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Abstract

We study the problem of efficient PAC learning of
halfspaces in Rd in the presence of the malicious
noise, where a fraction of the training samples are
adversarially corrupted. A series of recent works
have developed polynomial-time algorithms that
enjoy near-optimal sample complexity and noise
tolerance, yet leaving open whether a linear-time
algorithm exists and matches these appealing sta-
tistical performance guarantees. In this work, we
give an affirmative answer by developing an algo-
rithm that runs in time Õ(md), where m = Õ(dε )
is the sample size and ε ∈ (0, 1) is the target er-
ror rate. Notably, the computational complexity
of all prior algorithms suffer either a high order
dependence on the problem size, or is implicitly
proportional to 1

ε2 through the sample size. Our
key idea is to combine localization and an approx-
imate version of matrix multiplicative weights
update method to progressively downweight the
contribution of the corrupted samples while refin-
ing the learned halfspace.

1 INTRODUCTION

We study the problem of learning homogeneous halfspaces
in the probably approximately correct (PAC) model of
Valiant (1984). This is one of the most extensively stud-
ied problems in machine learning, dating back to the 1950s
(Rosenblatt, 1958). In the absence of noise, it is known that
the problem can be solved in polynomial time using linear
programming (Maass and Turán, 1994). In this work, we
consider learning halfspaces in the presence of the malicious
noise (Valiant, 1985), perhaps the strongest noise model.

Let X := Rd be the instance space, Y := {−1, 1} be the
label space, andH := {w ∈ Rd : x 7→ sign(w · x), ‖w‖ =
1} be the hypothesis class of homogeneous halfspaces. Let
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D be a distribution on X . The learner is given access to a
sample generation oracle EX(D,w∗) that works as follows:
Definition 1 (Malicious noise). Each time the learner
requests a sample, with probability 1 − η, the oracle
EX(D,w∗) randomly draws an instance x according to D
and returns the clean sample (x, sign(w∗ ·x)); with probabil-
ity η, the oracle may return an arbitrary pair (x, y) ∈ X ×Y .
We call w∗ the target halfspace and η the noise rate.

This is a significantly more challenging noise model than
other broadly studied ones such as the adversarial noise
(Haussler, 1992; Kearns et al., 1992), in the sense that the
malicious oracle can corrupt both instances and labels. It
is also worth noting that the oracle is assumed to have un-
bounded computational power and know the learning algo-
rithm (including the internal randomness). The goal of the
learner is to output a halfspace ŵ ∈ H such that its error
errD(w) := Prx∼D

(
sign(ŵ · x) 6= sign(w∗ · x)

)
≤ ε for

any prescribed error rate ε ∈ (0, 1).

Generally speaking, there are two important dimensions
along with algorithmic design: the statistical performance
and the computational complexity. Most prior works in this
space aimed at developing algorithms with favorable statis-
tical performance guarantees, especially the achievability
of optimal noise tolerance. For example, Kearns and Li
(1988) showed that the information-theoretic limit of the
noise tolerance is ε

1+ε and developed an efficient algorithm
with noise tolerance η = Ω(ε/d). This was later improved
to Ω(ε/

√
d) with smooth boosting (Servedio, 2003). Un-

der distributional assumptions on D, the noise tolerance
was improved to Ω̃(ε/d1/4) by Kalai et al. (2005) and to
Ω(ε2/ log(d/ε)) by using outlier removal (Klivans et al.,
2009). The seminal work of Awasthi et al. (2017) settled
the near-optimal noise tolerance η = Ω(ε) by leveraging
the idea of soft outlier removal into the margin-based active
learning framework of Balcan et al. (2007). With an im-
proved analysis, a very recent work of Shen (2021b) showed
that the polynomial-time algorithm of Awasthi et al. (2017)
essentially achieves near-optimal noise tolerance, sample
complexity, and label complexity simultaneously.

In contrast to the rich set of statistically efficient algorithms,
less is explored for designing practical algorithms that are
scalable to large-scale problems – though this is a central
theme in machine learning. In fact, as Awasthi et al. (2017);
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Shen (2021b) suggested, their algorithm needs to apply the
ellipsoid method as a subroutine, which roughly runs in
O(md4) time (Bubeck, 2015) that is prohibitive when the
instances lie in a high-dimensional space. Other aforemen-
tioned algorithms appear to run faster, yet comprising a
significant degree of noise tolerance and sample complex-
ity. For example, Kalai et al. (2005) showed that a simple
averaging scheme runs in O(md) time yet with noise toler-
ance Ω(ε/

√
d); with a preprocessing step that runs in time

O(n2d), the noise tolerance can be improved to Ω̃(ε/d1/4).
Likewise, Klivans et al. (2009) achieves better noise toler-
ance in terms of the dependence on d but their algorithm
runs in O(md3/ logm). In a nutshell, there always exists
an unpleasant tradeoff between noise tolerance and running
time in prior works; see Table 1 for a summary.1 Thus, a
natural and important question remains open:

Does there exist an algorithm that achieves opti-
mal noise tolerance and computational complex-
ity simultaneously?

1.1 Warmup: Learning via Mean Estimation

Had our goal been just obtaining nearly linear-time algo-
rithm with good noise tolerance (better than those listed in
Table 1), there would be a naive approach that makes use of a
fast robust mean estimation algorithm Dong et al. (2019) as a
black box and PAC learnsH under a strong condition thatD
be the standard Gaussian. Roughly speaking, in robust mean
estimation, there is an underlying distribution D′ that has an
unknown mean µ∗ ∈ Rd but the covariance matrix is known.
The learner has access to instances z1, . . . , zm drawn from
D′ among which η < 1/2 fraction are adversarially cor-
rupted, and the goal is to output µ̂ such that ‖µ̂− µ∗‖ ≤ ε.
Returning to the problem setup of learning halfspaces, under
the condition thatD, the underlying distribution onX , is the
standard Gaussian distribution N(0, Id×d), it is well-known
that for any clean sample (x, y) with y = sign(w∗ · x),
z :=

√
π
2 yx is an unbiased estimate of w∗. Thus, given

(x1, y1), . . . , (xm, ym), we can construct z1, . . . , zm with
zi =

√
π
2 yixi, and the clean samples zi can be thought

of as being generated from a sub-gaussian distribution D′

with unknown mean w∗. This motivates the following naive
approach for learning halfspace with malicious noise:

Naive Approach: Let m = Ω(d/ε2). Draw
{(xi, yi)}mi=1 from EX(D,w∗) and construct
Z = {zi}mi=1 with zi =

√
π
2 yixi. Run the al-

gorithm of Dong et al. (2019) on Z which outputs
ŵ ∈ Rd.

1We are doing our best to locate the specific theorem of each
related work in Table 1, but some bounds were not explicitly stated
yet were implied by the proof. Also, the bound on m in Awasthi
et al. (2017) was Õ(d3), but it has recently been improved by Shen
(2021b); we are using the improved bound in the table.

We can then apply Theorem 2.2 of Dong et al. (2019) to
show that the output ŵ is close to w∗ in `2-norm, which
translates into a PAC guarantee in view of a result from
Balcan and Long (2013).
Proposition 2 (Naive approach). Assume D is N(0, Id×d).
The naive approach satisfies the following: given any target
error ε ∈ (0, 1) and failure probability δ ∈ (0, 1), if η ≤
c′0

ε
log(1/ε) for some constant c′0 > 0, by drawing m =

Ω(d/ε2) samples, it returns a hypothesis ŵ ∈ H such that
with probability 1 − δ, Prx∼D

(
sign(ŵ · x) 6= sign(w∗ ·

x)
)
≤ ε. In addition, it runs in time Õ(md).

First of all, such naive approach already improves upon
Kalai et al. (2005); Klivans et al. (2009) in all aspects dis-
cussed so far (see Table 1). It also significantly reduces
the running time of Awasthi et al. (2017); Shen (2021b)
with a little sacrifice in noise tolerance. However, there are
two drawbacks in such black-box application of Dong et al.
(2019) compared to the guarantees in Awasthi et al. (2017);
Shen (2021b). First, the success of the naive approach re-
quires a strong distributional condition that D is standard
Gaussian (which is needed to ensure the mean of zi equal
w∗ for clean samples), while the results of Awasthi et al.
(2017); Shen (2021b) hold under the significantly more gen-
eral condition that D be isotropic log-concave (Lovász and
Vempala, 2007; Vempala, 2010). Second, the noise toler-
ance and the sample size above are suboptimal. In particular,
the sample complexity n is proportional to 1/ε2 while that
of Shen (2021b) scales as 1/ε.

