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Abstract

We address the problem of improving the perfor-
mance and in particular the sample complexity of
deep neural networks by enforcing and guaran-
teeing invariances to symmetry transformations
rather than learning them from data. Group-
equivariant convolutions are a popular approach
to obtain equivariant representations. The de-
sired corresponding invariance is then imposed
using pooling operations. For rotations, it has
been shown that using invariant integration in-
stead of pooling further improves the sample
complexity. In this contribution, we first expand
invariant integration beyond rotations to flips and
scale transformations. We then address the prob-
lem of incorporating multiple desired invariances
into a single network. For this purpose, we
propose a multi-stream architecture, where each
stream is invariant to a different transformation
such that the network can simultaneously benefit
from multiple invariances. We demonstrate our
approach with successful experiments on Scaled-
MNIST, SVHN, CIFAR-10 and STL-10.

1 INTRODUCTION

Deep Neural Networks (DNNs) are one of the core drivers
of technological progress in various fields such as speech
recognition, machine translation, autonomous driving or
computer vision (LeCun et al., 2015). At the core of their
success lies the ability to process large amounts of data to
yield solutions with remarkable generalization properties
(Lust and Condurache, 2020b). However, in many practi-
cal applications, the data is expensive to collect, store and
label. Furthermore, it is rather difficult for humans to un-
derstand how such correlation-based methods work, which

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

is a necessary first step in optimizing or adapting them to
new application domains. Additionally, a certain degree of
understanding and trust in the DNN’s output is essential,
e.g., when safety plays a major role (Lust and Condurache,
2020a).

Often, prior knowledge about transformations that modify
the desired output in a predictable way is available before
training. Leveraging prior knowledge increases the inter-
pretability of DNNs while also improving the sample com-
plexity – hence reducing the amount of data needed to ob-
tain a desired performance. When incorporating this valu-
able prior knowledge into deep learning architectures, it is
advantageous to guarantee the corresponding in- or equiv-
ariances. We differentiate between invariance, which is
the property of a map to yield the same output for a trans-
formed input and equivariance which is the property of a
map to preserve the transformation of the input, such that
the output is transformed predictably. One common exam-
ple of leveraging equivariance in DNNs are convolutional
layers (Fukushima, 1980; LeCun et al., 1990). These are
equivariant to translations and can be easily used to gener-
ate a translation-invariant representation (e.g. by pooling).

For many tasks, we can define a set of symmetry transfor-
mations that affect the desired output in a predictable way.
For example, in the case of image classification, symmetry
transformations of an input object map it within the same
image class and thus do not change the desired classifica-
tion output. Typical examples are rotations, translations
and scales. Enforcing invariance to such transformations
as an inductive bias decreases the sample complexity by re-
ducing the search space while training a DNN. Moreover,
guaranteed invariances contribute towards gaining an intu-
ition on how inference is conducted in the DNN. Cohen and
Welling (2016) first used group equivariant convolutions
(G-Convs) in DNNs to enforce equivariance to transforma-
tions such as rotations and flips (Cohen and Welling, 2016;
Worrall et al., 2017; Weiler et al., 2018b; Weiler and Cesa,
2019) or scales (Xu et al., 2014; Kanazawa et al., 2014;
Sosnovik et al., 2020, 2021). For classification DNNs,
those equivariant layers are usually followed by a max
pooling operation among the group and spatial dimensions



Deep Neural Networks with Efficient Guaranteed Invariances

4×2nα

I

16×2nα16×2nα

I

16×2nα16×2nα

I 32×2nα 32×2nα

I

32 ×2nα 32×2nα

I

E(2)-Steerable
Convolutions

64×2nα 64×2nα

I

64×2nα 256

7

256
1

E(2)-II

16

I

64 64

I

64 64

I 128 128

I

128 128

I

Standard
Convolutions

256 256

7

256 256

7

256
1

Average
Pooling

256
1

Learned
Mapping

16×nS

I

64×nS 16×nS
28

64×nS 64×nS
28 128×nS 128×nS

14

128×nS 128×nS
14

Scale-Steerable
Convolutions

256×nS 256×nS

7

256×nS 256×nS

7

256
1

Scale-II
256

1

Learned
Mapping

nc

Classification
Head

+

Weighted
Sum

Figure 1: Triple-stream invariant Wide-ResNet16-4 architecture. Includes standard convolutions (grey), rotation-flip-
steerable convolutions (E(2), orange), scale-steerable convolutions (blue), invariant integration layers (red), a weighted
sum (green) and fully connected layers (purple). Residual shortcut connections are omitted for clarity.

to obtain invariant features that are processed by the final
classification layers. While max pooling guarantees invari-
ance, it destroys important information that could be lever-
aged by a classifier and therefore lacks efficiency. Since
the transfer from equi- to invariant features has not been
extensively investigated, it promises further improvement
capabilities.

Invariant Integration (II) is an algorithm to construct a com-
plete feature space with respect to (w.r.t.) a transforma-
tion group (Schulz-Mirbach, 1992). So far, II has been
used to replace the global spatial pooling operation for
rotation-invariant classification DNNs. This resulted in an
improved sample complexity by efficiently leveraging the
available prior knowledge while adding targeted model ca-
pacity (Rath and Condurache, 2020, 2022). However, II
has not been extended to other relevant symmetry transfor-
mations such as scales.

Group-equivariant DNNs usually incorporate prior knowl-
edge about a single transformation. It is an open challenge
how to proceed when multiple symmetries are involved be-
cause it may be impossible to solve the constraints needed
to design transformation-steerable filters depending on the
involved groups. Even when avoiding the constraints via
interpolation methods, simply expanding the regular equiv-
ariant G-Convs is computationally inefficient since the rep-
resentation grows multiplicatively. For example, for a ker-
nel with 8 rotations and 4 scales, we would have to store
8 · 4 = 32 responses per kernel.

In this contribution, we extend the II framework beyond ro-
tations and efficiently apply it to multiple transformations
at once via a multi-stream architecture. Our core contri-
butions are:

• We adapt rotation-II to also include flips to achieve
invariance to the 2D Euclidean group E(2).

• We expand II towards scales, thus covering a larger
set of symmetry transformations.

• We address the issue of multiple invariances within
a single architecture that effectively combines several
streams, each one with specific invariances (see Fig-
ure 1). This significantly extends the practical appli-
cability of II.

• We evaluate our approach on Scaled-MNIST and on
the real-world datasets SVHN, CIFAR-10 and STL-
10. On STL-10 using only labeled data, we report new
state-of-the-art results.

2 RELATED WORK

2.1 Group-Equivariant Neural Networks

Group-equivariant convolutional layers were proposed by
Cohen and Welling (2016) and applied to discrete 90◦ ro-
tations and flips by transforming the filters and storing all
responses among a group channel. This approach uses the
regular group-representation. Extensions apply this prin-
ciple to finer-grained rotations via interpolation (Bekkers
et al., 2018; Hoogeboom et al., 2018), rotation-steerable
filters (Weiler et al., 2018b; Weiler and Cesa, 2019) or by
learning all rotated versions of a filter with invariant coef-
ficients (Diaconu and Worrall, 2019). The maximum re-
sponse can be stored as the orientation in a vector field
(Marcos et al., 2017). This is closely related to the irre-
ducible representation which achieves continuous rotation-
equivariance via complex-valued responses (Worrall et al.,
2017). In general, it has been proven that G-Convs are the
most general equivariant linear map and a necessary con-
dition for equivariant DNNs (Kondor and Trivedi, 2018;
Cohen et al., 2019b; Esteves, 2020).

Besides rotations, in- or equivariance to scale transforma-
tions plays a major role in many practical applications. In-
or equivariance can again be achieved by sharing filters
among different scales using bi-linear interpolation (Xu
et al., 2014), scaling the input (Kanazawa et al., 2014)
or processing the maximum response and the correspond-
ing scale as a vector field (Marcos et al., 2018). Filters
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for scale-equivariant convolutions can be constructed us-
ing scale-steerable filters with log-radial harmonics (Ghosh
and Gupta, 2019), Hermite polynomials (Sosnovik et al.,
2020), optimized discrete bases (Sosnovik et al., 2021), or
with separable Fourier-Bessel bases (Zhu et al., 2019). A
scale-equivariant G-Conv operating on scale-spaces was in-
troduced in (Worrall and Welling, 2019).

