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Abstract

In the reconciliation k-median problem we ask to
cluster a set of data points by picking k cluster
centers so as to minimize the sum of distances of
the data points to their cluster centers plus the sum
of pairwise distances between the centers. The
problem, which is a variant of classic k-median,
aims to find a set of cluster centers that are not
too far from each other, and it has applications,
for example, when selecting a committee to de-
liberate on a controversial topic. This problem
was introduced recently (Ordozgoiti and Gionis,
2019)), and it was shown that a local-search-based
algorithm is always within a factor O(k) of an
optimum solution and performs well in practice.

In this paper, we demonstrate a close connection
of reconciliation k-median to a variant of the k-
facility location problem, in which each potential
cluster center has an individual opening cost and
we aim at minimizing the sum of client-center
distances and the opening costs. This connection
enables us to provide a new algorithm for recon-
ciliation k-median that yields a constant-factor
approximation (independent of k). We also pro-
vide a sparsification scheme that reduces the num-
ber of potential cluster centers to O(k) in order to
substantially speed up approximation algorithms.
We empirically compare our new algorithms with
the previous local-search approach, showing im-
proved performance and stability. In addition,
we show how our sparsification approach helps
to reduce computation time without significantly
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compromising the solution quality.

1 INTRODUCTION

In many applications of data clustering, we are interested
not only in partitioning the data into groups that contain
similar points, but also to select centers that represent clus-
ters in a meaningful way. The task of clustering a dataset
while selecting cluster representatives can be achieved with
formulations like k-median (Charikar et al.| [2002; Jain and
Vazirani, 2001)) or k-facility location (Jain and Vaziranil,
2001). Oftentimes, selecting the median of a cluster as the
cluster center is not good enough for the application at hand,
and it is desirable to consider additional criteria, such as,
selecting cluster centers that have low cost or high qual-
ity, assuming that information to quantify these criteria is
provided.

One such criterion for selecting cluster centers was recently
introduced in the context of reconciliation k-median (Ordoz-
goiti and Gionis} [2019), where the goal is to find a clustering
solution so that the data points are faithfully represented by
the selected centers (or medians), while at the same time,
the selected centers are not too far apart from each other.
The reconciliation k-median problem is motivated by appli-
cations where it is desirable for the selected centers to form
a non-polarized set of representatives. A concrete applica-
tion scenario is exemplified by the task of selecting a set of
k articles to summarize a large collection of news articles
related to a controversial topic, and we want to minimize
disagreement among the selected articles (say, for encour-
aging constructive deliberation), while ensuring a faithful
representation of the news-articles collection.

More concretely, in the reconciliation k-median problem,
we consider a set of clients C, a set of facilities F' (not nec-
essarily disjoint from (), a metric distance d: (C U F')? —
R>0, a positive integer k, and a hyper-parameter A > 0. The
goal is to select a subset S of k facilities in F', so as to min-
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imize the objective >, o d(4,5) + A2, ycgici (i, ),
where d(j, S) = min;cg d(j, ). The first term models the
cost of representing the clients in C by the set of selected
facilities S E] We refer to this term as representation cost
or service cost. The second term models the disagreement
cost among the selected facilities in S. Notice that these
two terms are conflicting in the optimization problem, and
thus, the hyper-parameter A is used to achieve a desirable
trade-off.

In addition to introducing the reconciliation k-median prob-
lem and demonstrating interesting use cases, |(Ordozgoiti
and Gionis|(2019) analyzed the local-search algorithm pro-
posed by |Arya et al.|(2004) for the k-median problem. It
was shown that the local-search algorithm provides an O(k)
approximation guarantee, if C' = F|, while it provides a
constant-factor approximation if, in addition, the clusters
in the obtained solution have size ©(A\k). These results are
not optimal, and improving the approximation guarantee
was left open. Furthermore, while local search is a simple
method to implement, it has quadratic complexity in each
iteration, and thus, its practical applicability is limited.

Our Contributions. First, we obtain a constant-factor ap-
proximation for the reconciliation k-median problem in the
general case, that is, our approximation factor is indepen-
dent of k. Our analysis does not make any assumption on
the sets of client and facilities, nor on the size of the output
clusters. In particular, as we demonstrate in the Appendix,
eliminating the condition F' = C may lead to the local
search having unbounded approximation ratio.

Second, we show a close connection between reconciliation
k-median and a variant of the previously studied k-facility
location problem (Jain and Vazirani, 2001). Indeed, our
algorithm relies on solving | F'| many instances of k-facility
location and returning the solution that is best in terms
of the reconciliation objective. Thus, the constant-factor
approximation guarantee comes at the cost of increased run
time complexity.

Third, we propose a sparsification scheme to address the
increased complexity of the proposed method. Our sparsifi-
cation method allows us to reduce the number of potential
cluster centers to O(k), thus, providing significant speedup
in scenarios where k is significantly smaller than |F'|. For
example, k is often considered to be a small constant. Our
sparsification scheme is of independent value and it can be
used in conjunction with other methods, for instance, to
speed up the local-search algorithm.

Our Techniques. The main technical challenge in tackling
reconciliation k-median (in comparison to classic k-median
problems) lies in bounding the disagreement cost. The
difficulty is that the contribution of a facility to the total
disagreement is dependent of the choice of the other facil-

"We interchangeably refer to cluster representatives as centers,
medians, or facilities.

ities. Our key idea is to identify an anchor facility i* that
can be thought of as a representative of the facilities in an
(unknown) optimum solution. This allows us to estimate
the contribution of any facility 7 to the total disagreement as
being proportional to the distance d(4,7*) and hence making
it independent of the choice of the other facilities. More
specifically, we interpret this quantity as an individual open-
ing cost and we aim at minimizing the sum of client-center
distances and the opening costs thereby relating it to a vari-
ant of the k-facility location problem. Since the anchor ¢*
is not known upfront we have to create | F'| many candidate
instances of k-facility location.

Our sparsification scheme relies on the idea of adaptive
sampling (Arthur and Vassilvitskii, [2007) where clients are
sampled sequentially with probability proportional to their
distance to the previously sampled clients. Unfortunately,
there are instances where vanilla adaptive sampling creates
solutions of unbounded cost. This is due to the fact that the
sampling process is biased towards distant clients thereby
inherently tending to high disagreement cost. We observe
that, interestingly enough, the ball of k facilities centered
around the anchor ¢* is good enough to serve the distant
clients in configurations where these clients significantly
contribute to the service cost. This insight allows us to
create |F'| many sparsified candidate sets of size O(k) by
augmenting an adaptively sampled set of facilities with balls
of size k. We show that one of these candidate sets contains
a constant-factor approximate solution.

Our experimental evaluation shows the improved perfor-
mance of the proposed methods, as well as the computa-
tional benefits of the sparsification approach.

Related Work. The k-median problem and its variants
have been studied extensively both in theoretical computer
science (Arya et al.l [2004; [Byrka et al., |2018; |Charikar
et al., 2002) and machine-learning literature (Ben-David,
2007). The k-median problem is NP-hard (Garey and John]
son, [1979), and thus, many approximation algorithms and
heuristics have been proposed. The first constant-factor
approximation algorithm was obtained by (Charikar et al.
(2002), followed by a series of improvements relying on
local search (Arya et al.,[2004), LP rounding (Charikar and
Li,[2012), or primal-dual methods (Byrka et al., 2018}, Jain
and Vazirani, 2001} [Li and Svensson, 2016)). Several vari-
ants of the problem have also been studied, for example,
capacitated k-median (Demirci and Li, 2016), k-median
with outliers (Chen, 2008)), k-median with fairness con-
straints (Chierichetti et al., [2017), and connected facility
location (Eisenbrand et al.l [2008; [Han et al., [2021)). The
problem we consider in this paper is similar in some ways
to the connected facility location setting in the sense that
in both, the objective is to minimize the connection cost of
the clients plus the cost of certain structure on the selected
facilities (a Steiner tree and a clique in the case of connected
facility location and reconciliation k£-median, respectively.)
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The reconciliation k-median problem, which is the focus of
this paper, was proposed recently by |Ordozgoiti and Gionis
(2019), motivated by scenarios for reducing polarization
for cluster representatives. They proposed a local-search
algorithm, inspired by the work of |Arya et al.[(2004), which
gives a O(k) approximation guarantee, in a special case,
and constant-factor approximation under a mild condition
on the cluster sizes. In this paper, we significantly improve
on the result of |Ordozgoiti and Gionis|(2019), by providing
a constant-factor approximation in the general case.

The technique of adaptive sampling has been introduced by
Arthur and Vassilvitskii| (2007) as an initialization procedure
for k-means clustering, which has a provable quality of
solution in expectation but is still remarkably simple and fast.
Since then the method has proved useful in many aspects
of clustering such as bi-criteria algorithms (Aggarwal et al.|
2009), streaming algorithms (Ailon et al.,[2009; [Feldman
et al., 2007), and core sets (Feldman et al., 2007; Langberg
and Schulman, [2010).

2 CONSTANT-FACTOR
APPROXIMATION

In this section we present the constant-factor approximation
algorithm for the reconciliation k-median problem. The al-
gorithm relies on a reduction to the exact k-facility location
problem, a variant of k-facility location (Charikar and Li,
2012} Jain and Vazirani, |2001; Zhang} 2007)).

Preliminaries and Problem Definitions

Definition 2.1. An instance of the RECONCILIATION k-
MEDIAN problem is specified by a tuple (C, F, k,d, \),
where C' and F are (possibly overlapping) finite sets, & is
a positive integer, d: (C'U F)?> — R is a metric, and
A > 0 is a parameter. The goal is to find a k-subset S of F'
minimizing the objective value

costec(S) = 3" d(j, S) + g S (i, ).

jec i,i'eS

We denote by Ogc an optimal k-subset of facilities and its
objective value by OPTgc.

Definition 2.2. An instance of EXACT k-FACILITY LOCA-
TION is specified by a tuple (C, F, k,d, f), where C| F are
finite sets, k is a positive integer, d: (C' U F)? — R is
a metric, and f; is an opening cost for every facility i € F.
The goal is to find a k-subset .S of F' minimizing the ob-
jective value costyp(S) = > o d(4, S) + X e 5 fi- We
denote by Oy gL an optimal k-subset of facilities and its
objective value by OPTy, pr.