1.2 Main Results

Our main contribution is the first nearly linear-time algo-
rithm with near-optimal noise tolerance and sample com-
plexity, under the significantly weaker assumption that the
distribution D is isotropic log-concave (Lovász and Vem-
pala, 2007; Vempala, 2010).
Theorem 3 (Main result). Assume that D is isotropic log-
concave. There exists an algorithm A satisfying the follow-
ing: given any target error ε ∈ (0, 1) and failure probability
δ ∈ (0, 1), if η ≤ c · ε for some small constant c > 0, by
making m = d

ε · polylog( dεδ ) calls to EX(D,w∗), it re-
turns a hypothesis ŵ ∈ H such that with probability 1− δ,
Prx∼D

(
sign(ŵ · x) 6= sign(w∗ · x)

)
≤ ε. In addition, it

runs in time Õ
(
md · log4 1

ε

)
.

Remark 4. Similar to Awasthi et al. (2017), we can con-
sider an active learning setting where upon receiving a re-
quest from the learner, the adversary EX(D,w∗) generates
a sample (x, y) as before but only returns the instance x.
The learner must make another call to a label revealing
oracle EXy to obtain the label y. We can show that the
total number of calls to EXy, i.e. the label complexity, is
Õ
(
d · polylog(1

ε )
)
, which is near-optimal (Kulkarni et al.,

1993). As the integration of active learner has been fairly
standard in the literature, we leave it to interested readers.
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Table 1: Comparison to Prior Robust Algorithms. There is always an unpleasant tradeoff between noise tolerance and
running time in prior works. For example, Kalai et al. (2005) designed a linear-time algorithm, but with the worst noise
tolerance, while Awasthi et al. (2017) achieved the best noise tolerance but with very high computational cost. Our work
achieves the best of the two worlds (up to a very mild polylog( 1

ε ) factor in the running time).

Work Noise tolerance Running time m

Theorem 12 of Kalai et al. (2005) Ω(ε/
√
d) O(md) Õ(d2/ε2)

Theorem 4 of Kalai et al. (2005) Ω̃(ε/d1/4) O(m2d) Õ(d2/ε2)

Theorem 1 of Klivans et al. (2009) Ω(ε2/ log(d/ε)) O(md3/ logm) Õ(d3/ε2)

Theorem 1.2 of Awasthi et al. (2017) and Shen (2021b) Ω(ε) O(md4 · log 1
ε ) Õ(d/ε)

This work (Theorem 3) Ω(ε) Õ(md · log4 1
ε ) Õ(d/ε)

Remark 5. In the very special regime of d < log 1
ε , our

runtime bound is worse than that of Awasthi et al. (2017).
Such regime is less interesting in practice though.

Remark 6. It is possible to generalize the distributional
condition to the family of well-behaved distributions as set
out in Diakonikolas et al. (2020b), but in our case we will
still need a sub-exponential tail bound since the success of
outlier removal and analysis of error rate both depend on
such condition.

1.3 Related Works

Learning halfspaces with noise is one of the most important
problems in machine learning. When the labels are adversar-
ially corrupted and there is no distributional assumption on
D, it was shown that even weak PAC learning is computa-
tionally hard (Guruswami and Raghavendra, 2006; Feldman
et al., 2006; Daniely, 2016). Under the Massart label noise
condition (Sloan, 1988; Massart and Nédélec, 2006), it was
shown that an error rate less than η + ε can be achieved
by efficient algorithms (Diakonikolas et al., 2019a; Chen
et al., 2020). On the other hand, a series of recent works
showed that when the underlying instance distribution is
well-behaved (e.g. isotropic log-concave), it is possible
to establish efficient PAC learning algorithms with error
rate less than ε when the samples are corrupted by vari-
ous types of label noise, such as the Massart noise (Mas-
sart and Nédélec, 2006; Awasthi et al., 2015, 2016; Yan
and Zhang, 2017; Zhang et al., 2020; Diakonikolas et al.,
2020b; Zhang and Li, 2021), the Tsybakov noise (Tsybakov,
2004; Diakonikolas et al., 2020c,a), the adversarial/agnostic
noise (Haussler, 1992; Kearns et al., 1992; Awasthi et al.,
2017; Shen, 2021a; Diakonikolas et al., 2021b). This paper
studies the regime where both instances and labels are adver-
sarially corrupted, thus is much more challenging (Awasthi
et al., 2017; Shen, 2021b). In addition to the works that
we have discussed, there are other interesting works that
considered learning of more general hypothesis classes such
as polynomial threshold functions and intersections of half-
spaces (Diakonikolas et al., 2018), or studied performance
guarantee when the underlying hypothesis class is sparse

halfspaces (Shen and Zhang, 2021). It is worth mentioning
that a more general noise model termed nasty noise was
coined out in Bshouty et al. (2002), where the oracle is al-
lowed to remove clean samples. Our results can be extended
to this noise model, though we do not pursue it here.

The problem of learning halfspaces with malicious noise
is, conceptually, related to robust mean estimation, where
the learner is given a set of instances among which a large
fraction are drawn from some distribution with unknown
mean and the rest are adversarially corrupted, and the goal
is to approximate the mean. The problem roots in robust
statistics since the 1960s (Tukey, 1960; Huber, 1964), yet
only recently have efficient algorithms been established
(Diakonikolas et al., 2016; Lai et al., 2016). After that,
there have been a flurry of developments concerning, for
example, faster implementation (Diakonikolas et al., 2017a;
Cheng et al., 2019; Dong et al., 2019; Hopkins et al., 2020),
improved sample complexity under structural assumptions
(Balakrishnan et al., 2017; Diakonikolas et al., 2019c; Zeng
and Shen, 2022), statistical-query lower bounds (Diakoniko-
las et al., 2017b); see Diakonikolas and Kane (2019); Di-
akonikolas et al. (2021a) for a comprehensive survey. We
will mostly be using the results from the appealing work
of Dong et al. (2019), whose primary idea is to identify
multiple directions where corrupted samples may lie on to
accelerate outlier removal.

1.4 Roadmap

The rest of the paper is organized as follows. In Section 2,
we describe the main algorithm that achieves the guarantees
announced in Theorem 3. In Section 3, we present theoreti-
cal analysis of the proposed algorithm. Section 4 concludes
the paper. All the proof details are deferred to the appendix.

1.5 Notations

For a vector v, we denote its `1-norm, `2-norm, and `∞-
norm by ‖v‖1, ‖v‖, and ‖v‖∞ respectively. For two vec-
tors u and v, we use u ≤ v (or u ≥ v) for element-wise
comparison. For a matrix M , we write ‖M‖ for its spec-
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tral norm, which is the largest singular value. Let n be
a positive integer. We write [n] := {1, . . . , n}. The let-
ters c and C, as well as their subscript variants such as c1
and C1, are reserved for specific absolute constants. For
two quantities f and g, we write f = O(g) if f ≤ K · g
for some constant K > 0, f = Ω(g) if f ≥ K · g, and
f = Θ(g) if f = O(g) and f = Ω(g). To ease the ex-
pression, sometimes we will use the Õ(·) notation, where
f = Õ(g) means f ≤ K ·g·polylog(g); likewise, f = Ω̃(g)
reads as f ≥ K · g/polylog(g).

2 MAIN ALGORITHMS

In this section, we present our main algorithm. It follows
from the one of Awasthi et al. (2017) and our key technical
contribution can be regarded as a nearly linear-time imple-
mentation with provable guarantees. In particular, we will
combine the matrix multiplicative weights update method
(Arora et al., 2012) into margin-based active learning (Bal-
can et al., 2007) to accelerate outlier removal, and will use
an online gradient descent method to refine the learned half-
spaces.

