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Abstract

In this paper we study the problem of estimat-
ing accurately the precision and recall for bi-
nary classification when the classes are imbal-
anced and only a limited number of human labels
are available. One common strategy is to over-
sample the small positive class predicted by the
classifier. Rather than random sampling where
the values in a confusion matrix are observa-
tions coming from a multinomial distribution, we
over-sample the minority positive class predicted
by the classifier, resulting in two independent
binomial distributions. But how much should
we over-sample? And what confidence/credible
intervals can we deduce based on our over-
sampling? We provide formulas for (1) the con-
fidence intervals of the adjusted precision/recall
after over-sampling; (2) Bayesian credible in-
tervals of adjusted precision/recall. For preci-
sion, the higher the over-sampling rate, the nar-
rower the confidence/credible interval. For re-
call, there exists an optimal over-sampling ra-
tio, which minimizes the width of the confi-
dence/credible interval. Also, we present experi-
ments on synthetic data and real data to demon-
strate the capability of our method to construct
accurate intervals. Finally, we demonstrate how
we can apply our techniques to Yahoo Mail’s
quality monitoring system.

1 INTRODUCTION

It is very important to evaluate a machine learning model’s
classification performance metrics accurately. In a binary
classification problem it is common for the two classes
to be imbalanced, and this makes an accurate evaluation
harder. The motivation for this work is the following. We
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have deployed a set of binary mail classifiers to produc-
tion. Each model classifies incoming emails into a set of
categories of interest, such as finance, travel, invoice, reser-
vation, and so on. Several of these categories are heavily
imbalanced, meaning that emails belonging to these cate-
gories account for only a small percentage (less than 5% or
even 1%) of all the incoming emails. Post-deployment, we
would like to monitor the quality of these classifiers reg-
ularly, e.g. once every two weeks or once per month. In
order to do so, we need to sample emails periodically and
compute metrics like precision and recall on the sampled
data. But the sampled data is expensive to generate, be-
cause it requires manually labeling by human editors. So
we want to sample as few emails as possible to meet the
required confidence intervals for both precision and recall.
According to business needs, the estimates for precision
and recall need to be accurate, i.e. within a 5% margin of
error for both. Here a 5% margin of error makes the width
of the confidence interval (CI) 10%.

The simplest monitoring test set would sample the data
from the whole population randomly and compute the
precision/recall(P/R) from the confusion matrix. Table 1
shows an example of an existing monitoring test for a bi-
nary classifier Φ based on random sampling. 5000 emails
were randomly sampled from the entire email population.
A confusion matrix was generated after obtaining the true
labels from human editors and the predictions from the
classifier (Table 1). Out of the 5000 emails, 4732 are
true negatives, which shows that this class is indeed im-
balanced. For this random sample, the margin of error of
the estimated P/R is 5.3%/6.2%, which does not satisfy our
5% margin of error constraints.

Since this monitoring needs to be done regularly and is
labor-intensive, we need to minimize the number of sam-
pled emails. The problem is particularly challenging for
those cases where the positive class is very rare. In this
work we will answer the following questions: (1) How big
does our sample need to be and should we over-sample the
minority class? (2) Can we obtain reliable CIs for the eval-
uation metrics while minimizing the number of emails we
need to sample and label manually?

There exists a lot of research that addresses the challenge
of imbalanced classes (Fernández et al., 2017; Yuan et al.,
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Table 1: An Mocked Example of Production Monitoring
Test Data based on Random Sampling.

Predicted+ Predicted−
Actual+ 138 108
Actual− 22 4732

Precision: 86.3% ± 5.3%
Recall: 56.1% ± 6.2%

2018; Chawla et al., 2002; Mathew et al., 2017). Our first
question is: what metrics should we use when evaluat-
ing the performance of a binary classifier? In the case of
highly-imbalanced sets, some common metrics are not use-
ful. Accuracy is not informative because there is a strong
preference to always predict the negative class. Receiver
Operating Characteristics (ROC) is also misleading (Saito
and Rehmsmeier, 2015; Davis and Goadrich, 2006). When
dealing with highly skewed data, the Precision-Recall (PR)
curve is the most informative plot, compared to ROC and
other metric plots (Saito and Rehmsmeier, 2015; Davis and
Goadrich, 2006). Luque et al. (2019) defined several indi-
cators to measure the impact of imbalance based on the bi-
nary confusion matrix, and showed that the Matthews Cor-
relation Coefficient (MCC) is a good choice to demonstrate
any biases in the dataset.

We now know that P/R are appropriate metrics for imbal-
anced data, but we still want to know how confident we are
about their values. There is some prior research on assess-
ing precision, recall, and F-score based on statistics dis-
tributions. Goutte and Gaussier (2005) assessed the confi-
dence for P/R and F-score under random sampling strate-
gies. Caelen (2017) further extended the work to assess the
confidence for any performance indicator extracted from a
confusion matrix. Both of them use a random sampling as-
sumption, corresponding to a multinomial distribution for
the confusion matrix.

Additionally, different efforts have been made to save the
labeling cost in the test data. Some research works en-
forced parametric distributions for estimating precision-
recall curves, by modeling the scores of classifiers with
mixtures of densities. They focused on cases where only
a small number of data is labeled (Welinder et al., 2013) or
where the classes are not balanced and there is a particu-
lar set of scores labeled (Miller et al., 2018). Some other
approaches use stratified sampling technique and its vari-
ations (Bennett and Carvalho, 2010; Li et al., 2019; Chen
et al., 2020; Guerriero et al., 2021). The stratified sam-
pling technique and other sampling techniques were also
employed to address various evaluation problems, e.g., in
information retrieval (Yilmaz et al., 2008), in evaluating
generative models (Sabharwal and Xue, 2018) which adap-
tively estimate the whole ROC curve for a threshold class,
and in evaluating multiple binary classifiers (Tripathi et al.,
2020). Closer to our work, Bennett and Carvalho (2010)
approximated confidence intervals based on stratified sam-

pling, but for precision metrics only. Our work employs the
stratified sampling technique by over-sampling the minor-
ity class, to take care of the skewness issue of the imbal-
anced data. Different from the previous work, we compute
the P/R confidence intervals (CI) both in analytic forms
and via simulation methods and provide an optimal over-
sampling ratio to optimize the confidence of recall.

