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Abstract

Neural networks can be trained to solve regres-
sion problems by using gradient-based methods
to minimize the square loss. However, practi-
tioners often prefer to reformulate regression as
a classification problem, observing that training
on the cross entropy loss results in better per-
formance. By focusing on two-layer ReLU net-
works, which can be fully characterized by mea-
sures over their feature space, we explore how
the implicit bias induced by gradient-based op-
timization could partly explain the above phe-
nomenon.

We provide theoretical evidence that the regres-
sion formulation yields a measure whose sup-
port can differ greatly from that for classifica-
tion, in the case of one-dimensional data. Our
proposed optimal supports correspond directly
to the features learned by the input layer of the
network. The different nature of these supports
sheds light on possible optimization difficulties
the square loss could encounter during training,
and we present empirical results illustrating this
phenomenon.

1 INTRODUCTION

Two of the most commonplace supervised learning tasks
are regression and classification. The goal of the former is
to predict real-valued labels for data, whilst the goal of the
latter is to predict discrete labels. Regression models are
conventionally trained using the squared error loss, whilst
classification models are typically trained using the cross-
entropy loss.
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Over the past years, neural networks have notably advanced
scientific capabilities for both classification and regression
problems (Goodfellow et al., 2016). In addition, neural net-
works have desirable attributes, such as their ability to learn
complex non-linear functions, as well as exhibiting adap-
tivity to low-dimensional supports, smoothness and latent
linear sub-spaces (see Bach, 2017).

Some examples of advances in classification can be found
in computer vision (Krizhevsky et al., 2012; He et al,,
2016; Szegedy et al., 2016; Tan and Le, 2019) and natu-
ral language processing (Sutskever et al., 2014; Bahdanau
et al., 2015; Vaswani et al., 2017). Similarly, neural net-
works have achieved the state of the art on regression prob-
lems, such as pose estimation (Sun et al., 2013; Toshev and
Szegedy, 2014; Belagiannis et al., 2015; Liu et al., 2016).
Interestingly, it can be remarked that the amount of scien-
tific work applying neural networks to classification tasks
significantly outweighs that for regression problems.

The predictive power of neural networks does not come
without drawbacks. Unlike kernel methods (Scholkopf and
Smola, 2002; Berg et al., 1984), to which neural networks
are closely related, there are no optimization guarantees for
finite neural networks, which may become stuck in local
minima of the loss function. The existence of such local
minima is a consequence of the non-convexity of loss func-
tions with respect to the weights of deep neural networks
that have non-linearities between layers.

The undesirable convergence to a local minimum of a loss
function typically leads to under-fitting. Local minima are
often encountered in training even when the data are gen-
erated directly from a teacher neural network (Safran and
Shamir, 2018). Over-parametrization can sometimes help
to alleviate this problem (Neyshabur et al., 2015; Goodfel-
low et al., 2015), but this is not guaranteed (Nakkiran et al.,
2021).

A commonly seen practise within the machine learning
community is the transformation of regression problems
into classification problems. Instead of training a neural
network using the square loss function on the original re-
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gression problem, one instead trains the model using the
cross entropy loss on a new discretized classification task.
Such a reformulation can often yield better performance,
despite the cross entropy loss having no notion of distance
between classes.

There are several synonymous names referring to the above
practise: discretizing, binning, quantizing or digitizing a
regression problem. Throughout this paper, we will refer to
this practise as the binning phenomenon. We provide some
examples of literature utilizing this technique, but our list
is certainly not exhaustive.

Zhang et al. (2016) found discretizing the “ab” color-space
yielded better predictions for image colorization. Simi-
larly, by binning the pixel space, Van Oord et al. (2016) im-
proved upon previous regression-based approaches (Theis
and Bethge, 2015; Uria et al., 2014) for generative image
modelling. Reformulation of regression as classification
has also led to state-of-the-art performance in the fields of
age estimation (Rothe et al., 2015), pose estimation (Ro-
gez et al., 2017), and reinforcement learning (Akkaya et al.,
2019; Schrittwieser et al., 2020). The practise is also seen
outside of academic research, for example in the winning
solution of the NOAA Right Whale Recognition Kaggle
challenge'.

1.1 Contributions

The goal of this paper is to examine how the implicit
bias obtained when training neural networks with gradient-
based methods could provide one possible explanation to
the binning phenomenon. In order to utilize recent results
on optimization (Chizat and Bach, 2018) and implicit bias
(Chizat and Bach, 2020; Boursier et al., 2022), we restrict
ourselves to the case of two layer neural networks with the
ReLU non-linearity (Nair and Hinton, 2010). Our contri-
butions are the following:

* We study two simplified problems which closely re-
late to the implicit biases induced when training over-
parameterized models on the square and cross entropy
losses, in the case of one-dimensional data. In particu-
lar, we provide supports of optimal measures for both
of these problems. These supports correspond directly
to the features learnt by finite networks.

* We postulate that a sparse optimal support for the re-
gression implicit bias could result in optimization dif-
ficulties, shedding light on one possible explanation
for the binning phenomenon. We provide synthetic
experiments which exhibit this behaviour.

The code to reproduce our experiments can be found

"https://deepsense.ai/deep-learning-right-whale-recognition-
kaggle/

at https://github.com/LawrenceMMStewart/
Regression-as-Classification.

1.2 Limitations

Our analysis and empirical results only demonstrate the
link between implicit biases and the binning phenomenon
for two-layer neural networks. Experimentation showed
that deeper models did not suffer under-fitting on our syn-
thetic problem when trained on the square loss (see Ap-
pendix G). Secondly, the optimal supports we propose are
for problems that closely resemble the implicit biases of
Boursier et al. (2022); Chizat and Bach (2020). The re-
parameterization we invoke to simplify analysis of the fea-
ture space introduces a factor into the total variation, which
for simplicity we ignore. Finally, the link between our pro-
posed supports and optimization is only seen empirically.
Producing theory to describe whether or not a regression
problem will encounter optimization difficulties as a conse-
quence of implicit biases remains a difficult open problem.