We remark that the above definition of EXACT k-FACILITY
LOCATION is slightly different from the standard definition
of k-FACILITY LOCATION used in the literature (Charikar
and Li, [2012; Jain and Vazirani, [2001; [Zhang| 2007). In

the standard version we only require for a feasible solution
to have at most, rather than exactly, k facilities. To the
best of our knowledge the exact version of k-FL has not
been considered in the literature. In the end of this section,
we describe how two known approximation algorithms for
standard k-FL can be modified for the exact version. Specif-
ically, we show that there is an approximation algorithm
with ratio o = 3.25 + € for EXACT k-FACILITY LOCATION
for any constant € > 0. To avoid cumbersome terminology
we use the terms k-FACILITY LOCATION or k-FL to refer
to the exact version of the problem.

Reduction. Our approximation algorithm for REC k-
MEDIAN is essentially a Turing-type reduction to k-FL
that produces |F'| many instances of k-FL, applies any
[B-approximation algorithm for k-FL with running time,
say, t to each of these instances, and outputs the solu-
tion with the smallest REC k-MEDIAN objective. More
specifically, given an instance (C, F, k,d, \) for REC k-
MEDIAN, we create for every facility m € F' an instance
R,, = (C,F,k,d, f™) of k-FL where we set the opening
cost to f/" = (k — 1)Ad(i,m) for every i € F'. We com-
pute an S-approximate solution .S, to each k-FL instance
R,,, for m € F, under the k-FL objective. Finally, we
output the best of the solutions S,,, for m € F, under the
REC k-MEDIAN objective. By analyzing the approximation
performance of this reduction in the rest of this section, we
prove the following result.

Theorem 2.3. Any (-approximation algorithm for EX-
ACT k-FACILITY LOCATION with running time t can be
turned into an 2(-approximation algorithm for REC k-
MEDIAN with running time O(|F|t). In particular, there
is an approximation algorithm for REC k-MEDIAN with
approximation ratio 2a = 6.5 + € with running time
(5(1{:3|F|(|F|2 + |C[?)/€), for any constant € > 0.

Analysis. To analyze the approximation performance of the
above reduction, let Ogrc be an optimal solution for the REC
k-MEDIAN instance and let the anchor i* be the 1-median
of the set Orc. That is, i* = arg min;c o Z@'gQRc_d(i’ i')
minimizes the sum of distances to the other facilities in Ogc.

Consider the iteration of the algorithm where m = ¢*. We
argue below that in this iteration we get an 2/3-approximate
solution S,,,, which finishes the argument since we output
the best solution under the REC k-MEDIAN objective.

In this particular iteration we set the opening cost to f; =
Ak — 1)d(i,4*), for each i € F. Let Oy denote an
optimal solution for this instance of cost OPTy pr.

The following lemma bounds the cost of the algorithm
against the cost of an optimal solution to the k-FL instance.

Lemma 2.4. The cost costre(S;+ ) of the solution S;« is at
most 3 OPTy gr.
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Proof. We have

1
costre (S Zd], +2>\ Z d(i,i")
jec 4,3 €S;*
1
<Zd], +2)\Z ) +d(7 "))
jeC 4,3 €S;*
—Zdj, )+ Ak —1) Zdzz
jec 1€S;*
= costgpr(S;+) < B OPTypL.

O

We complete the proof by bounding the cost of the optimal
k-facility location in that problem instance.

Lemma 2.5. Let OPTy g be cost of the optimal k-facility
location that corresponds to the instance R;«, and let

OPTRc be the cost of the optimal reconciliation k-median.
It is OPT} . < 20PTgc.

Proof. Foreachi € Orc let C; = 37, ¢, (3 A(i,7") de-
note the connection cost of 7 to all other facilities in Ogc.
We have

OPTjp. < costipL(Ore)

= d(j,Orc) + Ak — 1) > d(i,i")

jec i€Ore
<2 Z d(j, Orc) + AkC;-
jec
*)
< QZd(jaORC) + A Z C;
jec 1€O0Rrc
<23 d(j,Orc) + A D
jec i,/ €Ore
— 20PTge,

where inequality (*) holds due to the fact that the anchor ¢*
is the 1-median of the facilities in Ogc. O

Approximating Exact k-Facility Location. It remains to
provide a constant-factor approximation for EXACT k-FL.
Note that in the standard variant of k-FL there are input in-
stances where each optimum solution opens strictly less than
k facilities, for example, if the opening costs of the facili-
ties is sufficiently high as compared to the connection cost.
Hence, it is not obvious a priori how known algorithms for
the standard version can be leveraged for the exact version.
This is in contrast to the classic k-median problem where
without loss of generality exactly & facilities are opened by
some optimal solution. In the appendix, we demonstrate,
however, that two known algorithms for standard k-FL can
be modified to give the same ratio also the exact version.

The first algorithm has an approximation ratio o« = 3.25+ ¢
and is based on rounding a linear programming relaxation

for standard k-FL (Charikar and Li,|2012). In the appendix,
we show how to change the LP relaxation so that precisely
k fractional facilities are opened. We then combine the algo-
rithm by |Charikar and Li|(2012)) with a dependent rounding
scheme by |Gandhi et al.| (2006) to ensure that also in the
resulting integral solution precisely k facilities are opened.
The second algorithm for k-FL is based on local search
by [Zhang| (2007)). It uses three local neighborhood opera-
tions: one is based on swapping facilities preserving the
number of opened facilities and the others are based on
opening or closing facilities thereby changing the number of
facilities. We show that using only the swapping operation
(thereby keeping the number of opened facilities exactly k)
gives an approximation algorithm for EXACT k-FL.

Theorem 2.6. There is an approximation algorithm for EX-
ACT k-FACILITY LOCATION based on LP-rounding, which
has an approximation ratio of a« = 3.25+ € for any constant
€ > 0 and running time (’~)(k?’(|}7‘|2 + |C?)/€?). Moreover,
there is an local-search based approximation algorithm for
EXACT k-FACILITY LOCATION that has an approximation
ratio of 7 + € for any constant ¢ > 0 and running time

O(IF”IC]/e).
3 SPEEDUP VIA SPARSIFICATION

In this section, we show how sparsification of the input
instance can speed up a class of approximation algorithms
for REC k-MEDIAN. Our scheme is based on the adaptive
sampling approach of |Arthur and Vassilvitskii| (2007). Our
main result is that we can efficiently compute a set S C F’
of size O(k) with the guarantee that S contains a constant-
factor approximation to REC k-MEDIAN. Assume we are
given an arbitrary S-approximation algorithm for REC k-
MEDIAN, ALGgc. Our algorithm (see Algorithm|T]) has two
phases. In the first phase (lines 1 to 8), it runs an adaptive
sampling procedure to select O(k) facilities from F. In the
second phase (line 9 to 13), it enumerates all the facilities
1 € F, augments the sampled set of the first phase with
a ball of k facilities centered at i, and then proceeds to
run ALGgc on the set of clients C' and the sparsified set of
facilities F'.

Throughout our algorithm and analysis, we make use of
parameters «, v, A, i, and p, all of which are constant real
values. With some hindsight, we set them as follows: A =
10,a=3,y=6A+2=62,p=1—-1/(y—1) =~ 0.984,
and ;1 = 6. For the sake of readability, we will use the
parameters in our manuscript instead of their values. As in
the previous works, there is nothing special about the choice
of these constants. Specifically, As long as A > 2 + ¢ and
v > 1+ ¢ for a small ¢, the proofs go through. However,
there exists a trade-off; while larger values of A and -~y
mean larger approximation factor, lower values for these
parameters dictate a larger number of points to be sampled.

One peculiar aspect of our algorithm is that we perform
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Algorithm 1: The Sparsifying Approximation Algo-
rithm
input Set of Clients C, set of facilities F', and parameter k.
output F’ C F with |F| = k such that
costre (F') < max{12A + 5,27 + 1} - OPTgc with
constant probability.
Initialize Sy = @;
Initialize T := @,
for ¢t := 1 to uk do
Sample j € C with probability o< d(j, T3—1)
T, =T U{j}
s = closest center in I to j
St = St—l U {S}
end for
fori € F do
A = {k — 1 facilities from F' closest to i}
S = Sﬂk U {Z} UA
F’' := ALGgc(C, S, k)
: end for
: return the solution F” of minimum cost

P DN AR

—_— = = e =
B OoY

the distance sampling on the set of clients (Line [I)), and
then include the facility closest to the sampled client to our
output set S. The main theorem of this section can be stated
as follows (Due to space constraints, we defer all of the
proofs of this section to the Appendix):

Theorem 3.1. Any [-approximation algorithm for REC
k-MEDIAN with running time t(|F|,|C|) can be turned
via the above sparsification scheme into an O(f)-
approximation algorithm for REC k-MEDIAN with running
time O(|F|t(k, |C|)).

This theorem implies the following corollaries.

Corollary 3.2. Any y-approximation algorithm for EXACT
k-FACILITY LOCATION with running time t'(|F|,|C|) can
be turned into an O()-approximation algorithm for REC
k-MEDIAN with running time O(|F|t'(k, |C|)) thereby im-
proving the running times given in Theorem[2.3]

Corollary 3.3. There is an LP-based O(1)-approximation
algorithm for REC k-MEDIAN with running time
@(k‘3|F|(k:2 +|C[?)/€*) for any constant € > 0 and a
local-search-based O(1)-approximation algorithm with run-
ning time O (k°|F||C|/e).

In order to show this theorem, we use the reduction to k-
FL we presented in Section[2] Assume that we guess the
anchor ¢*, the actual 1-MEDIAN of the optimum set Ogc of
facilities for REC £-MEDIAN in the for loop of the second
phase. Using this guess, we can then define an instance of
k-FL as explained in Section[2] We then prove the set of
facilities .S that we sample and input into ALGgc contains
a feasible constant-factor solution to the k-FL instancel[f]

"ndeed, we show that S contains a set S’ with |S’| < k. Tn

Consequently, we are also able to find a good approximation
for REC k-MEDIAN.

