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Abstract

Synthetic control is a causal inference tool used
to estimate the treatment effects of an interven-
tion by creating synthetic counterfactual data.
This approach combines measurements from
other similar observations (i.e., donor pool) to
predict a counterfactual time series of interest
(i.e., target unit) by analyzing the relationship
between the target and the donor pool before
the intervention. As synthetic control tools are
increasingly applied to sensitive or proprietary
data, formal privacy protections are often re-
quired. In this work, we suggest the first algo-
rithms for differentially private synthetic control
with explicit error bounds based on the analysis
of the sensitivity of the synthetic control query.
Our approach builds upon tools from non-private
synthetic control and differentially private empir-
ical risk minimization. We empirically evaluate
the performance of our algorithms and show fa-
vorable results in a variety of parameter regimes.

1 INTRODUCTION

The fundamental problem of causal inference is that for an
individual unit, we can only observe one of the relevant
outcomes – with a particular treatment or without (Rubin,
1974). To estimate the (causal) effect of a treatment, one
has to produce a counterfactual of the test arm, which is
typically done at a population- and distributional-level via
randomized control trials (RCTs) and A/B testing, yield-
ing average treatment effects. However, controlled trials
are often impossible to implement, and only observational
data are available. Synthetic control is a powerful causal
inference tool to estimate the treatment effect of interven-
tions using only observational data. It has been used both at
an aggregate population level (e.g., countries/cities/cohorts
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of patients etc.), as well as at an individual unit level (Am-
jad et al., 2019; Agarwal et al., 2021a), and has been called
“arguably the most important innovation in the policy eval-
uation literature in the last 15 years” (Athey and Imbens,
2017).

Recently, synthetic control has increasingly been used in
clinical trials where running a randomized control trial
presents logistical challenges (e.g., rare diseases), or ethi-
cal issues (e.g., oncology trials enrolling patients for place-
bos with life threatening diseases) (Thorlund et al., 2020).
Synthetic control has been successfully used to achieve reg-
ulatory approval for new medical treatments for lung can-
cer (Petrone, 2018) and rare forms of leukemia (Gökbuget
et al., 2016), where RCTs would otherwise have been im-
possible. Since these synthetic control analyses are de-
ployed in real-world medical applications, preserving pri-
vacy of sensitive patient data is paramount.

Differential privacy by Dwork et al. (2006) has emerged as
the de facto gold-standard in privacy-preserving data anal-
ysis. It is a mathematically rigorous parameterized pri-
vacy notion, which bounds the maximum amount that can
be learned about any data donor based on analysis of her
data. Differentially private algorithms have been designed
for a wide variety of optimization, learning, and data-driven
decision-making tasks, and have been deployed in practice
by several major technology companies and government
agencies. Despite the growing maturity of the differen-
tial privacy toolkit, the pressing need for a private synthetic
control solution has thus far gone unaddressed.

In this paper, we propose the first algorithms for dif-
ferentially private synthetic control (Algorithm 2 and 3).
These two algorithms naturally extend existing non-private
techniques for synthetic control by first privately estimat-
ing the regression coefficients f̂ that relate a (target) pre-
intervention observation of interest ypre to other simi-
lar (donor) observations Xpre. This is done using output
perturbation and objective perturbation techniques for dif-
ferentially private empirical risk minimization (DP-ERM)
by Chaudhuri et al. (2011) and Kifer et al. (2012). The
algorithm then combines the private regression coeffi-
cients f̂ with privatized post-intervention donor observa-
tions X̃post (also via output perturbation) to predict the
post-intervention target outcome ŷpost = X̃⊤

postf̂ .



Differentially Private Synthetic Control

We provide privacy and accuracy guarantees for each algo-
rithm. For privacy (Theorems 3.1 and 3.4), although our
algorithmic techniques rely on existing approaches, prior
results on privacy do not apply in our setting. DP meth-
ods add noise that scales with the sensitivity of the function
being computed, which is defined as the maximum change
in the function’s output that can be caused by changing a
single donor’s data. However, synthetic control performs
a regression in a vertical way, treating each time point,
rather than one donor’s data point, as one sample – thus,
the transposed setting changes the definition of neighbor-
ing databases, completely altering the impact of a single
donor’s data. The majority of our privacy analysis is de-
voted to computing sensitivity of this new method.

For accuracy guarantees (Theorems 3.2 and 3.5), we bound
the root mean squared error (RMSE) of the algorithm’s out-
put compared to the post-intervention target signal. Our
bounds are comparable to those for non-private synthetic
control (e.g., Amjad et al. (2018)), and in Section C.1.1,
we explicitly show that the RMSE of our algorithm rel-
ative to a non-private version is only greater by a factor
of O(1/ϵ) for output perturbation, which is unavoidable in
most analysis tasks. To better interpret our bounds in terms
of natural problem parameters such as number of samples
and length of observations, we also provide Corollaries C.5
and E.2, which give explicit closed-form upper bounds on
the RMSE under mild assumptions on the underlying data
distribution.

1.1 Related Work

Synthetic Control. Synthetic control (SC) was originally
proposed byAbadie and Gardeazabal (2003) to evaluate the
effects of intervention by creating synthetic counterfactual
data. Its first application was measuring the economic im-
pact of the 1960s terrorist conflict in Basque Country, Spain
by combining GDP data from other Spanish regions prior to
the conflict to construct a synthetic GDP dataset for Basque
Country in the counterfactual world without the conflict.
Synthetic control has since been applied to a wide array of
topics such as estimating the effect of California’s tobacco
control program (Abadie et al., 2010), estimating the ef-
fect of the 1990 German reunification on per capita GDP
in West Germany (Abadie et al., 2015), evaluating health
policies (Kreif et al., 2016), forecasting weekly sales at
Walmart stores (Amjad et al., 2019), and predicting cricket
score trajectories (Amjad et al., 2019).

The core algorithm of synthetic control lies on finding
a relationship between the target time series (e.g., GDP
of Basque Country) and the donor pool (e.g., GDP of
other Spanish regions). The original method by Abadie
and Gardeazabal (2003) used linear regression with a sim-
plex constraint on the weights: the regression coefficients
should be non-negative and sum to one. Since its first intro-

duction, the synthetic control literature has evolved to in-
clude a richer set of techniques, including tools to deal with
multiple treated units (Abadie and L’Hour, 2021; Dube and
Zipperer, 2015), to correct bias (Abadie and L’Hour, 2021;
Ben-Michael et al., 2021), to use Lasso and Ridge regres-
sion instead of linear regression with simplex constraints
(Doudchenko and Imbens, 2016; Amjad et al., 2018), and
to incorporate matrix completion techniques (Athey et al.,
2021; Amjad et al., 2018, 2019). See a review paper by
Abadie (2021) for a detailed survey of these techniques.

The most relevant extension for our work is robust syn-
thetic control (RSC) by Amjad et al. (2018), which com-
prises of two steps: first de-noising the data via hard singu-
lar value thresholding (HSVT), and then learning and pro-
jecting via regression. It assumes a latent variable model
and applies HSVT before running the regression, which re-
duces the rank of the data. RSC also relaxes the simplex
constraints on the regression coefficients and applies un-
constrained Ridge regression. Because of the de-noising
step, RSC can be viewed as an instantiation of principal
component regression (PCR) and the possibility of differ-
entially private PCR has been briefly discussed by Agarwal
et al. (2021b). However, no formal algorithm or analysis
has been put forth until this paper.

Differentially Private Empirical Risk Minimization.
Chaudhuri et al. (2011) first proposed methods for differ-
entially private empirical risk minimization (ERM) for su-
pervised regression and classification. Our first algorithm
uses the output perturbation method by Chaudhuri et al.
(2011), which first computes coefficients to minimize the
loss function between data features and labels, and then
perturbs the coefficients using a high-dimensional variant
of the Laplace Mechanism by Dwork et al. (2006). Our
second algorithm uses the objective perturbation method
by Chaudhuri et al. (2011) and Kifer et al. (2012), which
adds noise directly to the loss function and then exactly op-
timizes the noisy loss. This method tends to provide better
theoretical accuracy guarantees but requires the loss func-
tion to satisfy additional structural properties. These meth-
ods were later extended by Bassily et al. (2014) to include
gradient perturbation in stochastic gradient descent, which
uses a noisy version of randomly sampled points’ contri-
bution to the gradient at each update. This technique pro-
vides tighter error bounds, assuming Lipschitz convex loss
and bounded optimization domain. Wang et al. (2017) fol-
lowed up with a faster gradient perturbation algorithm that
provided a tighter upper bound on error and lower gradient
complexity.

Although the framework by Chaudhuri et al. (2011) is
more general, the analysis and applications focused only
on methods for binary classification. The analysis was later
extended to include ridge regression by Cummings et al.
(2015), which we use in our algorithms. Our algorithms
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for differentially private synthetic control apply DP-ERM
methods to a ridge regression loss function. However, syn-
thetic control applies regression in the transposed dimen-
sion of the data (i.e., along columns rather than rows of the
database), while privacy protections are still required along
the rows, which requires novel analysis to ensure differen-
tial privacy and accuracy.

2 MODEL AND PRELIMINARIES

In this section, we first present our model (Section 2.1)
and then provide relevant background on synthetic control
(Section 2.2) and differential privacy (Section 2.3).

2.1 Our Model

Our model follows the synthetic control framework illus-
trated in Figure 1. We consider a databaseX ∈ Rn×T , also
called the donor pool. The donor poolX consists of n time
series, each observed at times t = 1, . . . , T . We denote
the column vectors of X as x1, · · ·xT ∈ Rn, where each
xt contains observations from all donor time series at time
t. We assume an intervention occurred at a known time
T0 + 1 < T . The first T0 columns of X are collectively
referred to as Xpre, and the remaining T − T0 columns
from data after the intervention are collectively denoted
Xpost, respectively corresponding to the pre- and post-
intervention donor data. We are also given a target unit
y ∈ RT , which can be divided as ypre = (y1, . . . , yT0

)
and ypost = (yT0+1, . . . , yT ).

Figure 1: General data structure for synthetic control. The
donor pool (X) and the target unit (y) are divided into pre-
and post-intervention periods. Synthetic control first per-
forms a vertical regression using the pre-intervention col-
umn vectors xt as features for the label yt for t ∈ [T0]

to estimate regression coefficients f̂ , and then uses this
to project the post-intervention column vectors and predict
ŷpost.

The underlying assumption is that time series in the donor
pool that behave similarly to y before the intervention will
remain similar after the intervention. In this paper, we use
the latent variable model, the same as Amjad et al. (2018),

for the underlying distribution of the data. Our donor data
and target data are noisy versions of the true signal (denoted
M and m respectively), and can be written as follows:

X =M + Z, y = m+ z, (1)

where Z ∈ Rn×T is a noise matrix where each element is
sampled i.i.d. from some distribution with zero-mean, σ2-
variance, and support [−s, s], and z ∈ RT is a noise vector
with elements sampled from the same distribution.

The signals M and m can be expressed in terms of a latent
function g:

Mi,t = g(θi, ρt) mt = g(θ0, ρt) ,∀i ∈ [n], t ∈ [T ],

where θi and ρt are latent feature vectors capturing unit
i’s and time t’s intrinsic characteristics, respectively. We
note that if the intervention is effective, one would expect
to see a change in ρt before and after T0. We make no
assumptions on the latent function g, except in Sections C.2
and E.2, where we assumeM is low rank, i.e., rank(M) =
k for some k ≪ min{n, T}.

Finally, we assume a linear relationship between the fea-
tures of Mi,t and the label mt at all times t ∈ [T0]; that is,
there exists an f ∈ Rn such that,

mt =

n∑
i=1

Mi,tfi, for all t ∈ [T0]. (2)

We assume that all entries of X , M , y, and m lie in a
bounded range, which we rescale to [−1, 1] WLOG, and
that f has ℓ1-norm bounded by 1, as is standard in the syn-
thetic control literature (Abadie and Gardeazabal, 2003).
Formally, we assume:

|xi,t| ≤ 1, |Mi,t| ≤ 1 ∀t ∈ [T ], i ∈ [n],

|yt| ≤ 1, |mt| ≤ 1 ∀t ∈ [T ], and ||f ||1 =

n∑
k=1

|fk| ≤ 1.

(3)

2.2 Synthetic Control

The goal of synthetic control is to predict ypost given X
and ypre. The general approach, outlined in algorithm 1,
is to first use the pre-intervention data D1 := (Xpre,ypre)

to learn an estimate f̂ of the true coefficient vector f . For
each t ∈ [T0], the column vector xt = (X1,t, · · · , Xn,t)

⊤

is treated as a feature vector for label yt. This setup dis-
tinguishes synthetic control from the classic regression set-
ting, as the regression is performed vertically rather than
horizontally. The estimate f̂ is then used along with the
post-intervention donor data to predict the counterfactual
outcome of the target: ŷpost = X⊤

postf̂ , where ŷt = x⊤
t f̂

∀t ∈ {T0 + 1, · · · , T}.
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Algorithm 1 Synthetic control framework (X,ypre, T0, J)
Divide X into pre- and post-intervention observations

X = (Xpre, Xpost)

=


x1,1 · · · x1,T0

...
. . .

...
xn,1 · · · xn,T0


x1,T0+1 · · · x1,T

...
. . .

...
xn,T0+1 · · · xn,T




Step 1: Learn regression coefficients

f̂ = argmin
f∈Rn

J(f ;Xpre,ypre)

Step 2: Predict ypost via projection
Output ŷpost = X⊤

postf̂ ∈ RT−T0

When synthetic control is used for evaluating treatment ef-
fects, it is assumed that the target received a different treat-
ment from the donor pool, and the goal is to predict the
counterfactual outcome under the alternative treatment. In
this case, the treatment effect is evaluated as the difference
between the observed ypost and the counterfactual predic-
tion ŷpost. Even if no intervention occurred at time T0 +1
(or if the target received the same treatment as the donor
pool), then synthetic control can also be used to predict
future observations of the target time series. In that case,
accuracy can be measured as the difference between the
actual observation ypost and the predicted ŷpost. While
the former task is the more common use-case for synthetic
control, we focus our attentions in this work on the latter, in
order to cleanly evaluate accuracy of our algorithms’ pre-
dictions without confounding treatment effects.

The original synthetic control work by Abadie and
Gardeazabal (2003) learned regression coefficients using
ordinary linear regression with a simplex constraint on f̂ ,
i.e., f̂i ≥ 0 ∀i ∈ [n] and

∑
i∈[n] f̂i = 1. Later works

by Amjad et al. (2018, 2019); Doudchenko and Imbens
(2016); Ben-Michael et al. (2021) used penalties such as
Lasso, Ridge, and elastic net regularizers.

