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Abstract

Discriminative Feature Feedback is a setting first
introduced by Dasgupta et al. (2018), which pro-
vides a protocol for interactive learning based on
feature explanations that are provided by a human
teacher. The features distinguish between the la-
bels of pairs of possibly similar instances. That
work has shown that learning in this model can
have considerable statistical and computational
advantages over learning in standard label-based
interactive learning models.

In this work, we provide new robust interactive
learning algorithms for the Discriminative Fea-
ture Feedback model, with mistake bounds that
are significantly lower than those of previous ro-
bust algorithms for this setting. In the adversarial
setting, we reduce the dependence on the num-
ber of protocol exceptions from quadratic to lin-
ear. In addition, we provide an algorithm for a
slightly more restricted model, which obtains an
even smaller mistake bound for large models with
many exceptions. In the stochastic setting, we
provide the first algorithm that converges to the
exception rate with a polynomial sample complex-
ity. Our algorithm and analysis for the stochastic
setting involve a new construction that we call
Feature Influence, which may be of wider appli-
cability.

1 INTRODUCTION

Interactive Machine Learning is an umbrella term for set-
tings in which the learning algorithm interactively obtains
feedback from the environment while learning. Such set-
tings, and especially Active Learning, have drawn much
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interest in recent years, as interactivity can significantly
improve the results of learning (see, e.g., Hanneke et al.,
2014). Incorporating human feedback beyond labels into the
interactive process has a great potential for further improve-
ments, as it can allow learning with less data, and can result
in more accurate models that are also more interpretable.

We consider Discriminative Feature Feedback, an inter-
active learning model first introduced by Dasgupta et al.
(2018). This model provides a formal framework for the
idea that human teachers can in many cases provide expla-
nations for the reasons why certain examples should be
classified in a specific way, based on a comparison between
examples. For instance, when classifying patients according
to their underlying condition, an expert may explain that
patient A does not have the same condition as patient B,
even though their parameters may seem similar, because
patient A has a blood test result that is inconsistent with the
condition of patient B. Dasgupta et al. (2018) showed that
this richer type of feedback can make learning significantly
easier than standard label-based approaches. An important
property of the Discriminative Feature Feedback model is
that the a-priori number of possible features (the dimen-
sionality of the problem) need not be bounded. Indeed, the
provided mistake bounds are independent of the number of
possible features.

The model proposed in Dasgupta et al. (2018) was nonethe-
less limited, as it required the feedback from the human
teacher to always conform to the Discriminative Feature
Feedback protocol. Deviations from the protocol can oc-
cur because of human error, as well as because of inherent
exceptional behavior of certain examples, such as patients
who have a rare condition that is difficult to identify using
available measures. Dasgupta and Sabato (2020) showed
that handling such deviations effectively requires relaxing
the protocol assumptions of the original model, and consid-
ered a setting in which a bounded amount (number or rate)
of exceptions from the feature feedback protocol is allowed.
Under this relaxation, they provided robust algorithms for
the adversarial setting and for the stochastic setting with
dimension-independent mistake bounds. However, the mis-
take bounds derived in Dasgupta and Sabato (2020) depend
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very strongly on the exception threshold: In the adversar-
ial setting, the mistake bound is quadratic in the number
of exceptions, and in the stochastic setting, whenever the
exception rate is non-zero, the mistake rate of the algorithm
does not converge to the exception rate.

In this work, we provide new algorithms for the adversarial
setting and for the stochastic setting, which obtain signifi-
cantly improved mistake bounds. For the adversarial setting,
we achieve a linear dependence on the number of excep-
tions, and in the stochastic case we show that it is possible
to converge to the exception rate, with a polynomial sample
complexity. We also show that in the adversarial setting, a
slightly more restricted feature feedback model leads to a
significantly improved mistake bound. Lastly, we show that
the algorithms can be made parameter-free while keeping
the mistake bound the same up to logarithmic factors.

Our algorithm and analysis for the stochastic setting employ
a new construction that we call Feature Influence, which
may be of wider applicability. This construction allows
separating the cost of identifying candidate features from
the cost of constructing a low-error classification model over
these features, and provides a generic recipe for constructing
learning algorithms for a wide range of interactive settings.

Paper structure We discuss related work in Sec. 2. Sec. 3
provides the formal definition of the setting and specific
previous results. Sec. 4 presents robust algorithms for the
agnostic setting. Sec. 5 provides algorithms for the stochas-
tic setting. We conclude in Sec. 6. Some proofs are deferred
to Appendices.

2 RELATED WORK

Several previous works studied explanation-based interac-
tive learning in various application domains. Teso and Ker-
sting (2019) use interactive local machine-generated ex-
planations with user-based corrections to guide interactive
learning. Schramowski et al. (2020) show how deep neural
network learning can be improved using interactive expla-
nations. Guo et al. (2022) studied the effect of explanation-
based interactive learning on learning outcomes.

Other works specifically suggest using some form of a fea-
ture feedback to improve learning results. (Croft and Das,
1990) studied the use of weakly predictive features, and vari-
ations of this idea were studied in various applications such
as text and vision (Raghavan et al., 2005; Druck et al., 2008;
Settles, 2011; Mac Aodha et al., 2018; Liang et al., 2020).
Poulis and Dasgupta (2017); Visotsky et al. (2019) studied
formal versions of these approaches and their impact on the
sample complexity.

Interactive learning with user feedback that provides fea-
tures distinguishing between instances have been used in
computer vision (Branson et al., 2010; Zou et al., 2015).

The formal Discriminative Feature Feedback setting was
first introduced in Dasgupta et al. (2018), and the first ro-
bust algorithms for this setting were proposed in Dasgupta
and Sabato (2020). In the next section, we provide a for-
mal definition of the setting and discuss relevant previous
results.

3 SETTING AND PRELIMINARIES

The formal definition of the Discriminative Feature Feed-
back model provided below follows Dasgupta et al. (2018)
and Dasgupta and Sabato (2020). Let X be the domain
of examples, and let Y be a finite domain of labels. Let
c∗ : X → Y be the unknown target concept mapping exam-
ples to labels. Let Φ be a set of binary features, where each
feature ϕ ∈ Φ is some predicate ϕ : X → {true,false}.
Φ can be infinite, and is not necessarily known to the learner.
Φ is assumed to be closed under negation.