2.1 Margin-Based Active Learning

To design an algorithm that achieves the guarantees in The-
orem 3, we will use the margin-based active learning algo-
rithm of Awasthi et al. (2017), which exhibits state-of-the-
art statistical guarantees (Shen, 2021b). We first review the
general idea.

Recall that w∗ ∈ Rd is the target halfspace. Suppose that
we are given a halfspace u such that ‖u− w∗‖ ≤ r for
some constant radius r > 0. For example, one can pick
an arbitrary unit vector u ∈ Rd whose distance to w∗ must
be less than 2. It is then sensible to consider a localized
hypothesis space W := {w ∈ Rd : ‖w − u‖ ≤ r} as a
trust region of w∗ since W ⊃ w∗. An elegant result from
Balcan and Long (2013) (see Theorem 21 therein) tells
that as long as the instance distribution D is isotropic log-
concave, for any u′ ∈ W , its error rate in X̄u,b := {x ∈
Rd : |u · x| ≥ b} must be at most c0r for arbitrarily small
constant c0 > 0, provided b = C0r for some sufficiently
large constant C0 > 0. Therefore, the learner only needs
to find a hypothesis u′ ∈ W that incurs small error rate in
the band Xu,b := {x ∈ Rd : |u · x| ≤ b}. In Awasthi et al.
(2017), it was shown that a small constant error in Xu,b

suffices to certify an improved estimate u′ in the sense that∥∥u′ − w∗∥∥ ≤ r
2 . Thus, by iterating with O(log 1

ε ) phases,
it is possible to find a halfspace whose distance to w∗ is at
most ε, which would imply the desired error rate.

Now we delve a little into the algorithmic details. In light
of the above discussion, a crucial step in each phase is to
find a hypothesis u′ ∈ W with errDu,b

(u′) ≤ κ for some
small constant κ > 0 even in the presence of the malicious

noise, where Du,b is the distribution D conditioned on the
event x ∈ Xu,b. To this end, Awasthi et al. (2017) proposed
to use the ellipsoid method to find a feasible solution to
the following linear program for a given corrupted set S =
{(xi, yi)}ni=1 ⊂ Xu,b:

min
q=(q1,...,qn)

〈0, q〉

s. t. 0 ≤ q ≤ 1

n
,

n∑
i=1

qi ≥ (1− ξ),

sup
w∈W

n∑
i=1

qi(w · xi)2 ≤ O(b2 + r2),

(1)

where ξ is an estimate of the fraction of corrupted samples
in S (which can be shown to behave as a constant here).
The weights {qi}ni=1 should be thought of as indicating how
likely the i-th sample (xi, yi) is a clean sample. In this sense,
the ideal weights are: qi = 1

n for all clean samples (xi, yi)
and qi = 0 for all corrupted ones. The first constraint in
the above expression can be viewed as a convex relaxation
to the hard constraint qi ∈ {0, 1

n}; the second constraint in
Eq. (1) ensures that a roughly 1− ξ fraction of samples will
be assigned with weight close to 1

n – recall that the total
number of clean samples in S is (1−ξ)n. The last constraint
enforces that corrupted samples will not be assigned with
large weight: the term O(b2 + r2) is precisely an upper
bound on the left hand side had there been no corrupted
samples. The way that we impose such variance constraint
follows from the intuition that if the oracle were to force the
learner to produce a hypothesis that deviates far from w∗,
it has to concentrate its power on generating samples lying
roughly on some directions such that the hinge loss on these
samples are large (which enforces any optimizer to find a
solution that fits these corrupted losses). Such observation is
due to Blum et al. (1996) to handle the random classification
noise and was then utilized in Klivans et al. (2009) for
learning with the malicious noise.

Equipped with the weight vector q from Eq. (1), it then
minimizes a reweighted empirical hinge loss up to a constant
κ > 0 to produce a new iterate:

min
w∈W

`τ (w;S, q) :=

n∑
i=1

qi ·max
{

0, 1− 1

τ
yiw ·xi

}
, (2)

where τ = Θ(b) is a proper scaling factor that would be
useful to control the sample complexity.

We follow this pipeline and our main technical contribution
is to design nearly linear-time algorithms REWEIGHT (Algo-
rithm 2) and OPTIMIZE (Algorithm 4) that solve (1) and (2)
respectively. The main algorithm is outlined in Algorithm 1,
where in Step 7 we prune away all samples thate have large
`2-norm. We will see that this is crucial to establish bounded
computational complexity for OPTIMIZE yet does not hurt
the statistical performance since it is possible to show that
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Algorithm 1 Main Algorithm
Require: Error rate ε ∈ (0, 1), failure probability δ ∈

(0, 1), sample generation oracle EX(D,w∗).
Ensure: Halfspace ŵ with errD(ŵ) ≤ ε with probability

1− δ.
1: Initialize w0 as the zero vector in Rd.
2: kmax ← Θ(log 1

ε ).
3: for phases k = 1, 2, . . . , kmax do
4: bk ← Θ(2−k), rk ← Θ(2−k), τk ← Θ(2−k),
5: Wk ← {w ∈ Rd : ‖w − wk−1‖ ≤ rk}, Xk ←

{x ∈ Rd : |wk−1 · x| ≤ bk}
6: S′ ← request nk samples in Xk from EX(D,w∗) by

rejection sampling.
7: S ← S′ ∩

{
(x, y) : ‖x‖ ≤ γk

}
where γk =√

d log
(

2enk

c8bkδk

)
.

8: p = (p1, . . . , pnk
) ← REWEIGHT(S, γk, δk/4),

p← p/ ‖p‖1.
9: wk ← OPTIMIZE(S, p,Wk, bk, γk, δk/4), wk ←

wk/ ‖wk‖.
10: end for
11: return ŵ ← wkmax .

with overwhelming probability, all clean samples are re-
tained. The constant factors hidden in the hyper-parameters
bk, rk, τk, δk, kmax can be found in Appendix C.

2.2 REWEIGHT: Localized Soft Outlier Removal

We elaborate on the key idea to solve (1) in nearly linear
time, assuming the existence of a feasible solution. In par-
ticular, we assume that q∗ = (q∗1 , . . . , q

∗
n) is feasible, where

q∗i = 1
n if (xi, yi) is a clean sample and q∗i = 0 otherwise.

Note that such feasibility is guaranteed as far as the sam-
ple size n ≥ d · polylog(d, 1

b ,
1
δ ) (see Theorem 7 of Shen

(2021b)). For a weight vector q ≥ 0, we will frequently
denote the reweighted empirical covariance matrix2 by

M(q) :=

n∑
i=1

qixix
>
i . (3)

Since Eq. (1) is a linear program, a natural solver is the ellip-
soid method. It, however, turns out that the computational
bottleneck of the ellipsoid method roots in its high iteration
complexity, i.e. O(d2) (Bubeck, 2015), and the per-iteration
cost. In particular, in each iteration, the method identifies
one direction corresponding to the maximum eigenvalue of
the empirical covariance matrix to construct the separation
oracle, which runs in time O(nd2 + d). An interesting ob-
servation made in Dong et al. (2019); Hopkins et al. (2020)
is that a relevant problem, robust mean estimation, can be
solved via online regret minimization (Cesa-Bianchi et al.,
2004; Hazan, 2019). Though that is an unsupervised learn-
ing problem while we consider a supervised setting, it turns

2We slightly abuse the terminology “covariance matrix” in the
paper by referring to the one without subtracting the mean.

Algorithm 2 REWEIGHT

Require: A sample set S = {(xi, yi)}ni=1, scalar γ such
that maxi∈[n] ‖xi‖ ≤ γ, a spectral norm estimate λ∗,
failure probability δ′.

Ensure: A weight vector p̂ = (p̂1, . . . , p̂n) on S such that
‖M(p̂)‖ ≤ 1350λ∗.

1: p(1) ← ( 1
n ,

1
n , . . . ,

1
n ), J ← log4/3( γ

2

λ∗ ).
2: for j = 1, . . . , J do
3: λ(j) ← APPROXEV

(
p(j), S, 1

10 ,
δ′

2J

)
.

4: if λ(j) ≤ 1500λ∗ then return p̂← p(j).
5: p(j+1) ← REFINE(p(j), S, γ, λ∗, δ

′

2J ).
6: end for
7: return p̂← p(J+1).