Other work investigates general input domains such as the
3D Euclidean space (Worrall and Brostow, 2018; Weiler
et al., 2018a; Cesa et al., 2022), spheres (Cohen et al., 2018;
Coors et al., 2018; Esteves et al., 2020; Defferrard et al.,
2020; Kondor et al., 2018; Jiang et al., 2019; Shakerinava
and Ravanbakhsh, 2021), general manifolds (Cohen et al.,
2019a; Finzi et al., 2020), or general groups (Bekkers,
2020; Finzi et al., 2021). Moreover, equivariant versions
of non-linear maps such as attention and transformers have
been introduced (Fuchs et al., 2020, 2021; Romero and
Hoogendoorn, 2020; Romero et al., 2020; Romero and Cor-
donnier, 2021; Hutchinson et al., 2021; He et al., 2021).
The non-linearities and sub-sampling layers used in equiv-
ariant CNNs have been investigated in (Franzen and Wand,
2021; Xu et al., 2021).

2.2 Invariant Neural Networks

When solving tasks that require invariance, group-
equivariant DNNs are usually followed by a global (max)
pooling layer among the group and spatial dimensions.
While max pooling guarantees invariance, it is affected by
a loss of information, since all but the maximum value are
discarded. Obtaining invariance in a more sophisticated
way thus promises to further improve invariant DNNs.

One approach to achieve invariance while also ensur-
ing separability is Invariant Integration (II), proposed by
Schulz-Mirbach (1992, 1994). II is an algorithm to con-
struct a complete feature space w.r.t. a group, i.e., similar
patterns are mapped to the same point while distinct pat-
terns are mapped to distinct points. II has been used in
combination with conventional machine learning classifiers
for image classification (Schulz-Mirbach, 1995), event de-
tection within a cascaded feature extractor to obtain invari-
ance to anthropometric changes (Condurache and Mertins,
2012) or robust speech recognition (Müller and Mertins,
2009, 2010, 2011). Rotation-II has been used to replace
the global spatial pooling layer within rotation-invariant
deep learning architectures (Rath and Condurache, 2020,
2022) and shown to further increase the sample complexity
of such networks. Puny et al. (2021) solve the group av-
erage, which II is based on, for larger, intractable groups
by integrating over a subset. They applied their method to
classification for motion-invariant point clouds and graph
DNNs integrating over the whole DNN. The invariant inte-
gral has also been used to prove that in- and equivariance
improve generalization when the target distribution is in- or

equivariant (Elesedy and Zaidi, 2021).

Whereas Rath and Condurache (2020, 2022) focused on
II for the group of rotations, we expand this framework
to scales as well as flips (using E(2)). Thereby, we show
that the framework can be expanded to general group
transformations and generally improves the sample com-
plexity of group-equivariant CNNs in classification tasks.
Most related work focuses on single transformation groups.
Through our multi-stream architecture, we propose a novel
approach that allows our network to learn the best possible
combination of invariant features among multiple transfor-
mations at once. Another method that combines equivari-
ance to both rotations and scales is the Polar Transformer
Network (PTN) which process inputs in the polar coordi-
nate system (Esteves et al., 2018). However, working in po-
lar coordinates, although advantageous for rotations, may
prove to be detrimental to translation equivariance. Indeed
PTNs are by design invariant to translation, but it is not
clear how much other relevant information is destroyed. At
the same time, Spatial Transformer Networks (Jaderberg
et al., 2015) in general cannot offer invariance guarantees,
as they rely on the localization network to learn the correct
transformation. The invariance is not fully guaranteed but
approximated w.r.t the estimated transformation (STNs) or
object center (PTNs). The same is valid for deformable
(Dai et al., 2017) and tiled convolutions (Le et al., 2010).

3 THEORETICAL BACKGROUND

3.1 In- and Equivariance

In- and equivariance are mathematical concepts describing
the behavior of a map f : Rn → Rm under transforma-
tions of the input that can be modeled using the mathemat-
ical abstraction of a group. A group is a set G equipped
with a group operation · : G × G → G fulfilling the four
group axioms: closure, associativity, identity and invert-
ibility. The map f is called equivariant w.r.t. G, if left
group actions Lgx acting on the input x ∈ Rn result in
predictable changes Lg′ of the output

∀x ∀g ∃g′ s.t. f(Lgx) = Lg′f(x), (1)

where the left group action Lg : Rn → Rn is defined
for each group element g ∈ G. The group elements g
and g′ are not necessarily equal, i.e., the transformation of
the output can be different from the one applied on the in-
put, but is predictable. If the output does not change, i.e.
∀x ∀g, f(Lgx) = f(x), the function is called invariant.

In the context of CNNs, the network and the layers are
maps between feature spaces that can be described by
f : Z2 → Rn. The effect of input transformations on the
feature maps and outputs can thus be studied using Group
Theory. In the course of the paper, we use left actions on
the input x by lifting the left group action of G on Z2 via
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Lgx(y) = x(g−1y) where y ∈ Z2 are the pixel coordi-
nates. The transformed input is equivalent to the original
input at the point g−1y that gets mapped to y by g.

3.2 Group-Equivariant Convolutions

Group-equivariant convolutions are the most general linear
map achieving equivariance to a transformation group G
(Kondor and Trivedi, 2018; Cohen et al., 2019b; Esteves,
2020). Cohen and Welling (2016) first used G-Convs in the
context of DNNs to learn representations with guaranteed
equivariance to group transformations. The continuous G-
Conv of two functions f and ψ is defined as

(f ?G ψ)(u) =

∫
g∈G

f(g)ψ(u−1g)dµ(g), (2)

where dµ(g) is the Haar measure with
∫
g∈G dµ(g) = 1.

The in- and output are defined on the group itself with
g, u ∈ G. The standard convolution is a special case of
G-Convs where the elements are given by y, t ∈ Z2 and the
inverse action t−1y results in shifts y− t. A DNN is group
equivariant, if and only if each of its mappings is equiv-
ariant to or commutes with the group (Kondor and Trivedi,
2018). In many cases, the transformation group G can be
split into the translation group T defined on Z2 and the cor-
responding quotient group H = G/T . In order to achieve
equivariance to G, a H-equivariant convolution can be ap-
plied at all spatial locations of the input using a standard
convolution. Different representations can be used to com-
pute and store the equivariant features. Irreducible repre-
sentations require the minimal possible number of param-
eters, but often involve complex calculations. For 2D rota-
tions, using irreducible representations results in complex-
valued feature spaces where the orientation information is
stored via the complex phase. The regular representation
of a discrete group stores all responses of transformed fil-
ters among an additional channel called group channel.

To compute regular G-Convs, either the input or the filters
need to be transformed for all g ∈ G. A simple method is
to transform the filters using interpolation methods such as
bi-linear interpolation. However, this introduces sampling
artifacts and consequently weakens the equivariance guar-
antees. An alternative approach is to use transformation-
steerable filters, which have been first introduced for rota-
tions (Freeman and Adelson, 1991). While steerable filters
introduce a computational overhead compared to simpler
interpolation methods, arbitrarily transformed versions can
be calculated in closed-form and are thus not afflicted by
sampling effects. This concept can be effectively used for
G-Convs by restricting the learned filters to linear combi-
nations of steerable basis filters. Weiler et al. (2018b) built
steerable filters for rotation G-Convs using a Gaussian ker-
nel which Weiler and Cesa (2019) expanded to the general
E(2)-group. Sosnovik et al. (2020, 2021) constructed scale-
steerable filter CNNs using 2D Hermite polynomials or a

learned discrete basis. We use the state-of-the-art methods
for rotation- (E(2)-STCNNs, Weiler and Cesa 2019) and
scale-invariant (DISCO, Sosnovik et al. 2021) tasks as our
baseline.