This paper presents a practical sampling strategy and a
thorough analysis of the confidence of P/R metrics of a bi-
nary classifier Φ, for imbalanced data. The classifier Φ is
fixed, and we focus on how to sample test data given the
limited test data size, and how to deduce the approximate
distributions of P/R. To the best of our knowledge, this is
the first paper that thoroughly assesses the confidence of
both precision and recall when applying an over-sampling
strategy. (1) We illustrate the problems with inaccurate P/R
metrics on randomly sampled test data. We propose to rem-
edy this problem by over-sampling the small class, which
assumes that the values in the confusion matrix come from
two independent binomial distributions. (2) We formalize
this problem, and propose two ways to infer approximate
distributions of P/R derived from the confusion matrix. We
calculate approximate confidence/credible intervals for P/R
from both frequentist and Bayesian perspectives, both an-
alytically and via simulation. Bayesian techniques allow
us to take into account the intrinsic variability of the un-
known parameters. (3) We recommend a sampling ratio to
optimize (trade-off) the confidence of precision and recall.

This paper is organized as follows. We first formulate the
problem and the over-sampling strategy in Section 2, which
corresponds to two independent binomial distributions in
the confusion matrix. This is a departure from the tra-
ditional approach of a multinomial distribution with ran-
dom sampling. In Section 3, we first construct CIs for P/R
based on a normal approximation of the binomial distri-
bution. Next, using a Bayesian perspective, we derive the
posterior predictive distribution of P/R and Bayesian cred-
ible intervals for future test data given an already observed
confusion matrix and prior knowledge. In addition, we run
simulations using the bootstrap method (corresponding to
confidence intervals in Section 3.1) and the Monte-Carlo
method (corresponding to credible intervals in Section 3.2).
These approximations are tested on experiments in Sec-
tion 4, followed by a real application example (Section 5) 1

. Finally, Section 6 discusses the strengths of this work and
concludes.

2 PROBLEM FORMULATION

We consider the simple binary classification setting where
each data point has a true label and a predicted label in
[1(+), 0(−)]. Our goal is to estimate the P/R of the popu-
lation by sampling a test set. The experimental results from

1This work was done when the author worked at Yahoo.
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Table 2: Confusion Matrix C.
Predicted+ Predicted−

Actual+ n1,1 n1,0

Actual− n0,1 n0,0

n·,1 n·,0

a sample test set are summarized in a confusion matrix C in
Table 2, which reports the number of true positives (n1,1),
false positives (n0,1), false negatives (n1,0), and true neg-
atives (n0,0). We use πprec and πrecall to denote the true
Precision and Recall respectively, and π̂prec and π̂recall to
denote the sample estimates of πprec and πrecall.

2.1 Probabilistic Model with Random Sampling

Under random sampling assumptions, each data point in
the test set is independently and identically distributed.
Both precision and recall have a natural interpretation
within a Bayesian probability framework (Goutte and
Gaussier, 2005). In particular, precision and recall can be
estimated by π̂prec = n1,1/(n1,1 + n0,1) and π̂recall =
n1,1/(n1,1+n1,0) respectively, based on the confusion ma-
trix C (Table 2). Notice that n1,1, n1,0, n0,1, n0,0 follow a
multinomial distribution.

Let Bin(n, π) denote a Binomial distribution with n in-
dependent experiments and success probability π, and let
η denote the confidence level. Note that η = 5% cor-
responds to a 95% CI. Let zη refers to 100η% percentile
point of standard normal distribution. Given the property
that marginals and conditionals of a multinomial distribu-
tion follow binomial distributions, we have:

• n1,1 given the number of predicted positives n·,1 fol-
lows Bin(n·,1, πprec) .
• n1,1 given the number of labeled positives n1,· fol-
lows Bin(n1,·, πrecall) .

Thus, the 100(1−η)% approximation CIs for precision and
recall are:

π̂prec ± z1− η
2

√
(π̂prec(1− π̂prec)/n·,1

and

π̂recall ± z1− η
2

√
π̂recall(1− π̂recall)/n1,·

respectively. When the data is very imbalanced, n·,1 is rel-
atively much smaller than the total sample size, making the
widths of the CIs very wide, especially for precision.

2.2 Probabilistic Model with Over-sampling

One intuitive solution to alleviate the class imbalance prob-
lem is to over-sample the positive data. But how much
should we over-sample? First, we need to know how im-
balanced the data is. The whole population is divided into

+ve (group 1) and −ve (group 2) according to the predic-
tion of the classifier. We use the ratio of the size of group 1
over the size of group 2 to denote how imbalanced the data
is. This ratio will be denoted by k throughout this paper.
So, for example, k = 1/19 means that 5% of data are pre-
dicted positive by the classifier. After k is computed, we
over-sample by taking n·1 and n·0 random samples from
groups 1 and 2 respectively. The numbers n·1 and n·0 are
decided by an oversampling ratio s. We will discuss how
to choose s in Section 3.3). Given the over-sampling ratio
s, the ratio of n·1 to n·0 will be k×s. Let v denote the total
sample size (test data) for editors to judge. Then

n·1 = v · k · s/(k · s+ 1), n·0 = v/(k · s+ 1) (1)

Unlike the random sampling scenario where both precision
and recall are defined as probabilities from the multinomial
distribution, over-sampling by fixing n·1 and n·0 divides
the confusion matrix into two independent sets, the pre-
dicted positive and predicted negative sets. Let π1 denote
the ratio of true positives to predicted positives and π0 the
ratio of false negatives to predicted negatives, and let π̂1

and π̂0 be their sample estimates. Note that π1 = πprec as
both denote the same value. Naturally, we have

• The distribution of n1,1 given the number of predicted
positives n·,1 follows Bin(n·,1, π1) .

• The distribution of n1,0 given the number of predicted
negatives n·,0 follows Bin(n·0, π0) .

Finally, the estimated precision and recall metrics from the
given confusion matrix are:
π̂prec = n1,1/n·1 = π̂1, π̂Recall =

n1,1

n1,1+s·n1,0
= 1

1+ 1
k · π̂0

π̂1

(2)

3 CONFIDENCE/CREDIBLE
INTERVALS BY OVER-SAMPLING

3.1 Confidence Intervals by Over-sampling

The 100(1 − η)% CIs for precision and recall can be ob-
tained in analytic forms. Let zη be the 100η% percentage
point of the N(0, 1) distribution. π̂1 is approximately nor-
mally distributed with mean π1 and asymptotic variance
π1(1 − π1)/n·1. Thus, the 100(1 − α)% approximate CI
for πprec is:

π̂1 ± z1− η
2

√
π̂1(1− π̂1)/n·1 (3)

The approximate CI of precision under over-sampling is the
same as that under the random sampling scenario. But the
CI of recall will be constructed very differently, because
it does not follow naturally the Binomial distribution as in
the random sampling scenario. Let u = log (π0/π1), and
its estimated version û = log (π̂0/π̂1). The estimated re-
call is a monotonic function of û (see Eq (2)), which is a
logarithm of the ratio of two proportions from two indepen-
dent binomial distributions. The variate û is approximately
normally distributed with estimated mean log(π̂0/π̂1) and
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estimated variance (1 − π̂1)/(n·1π̂1) + (1 − π̂0)/(n·0π̂0)
(Katz et al., 1978). Katz et al. (1978) concluded that this
method is reasonable and less conservative than two other
methods proposed in the paper. Thus, the 100(1 − η)%
approximate confidence interval for u is:
log(π̂0/π̂1)±z1− η