1.3 Notation

For any n € N, let [n] = {1,...,n}. For a vector z € R¢
and [ € [d], letzp) € R! denote the vector consisting of the
first [ indices of x. Let e; denote the 4" canonical basis
vector of R*. Let S9! = {z € R? : |z = 1}. Let
(*) = max(:,0) denote the ReLU non-linearity, where the
maximum is taken element-wise. Let €2, denote the dual
norm of €2, a norm on R*. Let 1(z = v) denote the indi-
cator function, taking the value of 1 if x = v, otherwise 0
for x # v. Let Is : R¥ — {0, 00} denote the characteristic
function of convex set S C R¥, where Is(y)=0ify € S,
otherwise Ig(y) = oo. Let og denote the support func-

tion of convex set S C R, defined as o5 (y) = sup wTy.
weS

Let s : R* — RF denote the softmax function, where

(s(v); = € /) €™

2 FORMULATING REGRESSION AS
CLASSIFICATION

Let (21,%1);-- -, (Tn,Yn) € RY x [0,1] denote the train
data set for a regression problem, where we have assumed
without loss of generality that the labels ¥, ..., y, have
been normalized to the unit interval. To discretize the re-
gression data, divide the interval [0, 1] into k bins with mid-
points given by A € R¥, where 0 = \; < --- < A\, = 1.
The new discrete labels ; € argmin;ep |y; — A;| corre-
spond to which of the k bins each of the y; falls into, taking
the left-most bin in case of ties. Figure 1 visually depicts
this process.

The newly discretized data {(x;, 3;)}"_; can then be used
to train a classifier f : R? — RF. If obtaining a real-valued
prediction is imperative, one can take the expected value
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Figure 1: Depiction of binning / discretizing regression
data {(x;,y;)}$_, using k = 5 bins By, ..., By, each of
uniform size with midpoints 0 = A\; < -+ < A\ = 1.
Here z; € [—1,1] and y; € [0, 1]. The new labels g; € [k]
correspond to which of the k bins By, ..., By, the labels y;
fall into.

over the bins s (f(z))" A € R.

3 NEURAL NETWORKS

3.1 Finite Sized Neural Networks

Let z € R? be a vector whose final entry is one?, ie., xq4 =
land zg_1) € R Leta = (a,...,a,) € R™*?
and b = (by,...,bn) € R™** denote matrices which we
refer to as the input layer and output layer respectively. A
two-layer ReLU neural network Fy,  : R¢ — RF is defined
as:

Vo e R, Fou(x) =Y bi(a]z);. (1)

j=1

The above equation is equivalent to the common conven-
tion of writing the linear and constant terms of the model
separately:

Favb(z) = ij(aj,[d—l]Tx[d—l] + Qj.d )+. (2)
=1 — ~~
linear constant

A two-layer neural network can be thought of as a model

.« . T m
that jointly learns a set of features {(a’ -)+}j:1 and a

linear weighting {b;}"/2.; over these features.

Since the ReLU is positively homogeneous, one can re-

normalize the weights a; < iir and b; < b;[|a | so
J

that a; € S91, without affecting F, ;. Without loss of

generality, we will assume throughout that F, ; has layers

re-normalized in such fashion.

2This notation combines the constant terms of neural networks
with the parameters (instead of treating them separately) by ap-
pending one to the data vector.

3.2 Infinite Width Neural Networks

An extension of the above is to consider models that learn
a linear weighting over the set of all features {(a”-), :
a € S%1}. Such models are called infinite-width neural
networks and are expressed via measures, which now take
the place of the output layer b.

Let M(S?~1 R¥) be the set of signed Radon measures
(Rudin, 1970; Evans and Garzepy, 1991) over S¢~! tak-

ing values in R*. An infinite width network characterized
by v € M(S?1, R¥) is defined as:

F,(z) = /Sd?l(aTx)_qu(a) € R¥. 3)

The finite models described by equation (1) can also be
expressed in the infinite-width form by taking v(®t) =
i1 bjda;. With a slight abuse of notation we can write

Iy = F,au torepresent this.

4 IMPLICIT BIAS

Gradient-based optimization methods can result in a pref-
erence for certain solutions to a problem, known as an im-
plicit bias. Possibly the simplest example of this is logistic
regression (with no regularization), where training a lin-
ear predictor on a linearly separable dataset via (stochas-
tic) gradient descent yields a solution that converges to
the max-margin solution (Soudry et al., 2018, Theorem 3).
Similar results hold for least-squares linear regression (Gu-
nasekar et al., 2018a).

The implicit bias of both linear neural networks (Gunasekar
et al., 2018b; Ji and Telgarsky, 2019; Nacson et al., 2019)
and homogeneous neural networks (Lyu and Li, 2020;
Chizat and Bach, 2020) has been studied for models trained
to minimize a classification loss function with exponential
tails, such as the cross entropy and exponential loss. Simi-
lar results exist for finite width two-layer networks trained
with the square loss on regression problems (Boursier et al.,
2022).

4.1 Regression

Let z1,...,z, € R% be data with labels y1,...,y, € R.
With assumptions on the data®, Boursier et al. (2022, Sec-
tion 3.2) show that the gradient flow for a two-layer ReLU
network trained on the square loss converges to a measure
solving the following problem:

inf / |dv(a)|
veM(SIIR)  Jga— 4)
F,(xz;)=y; Yié€][n]

3Whilst the implicit bias for models trained on the square loss
is observed empirically in experiments, the proof is restricted only
to the case of orthonormal data.

subject to
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For finite sized neural networks, this implicit bias selects
networks which have minimum ¢;-norm on their output
layer from the set of all networks achieving zero square
loss on the train set.

4.2 Classification

Let z1,...,2, € R? be data with discrete labels
Y1,---,Yn € [k]. Extending Chizat and Bach (2020, The-
orems 3 and 5) from the logistic to soft-max loss (which
corresponds to using Theorem 7 from Soudry et al. (2018)
instead of Theorem 3, see also Appendix A), the gradient
flow for an infinitely sized neural network trained on the
cross entropy loss (multi-class classification) converges to
a solution of:

inf / dv(w)|
veM(SI—1 RF) gd—1

(e, —e))" Fo (i) > 1(y; £ 1),
Vi e [n], VIelk].

®

subject to

From the viewpoint of finite networks, the above implicit
bias selects models whose output layer weight matrix is of
minimum ¢; /¢2 group norm (Bach et al., 2012, Section 1.3)
from the set of all networks who satisfy a hard-margin con-
straint on class predictions for the train set.

