PAC-Bayesian Learning of Optimization Algorithms

M. Sucker
Department of Mathematics
University of Tiibingen
michael.sucker @math.uni-tuebingen.de

Abstract

We apply the PAC-Bayes theory to the setting of
learning-to-optimize. To the best of our knowl-
edge, we present the first framework to learn op-
timization algorithms with provable generaliza-
tion guarantees (PAC-bounds) and explicit trade-
off between a high probability of convergence
and a high convergence speed. Even in the
limit case, where convergence is guaranteed, our
learned optimization algorithms provably outper-
form related algorithms based on a (determin-
istic) worst-case analysis. Our results rely on
PAC-Bayes bounds for general, unbounded loss-
functions based on exponential families. By
generalizing existing ideas, we reformulate the
learning procedure into a one-dimensional min-
imization problem and study the possibility to
find a global minimum, which enables the algo-
rithmic realization of the learning procedure. As
a proof-of-concept, we learn hyperparameters of
standard optimization algorithms to empirically
underline our theory.

1 Introduction

Let ¢(-,0) be an instance of a class of functions
(£(-,0))9co. We consider the minimization problem:

min 0(x,0). (1)
Our goal is the construction of an algorithm A(«, 6), de-
pending on some hyperparameters «, that is provably the
best (on average) for the given class of problems. We con-
trast the majority of approaches in continuous optimization
in two ways:

Proceedings of the 26" International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

P. Ochs
Department of Mathematics
University of Tiibingen
ochs @math.uni-tuebingen.de

i) Classical optimization theory studies the worst-case be-
haviour, which guarantees the same convergence for all
problems that arise:

o € argmin sup £(A(x,0),0).
a€H 0eO

Thereby, this is often accompanied by rough estimates and
ignores that some problems are more likely to occur than
others. On the other hand, by using the additional infor-
mation that 6 is a realization of some random variable &,
we seek for the average case in form of the mean function,
usually called the risk:

o € argmin Eg[{(A(a, 6),8)].
aEH

From an optimization perspective, this is a distinct ap-
proach leading to performance guarantees in expectation
or with high probability over the draw of new problem in-
stances. This allows us to exploit features of the considered
class of problems beyond analytical accessible quantities
such as the Lipschitz constant (of the gradient) or the strong
convexity modulus, which are usually pessimistic and hard
to compute.

ii) Instead of analytically constructing an algorithm driven
by intricate worst-case estimates, we train our algo-
rithm (by learning) to be the best one on some samples
{€(-,0;)}~_; and prove that the performance generalizes,
in a suitable sense (PAC-Bayes), to the random function
£(-, &). This type of problem, i.e. minimizing the expected
loss, is naturally found in the whole area of machine learn-
ing and cannot be solved directly, since the mean function
is generally unknown. Consequently, one typically solves
an approximate problem like empirical risk minimization
in the hope that the solution found there will transfer:

N
1
o € argmin — LA, 0;),6;) .
i 3 A0,)

However, through this, one is left with the problem of
generalization, which is one of the key problems in ma-
chine learning in general. Therefore, one of the main con-
cerns of learning-to-optimize are generalization bounds. A

PAC-Bayesian Learning of Optimization Algorithms

famous framework to provide such bounds is the PAC-
Bayes framework, which allows for giving high-probability
bounds on the true risk relative to the empirical risk.

In this paper, we apply the PAC-Bayesian theory to the set-
ting of learning-to-optimize. In doing so, we provide PAC-
Bayesian generalization bounds for a general optimization
algorithm on a general, unbounded loss function and we
show how one can trade-off convergence guarantees for
convergence speed. As a proof of concept, we illustrate
our approach by learning, for example, the step-size 7 and
the inertial parameter j3, i.e., « = (7, 8), of a fixed number
of iterations of the Heavy-ball update scheme given by:

k) = HB(I(k), 2+ 9)
= 2® —rVe(a® 9) + Bz — 2k,

@)

which generalizes Gradient Descent for 5 = 0.

1.1 Our Contributions

* We provide a general PAC-Bayes theorem for general,
unbounded loss functions based on exponential families.
In this framework, the role of the reference distribution
(called the prior), the data dependence of the learned dis-
tribution (called the posterior) and the divergence term
arise directly and naturally from the definition. Further-
more, this abstract approach allows for a unified imple-
mentation of the learning framework.