2

√
(1− π̂1)/(n·1π̂1) + (1− π̂0)/(n·0π̂0)

. Given the CI for u above, there are two ways to approx-
imate the CI for recall. One way is to use the CI of u to
transform to CI of recall. Since πrecall = 1/(1+ 1

k exp (u))
is a monotonic decreasing function of u, πrecall’s confi-
dence interval will be:

1

1 + 1
k
π̂0

π̂1
exp (∓z1− η

2

√
1−π̂1

n·1π̂1
+ 1−π̂0

n·0π̂0
)

(4)

The second way is to use the delta method to first esti-
mate the variance of recall, and then derive CI assuming
normal approximation. Let E[·] and V [·] denote the ex-
pectation and variance of a variable. Let f(u) = 1/(1 +
(1/k) exp (u)) and π̂Recall = f(û). The variance of the
estimated recall can be approximated by

V [f(û)] = V [û][f ′(û)]2 = V [û] · ( 1
k
eû)2/(1 +

1

k
eû)4

, where f ′(·) denotes the derivative function of f(·). Thus,
the 100(1 − α)% approximate confidence interval for
πrecall is:

1

1 + 1
k
π̂0

π̂1

± z1− η
2

1
k
π̂0

π̂1

(1 + 1
k
π̂0

π̂1
)2

√
1− π̂1

n·1π̂1
+

1− π̂0

n·0π̂0
(5)

There is a small difference between the two CIs. For the
first method, because the transformation from u to πrecall

is not linear, the reconstituted CI will not be symmetrical
around the parameter estimate, especially for two probabil-
ities near the [0,1] boundaries. The first method (Eq (4)) is
generally better, which we’ll use to construct CI through-
out this paper. But it is convenient to use the second one
(Eq (5)) to compute margin of error, which will be used
in Section 5. Note that normal approximation to the bi-
nomial distribution is a standard practice in statistics. It
relies on the assumption that the four numbers in the con-
fusion matrix are all at least 5 or 10. One alternative
way for constructing CIs is using the simulation methods
(Bootstrap/Monte-Carlo), yet we will not be able to com-
pute optimal over-sampling ratio without analytical formu-
las.

3.1.1 Confidence Intervals by Bootstrap Approach

In the previous section we derived CI formulas for P/R.
In this section we will show a nonparametric approach
for deriving CIs. One well-known technique to acurately
approximate the distribution of an indicator is the boot-
strap method (Efron, 1992). Here, we estimate πprec and
πrecall’s distribution by bootstrapping the test data, which
is equivalent to bootstrapping directly on the confusion ma-
trix. Let Q be a large positive integer corresponding to the
number of bootstrap replicas. Note that under the over-
sampling setup, each replica selected from Q is obtained

by random sampling n·,1 and n·,0 samples with replace-
ment from the n·,1 +ve data points and the n·,0 −ve data
points predicted by the classifier Φ. The above samplings
are equivalent to doing random sampling from two Bino-
mial distributions Bin(n·,1,

n1,1

n·,1
) and Bin(n·,0,

n1,0

n·,0
) re-

spectively. Applying bootstrapping, these Q confusion ma-
trices yield Q pairs of estimated P/R, which are then used
to infer the distribution of P/R.

Given the population ratio k between +ve and −ve sam-
ples, and the confusion matrix of an observed test set
C(n1,1, n0,1, n1,0, n0,0), the bootstrap Algorithm 1 be-
low obtains bootstrap replicas of P/R. The bootstrap algo-
rithm BS-SAMPLER(C(n1,1, n0,1, n1,0, n0,0), k,Q) is de-
scribed in Algorithm 1.

3.2 Bayesian Credible Intervals by Over-sampling

One main application of this work is monitoring the qual-
ity of a classifier after its initial deployment. Monitor-
ing is especially necessary if, for example, the distribu-
tion of the content to be classified changes over time.
In this monitoring scenario, we already have some esti-
mate of the P/R based on the pre-launch test sample of
the classifier. A Bayesian approach can be applied to es-
timate the credible intervals for P/R for a future, post-
deployment monitoring test. Given the prior knowledge
α = (α1,1, α0,1, α1,0, α0,0) and the observed pre-launch
confusion matrix C(n1,1, n0,1, n1,0, n0,0) for the classifier,
we like to predict the estimated P/R of future independent
monitoring test samples.

In Bayesian inference, the posterior predictive distribution
of future data is derived by integrating out unknown param-
eters π1 and π0. Integrating over the posterior distribution
of these parameters gives a posterior predictive distribution,
for future data conditional on the already-observed data C.

Throughout the rest of paper, let ζ1,1 = α1,1+n1,1, ζ1,0 =
α1,0 + n1,0, ζ0,1 = α0,1 + n0,1, ζ0,0 = α0,0 + n0,0. Then,
the 100(1 − η)% approximate Bayesian credible interval
for precision is:

ζ1,1
ζ1,1 + ζ0,1

± z1− η
2

√
ζ1,1ζ0,1(ζ1,1 + ζ0,1 + n·,1)

n·,1(ζ1,1 + ζ0,1)2(ζ1,1 + ζ0,1 + 1)

(6)
and the credible interval for recall is:

1

1 + 1
k
ζ1,0(ζ1,1+ζ0,1)
ζ1,1(ζ1,0+ζ0,0)

exp∓z1− η
2

√
V [û|n·,1, n·,0, C, α]

(7)
where V [û|n·,1, n·,0, C, α]

=
ζ0,1(ζ1,1 + ζ0,1 + n·,1)

n·,1ζ1,1(ζ1,1 + ζ0,1 + 1)
+

ζ0,0(ζ1,0 + ζ0,0 + n·,0)

n·,0ζ1,0(ζ1,0 + ζ0,0 + 1)
(8)

. The derivations of Eq (6) and Eq (7) are shown in Ap-
pendix. Credible intervals account for both the uncertainty
in estimating parameters, plus the random variation of the
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Algorithm 1 BS-SAMPLER(C(n1,1, n0,1, n1,0, n0,0), k,Q)
Obtain two independent Binomial distributions Bin(n·,1,

n1,1

n·,1
) and Bin(n·,0,

n1,0

n·,0
).

for q ∈ 1, . . . , Q do
Generate n·,1 i.i.d. samples from Bin(n·,1,

n1,1

n·,1
), yielding n

(q)
1,1 positive and n

(q)
0,1 negative data.