3.3 Invariant Representations in DNNs

Invariance plays a major role in many DNN applications.
For the example of classification, input transformations that
do not change the desired class output should not change
the learned feature space. Group-equivariant DNNs typi-
cally use pooling to transfer from equi- to invariant repre-
sentations. When operating on regular G-Convs, the pool-
ing procedure is two-fold: Pooling among the transforma-
tion channel creates an equivariant representation where
an input-transformation induces the same transformation in
the feature space; and pooling among the spatial dimension
obtains the final invariance. For closed groups, such as ro-
tations and flips, spatial average or max pooling can be used
to obtain invariant representations. This is different for the
scale group, where average pooling over the spatial dimen-
sion does not lead to invariant, but rather homogeneous fea-
tures, i.e., scaling by s modifies the output by multiplying
with s2.

3.4 Invariant Integration

Invariant Integration is an algorithm to construct a com-
plete feature space F w.r.t. a transformation groupG intro-
duced in Schulz-Mirbach (1992). A feature space is com-
plete, if all equivalent patterns w.r.t. the transformation are
mapped to the same point while all distinct patterns are
mapped to different points. For this mapping, II uses the
group average A[f ](x) which integrates over all possible
transformations g ∈ G of an input x processed by a poly-
nomial f

A[f ](x) =

∫
g∈G

f(Lgx)dµ(g). (3)

In our case, x is the output of the final feature map af-
ter pooling among the group dimension. For f , Schulz-
Mirbach (1994); Schulz-Mirbach (1995) used the set of
monomials m(x) =

∏M
i=1 x

bi
i with

∑
i bi ≤ |G|, defined

as a product of individual signal values xi with exponents
bi, which have been shown to be a good choice to maintain
a high expressiveness of the invariant features (Noether,
1916). For 2D rotations and translations, II with mono-
mials within a local neighborhood defined by distances di
results in

A[m](x) =
1

NφUV

∑
φ,t

M∏
i=1

x[t− Lφdi]bi . (4)

Rath and Condurache (2020) applied II on top of equivari-
ant G-Convs within a DNN. The II layer is differentiable, if
xi > 0 ∀i, which allows for an end-to-end optimization of
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the DNN via backpropagation. To select a meaningful sub-
set of monomials, an iterative algorithm based on the least
square solution of a linear classifier can be used. How-
ever, a pruning-based approach leads to a more streamlined
training procedure (Rath and Condurache, 2022). Addi-
tionally, selecting the monomials can be avoided by replac-
ing them with alternatives well-known in deep learning lit-
erature such as self-attention, a weighted sum (WS) or a
multi-layer-perceptron. For rotation-II, the special case us-
ing a WS achieves the best performance while being easier
to train (Rath and Condurache, 2022). II using a WS with
a learnable kernel ψ ∈ Rk×k applied to Nφ finite rotations
φ ∈ [0◦, 360

◦

Nφ
, . . .] obtained using bi-linear interpolation

with input dimensions U × V is defined as

A[WS](x) =
1

NφUV

∑
φ,t

∑
y∈Z2

x(y)Lφψ(y − t). (5)

4 METHOD

In this section, we extend rotation-II using a WS to the
E(2)-group involving rotations and flips (Section 4.1). We
then show why II cannot be straightforwardly applied to
scale transformations and introduce an alternative to ob-
tain scale-invariants based on II (Section 4.2). We then
propose a scale-invariant CNN including Scale-II (Section
4.3). Finally, we introduce a multi-stream DNN architec-
ture that efficiently combines invariances to multiple trans-
formations within a single DNN (Section 4.4).

4.1 E(2)-Invariant Integration

Equation 5 can straightforwardly be expanded to each dis-
crete subgroup of E(2) (as used by Weiler and Cesa 2019),
which contains flips Lfψ(y) in addition to rotations

A[WS](x) =
1

2NφUV

∑
f,φ,t

∑
y∈Z2

x(y)LφLfψ(y − t). (6)

4.2 Scale-Invariant Integration

In images, objects naturally appear at different scales, e.g.,
due to variable camera-to-object distances. Hence, DNNs
for object classification or detection benefit from invari-
ance to scales. We propose to use II in combination with
a scale-equivariant CNN to obtain scale-invariant features.
In comparison to the rotation group, discrete scale transfor-
mations are not circular and non-invertible due to the loss
of information (e.g. during down-scaling). Thus, scales
do not satisfy all group axioms and can only be modeled
as a semi-group. Schulz-Mirbach (1992) demonstrated that
it is impossible to construct invariants by integrating over
the scale semi-group while at the same time achieving sep-
arability. This prohibits constructing a complete feature
space w.r.t scales using the standard II approach. Nev-

ertheless, the group average w.r.t. translations is a ho-
mogeneous function w.r.t. scales when using polynomi-
als (Schulz-Mirbach, 1994). This means that the effect of
scaling by s on the features obtained using translation-II is
defined as A[f ](Lsx) = sKA[f ](x) where the order K is
defined by the polynomial order of f with the scale opera-
tor Ls[f ](y) = f(s−1y) ∀s > 0.

As shown by Schulz-Mirbach (1994), a complete feature
space w.r.t. the scale-translation semi-group GS = S o T
can be calculated by dividing homogeneous functions of
the same order. When using monomials m, one resulting
scale-invariant integral is given by dividing monomials of
the same order

∑
b1,i =

∑
b2,i with t ∈ Z2

AGS [m](x) =
AT [m1](x)

AT [m2](x)
=

∑
t

∏
i x(t− d1,i)

b1,i∑
t

∏
i x(t− d2,i)b2,i

. (7)

The special case of translation-II that combines values
within a fixed neighborhood using a learnable WS as func-
tion f results in a standard convolution followed by Av-
erage Pooling and is equivalent to a polynomial of order
1. Consequently, we can choose a divisor of the same ho-
mogeneous order to obtain a scale-invariant representation
and use the mean of the feature map. We thus introduce
the WS-based scale-group average AGS based on Aver-
age Pooling over a standard convolution without bias with
translations Lt, y, t ∈ Z2 divided by the mean

AGS [WS](x) =
AT [WS](x)∑

y x(y)
=

∑
y

∑
t x(y)ψ(y − t)∑
y x(y)

. (8)

Proof of Invariance. Since translation-II and the mean are
both homogeneous w.r.t. scales with factor s2, it is easy to
see that dividing them leads to a scale-invariant solution

AT [f ](Lsx(y))∑
y Lsx(y)

=
s2AT [f ](x)

s2
∑
y x(y)

=
AT [f ](x)∑

y x(y)
. (9)

4.3 Application to DNNs

Inspired by the work on rotations in Rath and Condurache
(2020, 2022), we apply E(2)- and Scale-II (Formulas 6 - 8)
on top of the corresponding equivariant features learned us-
ing regular G-Convs with steerable filters: E(2)-STCNNs
(Weiler and Cesa, 2019) and DISCO (Sosnovik et al.,
2021). Those features are processed via max pooling
among the group dimension. II then replaces the spatial
pooling operation to obtain invariant features that are in
turn processed by the final classification layers. For E(2)-II,
we use the WS approach. For Scale-II, we investigate both
proposed variants. For Scale-II with monomials, we follow
Rath and Condurache (2022) and randomly select mono-
mials that are iteratively pruned during training to find the
most relevant ones. We ensure the same monomial order
between dividend and divisor by normalizing the divisor’s
exponents with

∑
i b1,i∑
i b2,i

. Additionally, xi > 0 ensures a
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differentiable solution. For Scale-II with WS, each convo-
lution depends on all input channels. Consequently, we di-
vide by the mean over all input channels for the WS-based
II. Moreover, it is important that

∑
y x(y) > 0. Hence, we

apply both II variants to the output of a ReLU layer mini-
mized to a small value ε > 0.

4.4 Multi-Stream Invariance

To obtain features with guaranteed invariance to multiple
transformations, we implement a DNN architecture with
multiple streams. Each stream is invariant to a dedicated
transformation enforced using G-Convs and II (see Figure
1). While multiple transformations could in theory be em-
bedded into a single network, the regular representations
the network needs to process would grow with O(N ·M)
for group sizes N and M . In contrast, using a dedicated
stream per transformation only increases the number of
representations by O(N +M)� O(N ·M).