The Discriminative Feature Feedback protocol is defined
with respect to a component representation which is
unknown to the learner: For an integer m, let G =
{G1, . . . , Gm} be a set of m subsets of X (components)
that cover the domain, X = ∪i∈[m]Gi. For x ∈ X , let G(x)
be some G ∈ G such that x ∈ G. It is assumed that each
G ∈ G has an associated label ℓ(G) ∈ Y , and for each
x ∈ X , c∗(x) = ℓ(G(x)). Note that components with the
same label may overlap.

The central assumption of the Discriminative Feature Feed-
back model is that for any two Gi, Gj such that ℓ(Gi) ̸=
ℓ(Gj), there exists a discriminative feature ϕ(Gi, Gj), such
that x satisfies ϕ(Gi, Gj) if x ∈ Gi, and x does not satisfy
ϕ(Gi, Gj) if x ∈ Gj . Note that there could be more than
one potential discriminative feature between two compo-
nents. We denote by ϕ(·, ·) a specific choice of such features
that satisfies ∀i, j, ϕ(Gj , Gi) = ¬ϕ(Gi, Gj).

We first describe the feature feedback interactive learning
protocol in the pure, noiseless model. Each iteration of the
protocol is of the following form:

• A new instance xt arrives.

• The learning algorithm provides a predicted label ŷt,
and an instance x̂t which was previously observed with
that label. This instance serves as the explanation for
the predicted label: “xt is assigned label ŷt because x̂t

was assigned label ŷt”.

• If the prediction is correct, no feedback is obtained
from the teacher.

• If the prediction is incorrect, the teacher provides the
correct label yt = c∗(x), and the discriminative feature
ϕ(G(xt), G(x̂t)). This feature explains why xt should
be labeled differently from x̂t.
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For example, if the instances represent animal species and
the labels represent the type of each animal, then a discrimi-
native feature ϕ between a dolphin and a halibut could be
“has gills”, explaining why a dolphin is not a fish.

Dasgupta and Sabato (2020) relaxed the above model to al-
low deviations from the protocol, and studied the adversarial
setting and the stochastic setting. In the adversarial setting,
the input stream is arbitrary, and it is assumed that there
exists a representation of size m such that the interaction
with the teacher conforms to the protocol above, except for
at most k exceptions. Here, an exception can mean that
the teacher provides a label that is inconsistent with the
representation or a discriminative feature that is inconsistent
with the representation, or both. In the stochastic setting, it
is assumed that the input stream is drawn i.i.d. from some
distribution over X , and that there exists a representation of
size m such that the interaction with the teacher conforms
to the protocol above except for a rate of at most ϵ of excep-
tions. Note that in both cases, there can be more than one
pair of representation size (m) and exception threshold (k or
ϵ) that are consistent with the input; The bounds discussed
below hold for all such pairs.

We use standard O(·) notation to indicates implicit constant
factors, and Õ(·) to indicate implicit logarithmic factors.
Dasgupta et al. (2018) provided an algorithm (henceforth de-
noted DFF18) for the adversarial setting with no exceptions,
with a mistake bound of O(m2). It was shown in Dasgupta
and Sabato (2020) that this is the best possible dependence
on m. Dasgupta and Sabato (2020) further showed that de-
scribing a representation of size m with k exceptions using
a different representation with zero exceptions may require
Ω(|Φ|) components. Thus, to obtain mistake bounds that
are independent of |Φ|, robust algorithms that can handle
exceptions directly are crucial. Recall that Φ can be infinite,
thus bounds that depend on |Φ| are undesirable.

Dasgupta and Sabato (2020) provided robust algorithms for
the adversarial setting and for the stochastic setting with
mistake bounds of O(m2k +mk2) and Õ(m2ϵ+m2/

√
n)

respectively, where n is the length of the stochastic input
stream. These mistake bounds incur a substantial penalty
for each exception. In this work, we derive new algorithms
that obtain significantly improved mistake bounds. In partic-
ular, in the adversarial setting we prove a mistake bound of
m(m− 1)+mk, giving a linear dependence on the number
of exceptions instead of a quadratic dependence, and in the
stochastic case we show that it is possible for the mistake
rate to converge exactly to the exception rate with a poly-
nomial sample complexity, unlike the previous bound that
only converges to m2 times the exception rate.

4 ALGORITHMS FOR THE
ADVERSARIAL SETTING

In this section, we consider the adversarial setting. In this
setting, the input stream can be arbitrary, and it is parameter-
ized only by the representation size m, and by the number of
exceptions from the feature-feedback protocol with respect
to this representation, which we assume is upper bounded
by an integer k. In Sec. 4.1, we derive a robust algorithm for
this setting with a mistake bound that avoids the quadratic
dependence on k of the algorithm proposed in Dasgupta and
Sabato (2020). The mistake bound is proved in Sec. 4.2. In
Sec. 4.3, we study a more restricted representation model
that assumes a unique label for each component, and show
that under this model it is possible to obtain a mistake bound
of 2m(m − 1) + 6k. This is a substantially lower depen-
dence on the number of exceptions for large models. This
result pinpoints the challenge of improving the mk term in
the unrestricted representation model to a specific property
of this model: the sharing of labels between components.

4.1 An Improved Robust Algorithm for the
Adversarial Setting

We present a new robust algorithm for the adversarial setting
with an improved mistake bound. Surprisingly, unlike the
algorithm proposed in Dasgupta and Sabato (2020), this
new algorithm is only slightly different from the non-robust
DFF18. SR-DFF (Simple Robust DFF) is listed in Alg. 1.
Like DFF18, SR-DFF keeps track of the following infor-
mation: The first labeled example (x0, y0); A decision list
L, which is represented as a list of prediction rules; Each
rule in L has a conjunction C[x] of features from Φ, where
x is some example from X that represents the rule, and
a label associated with the rule, denoted label[x]. The
conjunctions in the list are iteratively refined based on the
feedback from the teacher. A rule is created if an example
that matches none of the existing conjunctions appears. A
rule is refined if mistakes occur on an example that matched
the rule. A rule is deleted if it becomes too long. As we
show below, a rule can become too long if it was refined
using feedback based on exceptions, or if the rule itself was
created based on an exception. The option to delete a rule is
the main change compared to DFF18.

We derive the following mistake bound for SR-DFF.

Theorem 1. Suppose that the input stream is consistent with
some representation of size m with at most k exceptions.
Then SR-DFF makes at most m(m− 1) +mk mistakes.