5 RE-PARAMETERIZATION

5.1 Change of Variable

In this section, we re-parameterize the feature space S* of
the infinite-width networks described in equation (3), in
the case of one-dimensional data. This allows us to study
simplified problems that are closely related to problems (4)
and (5).

For the case of real-valued data z € R, we modify the
notation of equation (3) to write:

F,(x)= /Sl(ala: + as)4 dv(ay, as). (6)

Each input weight (a1,as) € S! corresponds to a feature
Ya(x) = (a1 + az)4, which is piece-wise linear with
slope a; at the ‘active part’ of the ReLU. We note that
the two poles (0,1) and (0, —1) correspond to the con-
stant features 1(o,1)(z) = 1 and ¢(o,—1)(x) = 0. Defining
ST = S\ {(0,1), (0, —1)}, we can hence rewrite equation
(6) as:

F,(z) :/S~ (a1 + az)y dv(ai,a2) + v((0,1)). (7)

For the sake of simplicity, we restrict our analysis to the set
of measures M (S, R¥), which corresponds to the same

set of neural networks as M (S, R¥), up to a constant.
We will later see through the proofs of Section 6 that such
a simplification is indeed permitted; for the implicit bias
problems we will study, any missing constants v((0, 1))
only lead to changes in the weightings of boundary features
of the re-parameterized feature space.

The rough idea behind our re-parameterization is to utilise
the positive-homogeneity of the ReLU to normalize the
input-layer weights by the slope magnitude of their cor-
responding features. After re-parameterization, all features
will have slopes of unit magnitude. This simplifies anal-
ysis, as the slopes of piece-wise linear segments of finite
neural networks will now be controlled entirely by the net-
work’s output layer.

More formally, let W = {—1,1} x R, and consider the
Borel measurable function:

G: St — W
(a1,a3) +—— ( 41 4o ) ) ®

lar]’ " Tai]

We denote the re-parameterized input-layer weights as
(s,¢) = G((a1,a2)), and perform the following change
of variable using G:

F,,(x):/g (a1 + az) +dv(ay, az)

— [ (L@rtw) laldens) ©
/51<a1 >+
:A;ﬂx—dhdM&®:=h@%

where p is the push-forward measure of |a1|dv(aq,az) by
G. The above change of variable defines a natural mapping:

T: M(SLRF) —  M(W,RF) (10)
v — Hs

where pp = T'(v) = F,, = f,. One can think of c as the

critical point or ‘kink’ of an input weight, that is the point

of discontinuity in the ReLU of the corresponding feature.

s can be thought of as the sign of the feature; when s = 1/

—1 the feature ramps rightwards / leftwards.

For short-hand, we write u = (s, ¢) and abbreviate the re-
parameterized features as:

Pu(r) = (s(z =) - (11

Figure 2 depicts an example of features in the re-
parameterized space W. Using the above notation, we can
write:

mm:Am@mmy (12)
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Figure 2: A depiction of two features ¢,,, and ¢,,,, where
uy = (1,—3%) is a right-ramping feature with kink at ?1

and up = (—1, 3) is a left-ramping feature with kink at 3.

5.2 Simplified Implicit Biases

Without loss of generality*, we restrict our analysis to
M(U,RF), where U = {—1,1} x [-1,1]. Let =1 = ; <
.-+ < x, = 1 be ordered, real-valued data; such data can
be obtained by max-min re-scaling. We define the follow-
ing two problems:

Regression:
inf du(u
weM(UR) /U| wlu) (13)
subjectto  fy(x;) =y Vi€ [n].
Classification:

inf d
ot o)

—e)? fu(w) > U(y; # 1),
Vi € [n], VI€ k]

subjectto (e, (14)

The above problems correspond to the implicit biases of
equations (4) (regression) and (5) (classification). Despite
the equivalence fT(V) = F,, problems (13) and (14) are
different due to the factor of |a;| introduced into the total-
variation when performing the change of variable. How-
ever, problems (13) and (14) are easier to work with, as
discussed in Section 5.

6 OPTIMAL SUPPORTS

Regression Support. Let -1 =z < --- < z, = 1 be
ordered data with corresponding real labels y1,...,y, €
R. We define:

Ryeg = {1,201 U {:131 LY 7Y, Vi i } '

Tip1 — Ly Ti — Ti—1
*Considering U over W is purely a syntactic preference in or-

der to keep the kinks of features within the unit interval; all results
and proofs generalize to W.

1.04 ® fz) = la| ¥
b = Data {(zs,4:) i, y
Y v

0.84 v R

Rieq

A4 bins Yy
0.6 ¥ v
0.4 . o
¥ v
0.2 N e
A4 v
-

0.04

100 —0.75 —0.50 —0.25 0.00 025 050 0.75 1.00

Figure 3: R,.qy and Rj,ss for regression data taken from
the function z — |x|.

In words, R,., contains {z1,z,} and any points which
lie at the meeting of two line segments of the piece-wise
interpolant for the data {(x;,y;)}" ;. A visual example
of R,cy can be found in Figure 3. We further define
Freg = {—1,1} X R,.4 as the set of input weights whose
features have kinks located at points appearing in 2.

Classification Support. Let -1 = z; < -+ <
z, = 1 be ordered data with corresponding discrete labels
Y1, .-, Yn € [k]. We define the set R.jqss as follows:

Rclass = {1’1,27”} U {xi CVYi—1 7é Y; O Yit1 7é yz}

In words, Rjqss contains {x1, z,} and all other x; which
have a differing label from either of its two adjacent neigh-
bours in the sequence (z;)7 ;. An example of Reigss
is depicted in Figure 3. Similarly, we define F .55 =
{=1,1} X Rejqss as the set of input weights whose features
have kinks located at points appearing in R¢jqss-

We are now ready to state our main theoretical result, which
shows how the implicit biases of regression (13) and clas-
sification (14) differ in support.