Generate n·,0 i.i.d. samples from Bin(n·,0,
n1,0

n·,0
), yielding n

(q)
1,0 positive and n

(q)
0,0 negative data.

Compute Prec/Recall π̂(q)
prec and π̂

(q)
prec given the sampled confusion matrix C(q)(n

(q)
1,1, n

(q)
0,1, n

(q)
1,0, n

(q)
0,0) above and population ratio

k.
end
Obtain a list of Precisions (π̂(1)

prec, . . . , π̂
(Q)
prec) and a list of Recalls (π̂(1)

recall, . . . , π̂
(Q)
recall).

Construct confidence intervals of πprec and πrecall from the above list of precision and recall.

individual values. We can see that the Bayesian credible
interval has a tendency to have more variability than the
confidence interval.

3.2.1 Bayesian Credible Intervals via Monte-Carlo

An alternative way to estimate the posterior predictive
function is via a Monte Carlo simulation process. Both
bootstrap and Monte-Carlo methods are used to obtain CIs
of P/R by drawing a large number of samples from the pop-
ulation and computing statistics in each sample. The idea
behind bootstrapping is that the sample is an estimate of
the population. Monte Carlo simulation refers to the pro-
cess of repeatedly creating random data from the popula-
tion and computing statistics from each random sample.
Caelen (2017) proposed to infer distributions of any per-
formance indicator computed from the confusion matrix
of random sampling, but without illustrating what statistics
each approach corresponds to exactly.

The algorithm MC-SAMPLER(C(n1,1, n0,1, n1,0, n0,0),
k, Q) is described in Algorithm 2.

3.3 Discussion on Sample Size and Over-sampling
Ratio

3.3.1 Assuming the True P/R

Although the true P/R metrics for the population data
should be unknown, sometimes we are confident about the
values of the true P/R metrics. Since the value of k is fixed,
fixing πprec and πrecall is equivalent to fixing π1 and π0.

Theorem 1. Given the fixed test data size v and Prec and
Recall values, the variance of the estimated recall can
be minimized by choosing the over-sampling ratio s∗ =
1
k

√
Ω0

Ω1
, where Ω1 = π1/(1 − π1) and Ω0 = π0/(1 − π0)

are the odds for probability π1 and π0 respectively.

The proof of this theorem is in Appendix.

3.3.2 Assuming the Distribution of P/R

More often, practitioners are not confident about the true
values of P/R for classifier Φ, but they do have some knowl-

edge about P/R. For example, in the monitoring scenario
described in Section 3.2, we have the results from the pre-
vious, pre-launch test data (confusion matrix). In that case
we can reuse the Bayesian framework from Section 3.2 and
we can find the optimal s∗ that minimizes V (π̂recall).

Theorem 2. Given the fixed test set of size v, some prior
knowledge α = (α1,1, α0,1, α1,0, α0,0) and the observed
pre-launch confusion matrix C(n1,1, n0,1, n1,0, n0,0) for
the classifier, the predictive variance of the estimated re-
call can be minimized by choosing the over-sampling ra-
tio s∗ = 1

k

√
Θ0/Θ1, where Θ1 =

ζ1,1(ζ1,1+ζ0,1+1)
ζ0,1(ζ1,1+ζ0,1)

and

Θ0 =
ζ1,0(ζ1,0+ζ0,0+1)
ζ0,0(ζ1,0+ζ0,0)

. Note that the ζ notations were de-
fined in Section 3.2.

The proof of this theorem is in Appendix.

3.3.3 The Example of the Mail Classifier Φ

We introduced the example of a monitoring test for one
of our binary classifiers in Section 1 and showed the con-
fusion matrix (Table 1) on a set of 5000 random sampled
emails. Now we come back to this example and would like
to analyze how over-sampling will affect the P/R’s CIs. To
make the comparison of CIs fair, we also choose the same
sample size v = 5000. Table 1 gives us an estimate of the
imbalance ratio k = (138 + 22)/(108 + 4732) = 0.033
and P/R of 86.3%/56.1%.

Based on the relationship below (similarly to the estimated
version Eq (2))

π1 = πprec, π0 = k · π1 · (1/πrecall − 1) (9)
, we get π1 = 0.863, π0 = 0.0223. Given π1 and
π0, we obtain the optimal sampling ratio for recall s∗ =
1.823 from Theorem 1. From a Bayesian perspective, we
can assume from our observations of the Confusion ma-
trix Table 1 that the precision has a mean of 86.3% and
the recall 56.1% with some variance. There is a one-to-
one mapping between P/R’s mean and variance and π1

and π0’s mean and variance. Also, the mean and vari-
ance π1 and π0 will determine the posterior distributions
Beta(ζ1,1, ζ0,1) and Beta(ζ1,0, ζ0,0), which will be set at
Beta(86.3w, 13.7w) and Beta(67.5w, 2962.8w) to match
the P/R mean. Here, we set w to different values w =
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Algorithm 2 MC-SAMPLER(C(n1,1, n0,1, n1,0, n0,0), k, Q)
Obtain distributions Beta(n1,1, n0,1) and Beta(n1,0, n0,0).
for q ∈ 1, . . . , Q do

Generate a random sample π̃
(q)
1 and π̃

(q)
0 from Beta(n1,1, n0,1) and Beta(n1,0, n0,0) respectively.

Generate n·,1 i.i.d. samples from Bin(n·,1, π̃
(q)
1 ), yielding n

(q)
1,1 positive and n

(q)
0,1 negative data.

Generate n·,0 i.i.d. samples from Bin(n·,0, π̃
(q)
0 ), yielding n

(q)
1,0 positive and n

(q)
0,0 negative data.

Compute P/R π̂
(q)
prec and π̂

(q)
recall given the sampled confusion matrix C(q)(n

(q)
1,1, n

(q)
0,1, n

(q)
1,0, n

(q)
0,0) above and population ratio k.

end
Obtain a list of Precisions (π̂(1)

prec, . . . , π̂
(Q)
prec) and a list of Recalls (π̂(1)

recall, . . . , π̂
(Q)
recall).

Construct credible intervals of πprec and πrecall from the above list of precision and recall.
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Figure 1: Plots of widths for confidence intervals (black line) and credible intervals with different w values; Left: precision;
Right: recall.

5, 10, 100 to represent different variances; and the corre-
sponding s∗ = 1.821, 1.822, 1.823 based on Theorem 2.
Figure 1 shows how the CI width changes for precision
(left panel) and recall (right panel) as a function of the over-
sampling ratio s. The larger the value of w, the smaller the
standard deviation of π1 and π0.