This mistake bound is a factor of k smaller compared to the
mistake bound of O(m2k +mk2) of the robust algorithm
of Dasgupta and Sabato (2020). Unlike the non-robust al-
gorithm DFF18, SR-DFF requires the maximal number of
components m as input. The robust algorithm of Dasgupta
and Sabato (2020) required both m and k as input, thus this
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Algorithm 1 SR-DFF: A simple robust Discriminative Fea-
ture Feedback algorithm for the adversarial setting
Input: Maximal number of components m.

1: t← 0; Get the label y0 of the first example x0.
2: Initialize L to an empty list.
3: while true do
4: t← t+ 1; Get next example xt.
5: if ∃C[x̂] ∈ L such that xt satisfies C[x̂] then
6: Predict label[x̂] and provide explanation x̂.
7: if prediction is incorrect then
8: Get correct label yt and feature ϕ.
9: C[x̂] := C[x̂] ∧ ¬ϕ

10: if |C[x̂]| ≥ m then
11: Delete C[x̂] from L.
12: else (no relevant rule exists)
13: Predict y0 and provide explanation x0.
14: if prediction is incorrect then
15: Get correct label yt and feature ϕ.
16: Add to L an empty conjunction C[xt]
17: Set label[xt]← yt.

is an improvement for robust algorithms. Moreover, the
following theorem shows that the requirement to have m
as input can also be relaxed, while keeping the order of the
mistake bound the same up to logarithmic factors.
Theorem 2. Suppose that the input stream is consistent with
some representation of size m with at most k exceptions.
Let UB(m, k) := m(m − 1) + mk be the mistake upper
bound proved in Theorem 1. There exists a parameter-free
robust algorithm with a mistake bound of

32UB(m, k) log2(8UB(m, k)) = Õ(m2 +mk).

This theorem is proved in App. A. We now turn to prove the
main mistake bound, Theorem 1.

4.2 Bounding the Mistakes of SR-DFF

We now prove Theorem 1 that bounds the number of mis-
takes made by SR-DFF. Assume some representation G of
size m such that the input has at most k exceptions with
respect to this representation. We call a rule maintained by
the algorithm corrupted if at least one of the features in its
conjunction was added in line 9 when the example xt was
an exception. We say that a rule C[x] was created by an ex-
ception if x is an exception. Note that a rule can be created
by an exception and still not be considered corrupted. Call
non-exception examples valid examples. Call rules created
by valid examples valid rules.

We start by proving several invariants of the algorithm. First,
we prove that valid non-corrupted rules are always satisfied
by a whole component in the representation G.
Lemma 3. At all times in the algorithm, if C[x̂] is a valid
and non-corrupted rule, then: C[x̂] is satisfied by every

example in G(x̂), and for every feature ϕ in C[x̂], there is
some valid example x ∈ X such that ϕ(G(x̂), G(x)) = ϕ.

Proof. We prove the claim by induction on the length of
C[x̂]. When C[x̂] is first created, it is an empty conjunction
so it is satisfied by all of G(x̂). When C[x̂] is refined by
¬ϕ, since the rule is not corrupted, the example x for which
ϕ was provided is valid, hence ¬ϕ = ϕ(G(x̂), G(x)). This
implies that G(x̂) has no examples that are satisfied by ϕ.
Hence, after adding ¬ϕ to C[x̂], the refined C[x̂] is still
satisfied by G(x̂) and is separated by ϕ from G(x).

Next, we prove that two non-corrupted valid rules have
representatives from different components.

Lemma 4. For any two valid non-corrupted rules C[x] and
C[x′] that exist at the same time in L, G(x) ̸= G(x′).

Proof. Suppose x was observed earlier in the input se-
quence and x′ was observed later; Since C[x] and C[x′]
were both created, this means that C[x], in its form when
x′ was observed, was not satisfied by x′. But by Lemma 3,
C[x] is always satisfied by G(x). Hence, x′ /∈ G(x), which
implies the claim.

Next, only rules affected by exceptions might be deleted.

Lemma 5. If the rule C[x̂] is deleted then at least one of
the two holds: x̂ is an exception or C[x̂] is corrupted.

Proof. Assume for contradiction that x̂ is not an exception
and C[x̂] is not corrupted, but rule C[x̂] is deleted. Thus,
the conjunction C[x̂] has at least m features. By Lemma 3,
for each feature in C[x̂] there is some valid example x such
that G(x) is separated from G(x̂) using that feature. More-
over, after C[x̂] is refined with this feature, no additional
examples from G(x) will be satisfied by this rule. Thus,
each component can contribute at most one feature to C[x̂].
Since there are m components in G, there are at most m− 1
features in C[x̂], a contradiction to the size of C[x̂].

We bound the total number of mistakes by first bounding
the total number of rules created by the algorithm.

Lemma 6. SR-DFF creates at most m+ k rules.

Proof. By Lemma 4, at any time in the algorithm, the total
number of valid non-corrupted rules is at most the number
of components, m. Moreover, by Lemma 5, such rules are
never deleted. Therefore, the total number of such rules that
are generated by the algorithm is at most m. In addition, any
one exception cannot both generate a new rule and corrupt
an existing one. Therefore, the total number of corrupted
rules and rules generated by exceptions over the entire run
of the algorithm is at most k. Thus, the total number of rules
created by the algorithm is at most m+ k.
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The proof of Theorem 1 is now immediate: Any rule that
makes m mistakes is of length m and is thus deleted. There-
fore, each rule makes at most m − 1 mistakes, except for
rules that end up being deleted, which make m mistakes. By
Lemma 6, at most m+ k rules are created by the algorithm,
and by Lemma 5, at most k of them are deleted. Thus, the
total number of mistakes made by the algorithm is at most
m(m− 1) +mk. This completes the proof of Theorem 1.

4.3 An Improved Mistake Bound for a Restricted
Model

According to the mistake bound in Theorem 1, every ad-
ditional exception can result in as many as m additional
mistakes. Is there an algorithm that pays only a constant
number of mistakes for every additional exception in the
adversarial setting? We now show that such an algorithm
does exist for a more restricted representation model. It
remains open whether a similar result can be obtained for
the general model. In the restricted model, each component
has a unique label.

Theorem 7. Suppose that the input stream is consistent with
some representation of size m with at most k exceptions.
Suppose further that each component has a unique label.
Then there exists a (randomized) algorithm with an expected
number of mistakes of at most 2m(m− 1) + 6k.