Theorem 6.1. For real-valued, ordered data —1 = x1 <
< x, =10

1. There exists 1 € M(U,R) with supp(pn) C
Freq which is optimal for problem (13) with labels
Yi,-- 5 Yn e R

2. There exists v € M(U,R¥F) with supp(v) C
Fass which is optimal for problem (14) with labels

Y1y Yn € [k/’]

Remark: The optimal support R,., depends completely
on the data set {(z;, y;) } 1, whilst R.4ss depends both on
the data and the number of bins k used for discretization.
In general, by increasing k, one can increase the size of the
Reiass>. This additional dependence on k gives R j,ss the

Excluding trivial problems, for example, when the target re-
gression function is very close to being constant.
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potential to include more points than R,.,. It is not hard
to think of simple regression problems for which R,.4 is
sparse amongst {x1, ..., Z, }, but where R4 is not (for
a suitable choice of k). We will explore this idea further in
Section 7, and its relationship to the binning phenomenon.

6.1 An Outline for the Proof of Theorem 6.1

1. We begin in Section 6.2 by introducing a general opti-
mization problem (15) which encompasses both prob-
lems (13) and (14). We derive the dual of this problem
in Lemma 6.2.

2. Let Ux = {—1,1} x {z1,...,z,} be the set of fea-
tures having kinks at position of the data. We aim to
show there exists optimal measures for problems (13)
and (14), whose supports are subsets of Ux . The proof
of this Proposition is broken into smaller results:

(a) In Lemma 6.3 we derive a sufficient condition for
dual feasibility to problem (15).

(b) We show Corollary 6.3.1, which states that the
existence of a feasible measure with support in
Ux 1is a sufficient condition for the existence
of an optimal measure for problem (15), having
support in Ux .

(c) We construct feasible measures for both both
problems (13) and (14) in order to apply Corol-
lary 6.3.1 and conclude the proof of Proposi-
tion 1.

3. We apply Proposition 1 to problems (13) and (14), but
for data sets consisting only of points in R, and
R.uss. We then extend these solutions to the com-
plete train data set {x1, . .., x, }, and show that strong
duality is indeed attained, which concludes the proof
of Theorem 6.1.

6.2 A Generalized Implicit Bias Problem

Let © be any norm on R*. For a family of non-empty
closed convex sets S, .. .,S, C R* we define the follow-
ing optimization problem:

HEM(U,RF)

mt [ Q) + D Is () 019

By setting 2 to be the Euclidean norm on R¥ and choosing
k and S;, one can recover both problems (13) and (14).
More precisely, by setting & = 1 and S; = {y;}, we obtain
problem (13). On the other hand, taking £ > 1 and

S; = {veRk: (ey, — e)To>1(y; #1)
Vieln], Yielk] },

we recover problem (14) where the data have discrete labels
Y1y- -y Yn € [K].

Lemma 6.2. The dual of problem (15) is:

n
sup - Z os; (a;)
i=1

Qp...,0p ER"

n (16)
subjectto (Z ai¢u(:ci)> <1 Vuel.
i=1

Proof. The full proof is given in Appendix B. We provide a
brief outline. By Fenchel duality (Moreau, 1966), we have:

n

D s (ful@i)) = 3 sup {{ais fu(wi) = o5, (i)}

i=1 @i€R*

The dual problem can be obtained by substituting this into
problem (15) and exchanging the order of the supremum
and infinum. In order to resolve the infinum, we use prop-
erties of the dual norm. O

6.2.1 Restricting the Position of Kinks to the Data

Let Ux = {-1,1} x {1, ..., 2, } denote the set of input
weights whose features have kinks at {x1,...,2,}.

Proposition 1. For real-valued, ordered data —1 = x1 <
< x, =10

1. There exists u € M(Ux,R) which is optimal for
problem (13) with labels y1, . ..,y € R.

2. There exists v € M(Ux,RF) which is optimal for
problem (14) with labels y, . . . ,yn € [k].

To prove Proposition 1, we show a series of lemmas that

combine to give the desired result.

.., o € RF satisfy:

Q. (Z a,;gbql(xi)) <1 YueUy.
1=1

Then o . . ., oy, are feasible for problem (16).

Lemma 6.3. Suppose o, .

Proof. The full proof is detailed in Appendix C, and re-
lies on the convexity of {2, combined with the fact that
St iy () is piece-wise affine in ¢ for both left and
right-wards ramping features. O

Corollary 6.3.1. Suppose there exists yi feasible for the fol-
lowing problem:

w () + 3 Is (ule). (17

HEM(Ux RF)

Then there exists i* € M(Ux,RF) which is optimal for
problem (15).
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Proof. Let P;, D; denote respectively the primal and
dual values for problem (15). Similarly let P>, D- de-
note the primal and dual values for problem (17). Since
M(Ux,R*) ¢ M(U,RF), it follows that P, > Py and
Dy > D

Problem (17) is a norm minimization problem with convex
constraints which has a feasible point p, so it attains strong
duality (Boyd et al., 2004, Chapter 5). Let (u*,a*) de-
note any primal-dual pair which attains strong duality. By
Lemma 6.3, o* is also dual-feasible for problem (16) so
Dy = D. We conclude that:

P>P>D=Dy=PFP, = P,=PF,

so (u*, &) are optimal for problem (15). O

Lemma 6.4. For real-valued, ordered data —1 = x1 <
e Ty = ]__‘

1. There exists p € M(Ux,R) which is feasible for
problem (13) with labels vy, . ..,y € R.

2. There exists v € M(Ux,RF) which is feasible for
problem (14) with labels y1, . . . ,yn € [k].

Proof. The proof is constructive and detailed in Ap-
pendix D. O

Proof of Proposition 1: Follows directly from combining
(6.4) and Corollary (6.3.1).

Proof of Theorem 6.1: The proof is detailed in Ap-
pendix E. We will briefly provide an outline. Consider
problem (13) but for a new data set {(zi,¥:)}ier,.,-
By Proposition 1, there exists a primal-dual optimal pair
(p*, a*) with supp(p*) C F).q4 which solves problem (13).
We remark that p* is feasible for problem (13) with the
full data set {(z;,y;)}" ;. It remains to show Jo € R"
which is feasible and attains strong duality with p*. For
this, we extend a* € R™ to & € R" by appending zeroes
to any new entries, where m = |R,.g4|. It is clear that & is
dual-feasible, and by verifying that the pair (u*, &) attains
strong duality we conclude. A similar reasoning applies to
classification.