For precision (Figure 1 Left), the widths for both con-
fidence interval and credible interval are always getting
smaller and smaller as the over-sampling ratio s increases.
For a fixed number of test data size v, bigger s will lead
to bigger n·,1 (Eq 1), thus resulting in a narrower CI width
of precision (proportional to 1/

√
n·,1 in Eq 3 and 6). For

recall (Figure 1 Right), the widths for both confidence in-
terval and credible interval decrease until s approaches s∗,
and then they slowly increase as s continues to increase.
The values of s∗ are very close for both frequentist and
Bayesian distributions with different w. For both precision
and recall curves, the CI widths for Bayesian are always
wider than those for frequentist. And, the larger w gets,
the closer the Bayesian curve gets to the frequentist curve
(black plots in Figure 1).

4 EXPERIMENTS

In this section, we use simulated data to assess our
analytical method’s ability to construct accurate confi-
dence/credible intervals against the simulation methods
(Bootstrap and Monte Carlo). The parameters of the exper-
iment are the imbalance ratio k for classifier Φ’s prediction,
the true precision πprec and recall πrecall of Φ over the pop-
ulation data, the sample size v, and the over-sampling ratio
s. Here, k is chosen from {1/20, 1/100}; precision πprec

is fixed at 0.9; recall πrecall is chosen from {0.7, 0.9}; the
over-sampling ratio is chosen from {1, 2, 5}. The sample
size v is set to 5000 when k = 1/20, and we increase it to
10,000 when k = 1/100 in order to satisfy the condition of
normal approximation to the binomial distribution. Given
a combination of k, πprec , πrecall , v, s, we can obtain the
approximate coverage probability. For each combination
of k, P/R, v, s (corresponding to each row in Table 3), we
generate A = 1000 samples. For each generated sample,
we construct

• confidence intervals UP
freq,N and UR

freq,N by normal
approximation (Eq (3) and Eq (4));

• confidence intervals UP
freq,B and UR

freq,B by the boot-
strap method (Algorithm 1);

• credible intervals UP
bys,N and UR

bys,N by normal ap-
proximation (Eq (6) and Eq (7));
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• credible intervals UR
bys,MC and UR

bys,MC by the
Monte-Carlo method (Algorithm 2).

for both precision and recall. The bootstrap size and
the Monte-Carlo size Q is set to 1000, and all confi-
dence/credible intervals are obtained at the 5% level. Fi-
nally, we use Γ to denote the approximate coverage proba-
bility for the confidence/credible intervals above.

Experimental design

• For every a ∈ 1, . . . , A, repeat the following steps:
– Generate a sample with sample size v and over-

sampling ratio s from a population for which
the classifier’s P/R values are πprec/πRecall, form
a confusion matrix Ca, and estimate P/R as
π̂a
prec/π̂a

recall from Eq (2);
– Independently, generate another sample with the

sample size v and over-sampling ratio s from
the same population as above, and calculation
P/R at π̃a

prec/π̃a
recall. We will use π̃a

prec/π̃a
recall

for calculating coverage probability of Bayesian
credible intervals, since credible intervals are de-
rived based on posterior predictive distribution
and they are to predict P/R for future test data
from the same population.

– Given π̂a
prec/π̂a

recall, obtain both confidence in-

tervals U
P,(a)
freq,N and U

R,(a)
freq,N , and credible in-

tervals for UP,(a)
bys,N and U

R,(a)
bys,N of both P/R from

normal approximations;
– Given Ca, obtain confidence intervals U

P,(a)
freq,B

and U
R,(a)
freq,B by BS-SAMPLER(Ca, k, Q);

– Given Ca, obtain credible intervals UR,(a)
bys,MC and

U
R,(a)
bys,MC by MC-SAMPLER(Ca, k, Q) assum-

ing non-informative priors.
• Approximate coverage probabilities for all the above

intervals as follows:
ΓP
freq,N = A−1

∑A
a=1 1{πprec ∈ UP

freq,N},
ΓP
freq,B = A−1

∑A
a=1 1{πprec ∈ UP

freq,B},
ΓP
bys,N = A−1

∑A
a=1 1{π̃a

prec ∈ UP
bys,N},

ΓP
byes,MC = A−1

∑A
a=1 1{π̃a

prec ∈ UP
bys,MC},

ΓR
freq,N = A−1

∑A
a=1 1{πrecall ∈ UR

freq,N},
ΓR
freq,B = A−1

∑A
a=1 1{πrecall ∈ UR

freq,B},
ΓR
bys,N = A−1

∑A
a=1 1{π̃a

recall ∈ UR
bys,N},

ΓR
bys,MC = A−1

∑A
a=1 1{π̃a

recall ∈ UR
bys,MC}

The experimental results are shown in Table 3. This ta-
ble shows the coverage probabilities for precision/recall
at various values of v, k, πprec, πrecall, and s. Cov-
erage probability gives the proportion of times the true
precision(πprec)/recall(πrecall) was in the interval. We see
that, overall, the confidence/credible intervals hold their
levels reasonably well for both the analytical method and

simulation methods, since most coverage probabilities are
close to the expected value 95% (corresponds to η = 5%
confidence level). Note that for cases where v = 10000,
k = 1/100, and s = 1, slightly low coverage proba-
bilities are observed for ΓP

freq,N . This is expected since
n·,1 = 100 and n·,1πprec = 10, it lies on the borderline
of satisfying the normal approximation assumption of a bi-
nomial distribution that both sample size×success proba-
bility and sample size×(1−success probability) should be
at least 10. When the normal approximation assumption is
not satisfied, one can either obtain “exact” confidence in-
tervals based on inverting the binomial test, or adjust the
normal-approximated confidence intervals by adding two
“successes” and two “failures” to the sample (Agresti and
Coull, 1998). Since this is not the focus of our paper, we
use normal approximations to compute confidence/credible
intervals analytically throughout this paper.

Here, four methods (frequentist analytical, frequentist
bootstrap, Bayesian analytical, Bayesian MC) were used
for computing Prec/Recall. We would like to give com-
parisons (a) between analytical methods versus simula-
tion methods and (b) frequentist methods versus Bayesian
methods.

• Analytical vs Simulation The analytical derivation of
confidence/credible intervals is complex and needs ap-
proximation, while using a simulation process to esti-
mate the distribution is easy and accurate. Yet, the su-
periority of the analytical method is that we can have
exact formulas and correspondingly derive the optimal
over-sampling ratio for recall, which cannot be com-
puted through simulation process.

• Frequentist vs Bayesian The Bayesian framework al-
lows us to inject prior knowledge into the posterior.
We can observe that the CIs generated by the Bayesian
method are always higher than the CIs generated by
the frequentist method. This can be explained by the
fact that the Bayesian method takes the variability of
the unknown parameters into account, whereas the
frequentist method assumes them to be fixed.