The uniqueness of the label is used by the algorithm to
identify which rule needs correction in the case of a mistake.
This pinpoints the challenge for the general representation
model, and may help in the future to obtain a similar result
for that model, or prove its impossibility. The algorithm is
listed in Alg. 2. It accepts parameters p ∈ [0, 1] and l ∈ N.
Theorem 7 is proved using l = m− 1 and p = 1/(m− 1).

Similarly to SR-DFF, Alg. 2 refines rules based on feedback
on incorrect labels. In addition to the list of rules, Alg. 2 also
maintains a counter U for each rule, of the number of up-
dates that have been applied to the rule.1 When U becomes
too large, the rule is deleted. An important difference from
SR-DFF is in the behavior of the algorithm when no rule is
consistent with the example. In this case, when getting the
true label of the example, if no rule with this label already
exists, the algorithm creates one with an independent proba-
bility of p. If such a rule does exist, then one of the features
in its conjunction that disagree with the current example is
removed; Note that such a feature must exist, otherwise the
rule would be consistent with the example.

The deletion mechanism allows the algorithm to correct
corrupted rules using subsequent examples. Several key
ideas are incorporated into the algorithm, and lead to a
mistake bound with only a constant factor over k:

1For simplicity, we include in the count of updates also cases
where an updated was avoided due to inconsistency (line 9 in
Alg. 2) and term these also “updates” below.

Algorithm 2 Robust Discriminative Feature Feedback for
the adversarial setting under the unique-label assumption
Input: p ∈ [0, 1], l ∈ N

1: t← 0; Get the label y0 of the first example x0.
2: Initialize L to an empty list.
3: while true do
4: t← t+ 1; Get next example xt.
5: if ∃C[x̂] ∈ L such that xt satisfies C[x̂] then
6: Predict label[x̂] and provide example x̂.
7: if prediction is incorrect then
8: Get correct label yt and feature ϕt.
9: if x̂ satisfies ¬ϕt and xt satisfies ϕt then

10: Add ¬ϕt to the conjunction C[x̂].
11: U(x̂)← U(x̂) + 1.
12: if U(x̂) ≥ m+ l − 1 then delete rule C[x̂].
13: else △ No rule is satisfied by xt

14: Predict y0 and provide example x0.
15: if prediction is incorrect then
16: Get correct label yt and feature ϕt.
17: if there is no rule in L with label yt then
18: Draw independently B ∼ Bernoulli(p).
19: if B = 1 then
20: Add to L a new empty rule C[xt];
21: Set label[xt] = yt.
22: U(xt)← 0.
23: else
24: Let C[x̂] be the rule in L with label yt.
25: Remove from conjunction C[x̂] some

feature that is not satisfied by xt.
26: U(x̂)← U(x̂) + 1.
27: if U(x̂) ≥ m+ l − 1 then
28: delete rule C[x̂].

• A low probability of creating a new rule ensures that
exceptions do not cause the creation of too many rules.

• Removing single features from rules limits the effect
of exceptions on the list of rules. This is possible due
to the unique-label assumption.

• Rules are deleted only if they are quite long, so that
each corrupted rule can absorb several exceptions.

Overall, no single mistake can cause too large a change to
the list of rules; This stability property keeps the dependence
of the bound on the number of exceptions low.

The full proof of Theorem 7 is provided in App. B. We give
here a short proof sketch. First, note that due to the unique-
label assumption, for any valid rule C[x̂] with label y, any
valid xt with the same label must be in G(x̂). Therefore,
every time a feature is deleted from a rule in line 25, if
xt and x̂ are both valid examples, removing a feature that
is inconsistent with xt from C[x̂] is necessarily a correct
deletion, in that it removes a feature that does not separate
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G(x̂) from any other component. Therefore, the feature
must have been added by an exception.

The proof of Theorem 7 bounds the number of total mistakes
made by the algorithm using the sum of the number of
exceptions and the possible outcomes of a mistake on a
valid example. The number of updates to valid rules by valid
examples is bounded by observing that all such updates must
either add a true separating feature to a component or delete
a feature that was added by an exception. The number
of valid rules created during the run of the algorithm is
bounded by observing that there can never be more rules
than components at any time in the run, and by showing that
each deleted rule must have been used for predicting at least
l/2 exceptions. This can be concluded from the following
lemma, proved in App. B:
Lemma 8. Let t be some iteration of the run of Alg. 2. Let
C[x] be some valid rule that exists during this iteration, and
let U(x) be the value of the update counter for this rule
at the end of this iteration. The number of exceptions that
caused updates to this rule until the end of this iteration is
at least (U(x)− (m− 1))/2.

The proof of Theorem 7 further uses the probability p of
success in creating a new rule to bound to the expected total
number of rules created. This, along with the deletion of
rules that have had too many updates, allows bounding the
total number of mistakes caused by rules with exceptions as
representatives. The full analysis is provided in App. B.

5 THE STOCHASTIC SETTING —
APPROACHING THE OPTIMAL
MISTAKE RATE

In this section, we assume that the input stream of examples
is drawn from a stochastic source, which outputs i.i.d. ex-
amples according to a distribution. It is assumed that the
distribution and the provided teacher feedback are consis-
tent with some representation G of size m and its induced
concept c∗, except for a rate of up to ϵ ∈ [0, 1) of exceptions.

Formally, there exists some marginal distribution DX over
examples from X . Examples are drawn i.i.d. according to
DX . For each draw of X ∼ DX , there is some probability
that an exception occurs, which can depend on the value of
X . The overall probability of an exception is at most ϵ. If an
exception does not occur, then the label feedback and feature
feedback, if provided, are consistent with the representation
and the feedback protocol. Letting Y be the set of possible
labels, we denote byD the distribution over X ×Y which is
induced by drawing an example X ∼ DX and assigning the
label Y = c∗(X) if there is no exception, and some example
and label induced by the exception otherwise.2 The labeled

2In fact, in case of an exceptions the example and label can
be adversary and do not need to be random. We adhere to the
distribution formulation for simplicity of presentation.

examples provided to the learner in the stochastic setting
are distributed as i.i.d. draws from D.

The algorithms for the adversarial settings provided in
Sec. 4, as well as their mistake bounds, apply also in a
stochastic setting. However, since E[k] = ϵn, Theorem 1
gives a mistake rate of m(m−1)/n+ϵm, so that even when
n→∞, the mistake rate of SR-DFF never converges to the
exception rate, but to a factor of m over it. The bound for
the stochastic setting in Dasgupta and Sabato (2020) gives
an even larger factor of m2. Theorem 7 when applied to the
stochastic setting shows that it is possible to converge to the
true mistake rate up to a constant factor, but only for the
unique-label assumption. In this section, we show that in
the stochastic setting with the general representation model,
it is possible for the mistake rate to converge to the excep-
tion rate with no constant factors, and with a polynomial
sample complexity. The proposed algorithm is not efficient;
An open question for future work is whether this can be
achieved with an efficient algorithm.