7 SYNTHETIC REGRESSION TASK

We present a simple one-dimensional toy regression task,
illustrating how the optimal supports of Theorem 6.1 can
induce the binning phenomenon. The regression data set is
generated from a finite teacher neural network p7, which
has 9 neurons in the hidden layer. The resulting target func-
tion f,, : [—1,1] — [0, 1] is the sum of two large-scale
triangles and two small-scale triangles, depicted in Figure
4. As usual with supervised learning problems, the task is
to fit a model’s parameters using a train set to obtain mini-
mum square error on a separate validation set.

1.0 ‘k :\‘
E ]
| '
] i3 i
0.8 { \ / i‘
0.61 ad /3
jo 3\ / 5w
3 Fd i3
04 ¥ \ / IFA
fur ‘ ;{ ¥
0.2 train data % # K‘
*
H
0.0 Rreg ¥ \

—1.00-0.75-0.50—0.25 0.00 0.25 0.50 0.75 1.00

Figure 4: The train data set, consisting of 250 data points
{(zi, fur (2:))}229, is depicted by the blue crosses. Ry ey
is depicted in orange, and is notably sparse, consisting of
just 18 points. On the other-hand, discretizing the data with
k = 50 bins results in the set R.,ss containing 230 of the
data points.

7.1 Experiment Setup

Data: To generate discrete labels, we divided the y-axis
into k& = 50 bins of uniform size, so that the midpoint of
the first/last bin was 0/1. For both the train and validation
sets, we sampled x; uniformly so that each bin contained
the same number of points (z;, f,,(x;)). The train and
validation data sets both consisted of 250 data points.

Models: We trained two over-parameterized models:

1. Regression Model: 10,000 neurons in the hidden
layer with scalar output, totalling 30,000 weights.
Trained using the square loss.

2. Classification Model: 500 neurons in the hidden
layer with vector output of dimension k = 50, to-
talling 26,000 weights. Trained using the cross-
entropy loss.

Training: Both models were trained using gradient descent
for thirty random initializations of their weights, following
the scheme given by Glorot and Bengio (2010). A hyper-
parameter sweep was used to find the optimal learning rate
for each of the models. The stopping criterion was when
neither the train nor validation losses decreased from their
best observed values over a duration of 1000 epochs. The
final model parameters were taken from the epoch that ob-
tained lowest square validation error. To obtain real-valued
predictions from the classification model, we took the ex-
pected value over the bins as described in Section 2.

7.2 Results

The validation RMSE for the thirty random intializations
is displayed in Figure 5 and Table 1. Our regression task
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RMSE x10°
Best Worst Mean Std. Dev
Regression 370  6.85 4.55 1.38
Classification | 0.86 1.54 1.21 0.19

Table 1: Population statistics for the RMSE over 30 random
initializations of model weights.

0.014 %

Regression

Classification

Figure 5: Population RMSE over 30 random initializations.

clearly exhibits the binning phenomenon; every classifica-
tion models attained lower validation error than the best
performing regression model. Moreover, the classification
models were more stable to train, exhibiting less variance
in performance over the thirty random initializations.

The predictions of the worst performing regression and
classification models are depicted in Figures 6a and 6c re-
spectively. It can be seen that the regression model was
unable to fit the smaller-scale triangles from the train data,
converging to a local minima of the square loss.

Figures 6b and 6d depict the kinks c; corresponding to the
model’s input weights a;, for both the regression and clas-
sification model respectively. The x-axis depicts the posi-
tion of a feature’s kink, and the y-axis expresses the norm
of the corresponding output-layer weight. The support of
the regression model is notably sparse, with the kinks gath-
ering at points corresponding to to the peaks of the larger-
scale triangles. The model has struggled during optimiza-
tion to recover all of 12,4, lacking the features whose kinks
are located at peaks of the smaller-scale triangles, and as a
consequence suffers under-fitting.

On the other-hand, the classification model recovers a sup-
port which has features more evenly distributed across the
unit interval, aligning with the optimal support Rj,ss de-
scribed in Theorem 6.1. As a consequence, the classifica-
tion model does not suffer the same optimization problem
as the regression model.

7.3 Discussion

Chizat and Bach (2018) show that in the infinite width
limit, the gradient flow of a two-layer neural network con-
verges to the global minimizer of the problem. Our ex-
periment indicates that even simple problems can result
in global convergence only being guaranteed at extreme
widths.

For regression data generated from a teacher network with
mo hidden-neurons and Gaussian weights, Safran and
Shamir (2018) show that training a model with m = mg+1
neurons helps alleviate under-fitting, postulating that in-
creasing m further aids optimization. This is a clear ex-
ample where regression does not suffer under-fitting, and
over-parameterization aids training. Our results indicate
somewhat surprisingly that the implicit bias can play a fun-
damental role in gradient based optimization, even for over-
parameterized models and when m >> my.

Goodfellow et al. (2015) demonstrate that on a straight line
between the optimal parameters and a random initializa-
tion, various over-parameterized state of the art vision mod-
els encounter no local minima. We provide evidence in Ap-
pendix F demonstrating that for even simple problems, both
the regression and classification models can deviate from a
linear path during optimization.

8 IMPLICIT BIAS FOR HIGHER
DIMENSIONS

We provide an experiment that indicates that the properties
of the supports provided in Section 6 likely apply for higher
dimensions. We generated regression data (x;, f., (z;)) €
[—1,1]® x R from a teacher network pi7 with three neurons
and random weights, where x3 = 1. Similar to section 7.1,
we trained over-parameterized regression and classification
models on the regression data and binned data (using & =
25 uniform sized bins) respectively. The precise details of
the experiment can be found in Appendix H.

Each feature a; is now characterized by the line where it
ramps. That is to say, the points z € R? satisfying:

aj1z1 + aj2r2 + a3 =0,

where x3 = 1. The critical lines characterizing the fea-
tures of the regression and classification models are de-
picted in Figure 7a and 7b, respectively. We see that the
regression model recovers a sparse support, whilst the clas-
sification model’s features are more evenly distributed over
unit square corresponding to (1, z2). These observations
are similar to R, and R 4., in the one-dimensional case,
suggesting that the difference in implicit bias between re-
gression and classification support we identified in one-
dimensional problems is likely to hold in higher dimen-
sions.
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Figure 6: Predictions for the worst performing regression / classification models are depicted in Figures 6a / 6¢. Supports
for the worst performing regression / classification models are depicted in Figures 6b / 6d.
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Figure 7: Critical lines of the regression model’s features
(left) and classification model’s features (right), for two-
dimensional input data.