In this work, we use Ridge regression—with empirical
loss L(f ;X, y) = 1

T0
||y − X⊤f ||22 and an ℓ2 regularizer

r(f) = λ
2T0

||f ||22—to estimate f̂ , which corresponds to
the following regularized quadratic loss function:

J(f ;D) = L(f ;Xpre,ypre) + r(f) (4)

2.3 Differential Privacy

Differential privacy by Dwork et al. (2006) ensures that
changing a single user’s data will have only a bounded ef-
fect on the outcome of an algorithm. Specifically, it ensures
that the distribution of an algorithm’s output will be similar
under two neighboring databases that differ only in a sin-

gle data record. In the synthetic control setting, where the
analysis goal is to predict the post-intervention target unit
ypost using the donor pool X and its relationship to ypre,
we aim to predict privacy of data records inX but not ypre,
since the target will know their own pre-intervention data.
Note that this is similar to the notion of joint differential
privacy by Kearns et al. (2014), where personalized outputs
to each user need not be private with respect to their own
data, only to the data of others. Thus databasesD = (X,y)
andD′ = (X ′,y) are considered neighboring in our setting
if X and X ′ differ in at most one row and have the same
target unit y.

Definition 2.1 (Differential privacy (Dwork et al., 2006))
A randomized algorithm M with domain D is (ϵ, δ)-
differentially private for all S ⊆ Range(M) and for all
pairs of neighboring databases D,D′ ∈ D,

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr[M(D′) ∈ S] + δ,

where the probability space is over the coin flips of the
mechanism M. If δ = 0, we say M is ϵ-differentially pri-
vate.

Definition 2.2 (ℓ2 sensitivity) The ℓ2 sensitivity of a
vector-valued function f , denoted ∆f , is the maximum ℓ2-
norm change in the function’s value between neighboring
databases:

∆f = max
D,D′ neighbors

||f(D)− f(D′)||2.

A common method for achieving ϵ-differential privacy for
vector-valued functions is the high-dimensional Laplace
Mechanism by Chaudhuri et al. (2011), which privately
evaluates a function f on a dataset D by first evaluating
f(D) and then adding a Laplace noise vector v sampled
according to density p(v; a) ∝ exp

(
− ||v||2

a

)
, with param-

eter a = ∆f
ϵ . Note that this is an extension of the (single-

dimensional) Laplace Mechanism by Dwork et al. (2006),
which would add Laplace noise with parameter ∆f/ϵ to
achieve ϵ-DP for real-valued queries. Alternatively, one
can add Gaussian noise of mean 0 and standard deviation
at least

√
2 ln(1.25/δ)∆f/ϵ to achieve (ϵ, δ)-DP.

Differential privacy is robust to post-processing, meaning
that any downstream computation performed on the out-
put of a differentially private algorithm will retain the same
privacy guarantee. DP also composes, meaning that if an
(ϵ1, δ1)-DP mechanism and an (ϵ2, δ2)-DP mechanism are
performed on the same database, then the entire process is
(ϵ1 + ϵ2, δ1 + δ2)-DP.

3 DIFFERENTIALLY PRIVATE
SYNTHETIC CONTROL (DPSC)

In this section, we present two algorithms for differen-
tially private synthetic control, DPSCout (Algorithm 2)
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and DPSCobj (Algorithm 3). Similar to non-private syn-
thetic control algorithms (e.g., Algorithm 1), both algo-
rithms are divided into two high-level steps: first the al-
gorithm learns an estimate of the regression coefficients
f , and then it uses these coefficients to predict the post-
intervention target unit ypost. To ensure differential pri-
vacy of the overall algorithm, both of these steps must be
performed privately. The second step remains the same for
both, and only the first part differs: DPSCout adds privacy
noise directly to the output of the algorithm (output pertur-
bation), whereas DPSCobj perturbs the objective function
and minimize the noisy objective (objective perturbation).

3.1 DPSC via Output Perturbation DPSCout

Our first algorithm is DPSCout (Algorithm 2), which uti-
lizes output perturbation to achieve differential privacy.
The learning step of this algorithm formalizes synthetic
control as an instance of empirical risk minimization with
the Ridge regression loss function given in Equation (4).
This enables us to apply the Output Perturbation method
by Chaudhuri et al. (2011) for DP-ERM. The algorithm
first learns non-private regression coefficients freg as in
Algorithm 1. It then samples a noise vector v from
a high-dimensional Laplace distribution with parameter
∆freg/ϵ1, as described in Section 2.3. Finally, the pri-
vatized regression coefficient vector is fout = freg + v.

The prediction step uses this coefficient vector to pre-
dict ypost. A simple approach would be to directly pre-
dict ŷpost = X⊤

postf
out; however, this approach would

not provide privacy for the post-intervention donor data
Xpost. Instead, we again apply the high-dimensional
Laplace Mechanism to privatize Xpost by adding a noise
matrix W sampled from a high-dimensional Laplace dis-
tribution with parameter ∆Xpost/ϵ2. The privatized ver-
sion of donor data is X̃post = Xpost +W , which is then
used along with fout to produce the private prediction of
the post-intervention target unit: yout = X̃⊤

postf
out.

The entire algorithm is then (ϵ1 + ϵ2, 0)-differentially pri-
vate by composition of these two steps. We remark that the
algorithm does not output fout, simply because this vector
is typically not of interest in most cases, and is instead con-
sidered only an intermediate analysis step. However, this
vector could be output if desired with no additional pri-
vacy loss because Step 1 of the DPSCout algorithm is ϵ1-
differentially private (Theorem B.1), and this privacy loss
is already accounted for in the composition step.

We provide two main results on the privacy and accuracy
of DPSCout. First, Theorem 3.1 shows that this algorithm
is differentially private. Although our algorithm relies on
algorithmic techniques by Chaudhuri et al. (2011) for DP-
ERM, the vertical regression setup in synthetic control re-
quires novel sensitivity analysis for freg, which constitutes
the bulk of the work required to prove Theorem 3.1. The-

Algorithm 2 DPSC via Output Perturbation
DPSCout(Xpre, Xpost,ypre, n, T, T0, λ, ϵ1, ϵ2)

Step 1: Learn regression coefficients
Learn the regression coefficient freg using Ridge regres-
sion with parameter λ ≥ 0:

freg = argmin
f∈Rn

1

T0
||ypre −X⊤

pref ||22 +
λ

2T0
||f ||22.

Let a = ∆freg

ϵ1
= 4T0

√
8+n

λϵ1

Sample v according to pdf p(v; a) ∝ exp
(
− ||v||2

a

)
Let fout = freg + v

Step 2: Predict ypost via projection
Let b = 2

√
T−T0

ϵ2

Sample each entry of W ∈ Rn×(T−T0) i.i.d. according
to pdf p(W ; b) ∝ exp

(
− ||W ||F

b

)
Let X̃post = Xpost +W

Output yout = X̃⊤
postf

out.

orem 3.2 shows that our DPSCout algorithm produces an
accurate prediction of the post-intervention target unit, as
measured by the standard metric of root mean squared er-
ror (RMSE) with respect to the true signal vector m. In
Section C.2, we also extend Theorem 3.2 to to remove the
dependence on distributional parameters and provide an ex-
pression of RMSE that depends only on the input parame-
ters, under some mild additional assumptions on the distri-
bution of data. Full proofs for Theorems 3.1 and 3.2 are
respectively presented in Sections B and C.

Theorem 3.1 DPSCout of Algorithm 2 is (ϵ1 + ϵ2, 0)-
differentially private.

Theorem 3.2 The estimator yout output by Algorithm 2
satisfies:

RMSE(yout)

≤ ||Mpost||2√
T − T0

(
E[||freg − f ||2] +

4T0
√
8 + n

λϵ1

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

4T0
√
8 + n

λϵ1

)
,

where ||freg||∞ ≤ ψ for some ψ > 0, and RMSE is
the root mean squared error of the estimator, defined as
RMSE(yout) = 1√

T−T0
E[||yout −mpost||2].

Remark 3.3 The accuracy bound grows as O(n), which is
shown to be necessary in Section B.1.1. While this might
be undesirable in most other learning domains, n does not
grow with the problem size in synthetic control settings for
several reasons. Typically, M is assumed to be a low-rank
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matrix and hence X is approximately low rank (Amjad
et al., 2018, 2019). This is not only an assumption, but true
in most cases (Udell and Townsend, 2019). Therefore, there
exists a saturation point where adding additional donors
does not meaningfully improve accuracy (see Section 3.3
for more details). The remaining dependence on T0 can be
handled by setting λ = O(T0) (see Section C.1.1).

3.2 DPSC via Objective Perturbation DPSCobj

We next present our second algorithm for differentially pri-
vate synthetic control, DPSCobj (Algorithm 3), based on
objective perturbation. While Step 2 remains unchanged
relative to Algorithm 2, Step 1 is modified to perturb the
objective function itself and then exactly optimize the per-
turbed objective, instead of first computing the optimal
non-private coefficients and then adding noise. Objective
perturbation has been shown to outperform output pertur-
bation in the standard private ERM setting when the loss
function is strongly convex (Chaudhuri et al., 2011).

The algorithm augments the objective function with two
terms. The first is an additional regularization term to en-
sure λ+∆

T0
-strong convexity (compared to λ

T0
with the regu-

larization term of Algorithm 2). The ∆ parameter is tuned
by the algorithm to ensure that it can still satisfy (ϵ1, δ)-
DP in Step 1, even when ϵ1 is small. The second is the
noise term b⊤f to ensure privacy, where b is sampled from
a high-dimensional Laplace distribution if (ϵ, 0)-DP is de-
sired (i.e., if δ = 0), and from a multi-variate Gaussian
distribution if (ϵ, δ)-DP is desired (i.e., if δ > 0).

The algorithm then exactly optimizes this new objective
function, where the noise term b ensures that this mini-
mization satisfies differential privacy. Although the algo-
rithmic procedure in Step 1 is similar to that of Objective
Perturbation algorithms for DP-ERM by Chaudhuri et al.
(2011) and Kifer et al. (2012), the sensitivity and privacy
analysis again requires substantial novelty because the def-
inition of neighboring databases change and previous work
cannot be immediately applicable to the transposed regres-
sion setting. Finally, Algorithm 3 maintains the same Step
2 process as Algorithm 2 to predict ypost, based on fobj

computed from Step 1. Algorithm 3 is (ϵ1 + ϵ2, δ)-DP by
composition of privacy guarantees from these two steps.

DPSCobj requires an additional parameter c that is used
in the analysis to bound the maximum absolute eigen-
value of 2(X ′

preX
′⊤
pre−XpreX

⊤
pre), which is closely related

to ||∇L(f)||2. Because Xpre and X ′
pre are neighboring

databases, the matrix of interest will only have one column
and one row that are non-zero. In our setting, we use the
fact that all entries of X are in [−1, 1] to derive an upper
bound on this matrix and its eigenvalues. In general, an an-
alyst can use domain expertise or prior knowledge of the
data distribution to choose an appropriate value of c.

Algorithm 3 DPSC via Objective Perturbation
DPSCobj(Xpre, Xpost, ypre, n, T, T0, λ, ϵ1, ϵ2, δ, c)

Step 1: Learn regression coefficients
if ϵ1 > log(1 + 2c

λ + c2

λ2 ) then
Let ϵ0 = ϵ1 − log(1 + 2c

λ + c2

λ2 ) and ∆ = 0
else

ϵ0 = ϵ1
2 and ∆ = c

e(ϵ1/4)−1
− λ

end if
if δ > 0 then

Sample b ∈ Rn from N (0, β2In),

where β =
4T0

√
8+n

√
2 log 2

δ+2ϵ0
ϵ0

else
Sample b ∈ Rn from p(b;β) ∝ exp

(
− ||b||2

β

)
,

where β = min{ 4T0

√
8+n

ϵ0
, c

√
n+4T0

ϵ0
}

end if
Learn fobj by minimizing

J =
1

T0
||ypre −X⊤

pref ||22 +
λ+∆

2T0
||f ||22 +

1

T0
b⊤f .

Step 2: Predict ypost via projection
Let b = 2

√
T−T0

ϵ2

Sample each entry of W ∈ Rn×(T−T0) i.i.d. according
to pdf p(W ; b) ∝ exp

(
− ||W ||F

b

)
Let X̃post = Xpost +W

Output yobj = X̃⊤
postf

obj

We provide two main results on the privacy and accuracy
of DPSCobj . First, Theorem 3.4 shows that our algorithm
is differentially private. To prove privacy in Step 1, we
must consider two cases based on the value of ∆, which
adds additional strong convexity to the loss function if it is
needed. The privacy budget must be allocated differently
within the analysis in the two cases of ∆ = 0 and ∆ > 0.

Theorem 3.5 shows that DPSCobj produces an accurate
prediction of the post-intervention target unit, as measured
as RMSE between its output yobj and the target unit’s post-
intervention signal vector mpost. As with DPSCout, we
also extend Theorem 3.5 in Section E.2 to provide an ex-
plicit closed-form bound on RSME that does not depend on
the distributional parameters. Full proofs for for Theorems
3.4 and 3.5, along with their extensions, are respectively
presented in Sections D and E.

Theorem 3.4 DPSCobj of Algorithm 3 is (ϵ1 + ϵ2, δ)-
differentially private.

Theorem 3.5 The estimator yobj output by Algorithm 3
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satisfies:

RMSE(yobj) ≤ ||Mpost||2√
T − T0

(
E[||(freg − f)||2]

+
2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

2

λ+∆
E[||b||2]

+ 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n

)
,

where ||freg||∞ ≤ ψ for some ψ > 0, and E[||b||2] =√
nT04

√
8+n

√
2 log 2

δ+ϵ0
ϵ0

for Gaussian noise (δ > 0 case)

and E[||b||2] = min{ 4T0

√
8+n

ϵ0
, c

√
n+4T0

ϵ0
} for Laplace

noise (δ = 0 case), and ϵ0, and ∆ are computed internally
by the algorithm.

As in Section 3.1, we remark that while the accuracy bound
of Theorem 3.5 grows as O(n), in our setting n does not
typically grow substantially with the problem size, both in
theory (Amjad et al., 2018, 2019) and in practice (Udell
and Townsend, 2019).

3.3 Comparing DP-ERM and DPSC

In this section, we compare the results of DP-ERM by
Chaudhuri et al. (2011) with our approach. Consider a
Ridge regression task in p-dimensional space with q sam-
ples (i.e., covariates xk ∈ Rp and labels yk ∈ R, ∀k ∈ [q]).
The regression coefficient θ ∈ Rp is learned by a stan-
dard empirical risk minimization process with a regularizer
∝ λ||θ||22. In a typical regression setup where the privacy
goal is to protect one sample xk, corresponding to one indi-
vidual’s data, the sensitivity of the coefficient is ∆θ = 2

qλ
(Chaudhuri et al., 2011). It does not depend on the dimen-
sion p, and the sensitivity decreases as the number of sam-
ples q increases. Intuitively, adding or removing one per-
son’s data should exhibit diminishing marginal effect on the
final model θ as the training sample size grows.

On the other hand, in our transposed setting of synthetic
control, the privacy goal is to protect the i-th entry of each
xk (i.e., an individual’s data are spread across all samples),
the sensitivity is ∆θ = 4q

√
8+p
λ (Lemma 3.7). In this set-

ting, each dimension of the coefficient θ captures how im-
portant the corresponding donor is for explaining the target;
hence the impact of changing i-th person’s data will have
a significant on the i-th dimension of θ, regardless of the
number of individuals in the donor pool. This is at the crux
of why it is more difficult to guarantee privacy in the trans-
posed setting of synthetic control, relative to the standard
regression setting.

3.4 Proof Sketch for Privacy Guarantees

In this section, we outline the proof for privacy guaran-
tees for both algorithms. The full versions with all omitted
proofs are presented in Appendices B and D.