To prove the result, we propose a new general notion of
Feature Influence, which may be of wider applicability. Con-
sider some hypothesis classHΦ ⊆ YX defined over a set of
features Φ, such that for any subset of the features Φ′ ⊆ Φ,
HΦ′ ⊆ HΦ. Assume some feature feedback protocol. A
feature discovery protocol is an algorithm that interacts with
the environment and the teacher as specified in the protocol,
and outputs some feature subset Φ̂ ⊆ Φ. Feature Influence,
defined below, measures the effect on the distribution error
of restricting the hypothesis class to features from Φ̂.

Formally, given a distribution D, the error of a concept
h : X → Y is err(h,D) := P(X,Y )∼D[h(X) ̸= Y ]. For a
sequence of labeled examples S = ((x1, y1), . . . , (xn, yn)),
the empirical error is err(h, S) := err(h,Unif(S)), where
Unif(S) is the uniform distribution over S. Given a class
H ⊆ YX , the smallest error that can be obtained by some
h ∈ H on D is denoted err(H,D) = infh∈H err(h,D).
Definition 1 (Feature Influence). Fix an exception rate
ϵ ∈ [0, 1], an excess error target α ∈ [0, 1], a confidence
level δ ∈ (0, 1), a mistake bound b ∈ N, and a capacity
bound d ∈ N. Assume some feature feedback protocol with
some classH := HΦ. The setting has α-Feature Influence
with exception rate ϵ, confidence δ, mistake bound b and
capacity bound d, if there exists a feature discovery protocol
that outputs a feature subset Φ̂ such that for any stochastic
i.i.d. stream which is consistent with the feature feedback
protocol except for an exception rate of up to ϵ, if the proto-
col is applied to a prefix of an i.i.d. sample drawn according
to the distribution D over X ×Y induced by the setting and
stops before making more than b mistakes, then:

• With probability at least 1− δ, err(HΦ̂,D) ≤ ϵ+ α,

• P[log2 |HΦ̂| ≤ d] = 1.

The following theorem provides a sample complexity bound
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for the stochastic setting for a general feature-based protocol
and hypothesis class, using the notion of Feature Influence.

Theorem 9. Suppose that a feature feedback setting with
some HΦ has α-Feature Influence with exception rate ϵ,
confidence δ, mistake bound b and capacity bound d. Then
there exists an algorithm for the stochastic setting that ob-
tains a mistake rate of at most ϵ + 2α with probability at
least 1− 3δ over i.i.d. streams of length at least

Õ

(
b

α
+

(
ϵ

α3
+

1

α2

)
(d+ log(1/δ))

)
.

The proof, provided in App. C, proves the above mistake
bound for the following algorithm, where n is the length of
the stream:

1. Run the feature discovery protocol that witnesses the
Feature Influence with mistake limit b (thus observing
some n1 examples), and obtain the feature subset Φ̂.
Set Ĥ := HΦ̂.

2. Observe the next n2 := αn/2 examples, predicting an
arbitrary label for each example, and observing the true
label provided by the teacher. Let S2 be the sequence
of n2 labeled examples obtained this way. Find some
ĥ ∈ argminh∈Ĥ err(h, S2).

3. Use ĥ to predict labels for the rest of the input stream.

To apply this general result to our Discriminative Feature
Feedback setting, we define an appropriate hypothesis class
HΦ and prove a Feature Influence property. Let Hcomp

Φ ⊆
YX be the set of all concepts that are consistent with some
component representation of size at most m with features
from Φ, as defined in Sec. 3. We have err(Hcomp

Φ ,D) ≤ ϵ.
We define an additional, more expressive, hypothesis class
H+

Φ ⊇ H
comp
Φ . H+

Φ is the class of concepts that can be
described using a decision list with at most m rules, where
each rule is a conjunction of up to m − 1 features with
an associated label. Examples can be satisfied by more
than one rule. The first rule in the decision list that is
satisfied determines the label of the example. It is easy to
see that all the possible true concepts c∗ can be represented
using a hypothesis from H+

Φ . Hence, H+
Φ ⊇ H

comp
Φ and

err(H+
Φ ,D) ≤ err(Hcomp

Φ ,D) ≤ ϵ.

To show a Feature Influence property, we first show that if
H+

Φ is restricted to a subset of the features in an appropriate
way, then the additional incurred error can be bounded. Let
Ex be the event than an exception occurred in the current
draw of X ∼ DX . Denote P [G] := P[X ∈ G ∧ ¬Ex].
Recall that Φ is closed under negation. In every pair of
features ϕ, ϕ′ such that ϕ = ¬ϕ′, designate one of the two
as the positive feature. Denote the positive feature that
separates two components G and G′ with different labels by
ϕ+(G,G′). Note that ϕ+(G,G′) = ϕ+(G

′, G). Let Pϕ be

the set of all sets of size 2 of components in G such that the
two components are separated by ϕ in the representation:

Pϕ := {{G,G′} | ϕ+(G,G′) = ϕ}.

Denote
βϕ :=

∑
{G,G′}∈Pϕ

P [G]P [G′],

and let Φβ := {ϕ | βϕ ≥ β}. We first upper bound the
effect of removing from Φ only features with a small βϕ.
Lemma 10. err(H+

Φβ
,D) ≤ ϵ+

√
β ·m2/2.

Proof. Consider the hypothesis hβ ∈ H+
Φβ

, defined as a de-
cision list with a rule for each component G ∈ G, associated
with the label ℓ(G). The rules are in descending order based
on the marginal probability P [G] for each G ∈ G. The
rule for G is a conjunction of all the discriminative features
separating G from other components, except for features
ϕ that have βϕ < β. To bound the error of hβ , consider
an example x in some component G. If x is predicted by
hβ with a different label than c∗(x), then it satisfies the
rule of another component G′ which has a larger (or equal)
marginal probability than G and a different label. Moreover,
the discriminative feature ϕ separating G and G′ must sat-
isfy βϕ < β, or it would have been a part of the rule of G′

and x would not have satisfied it. It follows that

P[(X ∈ G ∧ ¬Ex) ∧ (hβ(X) ̸= c∗(X))]

≤ P [G] · I[∃G′ ∈ G, βϕ+(G,G′) ≤ β ∧ P [G′] ≥ P [G]]

≤ P [G] ·
∑

G′:βϕ+(G,G′)≤β

I[P [G′] ≥ P [G]].