Lemma 3.4. Assuming that i = i* in line[I|of Algorithm
[} with a constant probability, it samples a set of facilities
S CF (in line of size pk such that there exists S’ C S
with |S’| = k and costpL(S") < max{12A + 5,2y +1}-
OPT} 1.

Proof of Theorem [3.1]follows from Lemma [3.4]in a straight-
forward manner.

To prove Lemma|[3.4] we follow on a high level the strategy
of |Aggarwal et al.| (2009), in which the authors tackled
k-MEANS in a Buclidean metricPl We should note that
the introduction of the disagreement cost in the objective
function makes the analysis more involved and technical.
To tackle the new technicalities, we introduce a couple of
new ideas, which we will highlight shortly.

We fix some iteration ¢ > 1 of the first phase of the algo-
rithm. We consider the clustering C = {C4,...,Cy} of
the clients into clusters C; induced by an optimal set Oy,_g,
of k facilities. We classify the cluster as follows. The set
of Good clusters that have a relatively low connection cost
with respect to the set of facilities sampled so far (or with
respect to the anchor), and the rest that we call Bad.

Good; = {Cr€C : 3¢, d(j, Tr1 U{i*})
<A, d(,Orr)}
Bad; := C \ Good;

The general framework is as follows: we first identify a sub-
set of every cluster of clients Cy that we call core(Cl), with
the property that if a point from this core is sampled, then
the total connection cost of Cy would drop below a constant
factor of what it would incur in the optimum solution (see
Definition[3.7). We then show that as long as the connection
cost induced by the facility subset 7;_; sampled so far is
larger than a constant factor times OPT,_g, we sample a
point from the core of a Bad cluster in each iteration with
constant probability. This in turn is enough to show that in
O(k) iterations, all Bad clusters are turned into Good.

Compared to the work of |/Aggarwal et al.|(2009), two tech-
nical challenges need to be addressed:

1. Disagreement cost. In center-based clustering problems
such as k-MEDIAN or k-MEANS, it is sufficient to argue
that the connection cost of the sampled solution is within a
constant factor of optimal with constant probability. The key
challenge in Lemma 3 is to upper bound the disagreement
cost. By a more careful argument we prove the existence of

order to turn S’ into a feasible solution for the EXACT k-FACILITY
LOCATION, we may need to add some more facilities to it. This is
done in Lemma[3.14]

By losing a constant factor in approximation factor, we show
how similar results can be applied to our k-FL instance while
using only the metric property.
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a k-subset of facilities that has simultaneously low connec-
tion and low disagreement cost. Here, we crucially exploit
that the ball A centered at the anchor ¢* is suitable to serve
remote clients at low enough connection cost while simulta-
neously keeping the disagreement minimal.

2. Far core points. For the framework of |Aggarwal et al.
(2009)), it is enough to show that, conditioned on sampling
from a Bad cluster, we pick something in the core of the
cluster. We need to expand this argument and show that
what we pick is a client j from a core, but at the same
time that j is not too far from the anchor ¢* to keep the
disagreement low.

To tackle the first challenge, we show in Lemma how to
(existentially) select at most & facilities from the sampled set
such that the total reconciliation (connection plus disagree-
ment) cost remains within a constant factor of OPTj_g, if
at an iteration ¢ of the sampling we have a relatively low
connection cost. To address the second issue, for every clus-
ter of clients C; induced by the optimal solution, we split
core(Cy) into two parts, near_core(Cy) and far_core(Cl),
with the property that every point in the near_core(Cy) has
a low disagreement cost. We further prove that, conditioned
on sampling from a Bad cluster C, we pick a facility from
near_core(Cy) with constant probability (see Corollary

and Lemma[3.12).

3.1 Sparsification via Adaptive Sampling

The first observation about our sampling procedure ad-
dresses the disagreement cost issue mentioned above.

Lemma 3.5. Iijec d(j,T;) < 2A- ZjeC d(j, Ok-r1)
at any round t € (k] of the algorithm, then there exists a
set 8" C Sy U {i*} with |S'| < k such that costrc(S") <
(12A + 5) ZjEC d(], Ok--FL) + 2k ZiEOk,FL d(z7 Z*)

In the remainder of this section, we can assume that
>jec A4, Tt) > 2A - 37 o d(j, Okrr). We show that
in this case, Algorithm[I|chooses a client from a Bad cluster
in each iteration with constant probability.

Lemma 3.6. If the connection cost to the sampled clients
in Ty is large for an iteration t, namely if > _ ;- d(j, Ty) >
2A - Zjec d(j, Ok.FL), then we sample a client from a Bad
cluster in Line|l|of Algorithm|l|\with probability at least %

Hereinafter, we condition on the event that a client from a
Bad cluster CY is sampled. First, let us precisely define the
concept of core.

Definition 3.7. For a cluster of clients C, centered around
a facility iy € Oy and a positive real « < A — 1, the
core is defined as core(Cy) == {j € Cyp : d(j,i¢) < - 7o},
where 7, is the average connection cost of the clients of Cy
>jec, 4(ie)

in the optimal solution, namely r, := ren

We observe that if, in an iteration ¢, first a client from

core(Cy) is chosen for Cy € Bad; and next the closest
facility to this client, say i;, is added to S;, then we get:

Observation 1. > .. d(j,iy) < 2o +

)Y, s ie).

In other words, sampling from core of C; will turn it from
Bad to Good. We also will make use of the following obser-
vation for a Bad cluster Cy during iteration ¢:

Observation 2. Let 6py = d(is,y), where y =
argminjer, ,{d(ir,j)} is the closest sampled client to i,
before iteration t. Then, dg; > (A — 1)ry.

The next two lemmas show that, in any iteration ¢ of the
sampling algorithm, a good fraction of the connection cost
of every Bad cluster C; (with respect to 7;) comes from
core(Cy). Therefore, with a constant probability, we sam-
ple a client from the core of a Bad cluster, conditioned on
sampling from Bad. First, we show that the size of the core
is considerably large.

Lemma 3.8. Forall Cy € C,

Lemma 3.9.

P [sample j € core(Cy) | j € Cpand Cy € Bad,]
> (1-7)d =23

core(Cy)| > (1= 1) |Cy| .

At this point, we guarantee that as long as we are sampling
clients from Bad clusters, we hit their core with a constant
probability. Here is when we face the second issue, which
is how to also guarantee that the clients we hit from the core
are not too far from the anchor ¢*. We need this property
to keep the disagreement cost within constant factor of that
of the optimum solution. To tackle this, we introduce the
notions of far and near core.

Definition 3.10. For a cluster C, of clients, we define
far_core(Cy) = {j € core(Cy) : d(j,i*) > v - d(ig, %)},
where i, is the optimum facility for the cluster Cy. We also
define near_core(Cy) := core(Cy) \ far_core(Cy).

Next, we observe that for a cluster C, € Bad; where the
near core is large enough, we hit this core with constant
probability. It is straightforward to see this statement as a
corollary of Lemma[3.9

Corollary 3.11. For a cluster of clients Cy € Bad,,
if |near_core(Cy)| > p - [core(Cy)|, then
P[j € core(Cy) | j € Cpand Cy € Bad]

>p-(1- 1) (1-=22).

Note that if we sample a client from the near core in 7},
we then proceed to pick the closest facility to this client
and add it to S;. Let i’ denote this facility. We show that
the disagreement cost incurred by this facility is within a
constant factor of the disagreement cost of iy, the optimum
facility for Cy.

Observation 3. d(i/,i*) < (2v + 1) - d(ig, ).

So, it remains to argue for the case where |far_core(Cy)| >
(1 — p) - |core(Cy)| for a cluster Cy. In such a scenario,



Joachim Spoerhase, Kamyar Khodamoradi, Benedikt Riegel

we prove that Cy € Good; by showing that the anchor ¢*
already lies within the radius of the near core of Cy. This
implies that if we redirect all the clients in Cy to i*, we
incur a connection cost of at most «v - » d(j,i¢) and a
disagreement cost of 0 = d(i*,i*).

Lemma 3.12. [f |far_core(Cy)| > (1 — p) - |core(Cy)| for
a cluster Cy then d(i*,i¢) < a - 71y.

J€Ce

Putting everything together, we get the following lemma.

Lemma 3.13. Suppose Algorithmsamples a client j' from
the cluster Cy at iteration t. Then

P [Yec, 6.3 < 20+ 1) Xec, Ao ()
>4 (1-3) (1= 25)

[0
At this point, we can use the proof of Theorem 1 from
Aggarwal et al. (2009) in a black-box manner (although
with different constants) to prove Lemma 3.4] via modeling
the evolution of the clusters from Bad to Good as a super-
martingale sequence of random variables.

3.2 Padding the Sampled Set

In this section, we show how to compensate for the deficit
in cardinality of the sampled set without increasing the total
cost by much:

Lemma 3.14. If for the sampled set of facilities S we
have that |S| < k, then we have that costgc(S U A) <
ZjEC d(ja S)+ZiES )\kd(’&, i*)+7'ZieOk_FL Akd(zv i*)’
where A = {max{0, k — |S|} facilities from F closest to

i),

Note that, if the cost of S is a constant approximation of
OPTy gL, then the cost of the padded set S U A is also
withing a constant factor of OPTy, .

3.3 Unbounded Gap for the Vanilla Sampling

In this section, we justify our sampling procedure by show-
ing that the sampling procedure of Arthur and Vassilvitskii
renders insufficient in our setting.

Claim 1. The adaptive sampling of Arthur and Vassilvit-
skii can produce a sample set S of O(k) clients such that
any subset S C S with |S'| = k would incur a cost
costypLS” = Q(Ak - OPTy. L) where X and k are part of
the input.