The input is processed separately by each transformation-
invariant stream using G-Convs with steerable filters. II is
applied on top of the learned scale- and E(2)-equivariant
features to obtain invariant representations. For the stan-
dard convolution stream (std.) we use average pooling.
Thus, we have xj ∈ RCj with j ∈ {e2, scale, std}. We
combine two or three streams, each one invariant to either
rotations and flips, scales or translations (std.), using two
steps. First, we map all features to the same dimension
using a linear map x̃j = Wjxj with Wj ∈ RCmap×Cj .
We then combine these streams via a normalized learn-
able WS, e.g. for the case of three streams xcombined =
we2 ◦ x̃e2 +wscale ◦ x̃scale +wstd ◦ x̃std with wj ∈ RCmap ini-
tialized to 1 and normalized s.t. (we2 +wscale +wstd)i = 1
with i = 1, . . . , Cmap and the Hadamard product ◦ inspired
by the learnable channel-wise scaling used in BatchNorm
layers (Ioffe and Szegedy, 2015). This approach allows to
combine the invariant features with an explicitly learned
factor s.t. the network can learn, which invariances are the
most relevant for the corresponding task.

Each stream is pre-trained individually. We then combine
the architecture, freeze all convolutional weights and only
train the linear maps Wj, the WS wj and the classification
weights wout ∈ RCmap×nc with nc classes. The combina-
tion head worked best, when mapping the other streams to
the E(2)-output, i.e., Cmap = Ce2 and keeping We2 fixed
as the identity. Appendix B.1 provides results with differ-
ent combinations, e.g., mapping all streams or concatena-
tion. Our dedicated training procedure allows to fine-tune
each stream individually, which provides a good initializa-
tion point for the combination head and further improves
the sample complexity compared to a full end-to-end train-
ing (cf. Appendix B.2). While this causes an overhead at
train time, all operations can easily be fused into a single
network at inference time.
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Figure 2: Log. Test Error (TE) on Scaled-MNIST subsets.

5 EXPERIMENTS & DISCUSSION

The proposed scale-II algorithm is evaluated on Scaled-
MNIST (Sohn and Lee, 2012) and the invariant multi-
stream networks on SVHN (Netzer et al., 2011), CIFAR-
10 (Krizhevsky, 2009) and STL-10 (Coates et al., 2011).
We use the full dataset and limited subsets with Nt
samples to assess the sample complexity. The sub-
sets are sampled with constant class balance and are
the same for all variants. For Scaled-MNIST, we use
Nt ∈ {10, 50, 100, 500, 1k, 5k, 10k, 12k}. For SVHN and
CIFAR-10 we use Nt ∈ {100, 500, 1k, 5k, 10k, 50k}.
For SVHN, CIFAR-10 and STL-10 we use Wide-ResNets
(WRNs, Zagoruyko and Komodakis 2016) as backbone.
We use the respective standard data augmentations: scales
for Scaled-MNIST, no augmentations for SVHN, shifts
and crops for CIFAR-10, and shifts, crops and Cutout
(Devries and Taylor, 2017) for STL-10. For all single-
streams, the number of trainable parameters is constant.
We report results for the multi-stream architectures with
full streams and constant number of parameters. We opti-
mize all hyper-parameters (HPs) using a 80:20 validation
split and Bayesian Optimization with Hyperband (BOHB,
Falkner et al. 2018). For all II-WS-layers, we use k = 3
and a constant number of in- and output channels. For
II with monomials, we use an iterative pruning-based se-
lection with nm = {25, 12, 5} monomial pairs after 0, 5
and 10 epochs following Rath and Condurache (2022). The
exact HPs, optimization settings and network architectures
can be found in Appendix C. If not mentioned otherwise,
we report the mean and standard deviation over three runs.

5.1 Evaluating Scale-Invariant Integration

We evaluate our scale-II layer on the Scaled-MNIST
dataset, which consists of hand-written digits artificially
scaled with factor s ∈ [0.3, 1]. We use the architec-
ture from Sosnovik et al. (2020) (SES-CNN) and Sos-
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Table 1: Invariance Error ∆ when obtaining a scale-
invariant representation using the respective layer di-
rectly on the input and a randomly initialized scale-
equivariant network.

Layer Input CNN

Average Pooling 0.222 0.090
Mixed Pooling 0.017 0.039

Scale-II Monomials 1.24e-4 2.64e-7
Scale-II WS 2.97e-9 5.94e-3

Table 2: Test Error (TE) on Scaled-MNIST using a CNN
with 5 layers, data augmentation with random scales and
an upsampling layer to double the input size.

Method Scale-II TE [%]

CNN - 1.60 ± 0.09
SES-CNN - 1.42 ± 0.07

DISCO - 1.35 ± 0.05
II-DISCO Monomials 1.30 ± 0.06
II-DISCO WS 1.30 ± 0.02

novik et al. (2021) (DISCO) built of three convolutional
and two dense layers using nS = 4 scales and replace the
final global pooling layer with the scale-II layer. Follow-
ing Sosnovik et al. (2020, 2021), we compare the invari-
ance error of the scale-II layers to the methods they use
to obtain scale-invariant representations: a mixed pooling
approach including average and max pooling for Scaled-
MNIST and average pooling for STL-10. The invariance
error is a simplified version of the equivariance error given
as ∆ = 1

S

∑
s
|ψ(x)−ψ(Lsx)|22

|ψ(x)|22
. We compute ∆ when di-

rectly processing the input, i.e., ψ is the II- or pooling-layer
and when ψ is the randomly initialized CNN including the
respective layer using 100 samples from Scaled-MNIST
scaled with s ∈ [0.5, 0.55, ..., 1.0] . The results in Table
1 show that scale-II guarantees invariance as opposed to
the pooling approaches. While Scale-II with WS achieves
a better error directly on the input, the monomial variant is
slightly better when applied within the DNN.

We then evaluate the performance of our scale-II layer on
Scaled-MNIST for classification. Here, scale-invariance is
paramount to obtain correct results because the test set con-
tains more variability than the training set, thus benefiting
scale-invariant algorithms. Table 2 shows the results on the
full dataset, Figure 2 with limited training data. We re-
port mean and standard deviation over the six pre-defined
data splits. II outperforms the pooling approach on full data
and in the limited sample regime highlighting the improved
sample complexity of our approach. In summary, the mixed
pooling approach used by Sosnovik et al. (2021) does not
guarantee scale-invariance which leads to a decreased per-
formance. II allows for invariance guarantees and the WS-
variant is easier to optimize than the monomials-variant.
Hence, II with a WS outperforms the latter in the limited
data domain and is used for all further experiments.

5.2 Multi-Stream Digit Classification

The Street View House Number (SVHN) dataset contains
single digits taken from house numbers. SVHN includes
digits with different colors, font types, orientations and
backgrounds and is thus harder to solve than MNIST. For
all experiments on SVHN, we use the core training data,
a WRN16-4 architecture, nr = 8 rotations for all E(2)-G-

Convs and nS = 3 scales for the scale stream. The II step
is calculated using the same number of rotations and flips.
The results on the full SVHN dataset are shown in Table
3 while Figure 3 depicts the results using limited training
data.

Using II instead of pooling improves the accuracy for all
invariant architectures showing that II better preserves the
information when transferring to invariance. Both invari-
ant single-stream networks outperform the std. CNN in the
limited and full data domain. This indicates that invariance
to rotations and flips as well as scales is valuable informa-
tion the classifier needs to learn during training – and the
training data does not cover enough variability w.r.t rota-
tions and scales for the baseline to learn this information.
The rotation- and flip-invariant DNN achieves a better sam-
ple complexity than the scale-invariant one, indicating that
rotation-invariance is more valuable for this dataset.