9 CONCLUSION

We have presented supports R, cq, Rciqss characterizing fi-
nite neural networks which are solutions to problems relat-
ing to known implicit biases for regression and classifica-
tion, in the case of one-dimensional data. We postulated
that the differences between these two supports provided
one explanation for the binning phenomenon. This claim
was supported by numerical experiments, demonstrating
that over-parameterized models learn features which no-
tably coincide with the supports we proposed. Moreover,
our synthetic problem clearly exhibited the binning phe-
nomenon, resulting from the inability of the regression
model to recover all of the sparse optimal support during
training. Finally, we provided empirical evidence that the
characteristics of our proposed supports hold in higher di-
mensions.

As far as we are aware, the implicit biases of arbitrarily
deep neural networks is still an active research topic and is
not currently known. If theorems similar to those of Chizat
and Bach (2020) and Boursier et al. (2022) are obtained
for deeper models, it may indeed be possible to extend the
reasoning presented in our paper to deep neural nets by in-
specting layer-wise features.

Our results raise many questions, both from a practical per-
spective and from a theoretical stand-point.

Practice: For some problems, the cross-entropy loss out-

performs the square loss on regression tasks, despite it hav-
ing no information about relationship between classes. Fu-
ture works could investigate how to best incorporate the
notion of adjacency between the bins, building on exist-
ing works such as Evgeniou et al. (2005). Other directions
could include exploring different ways to discretize the data
(e.g., jointly learning bins of differing sizes), or how best
to choose the number of bins k for discretization.

Theory: A natural progression would be to prove a The-
orem similar to that of 6.1, but for the implicit biases de-
scribed in Boursier et al. (2022); Chizat and Bach (2020).
Another option would be to extend the results of Theo-
rem 6.1 to the case of multi-dimensional data. Further
works on the implicit bias of deep models could help to
explain the binning phenomenon reported in the literature
mentioned in Section 1.
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Appendix

A  PROOF OF IMPLICIT BIAS FOR MULTI-CLASS SOFTMAX REGRESSION

We consider the set-up of Chizat and Bach (2020, Theorem 3), and can follow the exact same proof, except that now
the feature map is k-dimensional rather than 1-dimensional. Assumption (A1) is unchanged, while Assumption (A3) is
considered component-wise.

For Assumption (A2), we use the framework of Theorem 7 from Soudry et al. (2018) instead of the one in Theorem 3.

We can then extend the informal argument from Chizat and Bach (2020) that when using a predictor >~ b;(a] z), we

j
converge to the minimum ¢5-norms Y, ||b;]|3+ ||a; |3, which is minimized by scaling invariance as 2> .~ ||b;]|2]|a;
and thus, writing the predictor as:

25

m

Sobia @) = 3 byllaylla((as/llal2) ")+ = /S L (a"a)idva) o v =37 biflay6
i=1 Jj=1

i=1

I
(Xl

the penalty is exactly proportional to the total variation norm with ¢2-penalties.

B MINIMIZING TOTAL VARIATION OF A MEASURE WITH CONVEX LOWER
SEMI-CONTINUOUS CONSTRAINTS

Lemma B.1. Let (-, -) denote the Euclidean inner-product defined on R¥, and let Q) denote any norm on R*. Then for any
measurable function g : U — R¥:

0 if Q(gu) <1 VuelU
00 otherwise.

sup [ (a0, dp() ~ 2 () = { as)

HEM(URF)

Proof. Suppose that Jug € U such that Q.. (g(ug)) > 1. By definition of the dual norm, this implies:

(vo,g(uo)) = sup (v, g(ug)) > 1,
Qv)=1

where we have used vy € R” to denote the vector that attains the supremum. For ¢ > 0, consider the measure 1 = tvyd,, €
M(U, R¥). Then:

| (to(0.ditu)) = () ) = tatuo). ) =2 120

=t | (9(uo),vo) — 2 (vo)

Hence taking the limit as ¢ — oo leads to an unbounded supremum. Conversely, suppose that 2, (g(u)) <1 Vu € U.
Then for any v € U and v € R¥ one has:
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We conclude that [, ( (g(u), dp(u)) —Q (du(u))) < 0, and hence:

Qg(u), <1 VacA—  sup /((g(u),du(u»—@(du(u))) - 0
HnEM(U,RF) JU

Lemma B.2. The dual of problem (15) is:

n
sup — Z os; (a;)
i=1

aq...,an €ERF

subjectto ), (Z aigbu(xi)) <1 Vuel.
i=1
Proof. By Fenchel duality (Moreau, 1966) one has:

157 (fu(wi)) = Is; (fu(@:)) = sup {{ev, fu(i)) = os,(i)} -

g ERF

Plugging this into the Lagrangian we obtain:

L(u)=/UQ(dM(U)) + Y sup {{ai, ful@i)) —os; (i)}

i=1 @i€R*

:/Q(du(u)) + sup Y e, ful@)) — o5, (i)}

U
Q(dp(w) +  sup { / (S i), dpu(u)) —E:o—si(ai)}
LS i=1

f aq,...,an, ERFE

sup _/U <<_Z_i1 @i (), dp(u)) — Q(du(u))) _iasi(ai)

Qaty...,a, ERF

g(u)

The primal value  inf  L(u) is hence:
neM(U,RF)

Lt s { / (o), duw) — 9 (du(w)) ) ;a&(a»}.

ag,...,an ERF
The dual problem is obtained by switching the order of the supremum and infinum:

sup inf ){/U(<g(u),d,u(u)> - Q(d,u(u))) ia&(ai)}

at,...,a, ERF neM(U,RF

= sup { I /U (¢otw), duw) = @ (@u(w)) } —ias,(ai)}.