Proof. Consider the instance in Figure|l} In this instance,
we assume C' = F, with |C| = n. As a result, we refer to
the clients/facilities as simply points in the following. There
are pk points on the outer ring, £ — 1 points in the middle
ring, and n — (1 + 1)k + 1 points in the inner circle, where
the anchor point ¢* is located. Let the distance between
every pair of points in the circle be a negligible . Also,
for an arbitrarily large M allow the distance between every

Figure 1: Instance with unbounded cost for the vanilla adap-
tive sampling

point in the outer ring to a point in the middle ring be M,
and let the distance between any point in the middle ring to a
point in the inner circle be 1. It is straightforward to see that
for large enough values of M, the sampling procedure only
picks from the outer ring in the sample set .S in addition to
the anchor i*. As a result, the disagreement cost incurred by
any subset S’ C S with cardinality k is roughly ~ A\k? - M
while the connection cost would be O(uk - M). On the
other hand, the optimum solution to the k-FL instance will
choose the anchor together with the k£ — 1 points from the
middle ring, incurring disagreement and connection costs
of O(Ak?) and O(uk - M), respectively. More precisely,

COStk_FLS/ 2
——— =X (M +1 E—1)(1—-
T = (MW (M 1 40) 4 (k= 1)(1 <)
+(ﬂ—1)k.(M+1+s)}
/pﬁ+wk—n.m4+1+@}
which tends to Ak as M grows towards infinity. O

Finally, we make a relatively straightforward comment re-
garding the reason for sampling from the client set and not
from the facility set. The main intuition behind the sampling
procedure is that as long as the connection cost is large, it
is reasonable to randomly pick a client from far groups of
clients, and hopefully open a facility near them in order to
reduce the cost. If one chooses to sample directly from the
facilities, an adversary can easily design an instance where
there are large groups of facilities very far from any client.
This would trick the sampling algorithm to open a facility
from such “useless” groups which can lead to unbounded
connection and total cost.

4 EMPIRICAL EVALUATION

We conduct experiments to evaluate the performance of the
proposed methods. We seek to answer the two following
questions: (1) is the proposed constant-factor approximation
algorithm superior to the local-search heuristic in practice?
(2) does the proposed sparsification scheme allow us to sig-
nificantly reduce computation times without compromising
the quality of the obtained solution?
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Table 1: Characteristics of the datasets.

Name Number of clients  Number of facilities

CONGRESS 420 420
WIKIELECTIONS 7115 200

We evaluate the following three methods: (1) Lo-
CALSEARCH: the known local-search heuristic (Ordozgoiti
and Gionis}, 2019). (2) k-UFL+LP: our proposed reduction
to k-FL, using our adaptation of the LP rounding algorithm
of (Charikar and Li, |2012)) to solve each of the resulting
k-FL instances. (3) k-UFL+LS: our proposed reduction
to k-FL, using our adapted local-search heuristic to solve
each of the resulting k-FL instances. We use our own C++
implementation of all algorithms. Our setup is described in
the supplement.

We consider two datasets, corresponding to use cases suited
to the REC k-MEDIAN problem.

CONGRESS voting records of the 115th US Congress.
Each data point corresponds to a congressperson, and each
variable represents whether they voted positively or nega-
tively for a particular bill. For details, see (Ordozgoiti and!
Gionis, 2019). We consider all congresspeople to be clients
and candidate facilities, i.e., F' = C.

WIKIELECTION S Signed graph data representing Wiki-
pedia moderator elections (Leskovec et al., 2010). Each
vertex corresponds to a user. An edge from user ¢ to user j
exists if the former voted for the latter in a moderator elec-
tion. The sign of the edge indicates whether the vote was
positive or not. We ignore edge directions. For each ver-
tex we compute the spectral embedding corresponding to
the bottom 25 eigenvectors of the normalized signed Lapla-
cian (Kunegis et al., ZOIO)E] The facility set F' is comprised
of the 200 users with largest degree. We compute Euclidean
distances between the resulting embedded vertices.

Performance Evaluation. We evaluate the performance
of the methods on the CONGRESS and WIKIELECTIONS
datasets, for different choices of £ and A. We limit k-
UFL+LP to CONGRESS dataset, given the computational
cost of solving the linear program. We measure the average
cost of the solution found by each of them over 20 runs,
and report the ratio of the cost achieved by LOCALSEARCH
to the cost achieved by k-UFL+LP and k-UFL+LS. The
results are shown in Figure[2] Even though all methods find
solutions of similar quality, LOCALSEARCH does so less re-
liably than k-UFL+LS and k-UFL+LS for larger values of
k and \. Even when these parameters grow, k-UFL+LP and
k-UFL+LS consistently find the same solution, whereas

3https://zenodo.org/record/2573954

41’1ttps ://snap.stanford.edu/data/wiki-Vote,
html

The dimensionality of the embedding was chosen by visual
inspection of the spectrum.
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Figure 2: Performance of the different algorithms on the
CONGRESS (top) and WIKIELECTIONS (bottom) datasets.
We report the ratio of the cost yielded by LOCALSEARCH
to that achieved by k-UFL+LP and k-UFL+LS. Since the
latter two consistently yield the same solution, we plot a
single line.

LOCALSEARCH is sensitive to the initial set and occasion-
ally produces solutions of poorer quality. This is reflected
by the growing ratios.

We report average running times in Table [2| We omit k-
UFL+LP due to its impractical running times. This shows
that the improvements in quality come at a noticeable cost
in running times.

Sparsification. We assess the effectiveness of the proposed
sparsification approach as a method for speeding up algo-
rithms for REC k-MEDIAN. We consider the WIKIELEC-
TIONS dataset. We fix k = 8, A = 1.6, and vary the value of
p (see Algorithm ) so that the number of sampled clients
is in {3, 6, 12,25, 50,100,200}. Note that each of these
values will result in a certain number of sampled facilities,
among which the algorithms will choose the final set. The
results show how the method allows us to significantly re-
duce computation time without sacrificing quality. Due to
the space limitations, the corresponding figures are in the
supplement.

4.1 Experiments on Synthetic Data

In order to improve our understanding of the behaviour of
the methods under scrutiny, we conduct experiments on
synthetic datasets. Our goal is to test the robustness of the
methods proposed in this paper — k-UFL+LS in particular
— compared to LOCALSEARCH.

For both methods, we will vary one parameter which allows
us to trade computation time for solution quality. In the
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Table 2: Running times of LOCALSEARCH and k-UFL+LS on the different datasets.

| CONGRESS | WIKIELECTIONS
| k=4 k=8 k=16 k=32|k=4 k=8 k=16 k=232
LOCALSEARCH 0.10 0.26 0.65 2.14 3.68 9.55 22.45 56.35
k-UFL+LS 1322 3544 9446 24580 | 6498 16548 32272  741.58
case of LOCALSEARCH, we will allow more or less initial 1.0 1.0
solutions, sampled uniformly at random. For k-UFL+LS, ° °
we will consider more or less facilities in the “guessing” C||)0 5 —e— LocalSearch ? 05
phase, where we consider different facilities as the candidate w KRS o g ——
1-median of the optimal set. In the plots, we will refer to & 00 W,,./""‘J' a KUFL+LS

both these parameters as Sample size.

We generate two datasets containing 100 facilities in R2. In
the first one, all clients located within a ball of small radius
r4 centered at the origin, along with a small cluster of 5
facilities within a ball of slightly larger radius . We place
the remaining 95 facilities roughly at a distance of rp >
r 4 from the origin. The performance of LOCALSEARCH
will be determined entirely by whether or not the starting
solution contains enough of the 5 well-situated facilities.
When the solution is mostly comprised of far-away facilities,
the “reconciliation” term of the objective will prevent the
algorithm from exploring the ones near the clients. For k-
UFL+LS, on the contrary, it will be sufficient to sample
one candidate 1-median in this set. We choose the values
ra=1,rc=2,andrg = 100. Weset k =5and A = 1.

In Figure 3| (left), we show the estimated probabilities that
these events will take place. For each Sample size we run
both algorithms 200 times and count the fraction of times
that a favourable event occurs. While k-UFL+LS requires
sampling about 40 facilities to provide a reasonable chance
of success, LOCALSEARCH struggles to sample a good
initial subset even with an allowance of 100 attempts. We
note that the running time both methods is roughly equal
when the Sample size is the same.

We emphasize that this is not always the case in datasets
presenting similar structure. We modify the previously de-
scribed dataset by placing the 95 far-away facilities along the
circle of radius rg. In this case, the reconciliation term no
longer incurs a disproportionate penalty for sensible swaps.
As expected, k-UFL+LS performs just like before, but the
structure of these data clearly benefits LOCALSEARCH.

S CONCLUSION, LIMITATIONS, AND
FUTURE WORK

In this paper, we proposed a constant-factor approximation
algorithm for reconciliation k-median, improving signifi-
cantly the previous results on this problem. Our algorithm
relies on a connection between reconciliation k-median and
a variant of the k-facility location problem. In addition,

0
1 21 41 61 81 101
Sample Size

1 21 41 61 81 10:
Sample Size

Figure 3: Experiments on synthetic data.

we develop a sparsification scheme based on adaptive sam-
pling, which allows to reduce the number of potential cluster
centers to O(k) and providing significant speedup.

Our empirical evaluation illustrates the improved perfor-
mance and stability of the proposed approach, albeit at an
increased cost in computational cost. Nevertheless, we have
illustrated how our sparsification scheme can be leveraged
to significantly decrease running times.

Despite the significant speedup obtained with our sparsi-
fication procedure, our method relies on repeated calls to
k-facility location instances, and thus, its practical perfor-
mance is limited by the available methods for the latter
problem. Developing truly scalable methods that go beyond
this limitation is a challenge left for future work. Another
future direction is to design improved methods for special
metrics, e.g., the Euclidean distance.
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A  APPROXIMATING EXACT £-FACILITY LOCATION

A.1 LP-Based Approximation Algorithm

We modify the algorithm by |Charikar and Li|(2012)) for the standard version of k-FL to give an algorithm with the same
ratio also for EXACT k-FL. There are three adjustments (described below in detail) to algorithm or analysis. First, we
modify the LP relaxation so that precisely k fractional facilities are opened (rather than < k facilities). Second, we employ
the dependent rounding scheme by |Gandhi et al.|(2006) (rather than the one by [Srinivasan| (2001) as in the original algorithm
by Charikar and Li). This is done in a way so that precisely % (integral) facilities are opened in the rounded solution and so
that essential properties (preservation of marginals, negative correlation) needed in the analysis are still preserved. The third
adjustment is that the algorithm by Charikar and Li creates multiple copies of the initial facilities to achieve certain nice
properties in the fractional solution. We need to ensure that in the dependent rounding at most one copy of each facility is
opened. While this was irrelevant for the standard version, it becomes necessary for the exact version of k-FL.