The multi-stream networks significantly outperform all
single-stream variants including the baseline in all data
regimes. The multi-stream architecture learns meaning-
ful combinations of the generated invariants and is able to
automatically choose the invariance best-fit for the train-
ing data at hand. This allows for best performances on
all dataset sizes. In addition, for the rather simple task
of classifying numbers, combining only a rotation- and a
scale-invariant stream outperforms a standard CNN and
leads to almost the same performance as with additional
std. convolutions. In this problem setup, rotation- and
scale-invariances seem sufficient for optimal performance
and are able to recover all necessary object invariances. We
conjecture that the learned features in the network’s layers
within the invariant streams focus on global invariances like
illumination and noise while the dedicated II layer handles
specific object invariances, e.g. to scales, similar to the
scattering transformation (Oyallon et al., 2019).

5.3 Multi-Stream Object Classification

Finally, we evaluate our proposed architecture for the more
complex task of object classification on CIFAR-10 and
STL-10. Both datasets contain RGB images of ten differ-
ent object classes. STL-10 is a subset of ImageNet contain-
ing 5k training images that is commonly used as a bench-
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Table 3: TE on SVHN, CIFAR-10 and STL-10. WRN16-4, WRN28-10 and
WRN16-8 are used as baseline architecture. ? indicates constant number of
parameters.

II Streams Invariance SVHN [%] C-10 [%] STL-10 [%]

PTN Rot. & Scale 2.97 6.72 -
x Single Std. 2.93 ± 0.02 3.89 ± 0.08 12.02 ± 0.05
x Single E(2) 2.64 ± 0.05 2.91 ± 0.13 9.80 ± 0.40
x Single Scale 2.71 ± 0.01 4.04 ± 0.03 8.07 ± 0.08

X Single E(2) 2.36 ± 0.05 2.95 ± 0.04 7.67 ± 0.07
X Single Scale 2.54 ± 0.04 3.91 ± 0.12 7.92 ± 0.09
X Dual? Scale & E(2) 2.20 ± 0.05 2.96 ± 0.10 6.38 ± 0.15
X Dual Scale & E(2) 2.12 ± 0.11 2.75 ± 0.04 5.95 ± 0.11
X Triple? Scale, E(2) & Std. 2.29 ± 0.03 2.74 ± 0.08 6.46 ± 0.08
X Triple Scale, E(2) & Std. 2.10 ± 0.07 2.68 ± 0.03 5.90 ± 0.05

Table 4: Role of the II layer for
our triple-stream network on STL-
10. An ’x’ marks an invariant stream
without II.

II

E(2) Scale TE [%]

x x 7.51 ± 0.12
x X 7.35 ± 0.09
X x 6.34 ± 0.07
X X 5.90 ± 0.05
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Figure 3: Log. TE on subsets of SVHN with full streams.
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Figure 4: TE on subsets of CIFAR-10 with full streams.

mark for the limited data performance of object classifica-
tion networks. STL-10 is more challenging than CIFAR-
10 since it contains bigger and more diverse images. For
CIFAR-10, we use WRN28-10 and the E(2)-stream with 8,
8 and 4 rotations per residual block. For STL-10, we use
WRN16-8 and the E(2)-architecture with 8, 4 and 1 rota-
tion per residual block (Weiler and Cesa, 2019). The E(2)-
II-layer is used for 4-rotations and flips or flips-only, re-
spectively. For both datasets, the scale-stream uses 3 scales
(Sosnovik et al., 2021). The STL-10 and CIFAR-10 results
on full data are shown in Table 3, CIFAR-10 results on lim-
ited data in Figure 4. For a fair comparison on STL-10,
we adapted the official implementation of Sosnovik et al.
(2021) which uses a stride of 1 in the initial convolutional
layer by using stride 2 as in Devries and Taylor (2017);
Weiler and Cesa (2019).

On CIFAR-10, we again demonstrate an increased sample
efficiency of the invariant streams leading to superior per-
formance for small dataset sizes (Figure 4). While the E(2)-
invariant network is able to outperform the std. baseline in
the full data regime, the scale-invariant network achieves

subpar performance. We interpret the latter as a sign of less
variance along the scale mode in this problem setup due
to the rather small images contained in CIFAR-10. Thus,
other invariances are more important to decide for the cor-
rect class. The scale-invariant stream seems to be too re-
strictive in the sense that it is unable to learn the full set of
object invariants that the baseline architecture leverages to
classify the objects. On the full data, II improves the per-
formance for the scale-invariant architecture. However, the
performance on the E(2)-invariant architecture is only on
par. Nevertheless, Rath and Condurache (2022) show that a
rotation-invariant architecture using II outperforms the one
with pooling in limited data regimes even when achieving
slightly worse results on full data. We further investigate
the advantages of II in Section 5.4. Our combined network
is able to achieve the best results for all data regimes by
learning to combine the best information at each dataset
size. The triple stream outperforms the dual variant which
indicates that the std. stream is able to capture important
additional object invariances that are neglected by the re-
stricted, invariant streams.
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On STL-10, the E2-II network outperforms its counter-
part without II significantly. Scale-II also slightly improves
upon the baseline and II is clearly beneficial when combin-
ing multiple streams (see Table 4). Our multi-stream net-
work achieves a new state-of-the-art result (Table 3), even
with constant number of parameters. This shows that incor-
porating prior knowledge about multiple transformations
improves the performance of classification DNNs in the
limited data domain, even for complex real-world datasets.
Additionally, the results show that the features learned by
each stream are complementary, preserved by our II layers
and are effectively combined by our proposed multi-stream
head. The multi-stream architecture successfully improves
the sample complexity while raising the number of param-
eters – hence increasing generalization.

5.4 Ablation Studies

Multi-Stream: Number of Parameters. In addition to
the full multi-stream architecture, we report the perfor-
mance when keeping the number of parameters constant.
Therefore, we shrink each stream by factor 2 or 3 for the
dual or triple-stream network, respectively. The results are
shown in Table 3 marked with ?. Limited data results for
SVHN and CIFAR-10 are shown in Appendix A.

Our approach still achieves state-of-the-art performance on
all datasets and in all data domains. Combining multiple
streams is beneficial, even with constant number of param-
eters. The dual-stream performs slightly better than the
triple-stream. We believe this occurs since the individual
streams of the triple-stream architecture are too thin, par-
ticularly in early layers.

Furthermore, we train a triple-stream architecture consist-
ing of three standard streams on STL-10. We achieve a test
error (TE) of 10.29% which is worse than the single-stream
networks with invariance. This shows that the enforced in-
variance plays a key role for our multi-stream networks.

Multi-Stream: Importance of Invariant Integration.
To quantify and demonstrate the importance of the II layer,
we compare our multi-stream architecture including II to
variants without II on STL-10. This includes a multi-
stream architecture, where only pooling is used. The re-
sults in Table 4 demonstrate that on a more complex clas-
sification task, in low-data regime (i.e. when the training
data does not properly cover all variability present in the
test data) the multi-stream approach works best when both
streams use II rather than pooling.

Training a standard WRN augmented with random 90◦ ro-
tations and scales s ∈ [0.25, 1] on STL-10 achieves a TE of
21.80%, which is clearly detrimental compared to the per-
formance without those augmentations (12.08%). Hence,
layer-wise, guaranteed in- and equivariance play a key role
in the improved sample complexity of our approach.

6 CONCLUSION

In this contribution, we expanded II to scale transforma-
tions and showed its effectiveness on Scaled-MNIST. Since
Scale-II using a WS is easier to optimize than the monomial
variant, we applied it in a multi-stream DNN which besides
scales includes a standard convolutional and a rotation-and-
flip-invariant stream. This multi-stream DNN covers a va-
riety of practically interesting use cases as shown by an
improved sample complexity on SVHN and CIFAR-10 and
new state-of-the-art results on STL-10 using only labeled
data. We impose invariance to scales and rotation-and-flips
in dedicated streams that also learn other global invariances
and cover the remaining object invariances with a standard
convolutional stream. This guarantees multiple invariances
without suffering from the multiplicative increase when di-
rectly combining the groups.