The proof of Theorem 3.1 relies on the privacy of fout in
the learning phase, and then X̃post in the prediction phase.
At a high level, fout is ϵ1-DP through a (non-trivial) ap-
plication of the Output Perturbation algorithm by Chaud-
huri et al. (2011). In the prediction phase, we must show
that sufficient noise is added to ensure X̃post is an ϵ2-DP
version of Xpost. Then privacy of yout comes from the
composition of these two private estimates.

We start by proving that fout is ϵ1-DP.

Theorem 3.6 Step 1 of Algorithm 2 that computes fout is
(ϵ1, 0)-differentially private.

Step 1 of Algorithm 2 instantiates the Laplace mechanism,
and the crux of the proof lies in obtaining the sensitivity
bound of the synthetic control query, which is fundamen-
tally different from the setting of a traditional DP-ERM
(Chaudhuri et al., 2011).

Lemma 3.7 The ℓ2 sensitivity of freg is ∆freg ≤
4T0

√
8+n

λ .

The asymptotic dependence on n and T0 may seem unde-
sirable, but we show that it is unavoidable.

Lemma 3.8 The ℓ2 sensitivity of freg is ∆freg = Ω(
√
n).

Next we move to privacy of X̃post and its role in ensuring
privacy of yout.

Lemma 3.9 The computation of X̃post in Step 2 of Algo-
rithm 2 is (ϵ2, 0)-differentially private.

X̃post is privatized through another instantiation of the
Laplace Mechanism by Dwork et al. (2006). Thus to
prove Lemma 3.9, we only need to bound the sensitiv-
ity of Xpost. We first note that the Frobenius norm of a
matrix X ∈ Rn×(T−T0) is equal to the ℓ2 norm of the
equivalent flattened vectorX ∈ Rn(T−T0) (Horn and John-
son, 2012). Thus implementing the matrix-valued Laplace
Mechanism with noise parameter calibrated to the ℓ2 sen-
sitivity of the flattened matrix-valued query over ϵ will en-
sure (ϵ, 0)-differential privacy. Since all entries in Xpost

are bounded in [−1, 1], each entry can change by at most 2
between two neighboring databases, which can differ in at
most T − T0) entries, hence the ℓ2 sensitivity of flattened
Xpost is 2

√
T − T0.

Finally, we combine Theorem B.1 and Lemma 3.9 to com-
plete the proof of Theorem 3.1. The estimates fout and
X̃post are together (ϵ1 + ϵ2, 0)-differentially private by DP
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composition, and then yout is (ϵ1+ϵ2, 0)-differentially pri-
vate by post-processing.

Since the prediction step of Algorithm 3 is identical to that
of Algorithm 2, we only need to show that fobj is computed
in an (ϵ1, δ)-DP manner (Theorem D.1) to complete the
proof of Theorem 3.4.

Theorem 3.10 Step 1 of Algorithm 3 that computes fobj is
(ϵ1, δ)-differentially private.

We show a proof sketch here and defer the full proof to Ap-
pendix D. At a high-level, the privacy of fobj comes from
a carefully modified instantiation of the Objective Pertur-
bation algorithms by Chaudhuri et al. (2011) and Kifer
et al. (2012). The Objective Perturbation method modifies
the standard Ridge Regression objective function J(f) by
adding an additional regularization term and a noise term
to ensure privacy:

Jobj(f) = J(f) + ∆
2T0

||f ||22 + 1
T0
b⊤f

= L(f) + λ+∆
2T0

||f ||22 + 1
T0
b⊤f ,

where b is a random vector drawn from a high-dimensional
Laplace distribution(δ = 0) or a multivariate Gaussian
distribution(δ > 0).

Notice that Jobj(f) is strongly convex (for any ∆ ≥ 0)
and differentiable. Hence, for any given input dataset D =
{Xpre, ypre} and any fixed parameters (λ, ϵ1, ϵ2, δ), there
exists a bijection between a realized value of the noise term
b and fobj := argminf J

obj(f) given that realized b.1 Let
b(α;D) be noise value that must have been realized when
database D was input and fobj = α was the output. We
can then use this bijection to analyze the distribution over
outputs on neighboring databases via the (explicitly given)
noise distribution. Then, we can express the ratio between
the two distributions over fobj trained from neighboring
databases, and tune the amount of noise depending on the
privacy budget.

The ratio is a product of two terms, Γ(α) and Φ(α; ∆).
The parameter ∆ serves a role to divide the ϵ1 budget
between these two terms, by distinguishing between two
cases. In the first case, ϵ1 is large enough that we can
choose ∆ = 0 and still have some privacy budget (ϵ0) re-
maining to bound Γ(α). In the other case, if ϵ1 is too small
to bound Φ(α; ∆) with ∆ = 0, then we divide the privacy
budget equally between bounding Γ(α) and Φ(α; ∆), and
find an appropriate value for ∆ > 0. For both cases, we
prove that Φ(α; ∆) is upper bounded by eϵ1−ϵ0 (Lemma
D.2) and Γ(α) is upper bounded by eϵ0 (Lemma D.5).
Product of the two upper bounds provides the upper bound
of the ratio, completing the proof of Theorem D.1.

1For a simple analogy, consider the one-dimensional Laplace
Mechanism on query f and database x, which outputs y = f(x)+
Lap(∆f/ϵ). Given f and x, there is a bijection between noise
terms and outputs since the noise term must equal y − f(x).

3.5 Proof Sketch for Accuracy Guarantees

Theorem 3.2 and 3.5 presents accuracy guarantee of
the two algorithms in terms of root mean squared er-
ror (RMSE), defined as follows: RMSE(yout) =

1√
T−T0

E[||yout − mpost||2]. We note that while it may
seem most natural to bound the difference between yout

and ypost, we instead use mpost for two reasons. Firstly,
ypost may not match ypre due to the intervention. Sec-
ondly, mpost captures the true signal that we are trying to
estimate.

The proof aims to bound the expectation using the submul-
tiplicative norm property (i.e., for any matrix A and vector
x, ||Ax||2 ≤ ||A||2||x||2 ≤ ||A||F ||x||2) and the known
distributions of noise terms v (Step 1 of Algorithm 2), b
(Step 1 of Algorithm 3), andW (Step 2 of both algorithms).
For example, we can decompose yout = X̃⊤

postf
out =

(M⊤
post + Z⊤ + W⊤)(freg + v), and compare against

mpost =M⊤
postf .

The full proof of Theorem 3.2 and 3.5 are presented in Ap-
pendices C and E.

4 EMPIRICAL PERFORMANCE

This section presents the empirical performance of both
DPSCout and DPSCobj on synthetic datasets. We cre-
ate four synthetic datasets following the modeling assump-
tions of Section 2.1, with the number of pre-intervention
observations T0 ∈ {10, 100} and the number of donors
n ∈ {10, 100}. We set T = T0 + 3, meaning that the
performance will be measured by RMSE of the next three
data points. More details about the data generation process
can be found in Appendix A.1

For a fair comparison, we use δ = 0 for the objective
perturbation, so the only privacy parameter we consider is
ϵ = ϵ1+ϵ2. We show two experiments, one with fixed ϵ and
varying λ, the other with fixed and varying ϵ. Each experi-
ment was repeated 500 times on each dataset, and the error
bands in all figures show 95% confidence intervals taken
over the randomness in the algorithms. We present four
graphs highlighting the main findings and defer all detailed
plots and additional analyses to Appendix A.

4.1 Results

For the first set of experiments, we fix ϵ1 =
ϵ2 = 50 and vary the regularization parameter λ ∈
{5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000}. The top
two graphs in Figure 3 show that the optimal choice of λ
roughly remains λ = T0 for all sizes of database consid-
ered. The orange and blue curves in the figure correspond-
ing to the two databases with T0 = 10 are approximately
minimized at λ = 10, while the green and red curves with
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Figure 2: Post-intervention RMSE of DPSCout (left) and DPSCobj (right) as a function of λ (top) and as a function of ϵ
(bottom) on four synthetic datasets of varying size.

T0 = 100 are approximately minimized at λ = 100. While
this is clearer in the figure for Objective Perturbation, it is
also true for Output Perturbation, although the U-shape is
less visible due to the larger scale of the y-axis.

Additionally, we observe that the RMSE of the private
methods is larger than that of the non-private method for
smaller λ ≤ 20, with objective perturbation substantially
outperforming output perturbation. Also, the empirical per-
formance of both algorithms is dramatically better than the
theoretical bounds may suggest, which implies potential
room for improvements in the bound of Theorem 3.5. A
more detailed discussion can be found in Appendix A.2.

For the next set of experiments, we fix λ = T0 and run more
experiments with varying ϵ ∈ {2, 4, 10, 20, 40, 100, 200},
where the privacy budget is split equally between Step 1
and Step 2 (i.e., ϵ1 = ϵ2 = ϵ/2.) The bottom two plots
in Figure 2 show that the RMSE diminishes as ϵ grows, as
expected. We continue to observe DPSCobj outperform-
ing DPSCout for most ϵ values. At ϵ = 10 for DPSCout,
we see that RMSE on datasets with n = 100 (red and or-
ange lines) is higher than that of databases with n = 10
(blue and green lines). This is consistent with our theoret-
ical analysis in Section C.1.1 that the RMSE of DPSCout

is O(nϵ ). For DPSCobj , the accuracy bound has an addi-
tional dependency on T0 (Corollary E.2), so the ordering of
performance by database size is less clear.

4.2 Guidance for Hyperparameter Tuning

Both the DPSCout and DPSCobj algorithms require tun-
ing the hyperparameter λ. This parameter plays an impor-
tant role in determining the amount of noise, since it ap-
pears in the sensitivity of f , i.e., ∆f = 4T0

√
8+n

λ . In the-
ory, the optimal choice of this parameter is recommended
to be λ = O(T0) because the regression coefficient in the
objective function is λ

2T0
, and the importance of the reg-

ularizer should not diminish as T0 increases (i.e., as we
have more training data points). We confirm this empiri-
cally by plotting the post-intervention RMSE as a function
of λ (Figure 2, top), which is near-optimal around λ = T0.

5 Conclusion

This paper is the first to propose differentially private ver-
sions of the synthetic control algorithm. We provide algo-
rithms based on output perturbation and objective pertur-
bation, and provide formal privacy and accuracy guaran-
tees for each. Our main technical contribution is a novel
analysis of the sensitivity of regression in the transposed
setting, which also impacted our accuracy analysis. To en-
able practical use of the new tools, we provide a closed-
form accuracy bound for both algorithms under distribu-
tional assumptions and guidance to practitioners for tuning
the parameters of each algorithm.
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A Experimental Settings and Results

In this section, we provide more details about the experiments that were omitted from the main text due to the page limit.

A.1 Synthetic Data Generation

We use synthetic datasets in our experiments, which enables us to observe the impact of varying the relevant parameters
in the data and to match the modeling assumptions of Section 2.1. We create use T0 ∈ {10, 100} and n ∈ {10, 100},
corresponding to both smaller and larger number of donors and observations, and we always use T = T0+3, meaning that
the synthetic control algorithm must predict the next three data points.

The true signals M and m are generated according to a linear model with random slope, formalized as:

Mi,t = θit and mt = θ0t, ∀i ∈ [n], t ∈ [T ],

where the θi are sampled i.i.d. from a truncated Gaussian with mean 4, variance 1, and support [3, 5]. Elements of the noise
terms Z and z are sampled i.i.d. from a truncated Gaussian with mean zero, variance 0.1 and support [−1, 1]. Following
Equation 1, the donor and target data were respectively X =M +Z and y = m+z. Figure 3 shows an example synthetic
dataset generated in this way, with the donor data in grey and the target in red.

Figure 3: Illustration of example synthetic dataset generated with T0 = 10 and n = 10. The target time series is in red,
and the donor time series are all in grey.

In each experiment with a fixed T0 and n, a single database was generated, and then algorithms were run 500 times on each
dataset. We evaluate post-intervention RMSE as the accuracy measure of interest, as in our theoretical results. Error bands
in all figures show 95% confidence intervals, taken over the randomness in the algorithms.

A.2 Optimizing regularization parameter λ

The first question we aim to address in our experiments is the impact of the parameter λ on performance, and guidance
for analysts in their choice of optimal λ. In our first set of experiments, we fixed ϵ1 = ϵ2 = 50, T0 = 10, and n = 10—
other values of ϵ and (T0, n) are considered respectively in Sections A.3 and ??—and empirically measured pre- and
post-intervention RMSE as a function of λ.

Figure 4 shows the post-intervention RMSE of DPSCout, DPSCobj , and non-private synthetic control as a function of λ,
for values λ ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000}.

We observe that the performance of the three methods converges as λ grows large, but that the RMSE of the private methods
is larger than that of the non-private method for smaller λ ≤ 20, with Objective Perturbation substantially outperforming
Output Perturbation.

To aid the analyst in choosing an optimal λ, we observe that the RMSE of DPSC is minimized around λ = T0 for all four
datasets (see Figure 2 in Section 4.1). This is consistent with our theoretical recommendations that λ should be O(T0).
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Figure 4: Behavior of post-intervention RMSE over λ, tested on a synthetic datast with T0 = 10, n = 10 for the synthetic
control methods of non-private SC (blue), DPSCout (green), and DPSCobj (orange).

The U-shape has a natural theoretical explanation: smaller λ increases sensitivity and thus privacy noise and RMSE, while
larger λ increases the weight of the regularization term in the loss function, which will cause all three regularized methods
to converge to each other.

Figure 5: Comparison of post-intervention RMSE in theory versus in practice, usingDPSCout (left) andDPSCobj (right)
on a dataset of size n = 10, T0 = 10.

Figure 5 compares the empirical post-intervention RMSE of DPSCout and DPSCobj with the theoretical guarantees of
Theorem 3.2 and 3.5 instantiated with parameters of our experiments. We observe that the empirical performance of both
algorithms is dramatically better than the theoretical bounds may suggest. We also observe that DPSCobj (right) has
lower empirical error that DPSCout (left), which diverges from our theoretical predictions. This suggests potential room
for theoretical improvements in the bound of Theorem 3.5.

A.3 Effect of privacy paramter ϵ

Next, we address the effect of ϵ in the performance of bothDPSCout andDPSCobj . In these experiments, we use λ = T0
based on the findings in Section A.2 and consider overall privacy budget ϵ = ϵ1 + ϵ2 with ϵ1 = ϵ2 = ϵ/2. That is, the
privacy budget is split evenly between the regression and projection steps in both algorithms. Results are presented for
ϵ ∈ {2, 4, 10, 20, 40, 100, 200}; stronger privacy guarantees (i.e., ϵ ≤ 2) were tested but excluded from the plots due to
substantially higher RMSE values.

Figure 6 shows the post-intervention RMSE of DPSCout and DPSCobj . As is to be expected, error diminishes with
larger ϵ. We also continue to observe DPSCobj outperforming DPSCout for most ϵ values, as in Section A.2. DPSCout

performs slightly better thatn DPSCobj at ϵ = 2 in this dataset (T0 = 10 and n = 10); however, it is not the case for all
datasets (See Figure 2 in Section 4.1).
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Figure 6: Post-intervention RMSE ofDPSCout (blue), andDPSCobj(red) for varying ϵ, tested on a dataset with T0 = 10
and n = 10.