5 APPLICATION

We have some highly imbalanced classifiers deployed in
Yahoo Mail production. Post-deployment, we wish to mon-
itor the quality of those models at regular intervals. Based
on business needs, the estimates for precision and recall
need to be accurate, so that the precision and recall are
within 5% margin of error. Given a limited budget for
monitoring, the question becomes how big of a sample we
should get and whether we should over-sample the small
class or not?

Note that before the model is deployed to production we al-
ready have evaluated P/R from a pre-launch test set. Hence
we have a reasonable estimate of P/R and the ratio k of
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Table 3: Coverage probabilities (%) from 1000 samples at various values of v, k, πprec, πrecall, and s.
v 1/k πprec πRecall s ΓP

freq,N ΓP
freq,B ΓP

bys,N ΓP
bys,MC ΓR

freq,N ΓR
freq,B ΓR

bys,N ΓR
bys,MC

5000 20 0.9 0.9 1 94.2 95.2 95.2 95.3 95.2 95.0 95.4 96.2
5000 20 0.9 0.7 1 94.1 95.6 95.0 95.4 95.3 94.2 93.6 93.0
5000 20 0.9 0.9 2 94.0 94.5 95.0 95.7 94.9 94.1 93.0 93.5
5000 20 0.9 0.7 2 93.6 93.3 94.1 94.8 93.6 92.9 95.2 94.7
5000 20 0.9 0.9 5 95.5 95.4 93.7 94.1 94.9 93.5 94.8 94.1
5000 20 0.9 0.7 5 94.5 94.7 95.0 95.5 94.8 94.8 95.6 95.6

10000 100 0.9 0.9 1 92.7 94.4 94.4 96.1 95.7 93.3 93.6 93.7
10000 100 0.9 0.7 1 93.5 95.7 95.3 95.8 95.1 95.0 95.5 95.6
10000 100 0.9 0.9 2 95.8 95.1 94.1 94.8 95.4 92.7 93.2 93.7
10000 100 0.9 0.7 2 94.9 94.4 93.7 94.7 96.1 95.8 94.7 94.2
10000 100 0.9 0.9 5 92.9 93.8 95.0 95.7 95.1 93.9 94.0 94.0
10000 100 0.9 0.7 5 94.0 94.8 94.1 95.4 95.0 94.6 95.5 95.4
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Figure 2: Plots of credible intervals’ widths against the over-sampling ratios; Left: classifier Φ1; Middle: classifier Φ2;
Right: classifier Φ3.

positive/negative data in the population. Here, we focus
on monitoring the model post-deployment, and we will es-
timate the minimum number of samples needed to reach
a desired CI width. Table 4 shows typical examples for
a few classifiers Φ1, Φ2, and Φ3. For each classifier, we
plot the relationship between the over-sampling ratio s and
the width of the confidence intervals for both precision and
recall (see Figure 2) by fixing the sample size v = 10000.
Note that the relationship is not affected by the sample size,
since the CI’s width is proportional to 1/

√
v (see Eq 3 and

Eq 5). When the data is very imbalanced (Φ1 and Φ2 in this
application), over-sampling can greatly increase the preci-
sion confidence.

Given k, πprec and πrecall, we first obtain π1 and π0 from
Eq (9); then we use Theorem 1 to compute the optimal
over-sampling ratio s∗ for recall. If s∗ < 1 then we set
s∗ = 1. Based on CIs for P/R in Eq (3) and Eq (5), we can
obtain the margin of error for P/R (denoted by eP and eR

respectively) as below:

eP =z1− η
2

√
π1(1− π1)

n·,1
,

eR =z1− η
2

1
k
π0

π1

(1 + 1
k
π0

π1
)2

√
1− π1

n·,1π1
+

1− π0

n·,0π̂0

(10)

Note that π̂1 and π̂0 in Eq (3) and Eq (5) were replaced by
π1 and π0 since we are using π1 and π0 to estimate the CIs.

Our goal is to control both eP <= b and eR <= b, where
the margin of error b = 5%. Plugging in k, π1, and π0 into
Eq (10), we get:

n·,1 ≥ π1(1− π1)(
z1− η

2

b
)2,

1− π1

n·,1π1
+

1− π0

n·,0π̂0
≤ (

b

z1− η
2

)2
(1 + 1

k
π0

π1
)4

( 1k
π0

π1
)2

(11)

First we compute the minimum size n·,1 and n·,0 needed
in order to control eR. For example, take classifier Φ1.
Since s∗ = 1.51, as shown in Table 4, we replace n·,0
with n·,1/(ks

∗) in the 2nd inequality in Eq (11), and ob-
tain minimum n·,1 = 307 and n·,0 = 4410. Then, we plug
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Table 4: Production Models Monitoring.
P/R k π0 s∗ n·,1 n·,0 v

Φ1 0.79/0.67 0.046 0.0179 1.51 307 4410 4717
Φ2 0.86/0.56 0.033 0.0223 1.85 265 4340 4605
Φ3 0.90/0.66 0.458 0.212 1.00 141 306 447

n·,1 = 307 into the precision inequality Eq (11) and it sat-
isfies it. If the inequality is not satisfied, n·,1 and n·,0 will
need to be adjusted. Similarly, we obtain the required size
n·,1 and n·,0 for classifier Φ2 and Φ3 shown in Table 4.

6 CONCLUSIONS

We presented fundamental improvements in the accuracy
of P/R metrics by proposing over-sampling of predicted
positive data for imbalanced binary classification. Unlike
the random sampling scenario where both precision and re-
call are defined as probabilities from the multinomial distri-
bution, over-sampling naturally divides the confusion ma-
trix into two independent sets, the predicted positive and
predicted negative sets. We did a thorough analysis, in-
cluding formulating the problem and calculating the statis-
tics. We derived approximate confidence intervals analyti-
cally, and credible intervals from posterior predictive distri-
bution by injecting knowledge from priors and previously
observed data. We tested the derived formulas’ capacity to
construct accurate intervals, and demonstrated it on a real
application example. While over-sampling is not a novel
idea, to the best of our knowledge, this is the first work that
studies the effects of oversampling on precision and recall
in detail, and suggests specific over-sampling ratios.

Our intuition about over-sampling is that the more imbal-
anced the data, the more we should over-sample. By over-
sampling, we obtain more data for the positive set, thus be-
coming more confident about the precision. For recall, the
CI width reaches its minimum at an optimal over-sampling
ratio s∗, and then starts increasing as s gets bigger. How-
ever, the slope of the graph increases very slowly – the
more imbalanced the data, the flatter the slope. Thus, gen-
erally, it is a good idea to over-sample positive data since
the precision can benefit a lot, while hurting recall very lit-
tle. But if we want to be precise, we can use the imbalance
ratio k and an estimate of P/R. Then we can calculate the
trade-off between precision and recall, using the formulas
we provided. Note that different applications may priori-
tize prec/recall differently. We focus on recall in our ap-
plication since our production application requires both the
precision and recall’s CI width within 10%.