Our framework is thought to leverage and honor prior
knowledge. Therefore, it is focused on invariance guaran-
tees, which may be rather restrictive in some cases. Specif-
ically, invariance guarantees improve the sample complex-
ity of DNNs leading to a performance boost, when training
data is limited. In the large data domain, Vision Transform-
ers (Dosovitskiy et al., 2021) with less geometrical con-
straints outperform conventional CNNs. Hence, our exper-
iments focus on small-scale datasets. II is a general method
that can be expanded beyond rotations and scales, but is re-
stricted to transformations that can be modeled as (semi-)
groups. Furthermore, we require an equivariant backbone
before transferring to invariance. Nevertheless, the multi-
stream network can in theory be enhanced with streams that
achieve invariance without using II or G-Convs.

In the future, it is interesting to apply II to tasks where
equivariance is helpful, e.g. to infer the pose in object de-
tection. II could still be used for the parts of the network
that benefit from invariance. On CIFAR-10 and SVHN,
more sophisticated architectures and training methods than
WRNs achieve a better performance (Foret et al., 2021;
Lim et al., 2019). For a fair comparison, we stuck to WRNs
in our experiments. Nevertheless, guaranteed invariances
can generally be applied to many architectures in order to
improve their sample complexity.
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APPENDIX

A LIMITED DATA STUDIES WITH CONSTANT PARAMETERS

In this section, we provide limited data graphics for SVHN (see Figure 5) and CIFAR-10 (see Figure 6) when using a
constant number of parameters for our multi-stream network. The results on the full dataset are shown in the main paper
in Table 3. For the multi-stream networks with constant parameters, we observe a significant increase in the limited data
domain and when using the full dataset compared to the baseline methods. While the dual stream performs slightly better
on SVHN and STL-10, the triple stream achieves better performance in limited domains and on CIFAR. We conjecture that
when the model capacity is limited the E(2)- and the scale-stream are able to learn most object invariances the standard
stream would cover. Nevertheless, the standard stream adds the uncovered invariances leading to a slight performance
boost. For the multi-stream networks with constant parameters, we used a naive down-scaling of the individual streams,
i.e., the number of channels was simply divided by

√
2 or
√

3 per stream, respectively. We also did not further fine-tune
hyper-parameters (HPs) for those down-scaled networks. With this straightforward approach, we already outperformed all
single stream networks in limited data domains. In the future, further improvements could be achieved by investigating
more sophisticated branching methods in order to enable a better allocation of how much capacity the network should
spend for each invariant stream.
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Figure 5: Log Test Error on limited subsets of SVHN with
constant parameters.
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Figure 6: Test Error on limited subsets of CIFAR-10 with
constant parameters.

B ABLATION STUDIES

B.1 Comparison of Multi-Stream Heads

In this section, we compare different versions of our proposed Multi-Stream head to a concatenation head using the triple-
stream architecture on STL-10. Map-Stream describes which stream the respective outputs are mapped to, i.e., the respec-
tive stream uses an non-learnable identity mapping. When using Map-All, all streams use a learnable mapping at the same
time. The results are shown in Table 5. Mapping all features to the rotation stream and adding them via a weighted-sum
leads to the best results and outperforms a naive concatenation of features along the channel dimension.

B.2 Full End-to-End Training

As a further ablation, we conducted a ”true” end-to-end training of our dual stream with random initialization and constant
number of parameters on STL-10, where we achieve 7.86 % Test Error (TE) without tuning any stream-specific hyper-
parameters (HPs). We expect this to be slightly improvable when optimizing the stream-wise hyper-parameters.

Nevertheless, the true end-to-end training performs worse than our more intricate training procedure (6.38 % TE). We
conjecture, that optimizing each stream individually provides a good initialization point for the combination head and
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Table 5: Comparison of Multi-Stream heads on STL-10 using the triple stream architecture.

Combination-Type Test Error [%]

Concat 6.82 ± 0.11
Map-E(2) 5.90 ± 0.05
Map-Scale 7.21 ± 0.06
Map-Std 6.65 ± 0.10
Map-All 6.89 ± 0.06

Table 6: II-DISCO HPs on Scaled-MNIST. Parameters with ? were optimized using BOHB.

HP II-DISCO WS II-DISCO Monomials

Batch Size 128 128
Learning Rate ? 5e-3 1e-3
Weight Decay ? 5e-7 5e-6

BatchNorm Decay ? 0.01 5e-4
Dropout Rate ? 0.1 0.7

reduces the solution space the optimizer needs to consider. Overall, our learning strategy leads to a further improved
sample complexity of the multi-stream architecture.

C IMPLEMENTATION DETAILS & HYPERPARAMETERS

We present details about the network architectures and the HPs needed to reproduce our results. We optimized the HPs
using Bayesian optimization with hyperband (BOHB) (Falkner et al., 2018). For the baselines, we used the HPs reported
in the respective papers or official implementations. If no validation split was pre-defined, we used a 80-20 train-validation
split for the HP optimization. All networks were trained using a single (Scaled-MNIST, SVHN) or two (CIFAR-10,
STL-10) NVIDIA GTX-1080 Ti GPUs. For SVHN, CIFAR-10 and STL-10 we used Wide-ResNets (WRNs) as baseline
architectures (Zagoruyko and Komodakis, 2016).

For the E(2)-invariant network, we reduced the size of the final trivial representation to the same size used by the Standard-
and Scale-WRN. For the original implementation, the final representation is multiplied by

√
|G| where |G| is the order of

the group the last block is equivariant to (Weiler and Cesa, 2019). For the Scale-II WRNs, we added BatchNorm after the
II layer to stabilize the gradients back-propagated through the division within the Scale-II.

For the dual- and triple-stream architectures with constant parameters, we naively divided each channel size C by d C√
2
e or

d C√
3
e, respectively. We did not further tune HPs for the smaller-sized streams.

We built upon the official code-bases of Sosnovik et al. (Sosnovik et al. (2021), https://github.com/ISosnovik/disco), as well
as Weiler and Cesa (Weiler and Cesa (2019), https://github.com/QUVA-Lab/e2cnn), which we both ported to Tensorflow
v2.3. We used the models with a constant number of parameters and inserted the II layer to replace the spatial pooling
operation. Specifically for DISCO, we had to thoroughly re-create all default settings from PyTorch in Tensorflow in order
to recreate the performance. This included variable initializers, batch norm parameters and the Adam optimizer’s HPs.
Additionally, we had to use a custom-written grouped convolution within the scale-equivariant convolution code rather
than using tf.nn.conv2d with a filter with reduced input-channels which implicitly also calculates a grouped convolution.

C.1 Scaled-MNIST

On Scaled-MNIST, we used the CNN proposed by Sosnovik et al. (2020, 2021) composed of three convolutional and two
dense layers with an effective kernel size of 7 and nS = 4 scales. We adapted it by using scale-II with k = 3 instead of the
spatial pooling layer that is a combination of average and max pooling. We trained our network for 60 epochs using the
Adam optimizer (Kingma and Ba, 2015) with step-wise learning rate decay of 0.1 after 20 and 40 epochs, l2-regularization
and data augmentation, where we artificially scaled the input with s ∈ [0.5, 2]. The network details can be found in Table
7 and the used HPs in Table 6.
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Table 7: II-DISCO architecture on Scaled-MNIST.

Layer Output Size Cin Cout nS ReLU BatchNorm Dropout

Upsampling 56× 56 1 1 - x x x
Scale-LiftConv 56× 56 1 32 3 X X x

MaxPool 28× 28 32 32 3 x x x
Scale-Conv1 28× 28 32 63 3 X X x

MaxPool 14× 14 63 63 3 x x x
Scale-Conv2 14× 14 63 95 3 X X x

Scale-MaxProj 14× 14 95 95 1 x x x
Scale-II 1× 1 95 95 - x x x
Dense1 - 95 256 - X X X
Dense2 - 256 10 - x x x

Table 8: HPs used for SVHN experiments. Parameters with ? were optimized using BOHB.