Algorithm 3 REFINE(q, S, γ, λ∗, δ′′)

Ensure: A weight vector q̂ ∈ QS such that ‖M(q̂)‖ ≤
3
4‖M(q)‖ or ‖M(q̂)‖ ≤ 1350λ∗.

1: q(1) ← q, T ← 8 log d.
2: for t = 1, . . . , T do
3: λ(t) ← APPROXEV(q(t), S, 1

10 ,
δ′′

2T )

4: if λ(t) ≤ 1
2λ

(1) or λ(t) ≤ 1200λ∗ then return q̂ ←
q(t).

5: β̃(t) ← MMWUScore
(
S, q(1), . . . , q(t), δ

′′

2T

)
.

6: if 〈q(t), β̃(t)〉 ≤ 1
5λ

(1) then
7: q(t+1) ← q(t).
8: else
9: q(t+1) ← 1D-FILTER(q(t), β̃(t), 1

45 ).
10: end if
11: end for
12: return q̂ ← q(T+1).

out that they share merit in dealing with corrupted samples
but with two key differences: first, the empirical covari-
ance matrix of those works involves the empirical mean;
second, our samples are instance-label pairs with instances
being drawn from an isotropic log-concave distribution con-
ditioned on a band while their samples are drawn from
Gaussian or sub-gaussian. As will be clear, these lead to
different design on loss functions and analysis.

We now turn to the design of the algorithm. We follow
Dong et al. (2019) and appeal to the matrix multiplicative
weights update (MMWU) method (Arora et al., 2012) to
solve (1) by invoking REFINE (Algorithm 3) that takes as
input an initial weight vector 0 < q < 1

n and uses MMWU
to iteratively improve the weight vector in the sense of
reducing the spectral norm of M(q), and outputs a new
vector q′ with ‖M(q′)‖ ≤ 3

4‖M(q)‖. To this end, we will
need a result from Allen-Zhu et al. (2015) which states that
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for any sequence
{
q(1), . . . , q(T+1)

}
,

∥∥∥ T∑
t=1

M(q(t+1))
∥∥∥ ≤ T∑

t=1

〈M(q(t+1)), U (t)〉

+ λ

T∑
t=1

〈M(q(t+1)), U (t)〉‖M(q(t+1))‖+
log d

λ
(4)

holds for any λ ≤ mint∈[T ]‖M(q(t+1))‖−1 where

U (t) :=
exp(λ

∑t
s=1M(q(s)))

tr exp(λ
∑t
s=1M(q(s)))

. (5)

The underlying intuition for the choice of U (t) is that it is
the global optimum of the following entropy-regularized
semidefinite program:

max
U∈Rd×d

λ
〈 t∑
s=1

M(q(s)), U
〉

+ 〈U,− logU〉,

s. t. U � 0, tr(U) = 1.

(6)

This is a follow-the-regularized-leader type objective func-
tion with entropy regularization (Shalev-Shwartz, 2012) in
the matrix case. When λ → ∞, we can see that the opti-
mal U is given by U = vv> with v being the top eigen-
vector of the sum of M(q(s)), namely, it reduces to the
approach of finding one direction in one step; when λ→ 0,
U = 1

dId×d which weighs all directions equally. Therefore,
a positive finite λ induces a solution U that interpolates
between the two extremes, thus will find several principal
directions. In terms of iteration complexity, it is possible to
show that when the aggregated variance 〈M(q(t)), U (t)〉 is
large, we can apply the 1D-FILTER of Dong et al. (2019) to
reduce it. In this way, the right-hand side of (4) is at most
( 1

2T +log d) ·‖M(q(1))‖. This shows that after T = 4 log d

iterations, REFINE can output a weight vector q(T+1) such
that ‖M(q(T+1))‖ ≤ 3

4‖M(q(1))‖.

However, calculating the matrix U (t) is computationally
expensive. To avoid this, we observe that

〈M(q(t+1)), U (t)〉 =

n∑
i=1

q
(t+1)
i x>i U

(t)xi =:
n∑
i=1

q
(t+1)
i β

(t)
i .

(7)
It turns out that one can compute efficiently an approxima-
tion to β(t)

i for all i ∈ [n]:

Lemma 7 (Lemma 5.1 of Dong et al. (2019)). Consider
any fixed iteration t of REFINE. There exists an algo-
rithm MMWUScore(S, q(1), . . . , q(t), δ) that runs in time
Õ(tnd log 1

δ ) and with probability 1 − δ, outputs a non-
negative vector β̃(t) such that β̃(t)

i /β
(t)
i ∈ [ 9

10 ,
11
10 ].

Now we are in the position to state the main idea of
REWEIGHT: we start with the uniform distribution p(1) =

( 1
n , . . . ,

1
n ) on S, and repeatedly invoke the subroutine RE-

FINE to produce a more accurate empirical distribution in
each iteration j such that the spectral norm of M(p(j+1)) is

at most 3
4 of before. Therefore, after O

(
log ‖M(p(1))‖

λ∗

)
iter-

ations, we can find a distribution p̂ under which the spectral
norm is less than a prescribed bound λ∗ (up to a constant fac-
tor). Since we are promised that the `2-norm of all xi in S is
bounded by γ, it is not hard to show that ‖M(p(1))‖ ≤ γ2.
This gives the setting of the maximum iteration number J
in Algorithm 2.

A minor implementation detail of REWEIGHT is that for
the sake of computational efficiency, we will use a random-
ized algorithm APPROXEV(S, q, α, δ) that can efficiently
approximate the maximum eigenvalue of a given symmetric
matrix M =

∑n
i=1 qix

>
i xi. It is known that the classic

power method suffices and runs in linear-time provided that
the target approximation error is a constant.

Lemma 8 (Kuczynski and Wozniakowski (1992)). There
exists an algorithm APPROXEV that takes as input S ⊂ Rd,
q ≥ 0, α ∈ (0, 1), δ ∈ (0, 1), and runs in time O(ndα log 1

δ )
and outputs a scalar λ > 0 such that λ/‖M(q)‖ ∈ [1 −
α, 1 + α] where M(q) :=

∑n
i=1 qix

>
i xi.

Note also that before invoking REFINE, we will check if the
obtained approximate eigenvalue λ(j) is less than a constant
factor of λ∗. If this is the case, the algorithm will return
the current weight vector p(j). Such simple check not only
potentially saves computational cost, but also appears useful
to derive the performance guarantee of REFINE.

Lastly, for technical reason, in REFINE, we impose the
output weight vector q̂ in QS , where

QS :=
{
q ∈ Rn : 0 ≤ q ≤ 1

n
,∑

i∈SC

( 1

n
− qi

)
≤
∑
i∈SD

( 1

n
− qi

)}
, (8)

and SC and SD denote the set of clean and corrupted sam-
ples in S respectively. This constraint set QS is different
from the one in Eq. (1); yet it is not hard to see that they
share the same merit of enforcing the algorithm to assign
large weights to clean samples. In fact, the second con-
straint above ensures that the weights of corrupted samples
are decreased faster than those of clean samples, an impor-
tant property to characterize the dynamic of the REFINE
algorithm.

2.3 OPTIMIZE: Hinge Loss Minimization

In order to obtain nearly linear-time algorithm to optimize
(2) up to a constant optimization error κ > 0, we appeal
to the stochastic gradient descent (SGD) algorithm, whose
iteration complexity is higher than gradient descent but the
per-iteration cost is independent of the sample size (Nes-
terov, 2004; Bubeck, 2015). Additionally, we also hope to
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Algorithm 4 OPTIMIZE

Require: A sample set S = {(xi, yi)}ni=1, probabil-
ity distribution p = (p1, . . . , pn) on S, constraint
set W = {w : ‖w − u‖ ≤ r}, bandwidth b
such that maxi∈[n]|u · xi| ≤ b, scalar γ such that
maxi∈[n] ‖xi‖ ≤ γ, failure probability δ′.

Ensure: A hypothesis v̂ such that `τ (v̂;S, p) ≤
minw∈W `τ (w;S, p) + κ.

1: v0 ← 0 and T ← 1
κ2 · 72(b+r)2γ2

τ2 · log 4
δ′ .