For epsilon-regimes that are closer to the values chosen in practice (i.e., ϵ ≤ 4), the empirical RMSE was too high for
practical use. We suggest a few methods to remedy this in future work. First, a rejection sampling step can be introduced
between the learning and projection steps of each algorithm that compares the noisy fout and the original freg. This step
must also be done differentially privately to maintain the overall privacy guarantee. Additionally, our experiments only
considered pure-DP with δ = 0; relaxing to approximate-DP with δ > 0 would likely yield lower RMSE.

B Privacy Guarantees of DPSCout

In this section, we will prove Theorem 3.1, that DPSC is (ϵ1 + ϵ2, 0)-differentially private. The proof relies on the privacy
of fout in the learning phase, and then X̃post in the prediction phase. At a high level, fout is ϵ1-DP through a (non-trivial)
application of the Output Perturbation algorithm of Chaudhuri et al. (2011). The non-triviality comes from the vertical
regression used in synthetic control, rather than the horizontal regression classically used in empirical risk minimization
(as illustrated in Figure 1), which requires novel sensitivity analysis of the function freg. In the prediction phase, we
must show that sufficient noise is added to ensure X̃post is an ϵ2-DP version of Xpost. Then privacy of yout comes from
post-processing and composition of these two private estimates.

B.1 Privacy of fout

Let us begin by proving that fout is ϵ1-DP.

Theorem B.1 Step 1 of Algorithm 2 that computes fout is (ϵ1, 0)-differentially private.

It might seem that Theorem 3.1 should follow immediately from the privacy guarantees of Output Perturbation in Chaudhuri
et al. (2011). Indeed, Theorem 6 of Chaudhuri et al. (2011) states that a similar algorithm is (ϵ, 0)-DP under certain
technical conditions. However, the proof of this result relies on sensitivity analysis of classical empirical risk minimization
(see Corollary 8 of Chaudhuri et al. (2011)) which does not hold in the synthetic control setting. The crux of the difference
comes from the vertical regression (i.e., along the columns) of synthetic control as illustrated in Figure 1, while privacy must
still be maintained along the rows. Thus the sensitivity of freg to a change in a single donor row is fundamentally different
from the sensitivity in a standard empirical risk minimization setting. See Remark B.5 for a more technical exploration of
this difference. Additionally, while the ERM framework of Chaudhuri et al. (2011) is fully general, their results (including
Theorem 6 and Corollary 8) apply only to the problem setting of binary classification via logistic regression, by assuming
a specific loss function L in the analysis.

Instead, we prove Theorem B.1 primarily using first-principles (i.e., direct sensitivity analysis and the Laplace Mechanism
of Dwork et al. (2006), which also underpins the results of Chaudhuri et al. (2011)) starting with Lemma 3.7. The proof of
Lemma 3.7 and Theorem B.1 will be augmented with one intermediate result for output perturbation from Chaudhuri et al.
(2011) that does apply to our setting, and one fact from Cummings et al. (2015), which extended the binary classification
result of Chaudhuri et al. (2011) to the Ridge regression loss function that we use.
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Lemma 3.7 The ℓ2 sensitivity of freg is ∆freg ≤ 4T0

√
8+n

λ .

To prove Lemma 3.7, we will first use the following lemma from Chaudhuri et al. (2011), which bounds the sensitivity of
freg as a function of the strong convexity parameter of the loss function L.

Lemma B.2 (Chaudhuri et al. (2011), Lemma 7) Let G(f) and g(f) be two vector-valued functions, which are contin-
uous, and differentiable at all points. Moreover, let G(f) and G(f) + g(f) be λ-strongly convex. If f1 = argminf G(f)
and f2 = argminf G(f) + g(f), then

∥f1 − f2∥2 ≤ 1

λ
max
f

∥∇g(f)∥2.

We instantiate this lemma by defining

G(f) = L(f ,D) and g(f) = L(f ,D′)− L(f ,D), (5)

for two arbitrarily neighboring databases D,D′ and defining the following two maximizers:

f1 = argminL(f ,D) = argminG(f) and f2 = argminL(f ,D′) = argminG(f) + g(f).

Then,
∆freg = max

D,D′ neighbors
∥f1 − f2∥2.

To apply Lemma B.2, we must show that G(f) and g(f) are continuous and differentiable. G(f) is simply the Ridge
regression loss function, which is known to be continuous and differentiable Hastie et al. (2009). Since g(f) is the
difference between two continuous and differentiable functions, then it is also continuous and differentiable Boyd and
Vandenberghe (2004). We must also show strong convexity of G(f) and G(f) + g(f). The following lemma from
Cummings et al. (2015) immediately gives that these two functions are both λ-strongly convex.

Lemma B.3 (Cummings et al. (2015), Lemma 32) The Ridge regression loss function with regularizer λ
2T0

is λ
T0

-strongly
convex.

Thus by Lemma B.2, the sensitivity ∆freg = maxD,D′ neighbors ∥f1 − f2∥2 ≤ T0

λ maxf ∥∇g(f)∥2. All that remains is to
bound ∥∇g(f)∥2. A proof of the following lemma is deferred to Appendix F.

Lemma B.4 Let g(f) = L(f ,D′)− L(f ,D) for two arbitrarily neighboring databases D,D′. Then,

max
f

∥∇g(f)∥ ≤ 4
√
8 + n.

Remark B.5 If we were instead considering simple linear regression in the classical setting (i.e., as in Chaudhuri et al.
(2011)) using T0 data points with n dimensional features, g(f) would only contain one term in the error, namely, the one
data point (xi, yi) that differed across two neighboring databases. This yields

g(f) =
1

T0
((x′

i − xi)
⊤f − (y′i − yi))

2

with gradient

∇g(f) = 2

T0
((x′

i − xi)(x
′
i − xi)

⊤f − (y′i − yi)(x
′
i − xi)),

which can be bounded by O( 1
T0
). This result does not depend on the dimension of the features (n) and only depends on the

number of data points (T0).

However, in synthetic control, terms do not cancel as neatly across neighboring databases, and instead,

g(f) =
1

T0

T0∑
t=1

[(
x⊤
t f − yt

)
+
(
x⊤
t f − xi,tfi + x′i,tfi − yt

)]
(x′i,t − xi,t)fi.

Through a more involved analysis of this expression, we get the bound of Lemma B.4, which depends on n, rather than T0.
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Using these lemmas, we can now bound the sensitivity of our query, to complete the proof of Lemma 3.7.

∆freg = max
D,D′ neighbors

||f(D)− f(D′)||2 ≤ max ||f1 − f2|| ≤
4T0

√
8 + n

λ
. (6)

Theorem B.1 then follows from the privacy guarantee of the high-dimensional Laplace Mechanism instantiated with the
appropriate sensitivity value.

B.1.1 Dependence on n

One might wonder whether the asymptotic dependence on n and T0 in the sensitivity is necessary. In practice, one should
set λ = O(T0) (as discussed in greater detail in Section C.1.1), so the dependence on T0 will not affect the accuracy of the
algorithm. However, as we show next in Lemma 3.8, the dependence on n is asymptotically tight.

Lemma 3.8 The ℓ2 sensitivity of freg is ∆freg = Ω(
√
n).

Consider two neighboring databases (X, y) and (X ′, y), where y = 1 ∈ RT0 , X ∈ Rn×T0 has all entries 1/n, except
the first row, which is all 1s. Neighboring database X ′ differs from X only in the first row, which is instead all 0s, and
all other entries and 1/n. The dimensions in this example are chosen to be T0 = n, and we choose λ = 2T0, so that the
regularization coefficient is 1.

Computing the minimizers of the loss functions under each neighboring database using the closed-form expression yields
freg = (XX⊤+ I)−1Xy with the first coordinate equal to n2

n2+2n−1 , and all other coordinates are n
n2+2n−1 , and freg ′ =

(X ′X ′⊤ + I)−1X ′y with first coordinate 0 and all other coordinates −n
1−2n . This yields ℓ2 difference of,

||freg − freg ′||2 =

√(
n2

n2 + 2n− 1

)2

+ (n− 1)

(
n3

(n2 + 2n− 1)(1− 2n)

)2

= Θ(
√
n).

Since we have a pair of neighboring databases with ℓ2 distance in their output of Θ(
√
n), then the sensitivity of freg cannot

be o(
√
n).

Remark B.6 We note that while the example in Lemma 3.8 is mathematically valid, such a degenerate case where all the
donors are identical except for one person and the (exact) rank of the donor matrix is 1 is unlikely to happen in practical
settings. Thus suggests that with additional domain knowledge on the selection criteria for donors, practitioners may be
able to reduce the sensitivity and thus add less noise for privacy in special restricted cases of interest.

B.2 Privacy of X̃post and yout

Next we move to privacy of X̃post and its role in ensuring privacy of yout.

Lemma 3.9 The computation of X̃post in Step 2 of Algorithm 2 is (ϵ2, 0)-differentially private.

X̃post is privatized through a simple application of the Laplace Mechanism of Dwork et al. (2006). Thus to prove Lemma
3.9, we need only to bound the sensitivity of Xpost to show that the algorithm adds sufficient noise. We first note that the
Frobenius norm of a matrixX ∈ Rn×(T−T0) is equal to the ℓ2 norm of the equivalent flattened vectorX ∈ Rn(T−T0) Horn
and Johnson (2012). Thus implementing the matrix-valued Laplace Mechanism with noise parameter calibrated to the ℓ2
sensitivity of the flattened matrix-valued query over ϵ will ensure (ϵ, 0)-differential privacy.

Lemma B.7 The ℓ2 sensitivity of flattened Xpost is 2
√
(T − T0).

Changing one donor unit in Xpost can change at most T − T0 entries in the matrix. Since all entries in Xpost are bounded
in [−1, 1], each data point can change by at most 2 between two neighboring databases. Thus viewing Xpost as a flattened
matrix, this will change the ℓ2-norm of Xpost by at most 2

√
(T − T0).

Finally, we can combine Theorem B.1 and Lemma 3.9 to complete the proof of Theorem 3.1. The estimates fout and
X̃post are together (ϵ1 + ϵ2, 0)-differentially private by DP composition, and then yout is (ϵ1 + ϵ2, 0)-differentially private
by post-processing. We note that if one wanted to publish fout, this would not incur any additional privacy loss.
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C Accuracy Guarantees of DPSCout

In this section we will analyze the accuracy of DPSCout. We first prove Theorem 3.2, restated below for convenience.

Theorem 3.2 The estimator yout output by Algorithm 2 satisfies:

RMSE(yout) ≤ ||Mpost||2√
T − T0

(
E[||freg − f ||2] +

4T0
√
8 + n

λϵ1

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

4T0
√
8 + n

λϵ1

)
,

where ||freg||∞ ≤ ψ for some ψ > 0, and RMSE is the root mean squared error of the estimator, defined as
RMSE(yout) = 1√

T−T0
E[||yout −mpost||2].

This theorem gives bounds on the predicted post-intervention target vector yout, as measured by RMSE. This result is
stated in full generality with respect to the distribution of data and the latent variables, and thus the bound depends on
terms such as ||Mpost||2,2 and E[||freg − f ||2]. This is consistent with comparable bounds on the RMSE of robust
synthetic control Amjad et al. (2018) which also depended on these terms (although the stated bounds of Amjad et al.
(2018) suppress dependence on n). Section C.1 provides a proof of this main result.

Analysts may still wonder about the full asymptotic performance of DPSCout algorithm. To this end, in Section C.2, we
additionally derive closed-form bounds for these distribution-dependent terms (under some mild assumptions). We present
Corollary C.5, which gives a bound on RMSE of yout that depends only on input parameters of the algorithm and the
model.

C.1 Accuracy of post-intervention prediction yout

We will prove Theorem 3.2 by showing that the prediction vector yout output by DPSCout in Algorithm 2 is close to the
true values, as measured by Root Mean Squared Error (RMSE), defined as follows:

RMSE(yout) =
1√

T − T0
E[||yout −mpost||2]. (7)

We note that while it may seem most natural to bound the difference between yout and ypost, we instead use mpost for
two reasons. Firstly, ypost may not even match ypre due to the intervention. Secondly, mpost captures the true signal that
we are trying to estimate, which is the counterfactual outcome without the intervention.

We begin by bounding the expected ℓ2 difference between yout and mpost. Using the fact that

yout = X̃⊤
postf

out = (X⊤
post +W⊤)(freg + v),

and that Xpost =Mpost + Z and m =M⊤
postf (by Equation (2)), we can expand the expectation as follows:

E[||yout −mpost||2] = E[||(X⊤
post +W⊤)(freg + v)−M⊤

postf ||2]
= E[||(M⊤

post + Z⊤ +W⊤)(freg + v)−M⊤
postf ||2]

≤ E[||M⊤
post(f

reg − f)||2 + ||(Z⊤ +W⊤)freg||2 + ||(M⊤
post + Z⊤ +W⊤)v||2]

= E[||M⊤
post(f

reg − f)||2] + E[||(Z⊤ +W⊤)freg||2] + E[||(M⊤
post + Z⊤ +W⊤)v||2] (8)

We next proceed to bound each of the terms in Equation (8) separately, making use of the following submultiplicative norm
property, which holds for any matrix A and vector x:

||Ax||2 ≤ ||A||2||x||2 ≤ ||A||F ||x||2, (9)

where ||A||2 = ||A||2,2 is the spectral norm of A, ||A||F is the Frobenius norm of A, and ||x||2 is the ℓ2 norm of x.

We also know the distribution of the norms of noise terms v and W that were added to preserve privacy, because they were
constructed explicitly within Algorithm 2:

E[||v||2] =
4T0

√
8 + n

λϵ1
and E[||W ||F ] = b =

2
√
T − T0
ϵ2

. (10)
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Using these facts, we can obtain bounds for the three terms in (8). A complete proof of Lemma C.1 can be found in
Appendix F.2.

Lemma C.1 The three terms in Equation (8) can be bounded as follows:

E[||M⊤
post(f

reg − f)||2] ≤ ||Mpost||2,2 · E[||freg − f ||2],

E[||(Z⊤ +W⊤)freg||2] ≤
√
nψ

(√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
, and

E[||(M⊤
post + Z⊤ +W⊤)v||2] ≤

(
||Mpost||2,2 +

√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
4T0

√
8 + n

λϵ1
.

Applying the bounds of Lemma C.1 to Equation (8) yields,

E[||yout −m||2] ≤ ||Mpost||2,2 · E[freg − f ||2] +
√
nψ

(√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
+

(
||Mpost||2,2 +

√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
4T0

√
8 + n

λϵ1

≤ ||Mpost||2,2
(
E[freg − f ||2] +

4T0
√
8 + n

λϵ1

)
+

(√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)(√
nψ +

4T0
√
8 + n

λϵ1

)
Combining this with Equation (7) gives the desired bound for Theorem 3.2:

RMSE(yout) ≤ ||Mpost||2,2√
T − T0

(
E[||freg − f ||2] +

4T0
√
8 + n

λϵ1

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

4T0
√
8 + n

λϵ1

)
.