HP E(2)-II Scale-II

Batch Size 128 128
Learning Rate ? 5e-3 0.2
Weight Decay ? 5e-3 1e-4
Dropout Rate ? 0.5 0.4

C.2 SVHN

On the SVHN dataset, we used a WRN16-4 with pre-activation nonlinearites as baseline architecture. The E(2)-networks
are equivariant to flips and nr = 8 rotations for each convolutional layer. The scale-convolutions use nS = 3 scales.
We used E(2)-II with k = 3, nr = 8 angles and nF = 2 flips using bi-linear interpolation where necessary. We applied
Scale-II with k = 3. We followed the training approach by Zagoruyko and Komodakis (2016). We used an SGD optimizer
with Momentum 0.9, trained for 160 epochs and reduced the learning rate by 0.1 after 80 and 120 epochs. We did not
apply any data augmentation. The detailed architecture of the E(2)-II-WRN16-4 is shown in Table 10, the architecture of
the Scale-II-WRN16-4 in Table 11. The used HPs are shown in Table 8.

For the classification head combining several invariant streams, we froze all trained convolutional and II layers and com-
bined the individual streams via a learnable mapping and a weighted sum. We then trained those layer as well as the
final dense layers. We used the same training settings as above, but divided the number of training epochs as well as all
epoch-dependent HPs by 4. The HPs of the refinement training are listed in Table 9.

C.3 CIFAR-10

On CIFAR-10, we used a WRN28-10 as the baseline network. The E(2)-networks are equivariant to flips and nr = 8
rotations for the first residual block, nr = 4 rotations for the second and third residual blocks. The scale-convolutions use
nS = 3 scales. We used E(2)-II with k = 3, nr = 4 angles and nF = 2 flips. We applied Scale-II with k = 3. We again
followed the training approach by Zagoruyko and Komodakis (2016). We used an SGD optimizer with Momentum 0.9,
trained for 200 epochs and reduced the learning rate by 0.2 after 60, 120 and 160 epochs. We used data augmentation with
random pads-and-crops as well as random flips. The detailed architecture of the E(2)-II-WRN28-10 is shown in Table 14,
the architecture of the Scale-II-WRN28-10 in Table 15. The HPs can be found in Table 12. We used the same approach for
the combination heads as for SVHN where we divided all epochs by 4. The HPs of the re-training are shown in Table 13.

C.4 STL-10

On STL-10, we used a WRN16-8 as the baseline network. The E(2)-networks are equivariant to flips as well as nr = 8
rotations for the first residual block, nr = 4 rotations for the second and nr = 1 rotations for the third residual block.
The scale-convolutions use nS = 3 scales. We used E(2)-II with k = 3, nr = 1 angles and nF = 2 flips and Scale-II
with k = 3. We used an SGD optimizer with Nesterov Momentum 0.9, trained for 1000 epochs and reduced the learning
rate by 0.2 after 300, 400, 600 and 800 epochs. We used data augmentation with random pads-and-crops, flips and Cutout
(Devries and Taylor, 2017). The detailed architecture of the E(2)-II-WRN16-8 is shown in Table 18, the architecture of the
Scale-II-WRN16-8 in Table 19. We adapted the official implementation of the Scale-networks to use a stride of 2 instead of
1 in the initial residual block – as done by Weiler and Cesa (2019); Devries and Taylor (2017). The used HPs can be found
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Table 9: Classification head HPs on SVHN.

HP Dual Triple

Batch Size 128 128
Learning Rate 0.01 0.01
Weight Decay 1e-4 1e-4

Table 10: E(2)-II-WRN16-4 architecture for SVHN. Each equivariant residual block consists of two consecutive convolu-
tion layers (e.g. E(2)-Conv1.1 and E(2)-Conv1.2) and a shortcut connection with a 1x1-convolution whenever the output
size changes.

Layer Output Size Cin Cout nr nF ReLU BN Dropout

E(2)-LiftConv 32× 32 3 4 8 2 X X x
E(2)-Conv1.1 32× 32 4 16 8 2 X X x
E(2)-Conv1.2 32× 32 16 16 8 2 X X X
E(2)-Conv1.3 32× 32 16 16 8 2 X X x
E(2)-Conv1.4 32× 32 16 16 8 2 X X X
E(2)-Conv2.1 16× 16 16 32 8 2 X X x
E(2)-Conv2.2 16× 16 32 32 8 2 X X X
E(2)-Conv2.3 16× 16 32 32 8 2 X X x
E(2)-Conv2.4 16× 16 32 32 8 2 X X X
E(2)-Conv3.1 8× 8 32 64 8 2 X X x
E(2)-Conv3.2 8× 8 64 64 8 2 X X X
E(2)-Conv3.3 8× 8 64 64 8 2 X X x
E(2)-Conv3.4 8× 8 64 256 1 1 X X X

E(2)-II - 256 256 - - x x x
Dense - 256 10 - - x x x

in Table 16. We used the same approach for the combination heads as for SVHN and CIFAR-10, but this time divided all
epochs by 10. The HPs of the re-training can be found in Table 17.

D BROADER SOCIETAL IMPACT

Our proposed method increases the sample-efficiency of DNNs for classification tasks. It can thus be used to train su-
pervised models when training data is scarce or expensive to label, i.e., in fields such as medical imaging or autonomous
driving. Since the methods proposed in this paper are quite general and not bound to a specific application, they can be
used for any type of classification network processing images. This includes potentially harmful applications. Even with-
out harmful intents, training on biased datasets as well as misclassifications can lead to unintended negative consequences
such as a wrong medical treatment.

The authors firmly renounce using our proposed methods with any harmful intents. When applying our methods, it is
inevitable to monitor the decisions made by the network specifically based on ethical standards, such that the classifier does
not decide in a harmfully biased way. Impactful decisions based on the output of DNNs, e.g. deciding on a medication or
driving autonomously, need to be carefully supervised by human experts and/or redundant systems where appropriate.

E LICENSES

We implemented all networks using Tensorflow v2.3 which is licensed under Apache 2.0 (Abadi et al., 2015). We built
upon the code-bases of Sosnovik et al. (2021) which is under MIT license and Weiler and Cesa (2019) distributed under
BSD Clear license. We ported both frameworks from PyTorch to Tensorflow v2.3. The used datasets Scaled-MNIST (Sohn
and Lee, 2012), SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky, 2009) and STL-10 (Coates et al., 2011) are not under
license.

F AMOUNT OF COMPUTE

For our experiments on Scaled-MNIST and SVHN, we used a single Nvidia 1080 GTX Ti. On CIFAR-10 and STL-10, we
used two NVIDIA 1080 GTX Tis. For Scaled-MNIST, we performed 6 runs à 8 sizes, 2 architectures, which equates to 96
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Table 11: Scale-II-WRN16-4 architecture for SVHN. Each equivariant residual block consists of two consecutive convolu-
tion layers (e.g. Scale-Conv1.1 and Scale-Conv1.2) and a shortcut connection with a 1x1-convolution whenever the output
size changes.

Layer Output Size Cin Cout nS ReLU BN Dropout

Scale-LiftConv 32× 32 3 16 3 X X x
Scale-Conv1.1 32× 32 16 64 3 X X x
Scale-Conv1.2 32× 32 64 64 3 X X X
Scale-Conv1.3 32× 32 64 64 3 X X x
Scale-Conv1.4 32× 32 64 64 3 X X X
Scale-Conv2.1 16× 16 64 128 3 X X x
Scale-Conv2.2 16× 16 128 128 3 X X X
Scale-Conv2.3 16× 16 128 128 3 X X x
Scale-Conv2.4 16× 16 128 128 3 X X X
Scale-Conv3.1 8× 8 128 256 3 X X x
Scale-Conv3.2 8× 8 256 256 3 X X X
Scale-Conv3.3 8× 8 256 256 3 X X x
Scale-Conv3.4 8× 8 256 256 3 X X X
Scale-MaxProj 8× 8 256 256 1 x x x

Scale-II 1× 1 256 256 - x X x
Dense - 256 10 - x x x

Table 12: HPs on CIFAR-10. Parameters with ? were optimized using BOHB.