(o5} ,..,C)é»,,,ERk

Applying Lemma B.1 we conclude the dual problem is:
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n
sup - Z J8; (0%)
i=1

ay...,0 ERF

n
subjectto €, (Z aiqbu(xi)) <1 Vuel.
i=1

O
C PROOF OF LEMMA 6.3
Define:
Ut = {1} x [-1,1]
U™ = {1} x [-1,1],
and note that U = UT U U~. Similarly we define:
Uxt ={1} x{x1,...,2,}
Ux™ ={-1} x{x1,...,zn}.
Firstly, let us show that:
Q. (Z aiéu(xi)> <1 YueUt, (19)
i=1

This is equivalent to showing that:
n
Q. (Z (i — c)> <1 VYeel[-1,1]. (20)
i=1

By assumption, we know that:

Q* (Z alqﬁu(mz)) S 1 VU S UX+
i=1

= O, (Zai(xi —c)+> <1 Vee{zy,...,xn}.
i=1

Letg(c) = Y., a;(x;—c)4 and remark that g is a piece-wise affine function with line segments meeting at {z1, ..., z, }.
As a consequence, Ve € [—1,1],30 € [0,1] and ¢ € [n — 1] such that:

g(c) =0g(x;) + (1 = 0) g(wiv1)-
By the convexity of the dual norm, we have:

Q. (9(c)) <0 Qu (g(z:)) +(1 = 0) D (g(2ig1)) < 1.
\_;,1_/ \_2,1_/

We conclude that (20) (and hence (19)) hold. We conclude by repeating the same argument for U™, but replacing g(c) with
h(e) = 200, aile — @)
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(%5,Y5) & Rreg
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Figure 8: Graphical depiction of R,., for six arbitrary data points (x1,%1),...,(%6,ys). In this example J,., =
{1,3,4,6}, resulting in a piece-wise interpolant with three line components Ly, Lo and Ls.

D CONSTRUCTION OF FEASIBLE MEASURES

D.1 REGRESSION

Proof. As in the statementlet —1 =z; < --- <z, = land yy,---,y, € R denote the regression data. We define:

Jreg ={i € [n] : T € Ryeg}, ¥2))
as the set of indices ¢ which correspond to data points z; € Ry¢q. Let m = |Jy4, and note that {1,n} C Jycg = m > 2.
Without loss of generality we assume that the elements of J,.., are sorted in increasing order 1 = j; < --- < jp, = n.

For | € [m — 1], let L; denote the line passing through (x;,,y;,) and (z;,.,,;,., ). By definition, the equation of each of
the m — 1 lines will be:

Li(z) = vz — z3) + v, (22)
where:
v, = Yiigr — Yn ) (23)
L1 — Ly

A graphical depiction of this above notation can be found in Figure 8. Finally, we write P to denote the piece-wise linear
interpolant of the data {(x;, y;)}7, where:

x € [z, x5,,] = Pr)=L(z) Vi e [m—1]. (24)

It is sufficient to construct a measure ;1 € M(Ux,R) such that f,, = P, since then f,,(z;) = P(z;) =y; Vi€ [n].

We begin by first constructing a measure y1 such that f,, (x) = Li(x), which we will later build upon to construct /.
From the definition of R,.,, the measure ;1 will satisfy f,, (z;) = y; for all i € [ja].

Let uy,u, € Ux be defined as u; = (1, x1) and u,, = (—1, z,,). We claim that y1 can be written in the following form:

1 = W0y, + Wrly, . 25)

To show this is true, we search for weights w,., w; € R that satisfy:
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Li(z) = n(z — 1) + y1 = fu, (2)
- [ ou@)d(w
U

= Wi Py, (T) + Wrdu, (T)

— wn(z — 21)4 +wn(n — 23
— w(e — (~1)) +we(1 - 2);
=w(z+ 1)+ +w-(1—x)g.

Substituting x = 1 gives:

wi(2)1 +w(0) 4 =2y + 1

:>wl:71+%.

Similarly, substituting z = —1 gives:

wi(0) 4 +wr(2)4 =071 +y1
_un

:>wr—§.

In the case that m = 2 we are done, since f,,, = P. Otherwise, consider the measure:

m—1
= %5“71 + (%1 + ’Yl) Ou, + Z (V41 — ) Ouy;, € M(Ux,R), (26)
=2
M1

where u;, = (1, z;,). We claim that f, = P, which is equivalent to saying that:
Vie[m—1], fux)=Li(z) Vel x,,] 27

We will show by induction that the above statement holds. The base case [ = 1 is immediately verified, as f,(z) =
Li(z) Vz € [zj,,2;,]. To prove the inductive step, suppose for some g € [m — 1] that the following holds:

Vielg—1], fu(z)=L(z) VYrclz;, zj,,] (28)
We need to show that:

Vielq, fulz)=Li(z) VYz€ |z, 2] 29

To do this, we note that:

x €z, . a,] = fule) = Lo-a(x) + (v —vg-1) (@ —25,,)

= Ly(z).
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D.2 CLASSIFICATION

Proof. As in the statement let —1 =21 < --- <z, = land y1, ..., y, € [k] denote the classification data. We define the
one-hot labels Z € {0, 1}"** as:

1 if y;, =1
Zig = noy ) 30)
’ 0 otherwise.
We define k regression data-sets D1, ..., Dy, where:
D= {(a:i,ZiJ)}f:l vl € [k]. 31

Applying the result obtained from Appendix D.1, Ju, ..., ux € M(Ux,R) such that:

fu(xi) =2Ziy Vie[n] Vielk]. (32)

By definition of Z, we conclude that p1 = (pi1, . .., ux) € M(Ux,RF) is feasible for problem (14).

O
E PROOF OF THEOREM 6.1
E.1 REGRESSION
Let Jyeg = {i € [n] : 2; € Ryeg} and let m = | Jyeg).
Consider the following problem:
inf du(u
A ] (33)

subjectto  f,(x;) =y; Vi E Jreg

Let P, and P» be the primal values for problems (13) and (33) respectively. As problem (33) has less constraints than
problem (13), we can remark that P, < P;. By Proposition 1, 3u* € M(Ux,R) and a1*,...,a,* € R optimal for
problem (33) satisfying supp(p*) C Fyeq.