C.1.1 Cost of privacy in synthetic control

To understand the additional error incurred due to privacy, compare the bound of Theorem 3.1 to the RMSE of the equiva-
lent non-private prediction, yreg = X⊤

postf
reg.

RMSE(yreg) =
1√

T − T0
E[||X⊤

postf
reg −m||2]

=
1√

T − T0
E[||(M⊤

post + Z⊤
post)f

reg −M⊤
postf ||2]

≤ 1√
T − T0

E[||M⊤
post(f

reg − f)||2 + ||Z⊤
postf

reg||2]

≤ ||Mpost||2,2√
T − T0

(E[||freg − f ||2]) +
√
nψ ·

√
nσ2 (11)

Lemma C.6 in the next section shows that E[||freg − f ||2] = O(
√
n). Then the first term of Equation (11) can be easily

bounded using the following fact,
||Mpost||2,2 ≤ ||Mpost||F ≤

√
n(T − T0),

so ||Mpost||2,2√
T−T0

≤
√
n. Thus we see that RMSE(yreg) = O(n).

Comparing Equation (11) with the bound on RMSE(yout) in Theorem 3.1, we observe that the additional terms induced
by privacy are:

||Mpost||2,2√
T − T0

4T0
√
8 + n

λϵ1
+

4T0
√

(8 + n)nσ2

λϵ1
+

√
2nψ

ϵ2
+

4T0
√
2(8 + n)

λϵ1ϵ2
. (12)

Then, using the fact that ||Mpost||2,2√
T−T0

≤
√
n and setting ϵ := ϵ1 = ϵ2 and λ = O(T0), Equation (12) can be bounded by,

4T0
√

(8 + n)n

λϵ
+

4T0
√
(8 + n)nσ2

λϵ
+

√
2nψ

ϵ
+

4T0
√

2(8 + n)

λϵ2
= O

(
n

ϵ
+

√
n

ϵ2

)
= O

(n
ϵ

)
for ϵ ≥ 1/

√
n.
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Thus we conclude that the cost of privacy in the DPSCout algorithm is at most a factor of O( 1ϵ ). The restriction to
ϵ ≥ 1√

n
is consistent with standard practice in both theoretical and practical deployments of differential privacy, and thus

is effectively without loss.

C.2 Closed-form bound on RMSE of Output Perturbation

In this section, we impose assumptions on the underlying data distribution to extend Theorem 3.2 to provide an explicit
closed-form bound on the RMSE. Throughout this section, we make the following three mild assumptions of the distribu-
tion of X , which are required to achieve this closed-form expression:

Assumption C.2 Xpre takes values in a k-dimensional subspace E for some small k ≪ min{n, T0}.

Assumption C.3 The distribution of Xpre over E is isotropic, hence the covariance matrix Cov(Xpre) = Σ = PE where
PE is an orthogonal projection matrix onto E.

Assumption C.4 The distribution of xt ∈ Rn is supported in some centered Euclidean ball with radius O(
√
k).

These assumptions are only slightly stronger than those commonly made in theory Amjad et al. (2018, 2019) and that
typically hold in practice Udell and Townsend (2019). The first assumption means that Xpre is low rank. Assuming Xpre

to be approximately low rank is a common practice in synthetic control literature Amjad et al. (2018, 2019). Indeed, most
large matrices in practice are approximately low-rank Udell and Townsend (2019). Hence, we only further assume that it
is exactly rank k for some small k. The second assumption allows us to apply useful mathematical properties: ||PE ||2 = 1
and trace(PE) = k. Then, E[XpreX

⊤
pre] = trace(Σ) = k and, using Markov’s inequality, we know that most of the

distribution mass should be within a ball of radius
√
m for m = O(k). Hence, the third assumption asserts that not most

but all the probability mass should lie within that ball, i.e., ||X||2,2 = O(
√
k) almost surely.

Corollary C.5 provides a closed-form bound on the RMSE of yout under these assumptions.

Corollary C.5 If Assumptions C.2, C.3, and C.4 hold, then for all ξ ∈ (0, 1) and t ≥ 1, with probability at least 1−n−t2 ,
if T0 ≥ C(t/ξ)2k log n, we have

RMSE(yout) ≤
√
n

(
(
√
2nσ2 +

√
2nσ2s2 )T0 +

λ
2T0

(1− ξ)T0 +
λ

2T0

+
4T0

√
8 + n

λϵ1

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

4T0
√
8 + n

λϵ1

)
.

To derive Corollary C.5 from Theorem 3.2, we only need to derive and apply bounds on ||Mpost||2,2 and E[||freg − f ||2].
As we did before, we bound the first term using

||Mpost||2,2 ≤ ||Mpost||F ≤
√
n(T − T0),

and thus ||Mpost||2,2√
T−T0

≤
√
n. Therefore, the key step is to bound E[||freg − f ||2]. The following lemma provides the

required bound on this term to prove Corollary C.5. The remainder of this section will be devoted to providing a proof
sketch for Lemma C.6. A full proof is presented in Appendix F.3.

Lemma C.6 Let freg = (XpreX
⊤
pre +

λ
2T0

I)−1Xpreypre be the Ridge regression coefficients and let f be the true coef-

ficients. If Assumptions C.2, C.3, and C.4 hold, then for all ξ ∈ (0, 1) and t ≥ 1, with probability at least 1 − n−t2 , if
T0 ≥ C(t/ξ)2k log n, we have,

E[||freg − f ||2] ≤
(
√
2nσ2 +

√
2nσ2s2)T0 +

λ
2T0

(1− ξ)T0 +
λ

2T0

.

[Proof sketch of Lemma C.6.] First we can expand E[||freg − f ||2]:

E[||freg − f ||2] = E[||freg − E[freg] + E[freg]− f ||2]
≤ E[||freg − E[freg]||2] + E[||E[freg]− f ||2]
= E[||freg − E[freg]||2] + E[||Bias(freg)||2]. (13)
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We can bound these two terms separately as:

Bias(freg) ≤ λ

2T0
||(XpreX

⊤
pre +

λ

2T0
I)−1||2,2 and

E[||freg − E[freg]||2] ≤ E[||(XpreX
⊤
pre +

λ

2T0
I)−1||2,2 · ||Xprez −XpreZ

⊤f ||2].

This can be combined back with Equation (13) to yield,

E[||freg − f ||2] ≤ E[||(XpreX
⊤
pre +

λ

2T0
I)−1||2,2 · (||Xprez −XpreZ

⊤f ||2 +
λ

2T0
)]. (14)

Next, we use our assumptions on the data distribution to prove the following lemma about ||(XpreX
⊤
pre +

λ
2T0

I)−1||2,2.

Lemma C.7 If Assumptions C.2, C.3, and C.4 hold, then for all ξ ∈ (0, 1) and t ≥ 1, with probability at least 1 − n−t2

and T0 ≥ C(t/ξ)2k log n, we have

||(XpreX
⊤
pre +

λ

2T0
I)−1||2,2 ≤ 1

(1− ξ)T0 +
λ

2T0

.

To prove Lemma C.7, we use the following lemma about concentration of random matrices.

Lemma C.8 (Corollary 5.52 of Vershynin (2010)) Consider a distribution in Rn with covariance matrix Σ, and sup-
ported in some centered Euclidean ball whose radius we denote

√
m. Let T0 be the number of samples and define the

sample covariance matrix ΣT0 = 1
T0
XX⊤. Let ξ ∈ (0, 1) and t ≥ 1. Then with probability at least 1− n−t2 , one has,

If T0 ≥ C(t/ξ)2||Σ||−1
2,2m log n then ||ΣT0 − Σ||2,2 ≤ ξ||Σ||2,2,

where C is an absolute constant.

We instantiate Lemma C.8 using our assumptions that ||Σ||2,2 = ||PE ||2,2 = 1 and the distribution is supported within
some centered Euclidean ball with radius

√
O(k) to get that with probability at least 1− n−t2 and T0 ≥ C(t/ξ)2k log n,

|| 1
T0
XpreX

⊤
pre − Σ||2,2 ≤ ξ.

We then use this to show that
||XpreX

⊤
pre − T0I||2,2 ≤ ξT0,

and thus all eigenvalues of (XpreX
⊤
pre − T0I) must be at most ξT0, so

(1− ξ)T0 ≤ λmin(XpreX
⊤
pre) ≤ (1 + ξ)T0.

Finally, we can complete the proof of Lemma C.7, by observing that,

||(XpreX
⊤
pre +

λ

2T0
I)−1||2,2 =

1

|λmin(X⊤X) + λ
2T0

|
≤ 1

(1− ξ)T0 +
λ

2T0

.

Returning to Equation (14), we can use this bound — along with the model properties specified in Equation (1) that each
element of z and Z has mean 0, variance σ2, and support [−s, s] — to obtain the desired bound:

E[||freg − f ||2] ≤
1

(1− ξ)T0 +
λ

2T0

E[||Xprez −XpreZ
⊤f ||2 +

λ

2T0
]

≤ 1

(1− ξ)T0 +
λ

2T0

(
(
√
nT0 +

√
nT0s2)E[||z − Z⊤f ||2] +

λ

2T0

)
≤ 1

(1− ξ)T0 +
λ

2T0

(
(
√
nT0 +

√
nT0s2)

√
2T0σ2 +

λ

2T0

)

≤
(
√
2nσ2 +

√
2nσ2s2)T0 +

λ
2T0

(1− ξ)T0 +
λ

2T0

.
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D Privacy Guarantees of DPSCobj

In this section, we prove Theorem 3.4, thatDPSCobj is (ϵ1+ϵ2, δ)-differentially private. This proof relies on composition
of the (ϵ1, δ)-DP learning step and the (ϵ2, 0)-DP prediction step. The prediction step is identical to that of Algorithm 2,
so the privacy of this step follows immediately from Lemma 3.9 (that X̃post is computed in an (ϵ2, 0)-DP manner) and
post-processing on the DP output of Step 1. All the remains to be shown is that fobj is computed in an (ϵ1, δ)-DP manner
(Theorem D.1), and then Theorem 3.4 will follow by basic composition.

Theorem D.1 Step 1 of Algorithm 3 that computes fobj is (ϵ1, δ)-differentially private.

At a high-level, the privacy of fobj comes from a carefully modified instantiation of the Objective Perturbation algorithms
of Chaudhuri et al. (2011); Kifer et al. (2012), with novel sensitivity analysis, again due to the transposed regression setting
of synthetic control (i.e., along columns not rows), where privacy is still required along the rows.

More formally, we start with the standard Ridge Regression objective function J(f), that can be separated into the MSE
loss function L(f) and the regularization term r(f) = λ

2T0
||f ||22 as follows:

J(f) = L(f) + r(f) =
1

T0
||ypre −X⊤

pref ||22 +
λ

2T0
||f ||22.

The Objective Perturbation method modifies J(f) by adding two terms: an additional regularization term and a noise term
to ensure privacy:

Jobj(f) = J(f) +
∆

2T0
||f ||22 +

1

T0
b⊤f = L(f) + λ+∆

2T0
||f ||22 +

1

T0
b⊤f ,

where b is a random vector drawn from a high-dimensional Laplace distribution if δ = 0, and from a multivariate Gaussian
distribution if δ > 0.

Notice that Jobj(f) is strongly convex (for any ∆ ≥ 0) and differentiable. Hence, for any given input dataset D =
(Xpre, ypre) and any fixed parameters (λ, ϵ1, ϵ2, δ), there exists a bijection between a realized value of the noise term b and
fobj := argminf J

obj(f) given that realized b.2 We can then use this bijection to analyze the distribution over outputs on
neighboring databases via the (explicitly given) noise distribution.

To observe this bijection concretely, let b(α;D) be noise value that must have been realized when database D was input
and α = argminf J

obj(f) was output. We can derive a closed-form expression for b(α;D) by computing the gradient of
Jobj(f), which should be zero when evaluated at f = α since α is defined to be the minimizer of Jobj(f):

∇Jobj(f)
∣∣
f=α

= ∇L(α) +∇r(α) +
∆

T0
α+

b(α;D)

T0

!
= 0.

Rearranging the equation yields
b(α;D) = − (T0∇L(α) + T0∇r(α) + ∆α) .

Now, consider two arbitrary neighboring databases D and D′ and an arbitrary output value α. Similar to Chaudhuri et al.
(2011), we can use, e.g., Billingsley (1995) to express the ratio of the probabilities of outputting α on neighboring D and
D′ as:3

Pr(fobj = α | D)

Pr(fobj = α | D′)
=

Pr(b(α;D))

Pr(b(α;D′))

|det(∇b(α;D′))|
|det(∇b(α;D))|

:= Γ(α) · Φ(α; ∆),

where we define Γ(α) := Pr(b(α;D))
Pr(b(α;D′)) and Φ(α; ∆) := |det(∇b(α;D′))|

|det(∇b(α;D))| . In the remainder of the proof, we will bound
Γ(α) ≤ eϵ0 and Φ(α; ∆) ≤ eϵ1−ϵ0 so that the product is bounded by eϵ1 .

The parameter ∆ serves a role to divide the ϵ1 budget between these two terms, by distinguishing between two cases. In the
first case, ϵ1 is large enough that we can choose ∆ = 0 and still have some privacy budget (ϵ0) remaining to bound Γ(α).
In the other case, if ϵ1 is too small to bound Φ(α; ∆) with ∆ = 0, then we divide the privacy budget equally between
bounding Γ(α) and Φ(α; ∆), and find an appropriate value for ∆ > 0.

First, we will show Φ(α; ∆) is upper bounded by eϵ1−ϵ0 .
2For a simple analogy, consider the one-dimensional Laplace Mechanism on query f and database x, which outputs y = f(x) +

Lap(∆f/ϵ). Given f and x, there is a bijection between noise terms and outputs since the noise term must equal y − f(x).
3with abuse of notation to let Pr denote pdf for simplicity of presentation.
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Lemma D.2 If ∆ = 0 and ϵ0 = ϵ1 − log(1 + 2c
λ + c2

λ2 ), or if ∆ = c
eϵ1/4−1

− λ and ϵ0 = ϵ1
2 , then Φ(α; ∆) ≤ eϵ1−ϵ0 .

We start with Lemma D.3 (proved in Appendix G.1), which bounds Φ(α; ∆) as a function of λ, c, and ∆.

Lemma D.3 For any ∆ ≥ 0, Φ(α; ∆) = |det(∇b(α;D′))|
|det(∇b(α;D))| ≤ (1 + c

λ+∆ )2.

Next, we use this result to prove our desired bound that Φ(α; ∆) ≤ eϵ1−ϵ0 . We do this by considering two cases. First,
when ∆ = 0, then Φ(α; ∆ = 0) ≤ 1 + 2c

λ + c2

λ2 ≤ eϵ1−ϵ0 by design, where the first inequality comes from Lemma D.3
and the second inequality is a rearrangement of our choice of ϵ0 = ϵ1 − log(1 + 2c

λ + c2

λ2 ) in this case. In the second case,
∆ = c

eϵ1/4−1
−λ. Plugging this ∆ value into the bound of Lemma D.3 gives Φ(α; ∆) ≤ eϵ1/2 = eϵ1−ϵ0 , where the second

inequality come from our choice of ϵ0 = ϵ1/2. Hence, in both cases, Φ(α; ∆) ≤ eϵ1−ϵ0 .

