the six datasets and
achieves the same (Traffic—1H) or on-par results (Elec—15min) in the two of the remaining three datasets; in the case
of ExchangeRate—1D, the magnitude of the error is already low (0.01 or 1%) and the use of GNN makes it slightly worse
0.011 or 1.1%. The improvement is more prominent in the case of Taxi—5min where the CRPS is reduced by 9% with
the help of GNN layer. Since these improvements outweigh the (small) deterioration of results in case of other (and maybe
easier) datasets, we suggest in general to tune the models by treating this (enable/disable GNN layer) as a hyper-parameter.
Moreover, using the proposed variant of the adjacency matrix for A (Eq. [7) helps achieve better or on-par results than using
any variant of the adjacency matrix used in practice. This difference is again significant for Taxi—-5min dataset where the
proposed matrix A yields 4% better results than any of the standard (normalized and unnormalized) adjacency matrices.
Finally, as seen from the result obtained for GNN-Without-MLP versus COPDeepAR, using a dense layer in GNN, on
top of using the proposed matrix for A, further helps in achieving better results.
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TAXI-1IMIN TAXI-5MIN ELEC-15MIN SoLAR-1H TRAFFIC—1H EXCHANGERATE-1D
WITHOUTGNN 0.334 + 0.004 0.412 + 0.027 0.113 4+ 0.006 0.365 + 0.004 0.118 4 0.001 0.01 + 0.001
GNN-STD-ADJ 0.36 £ 0.008 0.407 £ 0.025 0.13 £ 0.022 0.349 + 0.006 0.123 + 0.002 0.016 + 0.005
GNN-NORM—ADJ 0.337 + 0.003 0.389 + 0.005 0.121 + 0.01 0.351 + 0.009 0.119 + 0.002 0.015 + 0.008
GNN-SYMM-NORM-ADJ 0.332 + 0.003 0.39 £+ 0.011 0.119 4+ 0.005 0.349 + 0.012 0.118 £+ 0.001 0.011 + 0.003
GNN-WITHOUT-MLP 0.335 + 0.004 0.384 £+ 0.015 0.117 4+ 0.008 0.364 + 0.005 0.12 + 0.003 0.012 + 0.006
COPDEEPAR 0.327 + 0.007 0.374 + 0.011 0.114 4+ 0.004 0.353 + 0.003 0.12 + 0.005 0.011 + 0.003

Table 4: CRPS loss for ablation variants of COPDeepAR. Here we evaluate the effect of the GNN layer as well as the
individual components within the GNN layer; more specifically, the choice of the adjacency matrix for the GNN layer and
the use of the dense layer within the GNN.
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