Summing over all components, we have that

P[¬Ex ∧ (hβ(X) ̸= c∗(X))]

≤
∑

{G,G′}⊆Φ:βϕ+(G,G′)≤β

min{P [G′], P [G]}

=
∑

ϕ:βϕ≤β

∑
{G,G′}∈Pϕ

min{P [G′], P [G]}.

For any given ϕ, we have∑
{G,G′}∈Pϕ

min{P [G′], P [G]} ≤
∑

{G,G′}∈Pϕ

√
P [G′]P [G]

≤
√
|Pϕ|

∑
{G,G′}∈Pϕ

P [G′]P [G].

Let 1 be the all-1 vector of dimension |PΦ|, and let v be
the vector of the same dimension with coordinate values√

P [G′]P [G]. By the Cauchy-Schwartz inequality,∑
{G,G′}∈Pϕ

√
P [G′]P [G] = ⟨1,v⟩ ≤ ∥1∥2∥v∥2

=

√
|Pϕ|

∑
{G,G′}∈Pϕ

P [G′]P [G].
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Algorithm 3 Feature discovery protocol for Discriminative
Feature Feedback
Input: Mistake limit b, threshold parameter β ∈ (0, 1)
Output: A feature set Φ̂ ⊆ Φ

1: t← 0; Get initial labeled example (x0, y0).
2: Initialize a function F : Φ→ N to constant 0.
3: while ∥F∥1 ≡

∑
ϕ∈Φ F (ϕ) ≤ b/2 do

4: t← t+ 1; Get next example xt

5: Predict y0 with explanation x0.
6: Get true label yt. △ ignore additional feedback
7: xbase ← xt, ybase ← yt.
8: while true do
9: t← t+ 1; Get next example xt

10: Predict ybase with explanation xbase.
11: if prediction was incorrect then
12: Get true label yt and disc. feature ϕt.
13: ϕ+ ← the positive feature out of ϕt,¬ϕt.
14: F (ϕ+) = F (ϕ+) + 1.
15: break from inner loop.
16: Return Φ̂ := {ϕ | F (ϕ) ≥ β∥F∥1}.

From the definition of βϕ, it follows that∑
{G,G′}∈Pϕ

min{P [G′], P [G]} ≤
√
|Pϕ|βϕ.

Therefore,

P[¬Ex ∧ (hβ(X) ̸= c∗(X))] ≤
∑

ϕ:βϕ≤β

√
|Pϕ|βϕ

≤
√

β
∑

ϕ:βϕ≤β

√
|Pϕ| ≤

√
β ·m2/2.

The last inequality follows since
∑

ϕ:βϕ≤β

√
|Pϕ| ≤∑

ϕ∈Φ |Pϕ| =
(
m
2

)
. The proof is completed by noting that

err(H+
Φβ

,D) ≤ err(hβ ,D) = P[hβ(X) ̸= c∗(X)]

≤ P[Ex] + P[¬Ex ∧ (hβ(X) ̸= c∗(X))],

and P[Ex] ≤ ϵ.

Alg. 3 provides a feature discovery protocol that identifies
features with a large βϕ. It repeatedly sets an observed
labeled example as a baseline, and uses it to predict the
label of the next examples, until a prediction is incorrect and
provides feature feedback. The output Φ̂ includes all the
features observed at least a β fraction of the time. We now
show that with a high probability, this protocol identifies
all features with a large βϕ. Note that only a single feature
feedback is obtained for each instance of (xbase, ybase). The
distribution of the examples xbase used for prediction is
equal to DX . The distribution of examples xt that get an
incorrect answer, given xbase, is equal to DX conditioned

on yt ̸= ybase. Thus, for any ϕ ∈ Φ and a feature feedback
ϕt, we have

P[ϕt = ϕ]

=
∑
G∈G

P [xbase ∈ G]
∑

G′:{G,G′}∈Pϕ

P[xt ∈ G′ | yt ̸= ybase]

≥
∑
G∈G

P [G]
∑

G′:{G,G′}∈Pϕ

P [G′] ≥ 2βϕ. (1)

Moreover, the collected ϕt are statistically independent. The
following lemma follows (see proof in App. D).

Lemma 11. Suppose that ∥F∥1 ≥ 6 log(1/(2δβ))/β.
Then with a probability at least 1− δ, Φβ ⊆ Φ̂.

We can now conclude a Feature Influence property for our
Discriminative Feature Feedback component model.

Theorem 12. Let H = H+
Φ be the hypothesis class de-

fined above. For any β, δ, ϵ ∈ (0, 1), the Discriminative
Feature Feedback setting with a representation size m has√
β ·m2/2-Feature Influence with exception rate ϵ, confi-

dence δ, mistake bound 12 log(1/(2δβ))/β and capacity
bound m log(m) +m2 log(3/β).

Proof. The feature discovery protocol in Alg. 3 makes at
most two mistake for every ϕt it obtains. Thus, it obtains at
least b/2 independent random samples of features ϕ. Setting
b = 12 log(1/(2δβ))/β, it follows from Lemma 11 that
with probability 1− δ we have Φβ ⊆ Φ̂, soH+

Φβ
⊆ H+

Φ̂
. By

Lemma 10, err(H+

Φ̂
,D) ≤ err(H+

Φβ
,D) ≤ ϵ+

√
β ·m2/2,

as required by the definition of Feature Influence.

To prove the capacity bound, note that |Φ̂| ≤ 1/β. There-
fore, the size of HΦ̂ can be bounded by the total num-
ber of possible decision lists with up to m rules, up to
m − 1 features in each rule, and up to m different la-
bels, to yield |HΦ̂| ≤ (2/β + 1)m(m−1) · mm. Thus,
log2 |HΦ̂| ≤ m log(m) +m2 log(3/β).

Combining this result with the general Feature Influence
result of Theorem 9, we get the following guarantee.

Corollary 13. In the stochastic setting, there exists an al-
gorithm that obtains a mistake rate of at most ϵ + α with
probability at least 1− δ for i.i.d. streams of length at least

Õ

(
m4 + log(1/δ)

α3

)
.