Then, we bound Γ(α) = Pr(b(α;D))
Pr(b(α;D′)) . Note that this term depends only on the noise distribution, and not on the value of

∆. Algorithm 3 offers two options of noise distributions: Laplace noise when δ = 0, and Gaussian noise when δ > 0.

In the case of Laplace noise, the bound that Γ(α) ≤ eϵ0 follows immediately from the Laplace mechanism instantiated
with privacy parameter ϵ0 and Lemma B.4 to bound the sensitivity. The following lemma is proved in Appendix G.2.

Lemma D.4 When b is sampled according to pdf p(b;β) ∝ exp
(
− ||b||2

β

)
, where β = min{ 4T0

√
8+n

ϵ0
, c

√
n+4T0

ϵ0
}, then

Γ(α) = Pr(b(α;D))
Pr(b(α;D′)) ≤ eϵ0 .

The two different β values come from two different upper bounds on the sensitivity, and the minimum value will give a
tighter bound.

In the case where δ > 0 and the Gaussian Mechanism is used, we cannot simply bound Γ(α) = Pr(b(α;D))
Pr(b(α;D′)) with probability

1. Instead, the bound must incorporate the δ term to bound Γ(α) with probability 1 − δ over the internal randomness of
the algorithm, as in Lemma D.5, formally proven in Appendix G.3.

Lemma D.5 When b ∼ N (0, β2In), where β =
4T0

√
8+n

√
2 log 2

δ+ϵ0
ϵ0

, then Γ(α) = Pr(b(α;D))
Pr(b(α;D′)) ≤ eϵ0 with probability at

least 1− δ.

Finally, we combine the bounds on Φ(α; ∆) and Γ(α) to complete the proof. When δ = 0 with Laplace noise, Lemmas
D.2 and D.4 combine immediately to give that Φ(α; ∆)Γ(α) ≤ eϵ1−ϵ0+ϵ0 = eϵ1 . When δ > 0 and Gaussian noise is used,
we define G to be the good event that Γ(α) ≤ eϵ0 , which we know from Lemma D.5 will happen with at least probability
1− δ. Then conditioned on G we have,

Pr(fobj = α | D,G)
Pr(fobj = α | D′,G)

= Γ(α) · Φ(α; ∆) ≤ eϵ0 · eϵ1−ϵ0 ≤ eϵ1 .

We can then use this fact to derive our desired (unconditioned) privacy bound:

Pr(fobj = α | D) = Pr(G) · Pr(fobj = α | D,G) + Pr(G) · Pr(fobj = α | D,G)
≤ eϵ1 Pr(G) · Pr(fobj = α | D′,G) + δ

≤ eϵ1 Pr(fobj = α | D′) + δ.

Hence, fobj in Algorithm 3 is (ϵ1, δ)-DP and the final output yobj is (ϵ1 + ϵ2, δ)-DP by composition.

E Accuracy Guarantees of DPSCobj

In this section we analyze the accuracy of DPSCobj . We first prove Theorem 3.5, restated below for convenience.

Theorem 3.5 The estimator yobj output by Algorithm 3 satisfies:

RMSE(yobj) ≤ ||Mpost||2√
T − T0

(
E[||(freg − f)||2] +

2

λ+∆
E[||b||2] + 1∆̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n

)
,
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where ||freg||∞ ≤ ψ for some ψ > 0, and E[||b||2] =
√

nT04
√
8+n

√
2 log 2

δ+ϵ0
ϵ0

for Gaussian noise (δ > 0 case) and

E[||b||2] = min{ 4T0

√
8+n

ϵ0
, c

√
n+4T0

ϵ0
} for Laplace noise (δ = 0 case), and ϵ0, and ∆ are computed internally by the

algorithm.

This theorem gives bounds on the predicted post-intervention target vector yobj , as measured by RMSE. Similar to Theorem
3.2, this result is stated in full generality with respect to the distribution of data and the latent variables, and thus the bound
depends on terms such as ||Mpost||2,2 and E[||freg −f ||2]. Section E.1 provides proof of this result, with omitted detailed
deferred to Appendix G.

Comparing the bound of Theorem 3.5 to that of Theorem 3.2 for output perturbation, we see that the difference comes only
from the respective terms E[||(f (out∨obj) − freg)||2]. For output perturbation, the error fout − freg is simply the noise
directly added to the output, so the expected norm of the error is simply the expected norm of the noise, a = 4T0

√
8+n

λϵ1
. For

objective perturbation, the interpretation of these error terms is less straightforward and is instead bounded using Lemma
E.1. As a simple case for comparison, when ∆ = 0 and δ = 0 (i.e., using Laplace noise), the expected difference becomes
E[||(fobj − freg)||2] ≤ min{ 8T0

√
8+n

λϵ0
, 2c

√
n+8T0

λϵ0
}. If the first term is the smaller of the two, then E[||(fobj − freg)||2] is

bigger than E[||(fout − freg)||2] since the denominator is smaller (ϵ0 < ϵ1, assuming the same ϵ1 values for comparison)
and the numerator is bigger due to the factor of 2. If the second term is the minimum, then the upper bound on error is
hard to compare as both the denominator and the numerator are (asymptotically) bigger for output perturbation. In case of
ϵ0 = eps1

2 , the expected difference of output perturbation becomes O(T0
√
n) and that of objective perturbation becomes

O(T0 +
√
n). In this case, we may expect the objective perturbation to yield a better RMSE for a reasonably big T0 and n.

E.1 Accuracy of post-intervention prediction via objective perturbation yobj

We will prove Theorem 3.5, which upper bounds the Root Mean Squared Error (RMSE) of yobj , defined as:

RMSE(yobj) =
1√

T − T0
E[||yobj −mpost||2].

Using the facts that yobj = X̃⊤
postf

obj , X̃post = Xpost +Mpost + Zpost, and mpost =M⊤
postf (by Equation (2)), we can

bound the expectation as follows:

E[||yobj −mpost||2] = E[||X̃⊤
postf

obj −M⊤
postf ||2]

= E[||X̃⊤
postf

obj − X̃⊤
postf

reg + X̃⊤
postf

reg −M⊤
postf ||2]

= E[||(Mpost + Zpost +Wpost)
⊤(fobj − freg) + (Mpost + Zpost +Wpost)

⊤freg −M⊤
postf ||2]

≤ E[||(Mpost + Zpost +Wpost)
⊤(fobj − freg)||2]

+ E[||M⊤
post(f

reg − f)||2] + E[||(Zpost +Wpost)
⊤freg||2], (15)

where the first equality is due to the definition of yobj , the second equality adds and subtracts the same term, the third
equality collects terms and plugs in the expression for X̃post, and the final step is due to triangle inequality.

Lemma C.1 already bounds the last two terms because they do not involve fobj and Step 2 of Algorithms 2 and 3 are the
same. Specifically, we know that,

E[||M⊤
post(f

reg−f)||2] ≤ ||Mpost||2,2E[||freg−f ||2] and E[||(Z⊤
post+W

⊤
post)f

reg||2] ≤
√
nψ(

√
n(T − T0)σ2+ 2

√
T−T0

ϵ2
).

(16)

Thus we only need to bound the first term:

E[||(Mpost + Zpost +Wpost)
⊤(fobj − freg)||2]

≤ E[||M⊤
post(f

obj − freg)||2] + E[||(Zpost +Wpost)
⊤(fobj − freg)||2]

≤ ||Mpost||2E[||fobj − freg||2] + E[||Zpost +Wpost||2]E[||(fobj − freg)||2]

≤ ||Mpost||2E[||fobj − freg||2] + (
√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)E[||(fobj − freg)||2], (17)
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where the first step is simply triangle inequality, the second step is due to the independence of Z,W and fobj , and the third
step comes from the proof of Lemma C.1 (see Appendix F.2), where E[||Zpost+Wpost||2] was bounded as an intermediate
step.

Thus we only need to derive a bound on E[||fobj − freg||2], which we do in Lemma E.1 (formally proven in Appendix
G.4) to complete the proof.

Lemma E.1 The ℓ2 distance between fobj and freg satisfies:

E[||fobj − freg||2] ≤
2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n,

where b and ∆ are computed internally by Algorithm 3.

Combining Equations (15), (16), and (17) with Lemma E.1 completes the proof of Theorem 3.5:

RMSE(yobj) ≤ ||Mpost||2√
T − T0

(
E[||(freg − f)||2] + E[||(fobj − freg)||2]

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ + E[||(fobj − freg)||2]

)
≤ ||Mpost||2√

T − T0

(
E[||(freg − f)||2] +

2

λ+∆
E[||b||2] + 1∆̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n

)
,

where E[||b||2] =
√
nβ =

√
nT0ζ

√
2 log 2

δ+ϵ0
ϵ0

for Gaussian noise and E[||b||2] = min{ 4T0

√
8+n

ϵ0
, c

√
n+4T0

ϵ0
} for Laplace

noise.

E.2 Closed-form bound on RMSE of Objective Perturbation

Using similar analysis as in Section C.2, we can extend Theorem 3.5 to obtain the following closed-form accuracy bound
that depends only on explicit input parameters, under the same distributional assumptions.

Corollary E.2 If Assumptions C.2, C.3, and C.4 hold, then for all ξ ∈ (0, 1) and t ≥ 1, with probability at least 1−n−t2 ,
if T0 ≥ C(t/ξ)2k log n, we have

RMSE(yout) ≤
√
n

(
(
√
2nσ2 +

√
2nσ2s2 )T0 +

λ
2T0

(1− ξ)T0 +
λ

2T0

+
2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n

)

+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n.

)
,

where ||freg||∞ ≤ ψ for some ψ > 0, and E[||b||2] =
√

nT04
√
8+n

√
2 log 2

δ+ϵ0
ϵ0

for Gaussian noise (δ > 0 case) and

E[||b||2] = min{ 4T0

√
8+n

ϵ0
, c

√
n+4T0

ϵ0
} for Laplace noise (δ = 0 case), and ϵ0 and ∆ are computed internally by the

algorithm.

The additional terms that arise due to the noise required to guarantee differential privacy in this setting, relative to the
bound on RMSE(yreg) in Equation (11), are:

(
√
n+

√
nσ2 +

√
2

ϵ2
)

(
2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n

)
+

√
2n

ϵ2
ψ. (18)

To analyze this expression in a simplified way, assume the regularization parameter is λ = O(T0) so T0

λ = O(1), and that
Laplace noise was used (i.e., δ = 0), so that E[||b||2] = O(T0

√
n

ϵ0
). Then the first parenthesis of Equation (18) becomes
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O(
√
n+ 1

ϵ2
), the second parenthesis becomesO(T0

√
n

ϵ0
+T0

√
n), and the additive term becomesO(

√
n

ϵ2
). Since ϵ0 < ϵ1, we

replace ϵ0 by ϵ1 in the bounds. Then Equation (18) is O(T0n
ϵ1

+ T0
√
n

ϵ1ϵ2
) from the product of two parentheses, and omitting

the additive term, which is asymptotically dominated by the others.

Comparing to the cost of privacy in Output Perturbation in Corollary C.5, we see that the bound in Corollary C.5 does not
depend on T0. This additional dependence on T0 arises for Objective Perturbation from the second parenthesis containing
E[||b||2] and the indicator function, which is absent in the output perturbation case.

F Omitted Proofs for DPSCout

F.1 Proof of Lemma B.4

Lemma B.4 Let g(f) = L(f ,D′)− L(f ,D) for two arbitrarily neighboring databases D,D′. Then,

max
f

∥∇g(f)∥ ≤ 4
√
8 + n.

We first re-arrange g(f) in a way that makes it easier to compute the gradient. Let i be the index of the record that differs
between D and D′.

g(f) = L(f ,D′)− L(f ,D)

=
1

T0

T0∑
t=1

[(
n∑

k=1

x′k,tfk

)
− yt

]2
− 1

T0

T0∑
t=1

[(
n∑

k=1

xk,tfk

)
− yt

]2

=
1

T0

T0∑
t=1

∑
j ̸=i

x′j,tfj

− yt + x′i,tfi

2

− 1

T0

T0∑
t=1


∑

j ̸=i

xj,tfj

− yt + xi,tfi


2

=
1

T0

T0∑
t=1

2
∑

j ̸=i

xj,tfj − yt

 (x′i,t − xi,t)fi + (x′
2
i,t − x2i,t)f

2
i


=

1

T0

T0∑
t=1

2
∑

j ̸=i

xj,tfj − yt

+ (x′i,t + xi,t)fi

 (x′i,t − xi,t) fi

=
1

T0

T0∑
t=1

[(
x⊤
t f − yt

)
+
(
x⊤
t f − xi,tfi + x′i,tfi − yt

)]
(x′i,t − xi,t)fi (19)

The second equality comes from the definition of the Ridge regression loss function L; in the third step we pull out the
record i that differs between D and D′; the fourth step combines the sums and cancels terms, including the observation
that

∑
j ̸=i xj,tfj =

∑
j ̸=i x

′
j,tfj . The final two steps also involve rearranging terms.

For notational ease, we define two additional terms,

Dt := x⊤
t f − yt and Et := (x′i,t − xi,t)fi.

Then, Equation (19) becomes

g(f) =
1

T0

T0∑
t=1

(2Dt + Et)Et.

We will take the partial derivatives of Dt and Et with respect to both fi (the index of the data entry that differs between D
and D′) and fj for j ̸= i, and then combine these to arrive at the gradient of g(f):

∂Dt

∂fi
= xi,t;

∂Dt

∂fj
= xj,t;

∂Et

∂fi
= x′i,t − xi,t;

∂Et

∂fj
= 0.
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Now, we compute the derivative of g(f) with respect to fi.

∂g(f)

∂fi
=

1

T0

T0∑
t=1

{(
2
∂Dt

∂fi
+
∂Et

∂fi

)
Et + (2Dt + Et)

∂Et

∂fi

}

=
1

T0

T0∑
t=1

{
(x′i,t + xi,t)Et + (2Dt + Et)(x

′
i,t − xi,t)

}
=

1

T0

T0∑
t=1

{
2x′i,t(x

′
i,t − xi,t)fi + 2(x⊤

t f − yt)(x
′
i,t − xi,t)

}
=

1

T0

T0∑
t=1

2
(
x′i,tfi + x⊤

t f − yt
)
(x′i,t − xi,t) (20)

Next, we compute the derivative of g(f) with respect to fj where j is the index of unchanged donors (j ̸= i). There are
fewer term in this derivative because ∂Et

∂fj
= 0.