A.1.1 The k-UFL Algorithm by Charikar and Li

First, we recap the algorithm by |Charikar and L1 (2012) for the standard version of k-FL. Later, we modify it to return
exactly k facilities. The algorithm gives a 3.25-approximation for k-FL in expectation and is subdivided into the following
steps, which we outline here:

1. Linear program (LP): First, the below standard linear programming relaxation for k-FL is solved. For each facility ¢
we introduce a (fractional) indicator variable y; representing the extent to which ¢ is opened. For any client j, variable
x; j indicates how much of the demand of client j is served by <.

minimize Z d(i, j)xj, + Z fiyi

i€F,j€C icF
subject to Zaﬁi’j =1, VjecC,
ieF
Zyi S k7
icF

Tij,Yi € [0, 1],Vi S F,j eC

2. Splitting phase: In this phase, we modify the input instance and the LP solution so that z; ; = y; for every client j € C
and every facility 7 € F'. We achieve this by splitting some of the facilities into multiple identical copies of that facility.
If i € F is splitinto ¢ > 2 many facilities then it is called a split facility and the ¢ many facilities {i.1,4.2, ..., 4.t} that
were created by this split, are called fractional facilities. After the split, y; = y;.1 + Ys.2 + - - - + yi.¢, which means that
the total volume > ; ¥i of opened facilities is preserved. From now on we call the original set of facilities I, and the
new set of facilities Fjey-

3. Filtering phase: In this phase a subset C’ C C is determined, where 7, ;' € C' are sufficiently far apart from each
other. (We do not need the precise requirement on C’ for our below argument.)

4. Bundling phase: Here we assign to every client j € C” a set of facilities U; C Fey, wWhere ¢ € U is close enough
to j and i serves j. This leads to £ < vol(U;) < 1, with vol(U;) = ZieUJ y;. In this procedure facilities can stay
unbundled.

5. Matching phase: We match the closest pair j,j’ € C’ of clients, add the pair to the set M, and iterate with the
remaining clients in C”. In doing so, one b € C’ can stay unmatched.

6. Sampling phase: Finally, we open a subset of the facilities using a dependent rounding procedure described below.

We remark that we specify the above steps only to the extent needed for our below arguments.

We introduce the following set of operations.
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1. Opening/closing a facility i: Opening a facility ¢« means to add ¢ to the solution. Closing a facility < means that it will
never be added to the solution.

2. Opening/closing a bundle j: To open a bundle U}, j € C’ means to randomly open exactly one facility ¢ € U;, with
the probability y; /vol(U;). Closing a bundle j means that every facility in Uj is closed.

3. Opening/closing a matched pair (j, j’): Opening a pair (4, j') € M means to open both bundles j and j'. Closing a
pair (j, j') is equivalent to open either bundle j or j/. When the matched pair is closed, j is opened with probability
1 —vol(U;-) and j' is opened with probability 1 — vol(U;).
If a facility, bundle or pair is not opened, then it is closed.

In a naive implementation of the sampling phase every (j,;') € M would be opened independently with probability
vol(U;) + vol(U;/) — 1, the unmatched bundle b would be opened randomly with probability vol(Us) and every unbundled
facility ¢ with probability y;. Notice that this results in:

Vj e C': P[“Uj is open”] = vol(U;)
Vi € Frew: P[“iis open”] = y; .

As a result the expected number of opened facilities from Fi.,, would be at most k. Of course, this is not sufficient to
guarantee feasibility. The authors argue, that the naive implementation satisfies

E [costyp(S5)] < 3.25 Z d(i,j)xj: + Z fiyi

i€F,jeC i€F
and hence gives a 3.25-approximate pseudo-solution in expectation.

To additionally ensure feasibility, that is, opening at most k facilities, Charikar and Li resort to a dependent rounding
procedure to always return at most k facilities from Fjey. Let Funpundied> Funmatched @nd A be defined as follows:

Flinbundied = {7 : 7 is an unbundled facility }
Fynmatched = {b : Uy is an unmatched bundle}
A=F unbundled U F unmatched U M

First the authors define a random variable X, and a variable z,, for every a € A.

1, if ais open
X, = e
0, if ais not open

Yas if @ is an unbundled facility
xq =< vol(U,), if @ is an unmatched bundle
vol(U;) +vol(Uj:) — 1, ifa=(j,j') e M

This implies ) . 4 2o < k — |M]. Hence, if the rounding preserves the volume, thatis, . s Xa = [D>_,c 4 Zal, then
there are at most k open facilities of Fjqy.

To achieve volume preservation, the tree-based dependent rounding procedure of [Srinivasan| (2001) is employed. It
guarantees the following properties:

1. P[X, =1] = z,.

2. P [ZaEA Xao < [ZaeA x““ =1

3. The following negative correlation properties hold for all S C A:

IP[/\XQ:O] <J[PX.=0

a€sS a€S

P[/\Xa:1] <J[PX.=1]

acs a€esS
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(a) LP solution before the split pro- (b) LP solution after the split process
cess

Figure 4: An example with F' = {1,2,3,4}, C = {a,b,c}, k = 3 and the opening cost f for each facility is 1. The
distances that are not drawn, are the minimal paths through this graph, e.g. d(b, a) = 3, hence the triangle inequality still
holds. The z’s represent how connected a client is to a facility in the LP solution. The y of a facility in the LP solution is the
maximum x adjacent to the facility, e.g. y; = 0.75.

Note that Property [2|implies that the procedure opens at most k facilities. Charikar and Li argue that in their analysis of
the above-described naive, independent rounding scheme only Property (I)) and negative correlation is used. Hence also
the dependent rounding scheme gives a 3.25-approximate solution in expectation. The dependent rounding scheme can be
derandomized with the method of conditional expectations.

A.1.2 Adjustments for EXACT k-FL

We now describe three adjustments we make to the above algorithm by Charikar and Li to also give a 3.25-approximation
for EXACT k-FL.

First, we replace the inequality constraint ) J; > %; < k in the LP relaxation by an equality constraint ) . _ . y; = k. Note
that, when we solve the resulting LP relaxation for the exact version, we obtain a feasible solution to the original relaxation
in particular. This allows us to apply some of the existing arguments in a black box fashion.

Suppose that we run the vanilla rounding algorithm by Charikar and Li on an optimum solution to the modified LP relaxation
for Exact k-FL. By the volume preservation property (1)) this algorithms opens precisely k facilities. Unfortunately, in their
procedures two copies of the same split facility may be picked, which would result in effectively strictly less than £ facilities
from Fyyq to be opened. Figure[A.1.2|shows an example, where this actually happens. Since C’ = {a}, U, = {1.1,2} and
the set of unbundled facilities is {1.2, 3,4} this demonstrated that the vanilla rounding can open less than k facilities of Fyg.

We ensure that the rounding opens precisely £ facilities of Fg,q by guaranteeing that for each split facility their copies are
in the same bundle. This results in only one fractional facility of a split facility to be opened at most. To achieve this,
we leverage the rounding procedure for bipartite graphs of |(Gandhi et al.| (2006)) rather than the tree-based rounding by
Srinivasan| (2001]).

The algorithm by (Gandhi et al.|(2006) receives a bipartite graph (B, C, E') and a list of values z,, ,, for each edge (v, u) € E
as input. It rounds every x,, ,, to a random variable X, ,, € {0, 1} and returns the resulting set of all X, ,,. We define the
quantities

d/u = Z Ty,u and DU = Z Xv,u,

(vyu)EE (v,u)EE

where d,, denotes the fractional degree of the vertex v and D,, denotes the integral degree. The dependent rounding procedure
by Ghandi et al. ensures the following properties.
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@ P[Xypu=1] = 2y u
(b) Degree-preservation. P[D,, € {|d,], [d,]}]. Notice, if d, € N, then D,, = d,

(c) Negative correlation holds for any v € B U C and for any S C {X(, ;) : (v,i) € E}:

Pl A\ X=0l<][PXx=0
LXeS i XeSs
Pl A X=1<]][Px=1]
LXeS J Xes

Notice that the bipartite graph procedure can simulate tree-based rounding by using a star graph as follows. We set B = {r}
where r is the root of the star, C' = A, and 2, = x, where A and z,, are defined as in Section[A.T.T}

To ensure that we open exactly k facilities from the original set Fi;q we define a bipartite graph appropriately.

First, a root 7 has to be added to the graph. Every unbundled facility, unmatched bundle and matched pair is then connected
to r with the gadgets described below. See Figure[A.1.2]for an illustration of the gadgets.

Unbundled facility: See Figure An unbundled facility 4 is simply attached to r, with z, ; = y;. Therefore it is opened
with the probability ;.

Unmatched bundle: See Figure The unmatched bundle b is attached to the root via a vertex p, with z,. ,, = vol(Uy).
Furthermore a vertex ¢ is connected to y, with z,, , = 1 — vol(Us). Therefore

dy=Dy=Xp,+Xup=1.

The edge (1, ) can be seen as a negation to (r, i), since either X, , or X, ,, is 1, and the other is 0. Attached to ¢ are all
the facilities b; € Uy, with x5, = yp,. Thus

dy =D, =1

and at most one X, , with b; € Uy can be equal to 1. Summarizing, our gadget ensures that precisely one facility b; € U,
is opened if X, , = 1. If X. , = 0 then no facility in Uy is opened.

Matched pair: See Figure The matched pair (3, j) is represented via a vertex  connected to the root r. The bundle j
is represented by a vertex o connected to . Bundle j’ is represented by node 3 connected to v as well. The edges have the
following weights

xry = vol(U;) + vol(Uj;/) — 1
Tya =1—vol(Uj)
Ty, =1 = vol(Uj).

Similar to the unmatched bundle, every facility € U; is attached to « with x,, ; = y; and every facility i € U;/ is attached
to 3 with 2 i = yr. Since D, = 1, only one of the edges (r,7), (7, ) and (v, 3) will be rounded to 1. Here X, ,) =1
means that both bundles j, j" are opened. The event X, ,) = 1 means that j is closed while j’ is opened. Analogously,
X(,3) = 1 means that j is opened while j’ remains closed. Hence the gadget ensure that our modified dependent rounding
treats the pair (34, j') as the tree-based rounding.