2: for t = 1, 2, . . . , T do
3: Draw (xit , yit) from S according to p.
4: vt ← vt−1 + ρt

τ yitxit · 1{yitvt−1 · xit < τ} where
ρt = 2rτ

γ
√
t
.

5: if vt /∈W , vt ← u+ vt−u
‖vt−u‖ · r.

6: end for
7: return v̂ ← 1

T

∑T
t=1 vt.

obtain a high probability convergence argument for SGD
rather than convergence in expectation. While there have
been such results for strongly convex objective functions
(Shalev-Shwartz et al., 2011), to the best of our knowledge,
no general analysis has been established for applying SGD
on convex and Lipschitz functions (which is our case).

Our workaround is a two-step analysis: first, we think
of SGD as applying online gradient descent (Zinkevich,
2003) to a sequence of hinge loss functions fit(w) =
max{0, 1− 1

τ yitw ·xit}where the index it is chosen accord-
ing to the distribution p on S rather than being adversarially;
second, we apply online-to-batch conversion (Cesa-Bianchi
et al., 2004) to obtain a high probability guarantee on the
optimization performance.

Of central importance of online gradient descent and other
online optimization algorithms is the notion of regret, which
measures the cumulative loss incurred during online updates
compared to the smallest possible loss at hindsight. The
regret depends on the diameter of the constraint set W and
the magnitude of the gradient of the loss functions. Thanks
to Step 7 of Algorithm 1, the `2-norm of all the instances is
well-controlled. This gives the learning rate that we use in
OPTIMIZE. We show that this also implies a regret bound of
O( rγτ

√
T ) using standard results; see, e.g. Theorem 3.1 of

Hazan (2019). We further upper bound the loss function as
O( b+rτ γ). Putting these pieces and the guarantee of online-
to-batch conversion together, we obtain the following result
for OPTIMIZE:

Theorem 9 (OPTIMIZE). Consider Algorithm 4. With prob-
ability 1 − δ′, the following holds: the algorithm runs in
time O(Td) and its output v̂ is such that `τ (v̂;S, p) ≤
minw∈W `τ (w;S, p) + κ. In particular, under the setting
b = Θ(r) = Θ(τ) and κ = Θ(1), the computational com-
plexity is O(d2 · log3( n

bδ′ )).

3 PERFORMANCE GUARANTEES

We will fix a phase k throughout the section and drop the
subscript k. We will use u in place of wk−1. Our goal is to
find a feasible solution to (1). We note, however, that we
will consider a sufficient condition for the last constraint
thereof to ease the algorithmic design.

Lemma 10. Let V = {v ∈ Rd : ‖v‖ ≤ 1}. Suppose
that a weight vector q ∈ Rn is such that 0 ≤ q ≤ 1

n ,∑n
i=1 qi ≥ 1 − ξ, and supv∈V

∑n
i=1 qi(v · xi)2 = O(1).

Then q is feasible to (1).

Our algorithm was thus designed to solve the following
program:

min
q=(q1,...,qn)

〈0, q〉

s. t. 0 ≤ q ≤ 1

n
,

n∑
i=1

qi ≥ 1− ξ,

sup
v:‖v‖≤1

n∑
i=1

qi(v · xi)2 ≤ O(1).

(9)

The following lemma shows that the ideal solution, that
q∗i = 1

n if (xi, yi) is clean sample (drawn from Du,b) and
q∗i = 0 otherwise, is feasible.

Lemma 11. Consider the set of samples S = {(xi, yi)}ni=1

obtained at Step 7 of Algorithm 1 at any phase. Let q∗i = 1
n

if (xi, yi) is clean sample and q∗i = 0 otherwise. Then
with probability 1 − δ, ‖M(q∗)‖ ≤ λ∗ for some absolute
constant λ∗ > 0 if n ≥ d · polylog(d, 1

b ,
1
δ ).

The following is the primary result for soft outlier removal
under the feasibility of q∗.

Theorem 12 (REWEIGHT). Consider the REWEIGHT al-
gorithm (i.e. Algorithm 2). Let ξ ∈ [0, 1

2 ) be the frac-
tion of corrupted samples in S. With probability 1 − δ′,
the output p̂ of the algorithm is such that 0 ≤ p̂ ≤ 1

n ,
‖p̂‖1 ≥ 1− 2ξ, and ‖M(p̂)‖ ≤ 1350λ∗. The running time
is Õ

(
nd · log2( γ

λ∗δ′ )
)
.

Observe that p̂ slightly violates the constraint in (9) as
‖p̂‖1 ≥ 1− 2ξ. As will be clear in our analysis, this does
not hurt our main results.

Of the core of the analysis of Theorem 12 is a performance
guarantee of REFINE. Recall S = SC ∪ SD where SC

consists of samples drawn from Du,b and SD is the set of
corrupted samples, and recall the constraint set QS defined
in (8). It is easy to show the following:

Lemma 13. For any q ∈ QS , ‖q‖1 ≥ 1− 2 |SD|
n . In partic-

ular, when|SD| ≤ ξn, ‖q‖1 ≥ 1− 2ξ.

Therefore, during the updates within REFINE, we will main-
tain the iterates such that they lie in QS .
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Theorem 14 (REFINE). Consider the REFINE algorithm
(i.e. Algorithm 3) where the input q ∈ QS . With probability
1 − δ′′, the output q̂ is in QS , and satisfies ‖M(q̂)‖ ≤
3
4‖M(q)‖ or ‖M(q̂)‖ ≤ 1350λ∗. The running time is
Õ
(
nd · log( γ

λ∗δ′′ )
)
.

We are now in the position to prove Theorem 3.

Proof of Theorem 3. Consider Algorithm 1. In each phase
k, we perform the rejection sampling (Step 6) to gather
nk samples in Xk. Lemma 20 shows that this can be
done by making a number of mk = Ω( 1

bk
(nk + log 1

δ ))

calls to EX(D,w∗), leading to a computational complex-
ity bound of O(mk). The pruning step (Step 7) checks
the `2-norm of all instances in S, leading to a computa-
tional complexity bound of O(nkd). Next, by Lemma 22,
γk =

√
d log

(
4enk

c8bkδk

)
≤ Õ(

√
d log 1

εδ ). In addition,
Lemma 11 tells that λ∗ is an absolute constant. Thus, the
running time of REWEIGHT is Õ

(
nkd · log2( 1

εδ )
)

in view
of Theorem 12 and that of OPTIMIZE is Õ

(
d2 · log3( 1

εδ )
)

in
view of Theorem 9. As mk ≥ nk ≥ d, it is easy to see that
the running time for phase k is Õ

(
mkd · log3( 1

εδ )
)
. Sum-

ming over kmax = Θ(log 1
ε ) phases, we conclude that the

overall running time of Algorithm 1 is Õ
(
mAd · log4( 1

εδ )
)

where mA :=
∑kmax

k=1 mk = d
ε · polylog(d, 1

ε ,
1
δ ).

The sample complexity bound and PAC guarantee of the
output ŵ of Algorithm 1 directly follows from that of Shen
(2021b), since in order to fit their analysis, we only need
to find global optimum of (9) and (2).This completes the
proof.

4 CONCLUSION AND OPEN
QUESTIONS

We investigated the problem of learning homogeneous half-
spaces in the presence of the malicious noise. This is an
important problem that has been broadly studied in learn-
ing theory, typically with the emphasis on understanding
noise tolerance and sample complexity of polynomial-time
algorithms. We have presented the first nearly linear-time
algorithm that achieves the best along all dimensions: com-
putational complexity, sample complexity, label complexity,
and noise tolerance. To this end, we leveraged the powerful
and general matrix multiplicative weights update method
into a margin-based active learning framework. We also
presented a two-step high probability analysis of stochastic
gradient descent for non-smooth and non-strongly convex
functions.