∂g(f)

∂fj
=

1

T0

T0∑
t=1

{(2xj,t)Et}

=
1

T0

T0∑
t=1

2xj,t(x
′
i,t − xi,t)fi (21)

Finally, we can use (20) and (21) to derive an upper bound for ||∇g(f)||2.

||∇g(f)||22 =

(
∂g(f)

∂fi

)2

+
∑
j ̸=i

(
∂g(f)

∂fj

)2

=

(
1

T0

T0∑
t=1

2
(
x′i,tfi + x⊤

t f − yt
)
(x′i,t − xi,t)

)2

+
∑
j ̸=i

(
1

T0

T0∑
t=1

2xj,t(x
′
i,t − xi,t)fi

)2

≤ 1

T0

T0∑
t=1

[
2(x′i,tfi + x⊤

t f − yt)(x
′
i,t − xi,t)

]2
+
∑
j ̸=i

[
1

T0

T0∑
t=1

[2xj,t(x
′
i,t − xi,t)fi]

2

]

=
1

T0

T0∑
t=1

4(x′i,tfi + x⊤
t f − yt)

2(x′i,t − xi,t)
2 +

∑
j ̸=i

4x2j,t(x
′
i,t − xi,t)

2f2i


=

4

T0

T0∑
t=1

(x′i,t − xi,t)
2

(x′i,tfi + x⊤
t f − yt)

2 +
∑
j ̸=i

x2j,tf
2
i


=

4

T0

T0∑
t=1

(x′i,t − xi,t)
2

[
(x⊤

t f − yt)
2 + 2x′i,tfi(x

⊤
t f − yt) +

n∑
k=1

x′
2
k,tf

2
i

]
(22)

The second equality comes from plugging in the partial derivatives computed in (20) and (21), the following inequality
comes from applying Jensen’s inequality, and the final three steps come from rearranging, expanding, and simplifying
terms.

We can proceed by bounding the individual terms in (22) using the our modeling assumptions of Equation (3), which give
us that:

(x′i,t − xi,t)
2 ≤ 4, and (x⊤

t f − yt)
2 ≤ 4, and 2x′i,tfi(x

⊤
t f − yt) ≤ 4, and

n∑
k=1

x′
2
k,tf

2
i ≤ n.

Then ||∇g(f)||22 ≤ 128 + 16n and ||∇g(f)||2 ≤ 4
√
8 + n.
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F.2 Proof of Lemma C.1

Lemma C.1 The three terms in Equation (8) can be bounded as follows:

E[||M⊤
post(f

reg − f)||2] ≤ ||Mpost||2,2 · E[||freg − f ||2],

E[||(Z⊤ +W⊤)freg||2] ≤
√
nψ

(√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
, and

E[||(M⊤
post + Z⊤ +W⊤)v||2] ≤

(
||Mpost||2,2 +

√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
4T0

√
8 + n

λϵ1
.

We prove these three bounds separately. Most steps follow from the sub-multiplicative norm property of Equation (9) and
the bounds on the noise terms of Equation (10).

First,

E[||M⊤
post(f

reg − f)||2] ≤ E[||Mpost||2,2 · ||freg − f ||2]
≤ ||Mpost||2,2E[freg − f ||2].

Next,

E[||(Z⊤
post +W⊤)freg||2] ≤ E[||Zpost +W ||2 · ||freg||2]

≤ E[||Zpost +W ||2 ·
√
n||freg||∞]

≤ E[||Zpost +W ||2 ·
√
nψ]

≤
√
nψ · E[||Zpost||2 + ||W ||2]

≤
√
nψ · E[||Zpost||F + ||W ||F ]

≤
√
nψ
(√

n(T − T0)σ2 + b
)

≤
√
nψ

(√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
,

where the second step comes from the relationship between the ℓ2 norm and the ℓ∞ norm, and the third step comes from
our definition that ||freg||∞ ≤ ψ for some ψ > 0.

Finally,

E[||(M⊤
post + Z⊤

post +W⊤)v||2] ≤ E[||Mpost + Zpost +W ||2,2||v||2]
= E[||Mpost + Zpost +W ||2,2] · E[||v||2]

≤ E[||Mpost||2,2 + ||Zpost||2,2 + ||W ||2,2] ·
4
√
8 + n

λϵ1

≤ (||Mpost||2,2 + E[||Zpost||F + ||W ||F ]) ·
4
√
8 + n

λϵ1

≤
(
||Mpost||2,2 +

√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
4
√
8 + n

λϵ1
,

where the second step holds because Zpost, W and v are all independent of each other.

F.3 Proof of Lemma C.6

Lemma C.6 Let freg = (XpreX
⊤
pre +

λ
2T0

I)−1Xpreypre be the Ridge regression coefficients and let f be the true coef-

ficients. If Assumptions C.2, C.3, and C.4 hold, then for all ξ ∈ (0, 1) and t ≥ 1, with probability at least 1 − n−t2 , if
T0 ≥ C(t/ξ)2k log n, we have,

E[||freg − f ||2] ≤
(
√
2nσ2 +

√
2nσ2s2)T0 +

λ
2T0

(1− ξ)T0 +
λ

2T0

.
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First we can expand E[||freg − f ||2]:

E[||freg − f ||2] = E[||freg − E[freg] + E[freg]− f ||2]
≤ E[||freg − E[freg]||2] + E[||E[freg]− f ||2]
= E[||freg − E[freg]||2] + E[||Bias(freg)||2], (23)

where
Bias(freg) = E[freg]− f = −λ(XpreX

⊤
pre + λI)−1f .

Hence, we only need to bound the two terms: ||Bias(freg)||2 and E[||freg − E[freg]||2], which we do next. First,

||Bias(freg)||2 = || − λ(XpreX
⊤
pre + λI)−1f ||2

≤ λ||f ||2||(XpreX
⊤
pre + λI)−1||2,2

≤ λ||(XpreX
⊤
pre + λI)−1||2,2,

where the last inequality uses the fact that the ℓ1 norm of f is 1, which also upper bound the ℓ2 norm. Next,

E[||freg − E[freg]||2] = E[||freg − (f +Bias(freg))||2]
= E[||(XpreX

⊤
pre + λI)−1Xpreypre − f + λ(XpreX

⊤
pre + λI)−1f ||2]

= E[||(XpreX
⊤
pre + λI)−1Xpre(M

⊤
pref + zpre)− f + λ(XpreX

⊤
pre + λI)−1f ||2]

= E[||(XpreX
⊤
pre + λI)−1Xpre(X

⊤
pref − Z⊤

pref + zpre)− f + λ(XpreX
⊤
pre + λI)−1f ||2]

= E[||(XpreX
⊤
pre + λI)−1(XpreX

⊤
pre + λI)f − f

+ (XpreX
⊤
pre + λI)−1(Xprezpre −XpreZ

⊤
pref)||2]

= E[||(XpreX
⊤
pre + λI)−1(Xprezpre −XpreZ

⊤
pref)||2]

≤ E[||(XpreX
⊤
pre + λI)−1||2,2 · ||Xprezpre −XpreZ

⊤
pref ||2],

where the first four steps come respectively from plugging in expressions of E[freg], (freg and Bias(freg)), ypre, and
Mpre. The fifth and sixth steps come from rearranging and canceling terms, and the final inequality comes from the
submultiplicative norm property of Equation (9).

Plugging everything back to (23) yields,

E[||freg − f ||2] ≤ E[||freg − E[freg]||2] + E[||Bias(freg)||2]
≤ E[||(XpreX

⊤
pre + λI)−1||2,2 · ||Xprezpre −XpreZ

⊤
pref ||2 + λ||(XpreX

⊤
pre + λI)−1||2,2]

= E[||(XpreX
⊤
pre + λI)−1||2,2 · (||Xprezpre −XpreZ

⊤
pref ||2 + λ)] (24)

Next, we use our assumptions on the data distribution to prove the following lemma about ||(XpreX
⊤
pre + λI)−1||2,2.

Lemma C.7 If Assumptions C.2, C.3, and C.4 hold, then for all ξ ∈ (0, 1) and t ≥ 1, with probability at least 1 − n−t2

and T0 ≥ C(t/ξ)2k log n, we have

||(XpreX
⊤
pre +

λ

2T0
I)−1||2,2 ≤ 1

(1− ξ)T0 +
λ

2T0

.

[Proof of Lemma C.7] A key component of the proof of Lemma C.7 is the following lemma about concentration of random
matrices.

Lemma C.8 (Corollary 5.52 of Vershynin (2010)) Consider a distribution in Rn with covariance matrix Σ, and sup-
ported in some centered Euclidean ball whose radius we denote

√
m. Let T0 be the number of samples and define the

sample covariance matrix ΣT0 = 1
T0
XX⊤. Let ξ ∈ (0, 1) and t ≥ 1. Then with probability at least 1− n−t2 , one has,

If T0 ≥ C(t/ξ)2||Σ||−1
2,2m log n then ||ΣT0 − Σ||2,2 ≤ ξ||Σ||2,2,

where C is an absolute constant.
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To instantiate Lemma C.8, we view the data Xpre as T0 samples corresponding to the columns xt ∈ Rn, ∀t ∈
{1, 2, · · · , T0}. We use our assumptions that X takes values in a k-dimensional subspace E, and Σ = PE where PE

is the orthogonal projection from Rn onto E. Then, the effective rank of Σ is r(Σ) = trace(Σ)
||Σ||2 = k by definition, because

||Σ||2,2 = ||PE ||2,2 = σmax(PE) = λmax(PE) = 1, since eigenvalues of an orthogonal projection matrix are either
0 or 1 as shown in Lemma 19 of Amjad et al. (2018). Then, E[||X||22,2] = trace(Σ) = k||Σ||2,2 = k||PE ||2,2 = k.
Using Markov’s inequality, most of the distribution should be within a ball of radius

√
m where m = O(k). Finally, let us

assume that all the probability mass is within that ball, i.e., ||X||2,2 = O(
√
k) almost surely. Then, Lemma C.8 holds with

T0 ≥ C(t/ϵ)2k log n samples. This is also noted in Remark 5.53 of Vershynin (2010).

To translate this to our setting, we see that with probability at least 1− n−t2 , if T0 ≥ C(t/ξ)2k log n, then

|| 1
T0
XpreX

⊤
pre − Σ||2,2 ≤ ξ. (25)

Since Σ = PE is an orthogonal projection matrix, ||PE ||2,2 = 1. We apply triangle inequality to obtain,

|| 1
T0
XpreX

⊤
pre − PE ||2,2 ≥

∣∣∣∣|| 1T0XpreX
⊤
pre||2,2 − ||PE ||2,2

∣∣∣∣ = ∣∣∣∣|| 1T0XpreX
⊤
pre||2,2 − 1

∣∣∣∣ ≥ || 1
T0
XpreX

⊤
pre − I||2,2.

Combining this with Equation (25), we can bound

|| 1
T0
XpreX

⊤
pre − I||2,2 ≤ ξ, or equivalently, ||XpreX

⊤
pre − T0I||2,2 ≤ ξT0. (26)

We will use this latter expression to obtain a lower bound on the minimum singular value of XpreX
⊤
pre, and then use it to

bound ||(XpreX
⊤
pre + λI)−1||2,2 from above.

Note that since ||A||2,2 is the maximum singular value of matrixA, the upper bound of ξT0 of Equation (26) should hold for
all singular values of A. For symmetric matrices such as XpreX

⊤
pre + T0I , the singular values are also the absolute values

of its eigenvalues. This means that all eigenvalues λ⋆ of XpreX
⊤
pre − T0I must satisfy |λ⋆(XpreX

⊤
pre − T0I)| ≤ ξT0.

Therefore, this bound must also hold for the smallest eigenvalue λmin(·):

|λmin(XpreX
⊤
pre − T0I)| ≤ ξT0

⇐⇒ |λmin(XpreX
⊤
pre)− T0| ≤ ξT0

⇐⇒ (1− ξ)T0 ≤ λmin(XpreX
⊤
pre) ≤ (1 + ξ)T0

By plugging in the lower bound on the minimum singular value of XpreX
⊤
pre, we arrive at the desired bound to complete

the proof of Lemma C.7.

||(XpreX
⊤
pre + λI)−1||2 = σmax((XpreX

⊤
pre + λI)−1)

=
1

σmin(XpreX⊤
pre + λI)

=
1

|λmin(X⊤X) + λ|

≤ 1

(1− ξ)T0 + λ
.

Returning to Equation (24), we can use this bound to obtain,

E[||freg − f ||2] ≤ E[||(XpreX
⊤
pre + λI)−1||2,2 · (||Xprez −XpreZ

⊤f ||2 + λ)]

≤ 1

(1− ξ)T0 + λ
E[||Xprez −XpreZ

⊤f ||2 + λ] (27)
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The expectation term in Equation (27) becomes,

E[||Xprezpre −XpreZ
⊤
pref ||2 + λ] = E[||(Mpre + Zpre)zpre − (M + Zpre)Z

⊤
pref ||2 + λ]

≤ E[||Mpre(zpre − Z⊤
pref)||2 + ||Zpre(zpre − Z⊤

pref)||2 + λ]

≤ ||Mpre||2,2E[||zpre − Z⊤
pref ||2] + E[||Zpre||2,2 · ||zpre − Z⊤

pref ||2] + λ

= ||Mpre||FE[||zpre − Z⊤
pref ||2] + E[||Zpre||F · ||zpre − Z⊤

pref ||2] + λ

≤
√
nT0E[||zpre − Z⊤

pref ||2] +
√
nT0s2E[||zpre − Z⊤

pref ||2] + λ

= (
√
nT0 +

√
nT0s2)E[||zpre − Z⊤

pref ||2] + λ,

where the first step is plugging in for Xpre, the second step is triangle inequality, the third and fourth steps are due to the
submultiplicative norm property, the fifth step comes from the definition of the Frobenius norm, the fact that Mpre and
Zpre are both of dimension n× T0, and bounds on data entries. The final step collects terms.

Finally, we need only to obtain a bound on E[||zpre − Z⊤
pref ||2].

E[||zpre − Z⊤
pref ||2] ≤ E


√√√√ T0∑

t=1

(zt − Z⊤
t f)2


(a)

≤

√√√√ T0∑
t=1

E[(zt − Z⊤
t f)2]

=

√√√√ T0∑
t=1

E[z2t − 2ztZ⊤
t f + (Z⊤

t f)2]

(b)
=

√√√√ T0∑
t=1

(σ2 + E[(Z⊤
t f)2])

=

√√√√T0σ2 +

T0∑
t=1

E[
n∑

i=1

(zifi)2])

(c)
=

√√√√T0σ2 +

T0∑
t=1

n∑
i=1

E[z2i f2i ])

=

√√√√T0σ2 +

T0∑
t=1

n∑
i=1

σ2f2i

=

√√√√T0σ2 +

T0∑
t=1

σ2||f ||22

(d)

≤

√√√√T0σ2 +

T0∑
t=1

σ2

=
√

2T0σ2

Inequality (a) is due to Jensen’s inequality. The step in (b) is because E[ztZ⊤
t f ] = E[zt]E[Z⊤

t f ] = 0 by independence
of noise terms. The step in (c) is by the same logic as in (b), since all cross-terms fifj for i ̸= j are zero in expectation.
Lastly, we bound the ℓ2 norm of f by ℓ1 norm instead in (d) (i.e., ||f ||2 ≤ ||f ||1 ≤ 1).

Hence,

E[||Xprezpre −XpreZ
⊤
pref ||2 + λ] ≤ (

√
nT0 +

√
nT0s2)

√
2T0σ2 + λ

= T0
√
2nσ2 + T0

√
2nσ2s2 + λ



Saeyoung Rho, Rachel Cummings, Vishal Misra

Finally, combining this with Equation (27) gives the desired bound to complete the proof of Lemma C.6.

E[||freg − f ||2] ≤
(
√
2nσ2 +

√
2nσ2s2)T0 + λ

(1− ξ)T0 + λ
.