Lastly, we would like to emphasize that our work focuses
on saving the labeling cost of test data rather than train-
ing data. In many applied settings, it is required to con-
stantly monitor a previously trained classifier by evaluat-
ing the latest batch of data, due to the potential data drift

which may hurt the classifier’s performance. This requires
periodic labeling of newly collected test data in order to
detect whether the classifier can still be relied on. Our
work is very useful in such settings. Some readers may
be concerned about the usefulness of saving labeling effort
for evaluation given the fact that maybe millions of labeled
data are needed for model training anyway. Note that for
model training, in many cases the majority of the training
data labels are pseudo labels. For example, consider the
email classifier in (Kang et al., 2022), where pseudo labels
for training data were created in multiple ways. In this pa-
per we use models that have been trained on a fairly large
number of samples and that labeling effort for training data
is not considered here.

Acknowledgements

We would like to thank all reviewers for their construc-
tive suggestions to improve the paper. We are grateful to
the Mail science team, engineering team, and data team
at Yahoo for working closely on this project. We would
like to thank the annotator team for spending hours judging
emails. We would also like to thank Dr. Yong Liu and Dr.
Datong Chen for the inspired discussions to make the paper
better.

References

Agresti, A. and Coull, B. A. (1998). Approximate is better
than “exact” for interval estimation of binomial propor-
tions. The American Statistician, 52(2):119–126.

Bennett, P. N. and Carvalho, V. R. (2010). Online stratified
sampling: evaluating classifiers at web-scale. In Pro-
ceedings of the 19th ACM international conference on
Information and knowledge management, pages 1581–
1584.

Caelen, O. (2017). A Bayesian interpretation of the confu-
sion matrix. Annals of Mathematics and Artificial Intel-
ligence, 81(3-4):429–450.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and
Kegelmeyer, W. P. (2002). SMOTE: synthetic minor-
ity over-sampling technique. Journal of artificial intelli-
gence research, 16:321–357.

Chen, J., Wu, Z., Wang, Z., You, H., Zhang, L., and Yan, M.
(2020). Practical accuracy estimation for efficient deep
neural network testing. ACM Transactions on Software
Engineering and Methodology (TOSEM), 29(4):1–35.



Precision/Recall on Imbalanced Test Data

Davis, J. and Goadrich, M. (2006). The relationship be-
tween precision-recall and ROC curves. In Proceedings
of the 23rd international conference on Machine learn-
ing, pages 233–240.

Efron, B. (1992). Bootstrap methods: another look at the
jackknife. In Breakthroughs in statistics, pages 569–593.
Springer.

Fernández, A., del Rı́o, S., Chawla, N. V., and Herrera, F.
(2017). An insight into imbalanced big data classifica-
tion: outcomes and challenges. Complex & Intelligent
Systems, 3(2):105–120.

Goutte, C. and Gaussier, E. (2005). A probabilistic inter-
pretation of precision, recall and f-score, with implica-
tion for evaluation. In European Conference on Infor-
mation Retrieval, pages 345–359. Springer.

Guerriero, A., Pietrantuono, R., and Russo, S. (2021). Op-
eration is the hardest teacher: estimating dnn accuracy
looking for mispredictions. In 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering (ICSE),
pages 348–358. IEEE.

Kang, C., Shang, H., and Langlois, J.-M. (2022). Classify-
ing emails into human vs machine category. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 7069–7077.

Katz, D., Baptista, J., Azen, S., and Pike, M. (1978). Ob-
taining confidence intervals for the risk ratio in cohort
studies. Biometrics, pages 469–474.

Li, Z., Ma, X., Xu, C., Cao, C., Xu, J., and Lü, J. (2019).
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SUPPLEMENTARY MATERIALS

A BAYESIAN CREDIBLE INTERVALS DERIVATIONS

The simplest Bayesian inference for a binomial parameter π uses Beta distribution as the prior. The probability density
function of Beta(γ1, γ0) for π is proportional to π(γ1−1)(1− π)(γ0−1). The Beta distribution has

E[π] = γ1/(γ1 + γ0), V [π] = γ1γ0/[(γ1 + γ0)
2(γ1 + γ0 + 1)]

The beta distribution is the conjugate prior distribution for inference about a binomial parameter. Let variable Y follow
a binomial distribution Bin(n, π), and y denote a realization of Y . With a prior distribution Beta(γ1, γ0), the posterior
distribution for binomial parameter π in Bin(n, π) is a Beta(y + γ1, n− y + γ0).

As defined in Section 3.2, α = (α1,1, α0,1, α1,0, α0,0) represents the prior knowledge, so, naturally π1 and π0 have Beta
priors Beta(α1,1, α0,1) and Beta(α1,0, α0,0) respectively. One commonly used prior sets α1,1 = α0,1 = α1,0 = α0,0 = 0,
which corresponds to a noninformative conjugate prior for a binomially distributed random variable.

The observed pre-launch confusion matrix is C(n1,1, n0,1, n1,0, n0,0), thus n1,1 and n1,0 are the realizations of
Bin(n·,1, π1) and Bin(n·,0, π0) respectively. Let π̂1 = n1,1/n·1 and π̂0 = n1,0/n·0 be estimates of π1 and π0 from
the observed pre-launch confusion matrix.

Given the prior α and the observed pre-launch confusion matrix C(n1,1, n0,1, n1,0, n0,0), the posterior distributions for π1

and π0 are Beta(α1,1+n1,1, α0,1+n0,1) and Beta(α1,0+n1,0, α0,0+n0,0) respectively. For simplicity, we denote these
as Beta(ζ1,1, ζ0,1) and Beta(ζ1,0, ζ0,0).

For future monitoring test samples, given the same k (due to the same classifier Φ), suppose that we would like to sample
a test set of size v and over-sampling ratio s. Then the number of +ve and −ve samples will be n·,1 = k·s

k·s+1v and
n·,0 = 1

k·s+1v . Thus, we can compute the posterior predictive distribution for π̂1 and π̂0 for the future monitoring test
sample. Let α1 = (α1,1, α0,1) and α0 = (α1,0, α0,0). The posterior predictive distribution is formulated as

f(π̂g|n·,g, C,αg) =

∫
πg

f b
g (π̂g|n·,g, πg)f

β
g (πg|C,αg)dπg g ∈ [0, 1],

where f b
g (π̂g|n·,g, πg) is the binomial distribution and fβ

g (πg|C,α) is the Beta posterior distribution of πg (g ∈
[0, 1]). It shows that this posterior predictive function is the expectation of the conditional probability density function
f b
g (π̂g|n·,g, πg) over the posterior distribution fβ

g (πg|C,α).