Proof. The claim immediately follows by setting β :=
α2/m4 in Theorem 12, which gives an α/2-Feature
Influence with exception rate ϵ, confidence δ, mis-
take bound Õ((m4 + log(1/δ)/α2) and capacity bound
Õ(m2 log(1/α)), and applying Theorem 9.

Thus, using the algorithm proposed above, the mistake rate
converges to the exception rate for n→∞, as desired.
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6 CONCLUSIONS

We showed that robust interactive learning with Discrimi-
native Feature Feedback can be achieved with significantly
improved mistake bound compared to previous results, both
in the adversarial setting and in the stochastic setting. Sev-
eral interesting open problems remain for future work, such
as the existence of an efficient algorithm for the stochastic
setting that converges to the exception rate, and the possibil-
ity of improving the mistake bound in the general adversarial
setting to match the adversarial unique-label setting.
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Algorithm 4 PFR-DFF: A parameter-free robust Discriminative Feature Feedback algorithm for the adversarial setting
1: v ← 1
2: while true do
3: m̃← 1.
4: while UB(m̃, 0) ≤ v do
5: k̃ ← 0
6: while UB(m̃, k̃) ≤ v do
7: if UB(m̃, k̃) > v/2 then
8: Run SR-DFF(m̃, k̃) on the next examples in the stream;
9: Break from the loop if more than UB(m̃, k̃) mistakes have occured.

10: k̃ ← 2k̃ + 1

11: m̃← 2m̃
12: v ← 2v

A A Parameter-free algorithm (Proof of Theorem 2)

The algorithm SR-DFF, presented in Sec. 4.1, requires a number of components m as input. Its mistake bound depends on
m and on k, the minimal number of exceptions for a representation with at most m components. We now show that a nested
doubling trick allows applying SR-DFF even if no upper bound m is known. The cost is only a logarithmic factor in the
number of mistakes. A similar approach can be applied for the stochastic algorithm described in Sec. 5.

The parameter-free algorithm PFR-DFF is provided in Alg. 4. We now prove Theorem 2 by bounding the number of
mistakes made by PFR-DFF for all pairs of m and k such that the input stream is consistent with some representation of
size m with at most k exceptions.

Proof of Theorem 2. The upper bounds of m and k in Theorem 1 hold also for any sub-sequence of the input sequence.
Therefore, once PFR-DFF runs SR-DFF(m′, k′) for some m′ ≥ m, k′ ≥ k, it will never break from the loop. This will
occur for some m′ < 2m, k′ ≤ 2k, when v = v′ for some v′ ≤ 2UB(m′, k′) ≤ 2UB(2m, 2k) ≤ 8UB(m, k), where the
last inequality follows from the definition of UB.

In a loop over k̃ with given v and m̃, the number of rounds is J ≤ argmax{j ≥ 0 | UB(m̃, 2j − 1) ≤ v}. The total number
of mistakes made by PFR-DFF in this loop is upper-bounded by

J∑
j=1

(1 + UB(m̃, 2j − 1)) = (J + 1)(1 + m̃(m̃− 1)) + m̃

J∑
j=1

(2j − 1) ≤ (J + 1)(1 + m̃(m̃− 1)) + m̃(2J+1 − 2).

Let k̂ = 2J − 1. By the definition of J , UB(m̃, k̂) < v. Thus, the RHS of the inequality above is upper-bounded by

(log2(k̂ + 1) + 1)(1 + m̃(m̃− 1)) + 2m̃k̂ ≤ (log2(k̂) + 2) · (UB(m̃, k̂) + 1) ≤ (log2(k̂) + 2) · (v + 1),

where the penultimate inequality follows from the definition of UB. To upper bound k̂, note that since UB(m̃, k̂) ≤ v, by
the definition of UB, k̂ ≤ v. Therefore, for given v, m̃, the total number of mistakes is at most (log2(v)+ 2) · (v+1). From
the definition of UB, we have that for a given value of v, the maximal value of m̃ that PFR-DFF might try satisfies m̃ ≤ v,
since UB(m̃, 0) = m̃(m̃− 1) ≤ v. Therefore, the number of rounds over m̃ for a given v is at most log2(v) + 1. It follows
that the total number of mistakes for loop with a given v is at most (log2(v) + 1)(log2(v) + 2) · (v + 1).

Summing over all values of v that PFR-DFF tries until reaching v′, we get a total mistake bound of

log2(v
′)∑

i=0

(i+ 1)(i+ 2)(2i + 1) ≤ 4v′ log2(v′) ≤ 32UB(m, k) log2(8UB(m, k)),

as claimed.
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B Proof of Theorem 7

Consider a specific run of the algorithm. To upper bound the total number of mistakes, we distinguish the types of mistakes:

• A mistake on an exception xt; There are at most k such mistakes.

• A mistake on a valid example:

– A mistake that caused an update (of any kind) in a rule created by an exception (an exception rule). Let Mev

denote the number of mistakes in exception rules by valid examples.
– A mistake that caused the refinement of a rule by adding a feature. Let Avv denote the number of additions of

features to valid rules by valid examples.
– A mistake that caused an attempt to create a rule (that is, a random draw of a bit B). Denote the number of

attempts to create a rule by a valid example by R̃v .
– A mistake that caused a deletion of a feature from a valid rule. Let Dvv denote the number of deletions of features

from valid rules by valid examples.

The total number of mistakes MT made by the algorithm is thus upper bounded by:

MT ≤ k +Mev +Avv + R̃v +Dvv.

Let Rv be the number of rules that were actually created based on a valid examples (cases where B = 1). We have
E[Rv] = pE[R̃v], thus, rearranging, we have

E[MT ] ≤ k + E[Rv]/p+ E[Avv] + E[Dvv] + E[Mev]. (2)

Next, we bound Avv and Dvv. Each valid rule has at most m − 1 true discriminative features. However, true features
might be deleted from a valid rule by an exception and could then be re-added. Denote by Dve the total number of true
discriminative features deleted from valid rules by exceptions. It follows that Avv ≤ (m− 1)Rv +Dve. To bound Dvv,
note that every incorrect feature in a valid rule deleted by a valid example must have been added by an exception. Denote by
Ave the total number of incorrect features added to some valid rule by an exception. Then Dvv ≤ Ave. It follows that

E[MT ] ≤ k + E[Rv](1/p+ (m− 1)) + E[Dve] + E[Ave] + E[Mev]. (3)

Next, we upper bound Rv . The algorithm only creates a rule with label yt if such a rule does not currently exist. There are
at most m valid labels, thus the total number of valid rules created during the run is at most m plus the number of deleted
valid rules. To bound the number of deleted valid rules, observe that a rule is only deleted if at least m + l − 1 updates,
as counted by the counter U , have been applied to it. Lemma 8, stated in Sec. 4.3, links the number of rule updates to the
number of exceptions that caused updates to the rule. Since the number of exceptions is bounded, this will lead to a bound
on the number of deleted rules. We now give the proof of the lemma.