We believe that our techniques can find more applications,
such as fast learning of generalized linear models with the
malicious noise. One open question that we have in mind
is whether it is possible to extend our algorithm to learn-
ing of sparse halfspaces with the same noise. It turns out

that with the sparsity constraint, it becomes intractable to
evaluate the last constraint of the underlying soft outlier
removal program (1), due to the computational hardness of
sparse principal component analysis. As far as we know, re-
cent works of Diakonikolas et al. (2019b); Shen and Zhang
(2021) only lead to super-linear time algorithms, and it is
unclear how we can adapt the MMWU framework with the
sparsity constraint; in particular, how to efficiently com-
pute the global optimum of (6) when there is an additional
sparsity constraint on U .
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A OMITTED PROOFS

A.1 Proof of Proposition 2

Proof. The proof is rather straightforward. Under the assumption that D is standard Gaussian, it is a folklore that for any
clean sample (xi, yi) returned by EX(D,w∗),

Ex∼D[yixi] = Ex∼D[sign(w∗ · xi) · xi] =

√
2

π
w∗; (10)

see for example, Lemma 4 of Zhang et al. (2014). Therefore, zi :=
√
π/2yixi are independent random draws from some

sub-gaussian distribution D′ with unknown mean w∗ and identity covariance matrix for all clean samples (xi, yi), and the
rest of zi are arbitrary. This is exactly the problem setup of robust mean estimation considered in Lemma 23. Thus, we
directly apply Lemma 23 to get that there is an algorithm that runs in time Õ(nd) and with probability 1− δ, outputs ŵ ∈ H
such that

‖ŵ − w∗‖ ≤ O
(
η
√

log(1/η) +

√
d+ log(1/δ)

n

)
.

It is easy to see that when n ≥ Ω
(d+log(1/δ)

ε2

)
and η ≤ O

(
ε

log(1/ε)

)
, we have ‖ŵ − w∗‖ ≤ K · ε for sufficiently small

constant K > 0.

Now by Balcan and Long (2013), when the distribution D is isotropic log-concave (which applies to the Gaussian), we have

Prx∼D
(

sign(ŵ · x) 6= sign(w∗ · x)
)
≤ O(θ(ŵ, w∗)) ≤ O(‖ŵ − w∗‖) ≤ ε, (11)

where the last step follows since we can choose K sufficiently small. The proof is complete.

A.2 Proof of Lemma 10

Proof. It is not hard to show that

sup
w∈W

n∑
i=1

pi(w · xi)2 ≤ 2

n∑
i=1

qi(u · xi)2 + 2 sup
w∈W

n∑
i=1

qi((w − u) · xi)2.

By localized sampling, we have (u · xi)2 ≤ b2 for all xi; thus the first term on the right-hand side is at most 2b2. Since
W = {w : ‖w − u‖ ≤ r}, the second term on the right-hand side equals 2r2 supv∈V

∑n
i=1 qi(v · xi)2 in view of simple

variable change.

A.3 Proof of Lemma 11

Proof. Denote S′C the set of clean samples in S′ and SC that of S.

By Lemma 20, if we call EX(D,w∗) for m ≥ Ω
(

1
b (n+ log 3

δ )
)

times, with probability 1− δ
4 , we can form S′ with size n′.

Next, by Lemma 21, the number of clean samples in S′ is at least 3
4

∣∣S′∣∣ = 3
4n
′. Now by Lemma 22, we know that with

probability 1− δ
4 , all clean samples are retained during Step 7 of Algorithm 1. Thus,|SC| ≥ 3

4n
′ ≥ 3

4n. Therefore, as soon
as we set n ≥ d · polylog(d, 1

b ,
1
δ ), we can apply Lemma 19 and complete the proof.

A.4 Analysis of REWEIGHT

Suppose λ = APPROXEV(S, q, 1/10, δ) and λ′ = APPROXEV(S, q′, 1/10, δ). We will frequently use the following simple
facts from algebraic calculation:

λ′ ≤ ζλ =⇒ ‖M(q′)‖ ≤ 11

9
ζ‖M(q)‖, ‖M(q′)‖ ≤ ζ‖M(q)‖ =⇒ λ′ ≤ 11

9
ζλ. (12)

Let S = SC ∪ SD where SC consists of clean samples and SD is the set of corrupted samples. Recall the definition:

QS =

{
q ∈ Rn : 0 ≤ q ≤ 1

n
,
∑
i∈SC

( 1

n
− qi

)
≤
∑
i∈SD

( 1

n
− qi

)}
.
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Lemma 15 (Restatement of Lemma 13). For any q ∈ QS , ‖q‖1 ≥ 1− 2 |SD|
n . In particular, when|SD| ≤ ξn, ‖q‖1 ≥ 1−2ξ.

Proof. By the last constraint in (8) and the fact q ≥ 0, we have

n∑
i=1

( 1

n
− qi

)
≤ 2

∑
i∈SD

( 1

n
− qi

)
≤ 2|SD|

n
.

Rearranging gives the desired bound on ‖q‖1.

Let q∗ be such that q∗i = 1
n if i ∈ SC and q∗i = 0 otherwise. Clearly, q∗ ∈ QS and

‖M(q∗)‖ =
1

n
‖
∑
i∈SC

x>i xi‖ ≤
|SC|
n
· λ∗ ≤ λ∗. (13)

A.4.1 Proof of Theorem 12

Proof. By the construction of p(1), we have p(1) ∈ QS . Thus the guarantee from Theorem 14 ensures p(j+1) ∈ QS for all
1 ≤ j ≤ J .

In addition, for any 1 ≤ j ≤ J , Theorem 14 tells that either ‖M(p(j+1))‖ ≤ 3
4‖M(p(j))‖ or ‖M(p(j+1))‖ ≤ 1350λ∗. In

the latter case, we will have λ(j+1) ≤ 1500λ∗, for which REWEIGHT will return. Now consider such case does not occur
for all j. Then by telescoping the inequality ‖M(p(j+1))‖ ≤ 3

4‖M(p(j))‖, we must have

‖M(p(J+1))‖ ≤
(3

4

)J‖M(p(1))‖ =
(3

4

)J
max
v:‖v‖=1

1

n

n∑
i=1

(v · xi)2 ≤
(3

4

)J · γ2.

With the choice J = log4/3( γ
2

λ∗ ), we obtain ‖M(p(J+1))‖ ≤ λ∗.

In either case, we know that the returned (unnormalized) p satisfies ‖M(p)‖ ≤ 1350λ∗.

Since the running time of REFINE is Õ(nd log γJ
λ∗δ′ ), the total running time of REWEIGHT is J times more. Given the

setting of J , it is not hard to see that the computational complexity is Õ(nd log2 γ
λ∗δ′ ).

Finally, each time REFINE may fail with probability δ′

J . Thus, by union bound over all J iterations, the REWEIGHT algorithm
may fail with probability at most δ′.

A.5 Analysis of REFINE

Lemma 16 (Progress within REFINE). Suppose that q ∈ QS and ‖M(q)‖ ≥ 1000‖M(q∗)‖ where q∗i = 1
n if i ∈ SC

and q∗i = 0 otherwise. Let U ∈ ∆d×d, βi = x>i Uxi and β̃i be such that β̃i/βi ∈ [ 9
10 ,

11
10 ] for all i ∈ [n]. Let λ be such

that λ/‖M(q)‖ ∈ [ 9
10 ,

11
10 ], and 〈q, β̃〉 ≥ 1

5λ. Then, for q′ = 1D-FILTER(q, β̃, 1
90 ), we have 0 ≤ q′ ≤ q, q′ ∈ QS , and

〈M(q′), U〉 ≤ 1
16 〈M(q), U〉. Furthermore, the running time is O

(
n log ‖β‖∞〈q,β〉

)
.

Proof. The proof of the lemma follows from Claim 3.7 of Dong et al. (2019), though our proof is simpler since we do not
need to estimate the mean of the distribution.