HP E(2)-II Scale-II

Batch Size 96 128
Learning Rate ? 5e-3 0.1
Weight Decay ? 5e-3 5e-4
Dropout Rate ? 0.1 0.2

runs. In total, the GPU train time took ≈ 50 hours. For SVHN, we evaluated 3 · 2 + 7 · 3 · 7 = 153 runs with ≈ 1800 hours
train time, for CIFAR-10 3 · 2 + 6 · 3 · 7 = 132 runs with ≈ 3600 hours train time and 1 · 3 · 9 = 27 runs with ≈ 650 hours
train time for STL-10. We took the average train time for all architectures on each dataset to calculate those numbers. In
total, we estimate the GPU time for the main results to 50 + 1800 + 2 · 3600 + 2 · 650 = 10350 hours.
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Table 13: Classification head HPs on CIFAR-10.

HP Dual Triple

Batch Size 128 128
Learning Rate 0.01 0.01
Weight Decay 1e-3 1e-3

Table 14: E(2)-II-WRN28-10 architecture for CIFAR-10. Each equivariant residual block consists of two consecutive
convolution layers (e.g. E(2)-Conv1.1 and E(2)-Conv1.2) and a shortcut connection with a 1x1-convolution whenever the
output size changes.

Layer Output Size Cin Cout nr nF ReLU BN Dropout

E(2)-LiftConv 32× 32 3 4 8 2 X X x
E(2)-Conv1.1 32× 32 4 40 8 2 X X x
E(2)-Conv1.2 32× 32 40 40 8 2 X X X
E(2)-Conv1.3 32× 32 40 40 8 2 X X x
E(2)-Conv1.4 32× 32 40 40 8 2 X X X
E(2)-Conv1.5 32× 32 40 40 8 2 X X x
E(2)-Conv1.6 32× 32 40 40 8 2 X X X
E(2)-Conv1.7 32× 32 40 40 8 2 X X x
E(2)-Conv1.8 32× 32 40 40 8 2 X X X
E(2)-Conv2.1 16× 16 40 113 4 2 X X x
E(2)-Conv2.2 16× 16 113 113 4 2 X X X
E(2)-Conv2.3 16× 16 113 113 4 2 X X x
E(2)-Conv2.4 16× 16 113 113 4 2 X X X
E(2)-Conv2.5 16× 16 113 113 4 2 X X x
E(2)-Conv2.6 16× 16 113 113 4 2 X X X
E(2)-Conv2.7 16× 16 113 113 4 2 X X x
E(2)-Conv2.8 16× 16 113 113 4 2 X X X
E(2)-Conv3.1 8× 8 113 226 4 2 X X x
E(2)-Conv3.2 8× 8 226 226 4 2 X X X
E(2)-Conv3.3 8× 8 226 226 4 2 X X x
E(2)-Conv3.4 8× 8 226 226 4 2 X X X
E(2)-Conv3.5 8× 8 226 226 4 2 X X x
E(2)-Conv3.6 8× 8 226 226 4 2 X X X
E(2)-Conv3.7 8× 8 226 226 4 2 X X x
E(2)-Conv3.8 8× 8 226 640 1 1 X X X

E(2)-II - 640 640 - - x x x
Dense - 640 10 - - x x x
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Table 15: Scale-II-WRN28-10 architecture for CIFAR-10. Each equivariant residual block consists of two consecutive
convolution layers (e.g. Scale-Conv1.1 and Scale-Conv1.2) and a shortcut connection with a 1x1-convolution whenever
the output size changes.

Layer Output Size Cin Cout nS ReLU BN Dropout

Scale-LiftConv 32× 32 3 16 3 X X x
Scale-Conv1.1 32× 32 16 160 3 X X x
Scale-Conv1.2 32× 32 160 160 3 X X X
Scale-Conv1.3 32× 32 160 160 3 X X x
Scale-Conv1.4 32× 32 160 160 3 X X X
Scale-Conv1.5 32× 32 160 160 3 X X x
Scale-Conv1.6 32× 32 160 160 3 X X X
Scale-Conv1.7 32× 32 160 160 3 X X x
Scale-Conv1.8 32× 32 160 160 3 X X X
Scale-Conv2.1 16× 16 160 320 3 X X x
Scale-Conv2.2 16× 16 320 320 3 X X X
Scale-Conv2.3 16× 16 320 320 3 X X x
Scale-Conv2.4 16× 16 320 320 3 X X X
Scale-Conv2.5 16× 16 320 320 3 X X x
Scale-Conv2.6 16× 16 320 320 3 X X X
Scale-Conv2.7 16× 16 320 320 3 X X x
Scale-Conv2.8 16× 16 320 320 3 X X X
Scale-Conv3.1 8× 8 320 640 3 X X x
Scale-Conv3.2 8× 8 640 640 3 X X X
Scale-Conv3.3 8× 8 640 640 3 X X x
Scale-Conv3.4 8× 8 640 640 3 X X X
Scale-Conv3.5 8× 8 640 640 3 X X x
Scale-Conv3.6 8× 8 640 640 3 X X X
Scale-Conv3.7 8× 8 640 640 3 X X x
Scale-Conv3.8 8× 8 640 640 3 X X X
Scale-MaxProj 8× 8 640 640 1 x x x

Scale-II 1× 1 640 640 - x X x
Dense - 640 10 - x x x

Table 16: HPs on STL-10. Parameters with ? were optimized using BOHB.

HP E(2)-II Scale-II

Batch Size 96 96
Learning Rate ? 2e-3 0.02
Weight Decay ? 1e-2 1e-3
Dropout Rate ? 0.1 0.25

Table 17: Classification head HPs on STL-10.

HP Dual Triple

Batch Size 128 128
Learning Rate 0.01 0.01
Weight Decay 1e-4 1e-4
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Table 18: E(2)-II-WRN16-8 architecture for STL-10. Each equivariant residual block consists of two consecutive convo-
lution layers (e.g. E(2)-Conv1.1 and E(2)-Conv1.2) and a shortcut connection with a 1x1-convolution whenever the output
size changes.

Layer Output Size Cin Cout nr nF ReLU BN Dropout

E(2)-LiftConv 96× 96 3 4 8 2 X X x
E(2)-Conv1.1 48× 48 4 32 8 2 X X x
E(2)-Conv1.2 48× 48 32 32 8 2 X X X
E(2)-Conv1.3 48× 48 32 32 8 2 X X x
E(2)-Conv1.4 48× 48 32 32 8 2 X X X
E(2)-Conv2.1 24× 24 32 90 4 2 X X x
E(2)-Conv2.2 24× 24 90 90 4 2 X X X
E(2)-Conv2.3 24× 24 90 90 4 2 X X x
E(2)-Conv2.4 24× 24 90 90 4 2 X X X
E(2)-Conv3.1 12× 12 90 362 1 2 X X x
E(2)-Conv3.2 12× 12 362 362 1 2 X X X
E(2)-Conv3.3 12× 12 362 362 1 2 X X x
E(2)-Conv3.4 12× 12 362 512 1 1 X X X

E(2)-II - 512 512 - - x x x
Dense - 512 10 - - x x x

Table 19: Scale-II-WRN16-8 architecture for STL-10. Each equivariant residual block consists of two consecutive con-
volution layers (e.g. Scale-Conv1.1 and Scale-Conv1.2) and a shortcut connection with a 1x1-convolution whenever the
output size changes.

Layer Output Size Cin Cout nS ReLU BN Dropout

Scale-LiftConv 96× 96 3 32 3 X X x
Scale-Conv1.1 48× 48 32 128 3 X X x
Scale-Conv1.2 48× 48 128 128 3 X X X
Scale-Conv1.3 48× 48 128 128 3 X X x
Scale-Conv1.4 48× 48 128 128 3 X X X
Scale-Conv2.1 24× 24 128 256 3 X X x
Scale-Conv2.2 24× 24 256 256 3 X X X
Scale-Conv2.3 24× 24 256 256 3 X X x
Scale-Conv2.4 24× 24 256 256 3 X X X
Scale-Conv3.1 12× 12 256 512 3 X X x
Scale-Conv3.2 12× 12 512 512 3 X X X
Scale-Conv3.3 12× 12 512 512 3 X X x
Scale-Conv3.4 12× 12 512 512 3 X X X
Scale-MaxProj 12× 12 512 512 1 x x x

Scale-II 1× 1 512 512 - x X x
Dense - 512 10 - x x x