Proof of Lemma 8. Let a be the total number of features that were added to C[x] until the end of iteration t, and let b be the
number of features that were deleted. Let c be the number of examples that were ignored due to failing the condition on line
9. Note that U(x) = a+ b+ c. All of the ignored examples must have been exceptions, thus at least c updates were caused
by exceptions.

For every deletion of a feature from a valid rule, at least one of its addition and its deletion must have been caused by an
exception, since they cannot both be correct. Therefore, the number of exceptions that have led to additions or deletions
in this rule so far is at least b. In addition, out of the a features that were added to the rule, at most m− 1 can be correct.
Therefore, at least a− (m− 1) of the existing features were caused by exceptions.

It follows that the total number of exceptions that caused updates to this rule is at least

c+max(a− (m− 1), b) ≥ (a+ b+ c− (m− 1))/2 ≥ (U(x)− (m− 1))/2.

This completes the proof.
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To bound Rv , note that when a rule C[x] is deleted, it satisfies U(x) = m− 1 + l. Therefore, if the rule is valid, it follows
from Lemma 8 that it has been updated by at least l/2 exceptions. Let Uve be the number of updates to valid rules by
exceptions. Then the total number of deletions of valid rules is at most Uve/(l/2), hence Rv ≤ m+ 2Uve/l. In addition,
Dve +Ave ≤ Uve. Thus, from Eq. (3),

E[MT ] ≤ k + ((m+ 2Uve/l)(1/p+m− 1)) + E[Uve] + E[Mev]

= k +m/p+m2 −m+ (2(1/p+m− 1)/l + 1)E[Uve] + E[Mev]. (4)

Next, we upper bound Mev . Let Re be the number of created exception rules. An exception rule is deleted if it accumulates
m+ l − 1 updates, hence Mev ≤ Re(m+ l − 1). In addition, letting R̃e be the number of attempts to create an exception
rules (draws of B), we have Uve + R̃e ≤ k. In addition, E[Re] = pE[R̃e]. Therefore,

E[Uve] ≤ k − E[R̃e] = k − E[Re]/p.

Combining these bounds with Eq. (4), we get

E[MT ] ≤ k +m/p+m2 −m+ (2(1/p+m− 1)/l + 1)(k − E[Re]/p) + E[Re](m+ l − 1)

= m/p+m2 −m+ (2(1/p+m− 1)/l + 2)k

+ (m+ l − 1− 1

p
(2(1/p+m− 1)/l + 1))E[Re].

Setting l = 1/p, the coefficient of E[Re] becomes

m+ 1/p− 1− 2(m+ 1/p− 1)− 1/p = −m− 2/p+ 1 < 0,

and the coefficient of k is 2(1/p+m− 1)/l + 2 = 4 + 2p(m− 1).

Setting p = 1/(m− 1), it follows that E[MT ] ≤ 2m(m− 1) + 6k. This completes the proof of Theorem 7.

C Proof of Theorem 9

Consider the 3-stage algorithm described after the statement of Theorem 9. Let D over X × Y be the distribution of labeled
examples from which the i.i.d. stream is drawn. The expected mistake rate during Stage 3 of the algorithm is err(ĥ,D).
The length of Stage 3 is n3 = n− n1 − n2. By Hoeffding’s inequality, with probability at least 1− δ, the total number of
mistakes of ĥ during Stage 3 is at most n3 · err(ĥ,D) +

√
n3 log(1/δ)/2. Since n3/n < 1, the mistake rate over all the

stages is at most (b+ n2)/n+ err(ĥ,D) +
√

log(1/δ)/(2n).

Since ĥ is the empirical risk minimizer of Ĥ over the i.i.d. sample S ∼ Dn2 , we have, for the case of binary classification
(|Y| = 2) (Boucheron et al., 2005), that with a probability of at least 1− δ over the randomness of the input sample during
Stage 2,

err(ĥ,D) ≤ err(Ĥ,D) + Õ

√err(Ĥ,D)d+ log(1/δ)

n2
+

d+ log(1/δ)

n2

 .

A standard reduction argument from multiclass learning to binary classification (Daniely et al., 2015) shows that the
inequality above holds also for a general finite Y .

From the definition of Feature Influence, we have that with a probability at least 1− δ, err(Ĥ,D) ≤ ϵ+ α. Therefore, with
a probability at least 1− 3δ, the total mistake rate of the algorithm over all the stages is at most

b+ n2

n
+ ϵ+ α+ Õ

√ (ϵ+ α)(d+ log(1/δ))

n2
+

d+ log(1/δ)

n2

+

√
log(1/δ)

2n
=

ϵ+
3

2
α+

b

n
+ Õ

(√( ϵ

α
+ 1
) (d+ log(1/δ))

n
+

d+ log(1/δ)

αn

)
.

To complete the proof, note that a stream length of

n = Õ

(
b

α
+

(
ϵ

α3
+

1

α2

)
(d+ log(1/δ))

)
suffices for the expression above to be ϵ+ 2α.



Sivan Sabato

D Proof of Lemma 11

Fix some ϕ ∈ Φ, and let p̂ϕ := F (ϕ)/∥F∥1. By Eq. (1), E[p̂ϕ] ≥ 2βϕ. Hence, by Bernstein’s inequality, with a probability
at least 1− 2δβ,

p̂ϕ ≥ 2βϕ −
2 log(1/(2δβ))

3∥F∥1
−

√
2β log(1/(2δβ))

∥F∥1
.

Since ∥F∥1 ≥ 6 log(1/(2δβ))/β and βϕ ≥ β, this implies that p̂ϕ ≥ 2βϕ − β ≥ β.

Now, note that ∑
ϕ∈Φ

βϕ =
∑

{G,G′}⊆G

P[G]P[G′] =
1

2

∑
G∈G

P[G] ·
∑

G′∈G\{G}

P[G′] ≤ 1

2
.

Therefore, there are at most 1/(2β) features ϕ such that βϕ ≥ β. By a union bound, this holds simultaneously for all ϕ such
that βϕ ≥ β, with probability 1− δ.
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