We first verify that q ∈ QS satisfies the assumption of Lemma 24, i.e. 〈qSC
, β̃SC

〉 ≤ α〈q, β̃〉 for some factor α > 0. In fact,
since q ∈ QS , we have qi ≤ 1

n for all i ∈ [n]. It follows that

〈qSC , βSC〉 ≤ 〈q∗, β〉 ≤ ‖M(q∗)‖ ≤ 1

1000
‖M(q)‖ ≤ λ

900
≤ 1

180
〈q, β̃〉, (14)

where the second step follows from the definition of spectral norm, the third step follows from our assumption on ‖M(q)‖,
the last two steps follow from our assumptions on λ. On the other hand, since we assumed for all i ∈ [n] that βi ≥ 10

11 β̃i and
qi is positive, we have 〈qSC

, βSC
〉 ≥ 10

11 〈qSC
, β̃SC

〉. This together with the above inequality implies

〈qSC
, β̃SC

〉 ≤ 11

1800
〈q, β̃〉 ≤ 1

90
〈q, β̃〉.
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Therefore, we can invoke Lemma 24 by passing the arguments (q, β̃, 1
45 ) to 1D-FILTER and obtain a weight vector q′ such

that

〈q′, β̃〉 ≤ 1

45
〈q, β̃〉.

By the condition β̃i/βi ∈ [ 9
10 ,

11
10 ], we convert back to the guarantee in terms of β as follows:

〈q′, β〉 ≤ 1

45
· 11

9
〈q, β〉 ≤ 1

16
〈q, β〉.

Observe that this is equivalent to

〈M(q′), U〉 ≤ 1

16
〈M(q), U〉. (15)

In addition, the first part of Lemma 24 gives 0 ≤ q′ ≤ q and
∑
i∈SC

(qi − q′i) ≤
∑
i∈SD

(qi − q′i). It hence follows that
0 ≤ q′ ≤ 1

n since q ≤ 1
n . Also,

∑
i∈SC

( 1

n
− q′i

)
=
∑
i∈SC

( 1

n
− qi

)
+
∑
i∈SC

(qi − q′i) ≤
∑
i∈SD

( 1

n
− qi

)
+
∑
i∈SD

(qi − q′i) =
∑
i∈SD

(qi − q′i),

namely, we proved q′ ∈ QS .

Lastly, the running time of 1D-FILTER is given by O
(
n log 45‖β̃‖∞

〈q,β̃〉

)
. Since β differs from β̃ by a constant factor, this

amounts to O
(
n log ‖β‖∞〈q,β〉

)
.

Next, we characterize the performance of the MMWUScore subroutine in REFINE. For an iteration t, recall

U (t) :=
exp(λ

∑t
s=1M(q(s)))

tr exp(λ
∑t
s=1M(q(s)))

, β
(t)
i := x>i U

(t)xi for all i ∈ [n], where λ =
9

10λ(1)
.

Recall also that Lemma 7 shows that there exists an algorithm that computes β̃(t) in nearly linear time with β̃(t)
i /β

(t)
i ∈

[ 9
10 ,

11
10 ] for all t ∈ [T ] and i ∈ [n].

Now we prove the main result for REFINE.

A.5.1 Proof of Theorem 14

Proof. First, if REFINE returns at Step 4 in some iteration t, we have λ(t) ≤ 1
2λ

(1) or λ(t) ≤ 1200λ∗. Recall
λ(t)/‖M(q(t))‖ ∈ [ 9

10 ,
11
10 ]. If λ(t) ≤ 1

2λ
(1),

‖M(q(t))‖ ≤ 11

9
· 1

2
‖M(q(1))‖ ≤ 3

4
‖M(q(1))‖. (16)

If λ(t) ≤ 1200λ∗,

‖M(q(t))‖ ≤ 10

9
λ(t) ≤ 10

9
· 1200λ∗ ≤ 1350λ∗. (17)

From now on, suppose that λ(t) > 1
2λ

(1) and λ(t) > 1200λ∗ for all 1 ≤ t ≤ T . Observe that λ(t) > 1200λ∗ implies

‖M(q(t))‖ ≥ 1000λ∗ ≥ 1000‖M(q∗)‖, (18)

where the last step follows from (13). Hence, all q(t) satisfy the requirement in Lemma 16. Thus, we can show that
0 ≤ q(t+1) ≤ q(t) for all t ∈ [T ]. Thus, ‖M(q(t))‖ ≤ ‖M(q(1))‖. An immediate consequence is that for the matrices

9
10λ(1)M(q(t)) appearing in the definition of U (t) in (5), we have

‖ 9

10λ(1)
M(q(t))‖ ≤ ‖M(q(1))‖−1‖M(q(t))‖ ≤ 1.
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This allows us to apply the regret bound of matrix multiplicative weights update method (Allen-Zhu et al., 2015) and obtain

‖
T∑
t=1

M(q(t+1))‖

≤
T∑
t=1

〈M(q(t+1)), U (t)〉+
9

10λ(1)

T∑
t=1

〈M(q(t+1)), U (t)〉‖M(q(t+1))‖+
10λ(1)

9
log d

≤ 2

T∑
t=1

〈M(q(t+1)), U (t)〉+
11

9
‖M(q(1))‖ · log d. (19)

It remains to upper bound the cross term on the right-hand side and lower bound the left-hand side. To this end, observe that
for any iteration t, if 〈q(t), β̃(t)〉 ≤ 1

5λ
(1), we have q(t+1) = q(t) and therefore

〈M (t+1), U (t)〉 =

n∑
i=1

q
(t)
i x>i U

(t)xi ≤
11

10

n∑
i=1

q
(t)
i β̃

(t)
i ≤

11

50
λ(1) ≤ 121

500
‖M(q(1))‖. (20)

Otherwise, by Lemma 16, we have q(t+1) ≤ q(t). Therefore,

〈M(q(t)), U (t)〉 ≤ 〈M(q(1)), U (t)〉 ≤ ‖M(q(1))‖. (21)

Lemma 16 also tells that

〈M (t+1), U (t)〉 ≤ 1

16
〈M (t), U (t)〉

(21)
≤ 1

16
‖M(q(1))‖. (22)

Combining (20) and (22) gives

〈M (t+1), U (t)〉 ≤ 1

4
‖M(q(1))‖, for all 1 ≤ t ≤ T. (23)

To lower bound the spectral norm of
∑T
t=1M(q(t+1)), again by the result 0 ≤ q(t+1) ≤ q(t), we have M(q(T+1)) �

M(q(t+1) for all t ≤ T . Hence,
T∑
t=1

M(q(T+1)) �
T∑
t=1

M(q(t+1)).

This implies

T‖M(q(T+1))‖ ≤ ‖
T∑
t=1

M(q(t+1))‖. (24)

Putting (19), (23) and (24) together, and choosing T = 8 log d gives ‖M(q(T+1))‖ ≤ 3
4‖M(q(1))‖.

Now we consider the failure probability of the algorithm. The randomness occurs when invoking APPROXEV and
MMWUScore. By Lemma 8 and Lemma 7 respectively, each iteration may fail with probability δ′′

T . Thus, by union bound
over all T iterations, with probability 1− δ′′, the algorithm succeeds.

Lastly, we analyze the running time. By Lemma 8, the computational cost of APPROXEV through the T iterations is
O(Tnd log T

δ′′ ), which amount to be Õ(nd log 1
δ′′ ) as T = 8 log d. By Lemma 7, the computational cost of MMWUScore

is Õ
(∑T

t=1 tnd log T
δ′′

)
= Õ(nd log 1

δ′′ ). When 〈q(t), β̃(t)〉 > 1
5λ

(1), REFINE will invoke 1D-FILTER, whose running

time is O
(
n log ‖β(t)‖∞

〈q(t),β̃(t)〉

)
≤ O

(
n log ‖β

(t)‖∞
λ(1)

)
. Since β(t)

i = x>i U
(t)xi, ‖xi‖ ≤ γ, tr(U (t)) = 1, it is not hard to see that

β
(t)
i ≤ γ2 for all t ∈ [T ] and i ∈ [n]. Thus, ‖β(t)‖∞ ≤ γ2. To lower bound λ(1), note that the condition that we invoke

REFINE in REWEIGHT is that this quantity is greater than 1250λ∗. Therefore, the running time of invoking 1D-FILTER
once is O(n log γ

λ∗ ).

This completes the proof of the theorem.



PAC Learning of Halfspaces with Malicious Noise in Nearly Linear Time

A.6 Analysis of OPTIMIZE

Recall the hinge loss:

`τ (w;S, p) =

n∑
i=1

pi ·max
{

0, 1− 1

τ
yiw · xi

}
We consider finding a solution v̂ ∈W such that

`τ (v̂;S, p) ≤ min
w∈W

`τ (w;S, p) + κ,

where W := {w ∈ Rd : ‖w − u‖ ≤ r} and κ is an absolute constant.