G Omitted Proofs for DPSCobj

G.1 Proof of Lemma D.3

Lemma D.3 For any ∆ ≥ 0, Φ(α; ∆) = |det(∇b(α;D′))|
|det(∇b(α;D))| ≤ (1 + c

λ+∆ )2.

Recall that b(α;D) is the noise value that must have been realized when database D was input and α = argminf J
obj(f)

was output. Since Jobj(f) is strongly convex for any ∆ and is differentiable, the closed-form expression for b(α;D) is
derived by computing the gradient of Jobj(f), which should be zero when evaluated at its minimizer f = α:

∇Jobj(f)
∣∣
f=α

= ∇L(α) +∇r(α) +
∆

T0
α+

b(α;D)

T0

!
= 0.

Rearranging the equation yields

b(α;D) = − (T0∇L(α;D) + T0∇r(α) + ∆α) .

For ease of notation, let A = −∇b(α;D) and E = ∇b(α;D)−∇b(α;D′). Then,

Φ(α; ∆) =
|det(∇b(α;D′))|
|det(∇b(α;D))|

=
|det(−∇b(α;D′))|
|det(−∇b(α;D))|

=
|det(A+ E)|

|det(A)|
.

By definition, A = −∇b(α;D) = T0(∇2L(α;D)+∇2r(α))+∆In. Using the Hessians ∇2L(α;D) = 2
T0
XpreX

⊤
pre and

∇2r(α) = λ
T0
In, A can be expressed as

A = 2XpreX
T
pre + (λ+∆)In.

To express E succinctly, let neighboring databases D = (X, y) and D′ = (X ′, y) differ in the j-th row. Then,

E = 2(X ′
preX

′⊤
pre −XpreX

⊤
pre) =


2(||x′

j ||22 − ||xj ||22) (j, j)

2(x′
j − xj)

⊤xi (j, i) or (i, j) , ∀i ∈ [n], i ̸= j

0 otherwise
(28)

where xi (resp. x′
i) denotes the i-th person’s data, which is the i-th row of Xpre (resp. X ′

pre).

Note that all eigenvalues of A are at least λ+∆ > 0 (i.e., λmin(A) ≥ λ+∆) because XpreX
⊤
pre is positive-semi-definite,

and thus A is full rank. Also, rank(E) = 2. This allows us to apply the following lemma.

Lemma G.1 (Lemma 2 of Chaudhuri et al. (2011)) If A is full rank and E has rank at most 2,

det(A+ E)− det(A)

det(A)
= λ1(A

−1E) + λ2(A
−1E) + λ1(A

−1E)λ2(A
−1E),

where λi(Z) is i-th eigenvalue of matrix Z.

Let λ|max|(Z) = maxi |λi(Z)|, the maximum absolute of eigenvalue of matrix Z. Instantiating Lemma G.1 yields:

Φ(α; ∆) =
|det(A+ E)|

|det(A)|

=

∣∣∣∣det(A+ E)− det(A)

det(A)
+ 1

∣∣∣∣
= |1 + λ1(A

−1E) + λ2(A
−1E) + λ1(A

−1E)λ2(A
−1E)|

≤ 1 + |λ1(A−1E)|+ |λ2(A−1E)|+ |λ1(A−1E)λ2(A
−1E)|

≤ 1 + 2λ|max|(A
−1E) + λ|max|(A

−1E)2,
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where the first inequality is simply triangle inequality, and the second inequality bounds all absolute eigenvalues by the
maximum one λ|max|.

Assume that λ|max|(E) ≤ c for some constant c. Since E is a real-valued matrix, such a finite c exist. In Algorithm 3, c is
explicitly taken as an input parameter. Then,

λ|max|(A
−1E) ≤

λ|max|(E)

λmin(A)
≤ c

λ+∆
.

Finally,

Φ(α; ∆) ≤ 1 + 2λ|max|(A
−1E) + λ|max|(A

−1E)2 ≤ 1 +
2c

λ+∆
+

c2

(λ+∆)2
≤
(
1 +

c

λ+∆

)2

.

G.2 Proof of Lemma D.4

Lemma D.4 When b is sampled according to pdf p(b;β) ∝ exp
(
− ||b||2

β

)
, where β = min{ 4T0

√
8+n

ϵ0
, c

√
n+4T0

ϵ0
}, then

Γ(α) = Pr(b(α;D))
Pr(b(α;D′)) ≤ eϵ0 .

We can start by re-writing Γ(α) as follows, where the first line directly comes from the pdf Pr(b;β), the second line is
due to reverse triangle inequality, and the third line is from the definition of b(α;D) and canceling terms that occur in both
b(α;D) and b(α;D′):

Γ(α) = exp

(
− 1

β

∣∣ ||b(α;D)||2 − ||b(α;D′)||2
∣∣)

≤ exp

(
− 1

β
||b(α;D)− b(α;D′)||2

)
=exp

(
1

β
||T0∇L(α;D′)− T0∇L(α;D)||2

)
. (29)

Next, we can continue to bound Equation (29) in two different ways, corresponding to the two possible values of β. The
two values come from two different upper bounds on the sensitivity, and the minimum value will give a tighter bound.

The first upper bound uses Lemma B.4, and its notation of g(f) = L(f ,D′)− L(f ,D) for neighboring databases D,D′.
Then we can bound:

(29) ≤ exp

(
1

β
||T0∇g(α)||2

)
≤ exp

(
1

β
4T0

√
8 + n

)
.

Hence, setting β ≥ 4T0

√
8+n

ϵ0
makes Γ(α) ≤ eϵ0 .

The second upper bound is based on c, and will yield a tighter bound when c is small. Recall that matrix E is defined in
Equation (28), and that c is the upper bound λ|max|(E) ≤ c. By plugging in ∇L(α) = 1

T0

(
2XpreX

⊤
preα− 2Xpreypre

)
,

we can alternatively bound:

(29) = exp

(
1

β
||2(X ′

preX
′⊤
pre −XpreX

⊤
pre)α+ 2(Xpre −X ′

pre)ypre||2
)

≤ exp

(
1

β
||2(X ′

preX
′⊤
pre −XpreX

⊤
pre)α||2 +

1

β
||2(X ′

pre −Xpre)ypre||2
)

≤ exp

(
1

β
||Eα||2 +

4T0
β

)
≤ exp

(
1

β
||E||2,2||α||2 +

4T0
β

)
≤ exp

(
c
√
n+ 4T0
β

)
,
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where the second step is due to triangle inequality, the third step is plugging in the definition of E and bounding the second
term based on the worst-case X ′

pre − Xpre, which is all zeros with just one row with all 2’s, and worst-case ypre, which
is all 1’s). The fourth step is the submultiplicative property of operator norms, and the final step is due to the fact that
||E||2,2 = λ|max|(E) ≤ c and that all elements of α ∈ [−1, 1]n are bounded by 1. Then setting β ≥ c

√
n+4T0

ϵ0
ensures

Γ(α) ≤ eϵ0 .

If either of the above conditions on β holds, then Γ(α) ≤ eϵ0 as desired. Thus we can choose β =

min{ 4T0

√
8+n

ϵ0
, c

√
n+4T0

ϵ0
} that at least one will be satisfied. Taking the minimum rather than just one allows for a lower β

and hence lower noise magnitude, while still satisfying the privacy requirement.

G.3 Proof of Lemma D.5

Lemma D.5 When b ∼ N (0, β2In), where β =
4T0

√
8+n

√
2 log 2

δ+ϵ0
ϵ0

, then Γ(α) = Pr(b(α;D))
Pr(b(α;D′)) ≤ eϵ0 with probability at

least 1− δ.

The proof of Lemma D.5 follows a similar structure to Lemma 14 of Kifer et al. (2012). We include the full proof for
completeness. Let the noise term b be sampled from a multivariate Gaussian distribution N (0, β2In), and let D and D′

be two arbitrary neighboring databases. Let h(α) = b(α;D′)− b(α;D) Then, we can express Γ(α) as,

Γ(α) =
exp(− ||b(α;D)||22

2β2 )

exp(− ||b(α;D′)||22
2β2 )

= exp(
1

2β2
(||b(α;D′)||22 − ||b(α;D)||22))

= exp(
1

2β2
(||b(α;D) + h(α)||22 − ||b(α;D)||22))

= exp(
1

2β2
(2⟨b(α;D), h(α)⟩+ ||h(α)||22)), (30)

where the first step is from the distribution of noise b, the final step is a binomial expansion applied to norms.

Note that,

h(α) = b(α;D′)− b(α;D)

= T0(∇L(α;D)−∇L(α;D′))

= −T0∇g(α),

where g(α) = L(α,D′)−L(α,D), as defined in Equation (5). By Lemma B.4, we know that ||∇g(α)||2 ≤ 4
√
8 + n, so

also
||h(α)||2 ≤ 4T0

√
8 + n. (31)

Similarly, because b is sampled from a multivariate Gaussian distribution N (0, βIn) and sum of Gaussian variables is also
Gaussian, then,

⟨b(α;D), h(α)⟩ ∼ N (0, β2||h(α)||22).

Since the exact distribution is known, we use a Gaussian tail bound to find a well-behaving set of b.

Lemma G.2 (Chernoff bound for Gaussian Wainwright (2019)) Let Z ∼ N (0, σ2). Then, for all t > σ,

P [Z ≥ t] ≤ exp(− t2

2σ2
).

We instantiate Lemma G.2 with Z = ⟨b(α;D), h(α)⟩ and t = β||h(α)||2
√
2 log 2

δ . Note that t > σ for any δ > 1/2.
Then,

Pr

[
⟨b(α;D), h(α)⟩ ≥ β||h(α)||2

√
2 log

2

δ

]
≤ δ

2
,
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which, by Equation (31) implies that,

Pr

[
⟨b(α;D), h(α)⟩ ≥ β(4T0

√
8 + n)

√
2 log

2

δ

]
≤ δ

2
. (32)

Define a set of values of b, corresponding the the good event described by Equation (32): GOOD =

{b | ⟨b(α;D), h(α)⟩ ≤ β(4T0
√
8 + n)

√
2 log 2

δ }. By definition, Pr[b ∈ GOOD] ≥ 1 − δ. That is, with probability
at least 1− δ, the noise vector b is in the well-behaving set GOOD.

When b ∈ GOOD, then we can complete the bound on Γ(α) from Equation (30), combining the bound on ||h(α)||22 from
Equation (31):

Γ(α) = exp(
1

2β2
[2⟨b(α;D), h(α)⟩+ ||h(α)||22]) ≤ exp

(
1

2β2
[2β(4T0

√
8 + n)

√
2 log

2

δ
+ (4T0

√
8 + n)2]

)
.

Finally, the goal is to bound Γ(α) ≤ eϵ0 , in the case where b ∈ GOOD. Solving the expression above for β yields

β ≥ 1

2

 (4T0
√
8 + n)

√
2 log 2

δ

ϵ0
+

√
(4T0

√
8 + n)22 log 2

δ

ϵ20
+

(4T0
√
8 + n)2

ϵ0


=

1

2

(
4T0

√
8 + n

ϵ0

(√
2 log

2

δ
+

√
2 log

2

δ
+ ϵ0

))
(33)

Note that choosing

β ≥
(4T0

√
8 + n)

√
2 log 2

δ + ϵ0

ϵ0

satisfies the bound of Equation (33).

Thus Γ(α) ≤ eϵ0 , conditioned on b ∈ GOOD, which occurs with probability at least 1− δ.

G.4 Proof of Lemma E.1

Lemma E.1 The ℓ2 distance between fobj and freg satisfies:

E[||fobj − freg||2] ≤
2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n,

where b and ∆ are computed internally by Algorithm 3.

Recall the objective functions Jobj and Jreg:

Jobj(f) = L(f) + λ+∆

2T0
∥f∥22 +

1

T0
b⊤f and Jreg(f) = L(f) + λ

2T0
∥f∥22,

with their respective minimizers fobj and freg. Define another objective function J# and its minimizer f#,

J#(f) = L(f) + λ+∆

2T0
∥f∥22

which is a noise-free variant of Jobj .

We will express the difference between freg and fobj using f# as an intermediate value:

∥freg − fobj∥2 = ∥freg − f# + f# − fobj∥2 ≤ ∥freg − f#∥2 + ∥f# − fobj∥2. (34)
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We will bound these two terms separately, starting with ∥f# − fobj∥2. It is known that Jobj is (λ+∆
T0

)-strongly convex,
and that the gradient of of Jobj evaluated at its minimizer fobj is zero. Then by the definition of strong convexity,

∥f# − fobj∥22 ≤
(
Jobj(f#)− Jobj(fobj)

) 2T0
λ+∆

. (35)

We can proceed to bound the difference in the objective function Jobj at these two points:

Jobj(f#)− Jobj(fobj) =

(
J#(f#) +

1

T0
b⊤f#

)
−
(
J#(fobj) +

1

T0
b⊤fobj

)
=
(
J#(f#)− J#(fobj)

)
+

(
1

T0
b⊤f# − 1

T0
b⊤fobj

)
≤ 0 +

1

T0
∥b∥2∥f# − fobj∥2

where the inequality is due to the fact that J#(f#) ≤ J#(fobj), since f# is the minimizer of J#.

Plugging this into Equation (35) gives

∥f# − fobj∥22 ≤ 1

T0
∥b∥2∥f# − fobj∥2

2T0
λ+∆

,

or equivalently,

∥f# − fobj∥2 ≤ ∥b∥2
2

λ+∆
.

To bound the first term of Equation (34), we observe that if ∆ = 0, then J# = Jreg and thus f# = freg, so ∥freg −
f#∥2 = 0. Thus we only need to bound the distance when ∆ ̸= 0.

We can write freg and f# using their closed-form expressions,

freg = (XpreX
⊤
pre +

λ

2T0
I)−1Xpreypre and f# = (XpreX

⊤
pre +

λ+∆

2T0
I)−1Xpreypre,

and use these to bound the difference:

∥freg − f#∥2 = ∥
(
(XpreX

⊤
pre +

λ

2T0
I)−1 − (XpreX

⊤
pre +

λ+∆

2T0
I)−1

)
Xpreypre∥2

≤
(
(∥(XpreX

⊤
pre +

λ

2T0
I)−1∥2 + ∥((XpreX

⊤
pre +

λ+∆

2T0
I)−1)−1∥2

)
∥Xpreypre∥2 (36)

The spectral norm of a general form ∥(XX⊤ + λI)−1∥2 can be bounded by the inverse of minimum singular value of the
matrix XX⊤ + λI , which is positive semi-definite and has minimum singular value at least λ:

∥(XX⊤ + λI)−1||2 ≤ 1

σmin(XX⊤ + λI)
≤ 1

λ
.

Using this fact, we can further bound Equation (36) as,

∥freg − f#∥2 ≤
(
2T0
λ

+
2T0
λ+∆

)
∥Xpreypre∥2

≤ 2T0

(
1

λ
+

1

λ+∆

)
||Xpre||F ||ypre||2

≤ 2T0

(
1

λ
+

1

λ+∆

)√
nT0

√
T0

=

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n.

Finally, we combine Equation (34) with bounds on both terms to yield:

E[∥freg − fobj∥2] ≤ E[∥f# − fobj∥2] + 1∆ ̸=0E[∥freg − f#||2]

≤ 2

λ+∆
E[∥b∥2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n.