Assume without loss of generality that J,..4 is ordered, with 1 = j; < -+ < j,,, = n. Fori € Jy¢g, let (i) € [m] denote
the position of ¢ in the ordered list j1, ..., j,. We construct aq, ..., &, € R as follows:

. 0 if ¢ Ry
a; =9 it icR (34
i) if 7€ Ryeq.
a*q,...,a%, correspond to the m data points (z;,,y;, ), - - -, (%}, ¥;,, ). Our constructed &1, ..., &, is the extension of
the above to all of the train data (1, 41), ..., (@n, Yn), Where i € R,.cq = &; = 0.
By construction, pu* and &4, . . ., a, attain strong duality for (13). However, it remains to verify that they are indeed prime

and dual feasible for problem (13) respectively. For this, it is enough to verify that:

—05,(0) = Is, (fu=(2i)) Vi € [n]\ Jreg,

where the sets S; are those corresponding to regression, described in Section 6.2. We remark that f,,- is a piece-wise affine
function with line segments meeting at {(z;,y;)};e,.,. By definition, if i & J,.., then f,,«(2;) = y; = Is, (fu-(24)) =
0. Finally, 0g,(&;) = 05,(0) =0 Vi € [n]\ Jyeq-
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E.2 CLASSIFICATION

Let Jejass = {¢ € [n] : @; € Rejass} and let m = |Jeass)-

Consider the following problem:

inf du(u
nt /U ldu(w)]

. 35

subjectto (e, — e fuey) = 1(y; # 1), 33)
Vi € Jerass, VI E [K].

Let P, and P> be the primal values for problems (14) and (35) respectively. As problem (35) has less constraints than

problem (14), we can remark that P» < P;. By Proposition 1, 3u* € M(Ux,R¥) and a1 *,. .., a,,* € R¥ optimal for

problem (35) satisfying supp(1t*) C Frass-

Assume without loss of generality that J.;qss is ordered, with 1 = j1 < ... < j;, = n. Fori € Juass, let (i) € [m]
denote the position of 7 in the ordered list j1, ..., j,,. We construct &, ..., &, € R¥ as follows:

- 0 if i¢ Ry
Q=4 . .g cas (36)
a"/’(") if 7€ Reass-
af, ..., correspond to the m data points (2;,,¥j,), - -, (Zj,.,Yj.. )- Our constructed @, . . . , &y, is the extension of the
above to all of the train data (z1,41),. .., (Tn, Yn), where i € Rejqss = &; = 0.
By construction, p* and &, . . ., @, attain strong duality for (13). However, it remains to verify that they are indeed prime

and dual feasible for problem (13) respectively. For this, it is enough to verify that:

—0s,(&;) = I, (fu* (z;)) Vie [n] \ Jetass

where the sets S; are those corresponding to classification, described in Section 6.2.

We begin by noting that VI € [k], f,-(-)x is a piece-wise affine function with line segments meeting at points contained in
some subset of {(z;,v;)}jer.,...- By definition:

class

i Jotass = fur(@) ey, —e) 2Ly £1) V€[]

= Ig, (fu(z:)) =0 Vi€ [n]\ Juass

Finally, os, (&) = 05,(0) =0 Vi € [n]\ Jeogss-

F TRAJECTORY OF GRADIENT DESCENT

Figures 9a / 9b depict the angles formed between the first 1000 gradients obtained during training for the worst performing
regression / classification models. Despite both models being over-parameterized for the problem, it is clear that the opti-
mization route for the models was not a straight line. Similar results were seen over all of the thirty random intializations.

G EXPERIMENTS WITH THREE-LAYER NEURAL NETWORKS

We provide results showing that the binning phenomenon observed in Section 7 only applies to two-layer neural networks.
In other words, three-layer networks did not suffer the under-fitting we observed in Section 7.2.

We trained a regression model with two hidden layers consisting of 1000 and 250 neurons (totalling 252, 250 parameters)
using the square loss. The model was trained for ten random initializations of its weights, in the same manner as detailed
in Section 7.1. The RMSE for the ten random initializations is depicted by Figure 10a.
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Figure 9: Angle 6 between the first 1000 gradients obtained during training for the regression model (left) and the classifi-
cation model (right).
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Figure 10: RMSE (left) and angle 6 between the first 1000 gradients obtained during training (right) for the three-layer
neural network.
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Figure 11: Worst performing model predictions (left) and support (right), over the ten random initializations.

Figure 10b shows that the gradient descent route during the first 1000 epochs of training was not linear. The predictions of
the worst performing model over the 10 runs are depicted in Figure 11a. It can be seen that the network did not suffer the
under-fitting observed for two-layer networks, detailed in Section 7.2. The support of the model is depicted in Figure 11b.

H TWO-DIMENSIONAL OPTIMAL SUPPORTS FOR SYNTHETIC DATA

We generated a regression problem from a random teacher model pr with three neurons, with weights being initialized as
by Glorot and Bengio (2010). Our train data set consisted of 625 data points {(z;, f,.,.(z;))}, where the z;; € [—1,1]? x {1}
are spaced evenly over the 25 x 25 unit grid. To generate discretized labels we used k& = 25 bins.



Influence of Task Formulation on Neural Network Features

We trained two over-parameterized models:

1. Regression Model: 500 neurons in the hidden layer with scalar output. Trained using the square loss.

2. Classification Model: 500 neurons in the hidden layer with vector output of dimension & = 25. Trained using the
cross-entropy loss.

As mentioned in Section 8, each feature a; is now characterized by the line where it ramps, which we will refer to as the
feature’s “critical line”. That is to say, the points x € R? satisfying:

aj1r1 + aj2r2 + a3 =0,

where x3 = 1. These can be thought of as the equivalent of c; defined in Section 5, but for the two-dimensional case.

The critical lines characterizing the features of the regression and classification models after training are depicted in Figure
7a and 7b, respectively. Features with critical lines which do not cross the unit square only correspond to affine transfor-
mations of the resulting prediction, and for this reason can be ignored. Similarly, features killed by the output layer® since
their contributions to the model’s prediction are irrelevant.

We see that the regression model recovers a sparse support, whilst the classification model’s features are more evenly
distributed over unit square corresponding to (x1,x2). These observations are similar to R,., and Ri.ss in the one-
dimensional case, suggesting that the difference in implicit bias between regression and classification support we identified
in one-dimensional problems may hold in more general situations.

®That is to say the features a; such that ||a;||||b;|| is very small relative to other features.
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