We need a standard regret bound of online gradient descent, first considered in Zinkevich (2003).
Lemma 17 (Theorem 3.1 in Hazan (2019)). Consider a sequence of samples {(xt, yt)}Tt=1 and convex function f(w;x, y).
Let W be the constraint set with diameter diam(W ). Suppose G > 0 is such that

∥∥∇wf(w;xt, yt)
∥∥ ≤ G for all 1 ≤ t ≤ T .

Then online gradient descent with step sizes ρt = diam(W )

G
√
t

guarantees that for any w ∈W ,

RegT (w) :=

T∑
t=1

f(wt;xt, yt)−
T∑
t=1

f(w;xt, yt) ≤
3

2
G · diam(W ) ·

√
T .

The following result is known as online-to-batch conversion, which is useful to analyze the generalization error of the iterate
produced by an online learner.
Lemma 18 (Corollary 2 in Cesa-Bianchi et al. (2004)). Consider the same conditions as Lemma 17. Further assume
that the sequence of the samples are independent draws from a distribution D, and ‖f‖∞ ≤ M . Let risk(w) :=

E(x,y)∼D[f(w;x, y)] and denote w∗ = arg minw∈W risk(w). Denote w̄ = 1
T

∑T
t=1 wt. Then with probability at least

1− δ,

risk(w̄) ≤ risk(w∗) +
RegT (w∗)

T
+ 2M

√
2 log(2/δ)

T
.

A.7 Proof of Theorem 9

Proof. We think of the algorithm as applying the online gradient descent to the function f(w;x, y) = max
{

0, 1− 1
τ yw · x

}
.

First, for any w and w′ in W , it is easy to show that
∥∥w − w′∥∥ ≤ ‖w − u‖+

∥∥w′ − u∥∥ ≤ 2r; thus diam(W ) = 2r. Second,∥∥∇wf(w;x, y)
∥∥ ≤ 1

τ ‖x‖ ≤
γ
τ .

Now Lemma 17 guarantees that with ρt = 2rτ
γ
√
t
, we have for all w ∈W ,

T∑
t=1

f(vt;xit , yit)−
T∑
t=1

f(w;xit , yit) ≤
3

2
· γ
τ
· 2r ·

√
T =

3rγ

τ

√
T . (25)

Lastly, ‖f‖∞ ≤ 1 + 1
τ |w · x| ≤

2(b+r)γ
τ where we use the fact |w · x| ≤ |u · x| +

∣∣(w − u) · x
∣∣ ≤ b + ‖w − u‖ · ‖x‖ ≤

b+ r · γ ≤ (b+ r)γ.

Therefore, combining the above with Eq. (25) and Lemma 18, we have with probability 1− δ′/2,

`τ (v̂;S, p) ≤ min
w∈W

`τ (w;S, p) +
3rγ

τ
√
T

+
2(b+ r)γ

τ
·
√

2 log(4/δ′)

T

≤ min
w∈W

`τ (w;S, p) +
6(b+ r)γ

τ
·
√

2 log(4/δ′)

T
.

Hence, if we pick

T =
1

κ2
· 72(b+ r)2γ2

τ2
· log

4

δ′
, (26)

we obtain
`τ (v̂;S, p) ≤ min

w∈W
`τ (w;S, p) + κ.

Finally, we note that the per-iteration cost of OPTIMIZE is O(d) since both the stochastic update and projection on W run in
O(d) time. This completes the proof.
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B USEFUL LEMMAS

Lemma 19 (Proposition 8 of Shen (2021b)). Let SC be a set of i.i.d. instances drawn from Du,b. If |SC| ≥
d ·polylog(d, 1

b ,
1
δ ), then with probability 1−δ, ‖M‖ ≤ c for some absolute constant c > 0, where M := 1

|SC|
∑
x∈SC

xx>.

Lemma 20 (Lemma 11 of Shen (2021b)). Assume η < 1
2 . By making a number of m ≥ Ω

(
1
b (n + log 1

δ )
)

calls to
EX(D,w∗), we obtain n samples to form S′ with probability 1− δ.
Lemma 21 (Lemma 12 of Shen (2021b)). Assume η ≤ c5ε. If |S| ≥ 24 ln 1

δ , then with probability 1− δ, |SC| ≥ 3
4 |S|.

Lemma 22. Suppose S is a set of i.i.d. instances drawn from Du,b. Then with probability 1 − δ, maxx∈S ‖x‖ ≤√
d log

( e|S|
c8bδ

)
.

Proof. By Lemma 26 of Shen (2021b), we have for any α > 0,

Prx∼Du,b

(
‖x‖ ≥ α

)
≤ e

c8b
exp(−α/

√
d),

implying that
Prx∼Du,b

(
max
x∈S
‖x‖ ≥ α

)
≤|S| · e

c8b
exp(−α/

√
d).

Thus, with probability 1− δ, we have

max
x∈S
‖x‖ ≤

√
d log

(
e|S|
c8bδ

)
.

The proof is complete.

Lemma 23 (Theorem 2.2 of Dong et al. (2019)). Assume D′ is sub-gaussian with identity covariance matrix. There exists
an algorithm that given the corrupted instance set S = {z1, . . . , zn}, runs in time Õ(nd) and with probability 1− δ, outputs
µ̂ such that ‖µ̂− µ∗‖ ≤ O

(
η
√

log(1/η) +
√

(d+ log(1/δ))/n
)
.

Lemma 24 (Theorem 2.4 of Dong et al. (2019)). Let α ∈ (0, 1/2), α′ ≥ 2α, and let q = (q1, . . . , qn) and β = (β1, . . . , βn)
be non-negative vectors such that ‖q‖1 ≤ 1. Suppose there exists two disjoint sets SC ∪ SD = [n], and

〈qSC
, βSC

〉 ≤ α〈q, β〉.

Then 1D-FILTER(q, β, α′) runs in time O
(
n log ‖β‖∞α′〈q,β〉

)
and outputs 0 ≤ q′ ≤ q satisfying the following conditions:

1. more weights are removed from SD than from SC, i.e.
∑
i∈SC

qi − q′i ≤
∑
i∈SD

qi − q′i;

2. 〈q′, β〉 ≤ α′〈q, β〉.

Note that we can run 1D-FILTER with α′ = 2α which is strictly less than 1; hence the second part of the above lemma
guarantees that the new weight vector q′ decreases the overall score.

C HYPER-PARAMETER SETTING FOR ALGORITHM 1

For readers interested in the constant factor hidden in the Θ(·) notation in bk and other hyper-parameters used in Algorithm 1,
we clarify it here.

Our hyper-parameter setting of Algorithm 1 is same as Shen (2021b). In the following, c0, c1, . . . , c8 and C2 were positive
absolute constants that were set out in Appendix A of Shen (2021b).

Let g(t) = c2
(
2t exp(−t) + c3π

4 exp
(
− c4t4π

)
+ 16 exp(−t)

)
. Let c̄ ≥ 8π/c4 be such that g(c̄) ≤ 2−8π; it is easy to verify

its existence. Given such constant c̄, we set the constant κ = exp(−c̄), r1 = 1 and rk = 2−k−6 for k ≥ 2, bk = c̄ · rk,
τk = c0κ ·min{bk, 1/9}, δk = δ

(k+1)(k+2) , and choose ξk = min
{

1
2 ,

κ2

16

(
1 + 4

√
C2zk/τk

)−2 }
where zk =

√
b2k + r2

k.

It is easy to see that all ξk’s are lower bounded by a constant c6 := min
{

1
2 ,

κ2

16

(
1 + 4

c0κc̄

√
C2c̄2 + C2

)−2 }
and are upper

bounded by 1
2 . Our theoretical guarantee holds for any noise rate η ≤ c5ε, where the constant c5 := c8

2π c̄c1c6 (which is the
constant c′ in Theorem 3).

We set the total number of phases kmax = log
(

π
32c1ε

)
. For any phase k ≥ 1, we set mk = d

bk
· polylog(d, 1

bk
, 1
δk

) which is
the number of calls to EX(D,w∗) during rejection sampling.
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