Buffer vertices: For each copy 7 of some split facility we introduce two buffer vertices w; and ;. Node w; is connected to
1 and 1); is connected to w; where

Tiw; =1 — s

Lo,y = Yi

The edge (w;, 1;) indicates if facility 4 is open or not.
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VOI(U]) + VOl(Uj/) —1

(a) Unmatched bundle b

T

Yi
(c) Unbundled facility ¢ (d) Split facility ¢ and it’s fractional facilities
i.1,...,.t. There are no 1'’s, since they fused
into 1.

Figure 5: The different structures for the bipartite graph.

Split facilities: See Figure |5(d)| If ¢« € F,q4 is split into copies {i.1,7.2,...,i.t} then we merge buffer vertices
¥i1,Yi2,...,1¥; into one super node ¢. This results in

di= dy, =Y Y=y <1
he(t]

helt]

This ensures that at most one copy of any split facility in Fgjq is opened.

Since the fractional degree of the root is k — | M| exactly k facilities are opened. This holds in particular because our gadgets
for the split vertices ensures that at most one copy of each split vertex is opened. The remaining above-described gadgets
ensure that the properties of the original tree-based rounding used in the analysis by Charikar and Li continue to hold. In
particular notice that the negative correlation properties continue to hold because all nodes representing elements a € A are
connected to the root 7.

Figure [6] shows the resulting bipartite graph for the instance in Figure [A.1.2]
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Figure 6: Bipartite graph of the example in|A.1.2)

A.2 Local Search Approximation Algorithm

In this section we we show that a single-swap local search achieves a constant factor approximation for EXACT-k-FL. To
prove a constant factor approximation, we follow the proof of Zhang| (2007) and slightly modify it by extending some
Lemmas to match the case of Exact-k-UFL. First, we define the following notations. Let Oy g = {01, 02, ..., 0 } be the
global optimum and let S = {41,142, ..., } be a local optimum. For the sake of notation, we write O_p and costy gL
as simply O and cost respectively when the meaning is clear from the context. Let U be any solution, then the following
notations can be introduced:

1. U; = d(j, ¢u(j)) denotes the service cost for j in U.

2. Ny(i) ={j € C: ¢y(j) =i}, i.e. Ny(i) is the set of clients, which are connected to the facility ¢ in solution U.
3. N? = Ng(i) N No(o) contains all clients that are served by 4 and o.

4. We say i captures o, if [N?| > 1| N (0)|. In addition, i is called good if it does not capture any o, and bad if it does.

5. We also use a bijective mapping 7 : No(0) — No(o). Forevery i € {i : NP # (0} that does not capture o, we have
that every j € N? is mapped outside of N?, i.e., w(j) ¢ N?. If i captures o, then for each j, w(j) € N?, we have
7(4) is mapped back onto j, i.e., m(7(j)) = j. When constructing 7 as described by Zhang|(2007), it also yields the
property that if 7 captures o, then j = 7(7(j)) for every j € N (o).

Abusing the notation, for a set of facilities /" and a client j, we let Fj be the shorthand for min;e  {d(i, 7)}. We first show
the following lemma.

Lemma A.1. Let j € Ng(i) and w(j) ¢ Ngs(i). After a swap(i, o), the new service cost for the client j can be bounded by
Sx(g) + On(j) + Oj-

Proof. We consider the cases j € Nf and j ¢ N? separately:

1. j € N?: Let 4 be the nearest facility serving the client 7(j). After o is swapped in for 4, each j € N? will be served
by its new nearest facility 7. By triangle inequality, we have

d(j,1) < d(j, i) < d(n(§), i) + d(j,7(j))
< d(m(j), i) + d(r(j), 0) + d(j, 0)
=5:(j) + Or(j) + O;
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2. j ¢ N?: Let o be the facility, with j € N?* and therefore 7(j) € N¢'. Furthermore, let i’ be the nearest facility
serving the client 7r(j). After o is swapped in for ¢, each j ¢ N? will be served by its new nearest facility ¢. Again, we
can use triangle inequality to obtain the following:

d(j,1) < d(j, i) < d(m(§), i) + d(j,7(j))
<d(n(j),7") +d(x(j),0") +d(j,0)
=573y + Orj) + O;

Lemma A.2. S; < Sy jy + Or(;) + Oj foreach j € C.

Proof. Let i’ be the nearest facility serving the client 7(j) and o be the facility for which j € N?. Because 7 is a mapping
from No (o) to No(0), we know that 7(j) € N?. Therefore,

S; =d(i,§) < d(@,j) < d(n(5),7) + d(j, 7(4))
< d(n(j),7") + d(n(j),0) + d(j, 0)
= Sx(j) T Ox(j) + O

O

Lemma A.3. If o is the nearest facility that i captures and i also captures o' # o, then after a swap(i, o), the new service
cost for each j € N? with m(j) € Ng(i) can be bounded by 2S; + O;.

Proof. Let i be the new nearest facility to j. Because of triangle inequality and the fact that o is the nearest facility that i
captures, the following holds

d(j,1) < d(j,0) < d(j,i) + d(i,0) < d(j,7) + d(i,0') < d(j,4) + d(j,i) + d(j, o) = 25; + O;.

For sake of completeness, we also show the following:

Lemma A.4. After a swap(i, 0), the new service cost for a client j € No (o) with n(j) € Ng(i) can be bounded by O;.

Proof. Let i be the new nearest facility to j. Since j € N (o) is served by o in the solution O, we obtain d(j,%) < d(j,0) =
O, O

Let costs and costy denote the service and facility opening cost (or facility cost, for short) of the given k-FL instance. We
next bound the facility cost of the local optimal solution.

Lemma A.5. The facility cost costy(.S) is bounded by cost;(O) + 2costs(O).

Proof. First, partition S into subsets (Aj, As,...,A,;) and O into subsets (Bi,Bs,...,B,) to get pairs
(A;, B;) with |A| = |B| Vi € [m]. To do this, we pick any bad facility b € S and add it to A. Afterwards, add ev-
ery facility o € O that ¢ captures to B and fill A with arbitrary good facilities in S until |A| = | B|. Repeat this for every bad
facility in A. Let A,,, be the set of good facilities left in .S and B,,, the set of facilities left in O. Denote with e € B the
facility closest to b. Note that this method of partitioning is sound since no two ¢ € .S can capture the same o and therefore
the number of bad facilities in S are < | A|. We can now apply Lemmas and to bound the cost after swap(b, e)
by:

—fotle+ D, (0;=5)+ > (28+0;-5))

JENY JENs(b)=No(e)
m(j)ENs(b) m(j)ENs(b)
+ Y (S + Oy +0; = 5;) 20,

JENs(b)
m(§)¢Ns(b)
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which implies,

—fotfe+ D, 20,4+ Y (S+0))

JENE JENs(b)—No(e)
m(§)ENs(b) m(§)ENs ()
+ Y (S + Oy +0;—5;) 20
JENs(b)
m(5)¢Ns(b)

Note that this cost is non-negative due to the local optimality of .S. Moreover, the cost of a solution after one swap(i, 0) with
i€ A—bando € B — e can be bounded via Lemmas[A 4] and[A 1] as:

—fi+ fo+ Z (0; —5;)+ Z (Sx@) + Orijy + 05 —85) >0
JENY JEN?
m(j)ENs(b) m(§)¢Ns (i)

Since O; —5; <20;and {j € NP :0€ B—eAn(j) € Ng(b)} ={j € Ns(b) — No(e) : 7(j) € Ng(b)}, summing all
of the different swaps between A and B gives the following bound:

=D LD fot DY 20+ > (840

1IEA oeB ]EN; jENs(b)fNo(e)
7(j)€Ns(b) 7(j)€ENs(b)
+ Z Z (o —Sj)+z Z (Sz(j) + Orgjy + 0 — S;) > 0.
0o€B—c  jJEN i€A jENs(b)
m(5)E€Ns () m(5)¢Ns(b)

This implies

D fit > fot D 20543 D (Se(j) +Oxgy + 05— 55) 2 0.

icA o€B JENs(b) i€A  jeNs(i)
m(§)ENs(b) m(5)¢Ns(4)

Because every facility i € A,, is good, we have that for all i € A,,, and for all j € Ng(4), 7(j) ¢ Ng(i). Therefore, the
cost of any swap between A,, and B,, can be bounded using Lemma[A.T] by:

D TFHY fot D> D (Se) +O0xy +0; = 85) =0

i€A o€B i€A  jENg(4)
m(§)¢Ns (i)
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Finally adding all swaps between A and B results in the following bound:

—Zfi+2fo+22m: S o

i€A oeB t=1 jENg(bs)
m(j)ENs (bt)

+ Z Z (Sﬂ(j) + Oﬂ(j) + Oj - Sj) >0
i€A jENs()
m(J)ENs(3)

= —Zfi+2fo+2f: oo

i€A oeB t=1 jeNg(b:)
m(j)ENs(be)

+ > (S + Ox(jy + 05— S5)) = 0

jeC
m(§)ENs(¢s (1))

= =) fi+> fo+2> > o;+2 Y 0;>0

€A o€eB t=1 jeNg(bt) jecC
m(§)ENs(be) 7(§)¢Ns(¢s(3))

= =Y fi+t Y fot2) 0,20

icA o€B jec
= — costs(S) + costs(O) + 2costs(O) > 0
= cost(S) < costy(O) + 2costs(0).

O
Lemma A.6. If only one swap at a time is allowed, the service cost for the local optimum S can be bounded by cost(S) <
cost(O) + 5costs(O).