For this compound distribution, n·,gπ̂g ∼ Bin(n·,g, πg), where πg is a random variable following Beta(ζ1,g, ζ0,g). Then
n·,gπ̂g follows a beta-binomial distribution (Smith, 1983).

V [π̂g|n·,g, C, α] =
ζ1,gζ0,g(ζ1,g + ζ0,g + n·,g)

n·,g(ζ1,g + ζ0,g)2(ζ1,g + ζ0,g + 1)
(12)

The above variance (Eq 12) could also be derived from the law of total variance as below.
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Variance of posterior predictive distribution By the law of total variance,
V [π̂g|n·,g, C, α] = Eζg

[V [π̂g|n·g, πg]] + V ζg
[E[π̂g|n·g, πg]], g ∈ [0, 1].

From the binomial distribution,
E[π̂g|n·,g, πg] = πg, V [π̂g|n·,g, πg] = πg(1− πg)/n·,g, g ∈ [0, 1]

Thus,

V [π̂g|n·,g, C, α] = Eζg
[
πg(1− πg)

n·,g
|n·,g] + V ζg

[n·,gπg|n·,g] =
ζ1,gζ0,g(ζ1,g + ζ0,g + n·,g)

n·,g(ζ1,g + ζ0,g)2(ζ1,g + ζ0,g + 1)
for g ∈ [0, 1].

V [π̂g|n·,g, C, α] = Eζg
[
πg(1− πg)

n·,g
|n·,g] + V ζg

[n·,gπg|n·,g]

=
Eζg

[πg] · (1−Eζg
[πg])

n·,g
+

(n·,g − 1)

n·,g
V ζg

[πg]

=
ζ1,gζ0,g

n·,g(ζ1,g + ζ0,g)2
+

(n·,g − 1)ζ1,gζ0,g
n·,g(ζ1,g + ζ0,g)2(ζ1,g + ζ0,g + 1)

=
ζ1,gζ0,g(ζ1,g + ζ0,g + n·,g)

n·,g(ζ1,g + ζ0,g)2(ζ1,g + ζ0,g + 1)
,

We can obtain the 100(1− α)% approximate Bayesian credible interval for precision as shown in Eq (6).

Using the same approximation as Katz et al. (1978) (based on the Delta method), the approximate variance of the log ratio
û is:

V [û|n·,1, n·,0, C, α] =
V [π̂1|n·,1, C, α]

(E[π̂1])2
+

V [π̂0|n·,0, C, α]

(E[π̂0])2

where E[π̂g] = Eζg
[E[π̂g|πg]] = Eζg

[πg] =
ζ1,g

ζ1,g+ζ0,g
for g ∈ [0, 1].

Substituting, we can obtain V [û|n·,1, n·,0, C, α], shown in Eq (8).

Since πrecall = 1/(1 + 1
k exp (u)) is a monotonically decreasing function of u, the Bayesian credible interval for u is:

log
ζ1,0(ζ1,1 + ζ0,1)

ζ1,1(ζ1,0 + ζ0,0)
± z1− η

2

√
V [û|n·,1, n·,0, C, α].

Similarly to calculating confidence intervals, we can obtain the credible interval for recall, shown in Equation( 7).

B PROOFS OF THEOREMS

B.1 Proof of Theorem 1

Proof. Minimizing V (πrecall) is equivalent to minimizing V (û). We have

V (û) =
1− π1

n·,1π1
+

1− π0

n·,0π0
=

1

n·,1Ω1
+

1

n·,0Ω0
=

1

v
(

1

k · s · Ω1
+

k · s
Ω0

+
1

Ω1
+

1

Ω0
)

, where n·1 and n·0 are in Eq (1). Let the derivative of V (u) with respect to u be zero, thus V (u) is minimized at

s∗ =
1

k

√
Ω0/Ω1 (13)

The ratio of the odds Ω1 and Ω0 is called the odds ratio.

B.2 Proof of Theorem 2

Proof. Minimizing V (πrecall) is equivalent to minimizing V (û). The formula of V (û) is given in Eq (8). If we remove
the terms that do not involve n·,1 or n·,0 in the formula of V (û) , then minimizing V (πrecall) is equivalent to minimizing
the following:

ζ0,1(ζ1,1 + ζ0,1)

n·,1ζ1,1(ζ1,1 + ζ0,1 + 1)
+

ζ0,0(ζ1,0 + ζ0,0)

n·,0ζ1,0(ζ1,0 + ζ0,0 + 1)
=

1

n·,1Θ1
+

1

n·,0Θ0

where Θ1 =
ζ1,1(ζ1,1+ζ0,1+1)
ζ0,1(ζ1,1+ζ0,1)

and Θ0 =
ζ1,0(ζ1,0+ζ0,0+1)
ζ0,0(ζ1,0+ζ0,0)

. Then, similarly to Theorem 1, V (û) is minimized at

s∗ =
1

k

√
Θ0/Θ1 (14)
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Figure 3: Plots of over-sampling ratio minimizing recall’s confidence interval with 1/k as the x-axis; Left: plots with
various values of recall by fixing Prec = 0.9; Right: plots with various values of precision by fixing Recall = 0.8.

C OPTIMAL OVER-SAMPLING RATIO s∗

Comparing s∗ from the frequentist perspective vs from the Bayesian perspective, when the mean of precision and the mean
of recall from the Bayesian posterior distributions match the true precision and recall from the frequentist scenario, the
expectations for Beta(ζ1,1, ζ0,1) and Beta(ζ1,0, ζ0,0) are equal to π1 and π0 respectively. Then we have:

ζ1,1
ζ1,1 + ζ0,1

= π1,
ζ1,0

ζ1,0 + ζ0,0
= π0

Correspondingly,

Θ1 =
π1(ζ1,1 + ζ0,1 + 1)

(1− π1)(ζ1,1 + ζ0,1)
≈ π1

1− π1
= Ω1 Θ0 =

π0(ζ1,0 + ζ0,0 + 1)

(1− π0)(ζ1,0 + ζ0,0)
≈ π0

1− π0
= Ω0

Thus, the s∗ from the frequentist perspective is close to s∗ from the Bayesian perspective. To visualize the relationships
between k, precision, recall, and s∗ (which minimizes the confidence interval width), we plot the s∗ (y-axis) and 1/k (x-
axis) for different values of P/R. See Figure 3. Each curve with fixed P/R has s∗ increasing as the data gets more-and-more
imbalanced. If we fix k and precision, the lower the recall, the larger s∗ needs to be in order to minimize the confidence
interval width of recall. If we fix k and recall, the lower the precision, the larger s∗ needs to be in order to minimize the
confidence interval width of precision. Overall, a higher over-sampling ratio is needed when the data is more imbalanced
(smaller k) and P/R is lower.