Proof. First, partition S into subsets (A1, As, ..., A, ) and O into subsets (B, Ba, ..., B,,) with the same method
presented in Lemma Now, we again bound the cost after a swap(z, o) with the key difference thati € A — b, 0 € B.
To obtain a term that sums up all S;’s for j € C, which is the service cost costs(.S), we bound the cost after a swap(¢, o)
slightly looser than in Lemmal|A.3] Since no i € A — b captures an o € O, we know that 7(j) ¢ Ng(i) for each j € Ng(i).
Therefore, we can bound a swap(, o) using Lemmas and by:

—fitfot D (0;i=S)+ Y. (Se)+O0x()y+ 05— 5;) >0
JENo(0) JENs(i)—No (o)
= — fi+ fo+ Z (Oj *Sj)Jr Z (Sﬂ(j) JrOTr(j) +Oj *Sj) > 0.
JENo(0) JENs (i)

Summing up swap(i, 0) fori € A —b,0 € B — ¢ and one swap(i', €) for some i’ € A — b and again using Lemma[A.2]
results in

=Y HED > > (0,-5)

1€A—b oeB 0€B jEN©(0)
+ Y D e+ 0y 05 =S+ D (Sa) + Oniyy + 05 = 5) 20
i€A—b jEN5 (i) JENs (i)
— = Y fit Yy Sty D (0,8
i€A—b 0€B 0€B jENo (o)
+2> 0 Y (Sx() +0njy + 05 = 8)) =0
i€A jENg(b)

= > fot5Y 0;=>_ 5 > 0.

0€B jec jeC
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By rearranging the terms we get

8> fot5> 0;

jeC o€B jeC
implying the claim of the lemma cost,(S) < cost¢(O) + 5costs(O). O

Theorem A.7. A local search algorithm for Exact-k-UFL with a single swap operation, has a locality gap of at most 7.

Proof.

cost(S) = cost¢(S) + costs(S)
< cost(O) + 2costs(O) + cost¢(O) + 5eosts(O)
< T(cost(O) + costs(0))
= Tcost(O).

B OMITTED PROOFS OF SECTION

We delay the proofs of Lemma [3.4] and Theorem [3.1] to the end of this section as they heavily depend on the technical
lemmas that proceed them in the main body. Once we prove these lemmas, we can move on to present how to derive the
proof of Lemma [3.4] from these technical lemmas and standard techniques in the literature. Finally, Theorem 3.1]can be
shown directly as a consequence of Lemmas [2.4] [2.3] and [3.4]

Proof of Lemma For aclient j € C, let o(j) and o*(j) denote the closest facility to j in S; and Oy g, respectively.
First, we bound ) d(j,S;). Moreover, let j' denote the client in 7T} that is closest to j and let ¢’ be the facility that 5’
places in S;.

jec

d(j, S¢) = d(j,0(5)) < d(35,7)
<d(j,4") +d(5', i) ( < by triangle inequality)
<d(4,5") +d(5',07(4)) ( <= by the way i* is added to S;)
<d(4,5") +d(5,5") +d(5,07(5)) ( <= by triangle inequality)

Summing over all clients,
> d(,8) <> (2d(j, Th) + d(j, Orrn))
jec jec
< (AA+1) > d(j, Opr)- )
jec

Next, by triangle inequality, we have that

jec jecC
> (do(§), 0" (7)) — d(G, 0" (7)) - )
Combining Inequalities[T|and 2] we get:

> d(o(h), 07 () < (AA+2) Y d(j. 07 (5))- 3)

jeC jec
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We now construct a set S’ C S; of cardinality at most & with a good connection cost. For every facility i € Oy_pr, let s(7)
be the facility in Sy U {i*} that is closest to i. Define S” := {s(¢) : i € O }. Using the triangle inequality one more time,
we get

> d(i s(e(i) < Y (A o() + dla(4), o™ () + (o™ (), s(a" (4))))
jec JjecC
<> (d( o () + 2d(a(j), 0" (5)))
jec
< (12A45) Y d(j,07(5)), )
jec

where in the second inequality, we used the definition of s(c*()), and in the last inequality, we used the bound in Inequalities
and As aresult, S” has the desired connection cost. It remains to show it also has a relatively small disagreement cost.
To see this, take any facility i € S’, and let s~1(i) € Oj.p be the facility in the optimum set that was responsible for
adding i to S’, breaking ties arbitrarily. Note that d(s~1(i),i) < d(s~1(i), i*) because the anchor i* is a candidate for the
minimizer in the definition of s(7). So, for the opening cost of 4, we can use triangle inequality and get

d(i,i*) < d(i,s71(i)) + d(s7(i),i%)
< 2d(s1(i),i%).

Summing over all 7 € S’ and noting that every facility in Oy_g is accounted for in the sum at most once, we get

Ak d(i,i*) <20k Y d(i,iY). ()
€S’ 1€0k L
Inequalities ] and [3] together complete the proof of the lemma. O

Proof of Lemma 3.6}

AT,
P|j is sampled from Cy where C; € Bad;] = 2cicBad, ZJE,CZ U Tim1)
ZjEC d(j, Ti-1)

 Yc,eGood, 2jec, 40 Te-1)

- >jec - Tin)

-1 >_c,eGood, 2jec, W, Ti—1 U {i"})
B Zjec d(j,Ti-1)

>1_ A cheGoodt ZjEC@ d(j, Op-rL) }
- 2A 37 cc d(j, Okrr)

>1/2.

Proof of Observation|[l] Assume j, € core(Cy) is the sampled client. Then

> dGiy) <Y d(de) + d(ies i)

jeCy JjeCy
< > (A do) + d(e, ie))
j€Cy
< > (dyie) + 2d(je i)
Jj€C,
< Z (d(j, i) + 2 - rg)

JjeCe

< Qa+1) Y d(ie) = 2a+1) > dG, 0" (4)),

JjE€C, JeCy
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where in the second inequality, we used the fact that i), is closer to j, than i, by definition, in the third inequality we used the
metric property d(j, je¢) < d(4,1¢) + d(je, i¢), in the fourth inequality we used the fact that j, € core(Cy), and in the fifth
inequality we used the definition of 7. U

Proof of Observation|2| Since C; € Bad;, we have

A-|Cyl e =AY d(j,0%(5))

JjeCy
< Z d(]a Tt—l)
j€Cy
< Z (d(j,i¢) + d(ie, Ty—1))
j€Cy
= Z (d(j, ig) + 512,:&)
jeCy
=[Co| - 7r¢ +|Co| - dp

We get the claim of the observation by rearranging the terms. O
Proof of Lemma 3.8]
Y dGet@) > Y diG,et()
Jj€C, JEC\core(Cy)
> Y an
JEC\core(Cy)

= |Cp\core(Cy)| - a - 7y
5 jec, d6.:0°(0))

= (|C¢| — |core(Cy)|) - o - |C]

Rearranging the terms will give us the claimed statement. O

Proof of Lemma[3.9] Assume we are sampling a client from a cluster C; € Bad,. The probability of this client being in
core(CYy) is (Zj@m(cz) d(j, Tt—l)) / (EjECz d(j, Tt—l))~ We prov the lemma by lower-bounding the numerator and

upper-bounding the denominator.Using the triangle inequality and assuming that s(j) denotes the closest client in 731 to j
we have

Z d(ja,l—;ffl) = Z d(j,S(]))

j€core(Cy) j€core(Cy)
> > (d(s(), 0" () — d(G, 0" (5)))
j€core(Cy)
> Z (604 —a-1yp)
j€core(Cy)
= |core(Cy)| - (0e,0 — v - 7¢)
1
= (1 — a) |Ce| (5Z,t — Q- 7”[), (6)

where in the first inequality, we used the definition of d;;, and in the last equality, we applied Lemmato |core(Cy)|. For
the denominator, we have

S dG i) < 3 (G0 (7)) + d(o* (7). Teey))

JjeCy JjeCy
= |Ce| (re + dee) - (7
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Dividing (6) by (7)., we get

> jecore(cy) A Te-1)
Zjecz d(j»thl)

(1= 2)1Cel (004 — - 7o)

- |C| (e + be,¢)

P [sample j € core(Cy) | j € Cpand Cy € Bad;] =

®)

From Observation [2| and the choice of «, we know that d;; > (A — 1) - r; > « - . As aresult, the right-hand-side of
Inequality |§| is an increasing function in dy ¢+, and therefore we can lower-bound it by setting d, ; to its minimum possible
value, namely, (A — 1) - 7y:

1\ A—-1-
P[j € core(Cy) | j € Cpand Cy € Bad;] > (1_a> Ta.

O

Proof of Observation[3] Let j, denote the facility that we have sampled from near_core(Cy) for a Bad cluster C;. Then

d(i',i*) < d(i', 5e) + d(je, ") ( <= by triangle inequality)
< d(i,j¢) + v - d(ig,i*) ( <= since j € near_core(Cy))
< d(ig,je) + - d(ig, ") ( <= by the choice of i)
< d(ig,i*) +d(i", je) + v - d(ig, ") ( < by triangle inequality)
< (2y+1) - d(ig,i"). ( <= by using the fact that j € near_core(Cy) again)

O

Proof of Lemma To show this lemma, we provide a lower bound as well as an upper bound on the connection cost of
the clients in the far_core(CY) in an optimum solution. First, note that by the definition of the far core we have

Z d(j,i¢) < Z a -1y < [far_core(Cy)| (- rp) < a - |core(Cy)]| - 74. 9)
j€far_core(Cp) j€far_core(Cy)

Next, by using the triangle inequality and definition of far core, we can write

Yo dGig = Y (d,it) — d(i, "))

j€Efar_core(Cy) j€far_core(Cy)

S (v dli i) — d(ie, i)

j€far_core(Cp)
[far_core(Cy)| - (v — 1) - d(ig, i)
= (1=p) - [eore(Cy)| - (v = 1) - d(ir, ") (10)

Y

Y

Putting Inequalities[9]and [T0]together, we arrive at:
«

when we set the parameter «y and p in a way that (1 — p) - (y — 1) > 1. O

d(Zev’L*) S 'T[SC\('T@,

Proof of Lemma[3.13] The proof follows from Corollary [3.11] Lemmas and [3.12] and the fact that that P [A] >
P[A | B] x P[B]. O

Before presenting the proof of the main result of the sparsification procedure, we first prove our padding lemma, which
roughly says that in case our sampling procedure fails to pick at least % facilities in the end, we can pad it with some facilities
in the ball near the anchor +* and compensate for the cardinality without increasing the cost too mush.
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Proof of Lemma Let S’ = SU A be the padded sample set, where A = {max{0, k— | S|} facilities fromF to i*}. We
propose an assignment of the clients to S’ whose cost satisfies the statement of the lemma. Obviously, the best assignment of
clients to facilities could only have identical or smaller cost. This would imply the claim of the lemma. The trick is that we
do not assign any clients to the auxiliary facilities in A. As aresult, ) .~ d(j,S") = > .. d(j, S), meaning that we have
not increased the connection cost. Regarding the disagreement cost, iie 4d(i,1") <3 o, d(i,17) since the facilities
in A are the closest ones to i*. Adding the reconciliation cost coming from the facilities in S will complete the proof. [

We are now ready to prove Lemma [3.4] and consequently, our main result about the sampling procedure, Theorem 3.1

Proof of LemmaB4] Letp == £ - (1—1)(1—2H) ~ 0.393. Following the steps of the proof of Theorem 1 by
Aggarwal et al.| (2009), we can show that of we keep sampling clients for uk rounds for a constant value of p satisfying
pk > (k + V'k)/p, we will have that P'[|Bad,,;| > 0] < 1 — exp(—p/4). O

Proof of Theorem Let S;« denote the result of the sampling for an iteration of the second phase where i = i*. By
Lemma [3.4] with constant probability there exists S’ C S with |S’| = k and costyp(S") = O(OPTyp), so S is a
constant-factor approximation for k-FL. Conditioned on this event, we then get costrc(S”) = O(OPTj.p) by Lemmal[2.4]
Next, by applying Lemma|2.5] we have that costrc(S’) = O(OPTgc) with constant probability. Since such a solution exists
among the facilities of S;«, ALGrc must be able to find a solution S” with costrc(S”) = O(costre(S’)) = O(OPTrc).
Finally, the constant probability can be boosted to any arbitrary large probabilities by repeating the algorithm polynomially
many times and returning the best output at the end. O

C UNBOUNDED LOCALITY GAP FOR THE CASE C # F

In the following we will show that a multi-swap local search algorithm cannot provide a bound on locality gap. Multi-swap
local search works considers p-swaps at each iteration, Here, p is constant indicating the number of facilities that can be
swapped at a single iteration.

Theorem C.1. There exist instances of REC k-MEDIAN problem for which there is a locally optimal solution S with respect
to p-swaps for any constant p with costgc(S) > z - OPTgc for an arbitrarily large z.

Proof. Let F = AU B, A = {a1,a2,...,ax}, B = {b1,ba,...,bx}, C = {1,2}, k > pand z € R. Let the distance
function d be as follows:

1. V’L,],h € [k],l 7é h: d(a“ai) = d(b“bi) =0, d(ai7ah) = d(bl,bh) =1
and d(ai7 bj) =2z
2.VielkjnjeC:d(a;,j) =1andd(b;,j) =z
Again, having distance 1 between facilities in the same set (A or B) and the distance z between facilities in different sets.

Clients and facilities in A have a distance of 1 and Clients and facilities in B have a distance of z (see . Then, the global
optimum O = A and the goal is for B to be a local optimum S.

k? —k k? —k
+2<A

costrc(0) = A + 2z = costre(5)

Note that costrc(.S)/costrc(O) tends to z for large enough values of z. Let A; C A and B; C B, with |4;| = |B;| = 4.
Due to the symmetry of the facilities in A and in B, it does not matter which a € A is included in A; and which b € B
is included in B;. For ¢ € N and ¢ < p, we consider the neighbourhood of S, consisting of the neighbours that are
one swap(Ay, B,) away. Due to the symmetry between a’s and the symmetry between b’s, all neighbours obtained by a
swap(Ay, By) have the same cost. Since S + A, — By has exactly ¢ many a’s and k — ¢ many b’s, the edges are as follows:

. (K*—k)
2

many edges in total.
¢ q(k — q) = gk — ¢* many edges between a € A, and b € S — B,.

o (K®—k—2qk+24°)
2

many edges between facilities in the same set.
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Thus, we obtain:

k* — k — 2qk + 2¢*
costRC(S+Aq—Bq):)\<Z(qk_q2>+ qr +2q >+2

2

To ensure S being a local optimum, the following has to hold for all ¢ € [p]:

cost(S+ A, — By) > cost(S)

k2 — & — 2gk + 2¢° K2 -k
Mgk — ¢?) + A = R MDY +2:
2k — 2¢°
dMgk—g)—2) > M) -2

2(Mak —¢%) =2) > Mgk —¢*) -2
z > 1, for A\ > W
The function fi(q) = gk — ¢? is a parabola, with f;(q) = 0 for¢g = 0 and ¢ = k, and f5(q) > 0 for 0 < q < k. The

parabola’s only turning point, which is a maximum, is at k/2, therefore maximizing 2/(qk — ¢?) for ¢ = 1. Hence, \ has to
be greater than % However, as £ — 0o, A — 0, enabling the gap between S and O to approach infinity, even for small

N’S. O
ol bl
2 by
925 bl

Figure 7: This figure depicts, the distances between the clients C' and the facilities F'. A red line indicates a distance of z
and a green line indicates a distance of 1

D AN AGNOSTIC APPROXIMATION FOR REC k£-MEDIAN

We consider the case C' = F.

Consider an arbitrary solution S' = {s1, ..., s} and an optimal solution O = {0y, ..., 0, }. We define ¢(s) € O to be the
facility serving s in the optimal solution, or s if s € O. We denote the service and reconciliation cost of solution S as f(.5)
and g(.S) respectively, the total cost being f(S) + 39(S). We assume A to be constant.

We consider the reconciliation cost g(.S) = >, >, d(si, s;) and bound each term as follows:

d(si, s5) < d(si, c(si)) + d(c(si), 0:) + d(0s, 05) + d(05, ¢(s5)) + d(c(s5), 55).
We thus have

9(8) < Z Z d(si, ¢(s:)) + d(c(s:), 01) + d(0i, 05) + d(0j, ¢(s;)) + d(c(s;), 55)
=22 > dlsi (i) +d(e(si), 0) + 30 3 S dl0i,05) + 30D d(0j,els;)) + dlels;), 55)

=k (Z d(si, c(sq)) + d(c(sq), oi)> + Z Zd(oi,oj) + k Zd(oj, c(s;)) + d(c(s)), s5)

<k (f(0)+9(0)) +9(0) + k(f(O) + 9(0))
=2kf(O0)+ (2k +1)g(0).
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Figure 8: Effects of the sparsification method on the WIKIELECTIONS dataset. On the left, we report the cost yielded by
k-UFL+LS, for different amounts of sampled clients. In this experiment, the costs achieved by LOCALSEARCH were
similar. On the right, we report the running times.

591 Non-Sparsified

581 —&— Sparsified B KUFL+LS
{ @ LocalSearch

Time in Minutes

o
N

3 25 50 100 200
Sam |e amount 0 25 50 75 100 125 150 175 200
P Amount of Samples

Table 3: Characteristics of the TWITTER dataset.
Name Number of clients Number of facilities

TWITTER 3302362 500

Assume now that S was found by using an «-approximation algorithm for f(.5), where o« = O(k). The cost achieved by S
is

1(8) + 50(S) < af(0) + 5 (2kF(0) + (2 + 1)(0)

2

< af(0) + MEf(O) + (k+1/2)g(0))
(a+ M) f(O) + Ak +1/2)g(0)
O(k)OPT.

Thus, a reconciliation-agnostic O(k)-approximation algorithm for k-median achieves an O(k)-approximation of REC
k-MEDIAN.

E EXPERIMENTAL SETUP

We run our experiments on a machine equipped with an Intel(R) Xeon(R) Gold 6248 CPU at 2.50GHz. The CPU has 80
cores, although we limit all our executions to 16 parallel threads. The machine has 784GB of main memory.

F ADDITIONAL RESULTS ON THE EFFECTS OF SPARSIFICATION

In Figure[8|we plot the results of the sparsification method on the WIKIELECTIONS dataset. We report the costs and running
times, as we sample increasing numbers of clients. It can be seen that a few sampled clients suffice to bring the cost down
significantly, to a level close to the one obtained when employing the entire dataset.

G ADDITIONAL EXPERIMENTS

In order to further test the benefits of our sparsification approach, we perform additional experiments on a large dataset.
In particular, we employ the TWITTER dataset made available by |Ordozgoiti and Gionis|(2019). It consists of graph data
representing a snapshot of the follower network of Twitter. For details, see (Ordozgoiti and Gionis|, [2019).

As before, We fix £k = 8, and vary the value of p (see Algorithm [I)) so that the number of sampled clients is in
{3,6,12,25,50,100}. This time, we set A = %, where n is the number of clients, so that both terms in the objective
function are comparable in magnitude. We plot the results in Figure[9] As shown in the plot, the cost for LOCALSEARCH



A Constant-Factor Approximation Algorithm for Reconciliation k-Median

Figure 9: Effects of the sparsification method on the TWITTER dataset.
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drops sharply as the number of sampled clients increases. Interestingly, k-UFL+LS fails to attain results of the same quality.
While we are unsure of the reason, we speculate that this might be a consequence of the fact that this algorithm optimizes a
proxy of the second term of the objective. While this strategy enables the derivation of a constant-factor approximation
guarantee, in practical settings where this term is large it might introduce significant distortions. Thus, in this scenario, we
advocate for the choice of the LOCALSEARCH heuristic as a cautious rule of thumb.

The running times, shown as well in Figure 9] illustrate how the sparsification method offers an effective way to trade-off
between computational costs and solution quality. We emphasize that in these experiments we limited the processing power
to 16 cores. Nevertheless, since the method involves running an instance of the problem for each facility in the dataset, it
stands to reason that additional parallel processors would yield significant benefits. Even though we did not have time to
systematically test this claim before submission, we did execute several runs, using 25, 50 and 100 sampled clients, using 64
cores. We observed running times of around 200, 400 and 750 seconds respectively, which are comparable or superior to
those taken by running the vanilla LOCALSEARCH algorithm on the entire dataset. This reinforces the conclusion that our
approach makes it possible to improve running times with moderate sacrifices in quality.
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