* We provide a principled way of excluding the case of the
learnt algorithm’s divergence from the considerations,
which in turn allows us to apply our PAC theorem under
a modified objective. Based on this, we give a theoreti-
cally grounded way of ensuring a given (user-specified)
convergence probability during learning. Taken together,
this allows us to trade-off convergence speed and the
probability of convergence. To the best of our knowl-
edge, both approaches are completely new and could also
be very interesting for other learning approaches.

e We apply our PAC-Bayesian framework to the prob-
lem of learning-to-optimize and learn optimization algo-
rithms by minimizing the PAC-Bayesian upper bound.

2 Related Work

The literature on both learning-to-optimize and the PAC-
Bayes learning approach is vast. Hence, in the discus-
sion of learning-to-optimize, we will mainly focus on ap-
proaches that provide certain theoretical guarantees. Es-
pecially, this excludes most model-free approaches, which
replace the whole update step with a learnable mapping
such as a neural network. |Chen et al| (2021) provide a
good overview of the variety of approaches in learning-to-
optimize. Good introductory references for the PAC-Bayes
approach are given by |Guedil(2019) and|Alguier (2021).

Learning-to-Optimize with Guarantees. |Chen et al.
(2021) point out that learned optimization methods may
lack theoretical guarantees for the sake of convergence
speed. That said, there are applications where convergence
guarantee is of highest priority. To underline this problem,
Moeller et al| (2019) provide an example where a purely
learning-based approach fails to reconstruct the crucial de-
tails in medical image reconstruction. Also, they prove
convergence of their method by restricting the output to
descent directions, for which mathematical guarantees ex-
ist. The basic idea is to trace the learned object back to,
or constrain it to, a mathematical object with convergence
guarantees. Similarly, |Sreehari et al.| (2016) provide suf-
ficient conditions under which the learned mapping is a
proximal mapping. Related schemes under different as-
sumptions and guarantees are given by (Chan et al.|(2016),
Teodoro et al.| (2017), Tirer and Giryes| (2018)), Buzzard
et al. (2018), Ryu et al.| (2019), |Sun et al.| (2019), [Terris
et al.[(2021) and |Cohen et al.| (2021). A major advantage
of these methods is the fact that the number of iterations
is not restricted a priori. However, a major drawback is
their restriction to specific algorithms and problems. An-
other approach, which limits the number of iterations, yet
in principle can be applied to every iterative optimization
algorithm, is unrolling, pioneered by |Gregor and LeCun
(2010). Xin et al.|(2016) study the IHT algorithm and show
that it is, under some assumptions, able to achieve a linear
convergence rate. Likewise, (Chen et al.|(2018) establish a
linear convergence rate for the unrolled ISTA. However, a
difficulty in the theoretical analysis of unrolled algorithms
is actually the notion of convergence itself, such that one
rather has to consider the generalization performance. Only
few works have addressed this: Either directly by means of
Rademacher complexity (Chen et al., [2020), or indirectly
in form of a stability analysis (Kobler et al.,|2020), as algo-
rithmic stability is linked to generalization and learnability
(Bousquet and Elisseeff, |2000, 2002} Shalev-Shwartz et al.}
2010). We consider the model-based approach of unrolling
a general iterative optimization algorithm and provide gen-
eralization guarantees in form of PAC-bounds.

PAC-Bounds through Change-of-Measure. The PAC-
Bayesian framework allows us to give high probability
bounds on the risk, either as an oracle bound or as an em-
pirical bound. The key ingredients are so-called change-
of-measure inequalities. The choice of such an inequality
strongly influences the corresponding bound. The one used
most often is based on a variational representation of the
Kullback-Leibler divergence due to/Donsker and Varadhan
(1975)), employed, for example, by |Catoni| (2004, [2007).
Yet, not all bounds are based on a variational representa-
tion, i.e., holding uniformly over all posterior distributions
(Rivasplata et al.} 2020). However, most bounds involve the
Kullback-Leibler divergence as a measure of proximity,
e.g._those by McAllester (2003bla)_|Seeger (2002) [ang-

M. Sucker, P. Ochs

ford and Shawe-Taylor| (2002), or the general PAC-Bayes
bound of |Germain et al.|(2009). More recently, other diver-
gences have been used: Honorio and Jaakkola|(2014) prove
an inequality for the y2-divergence, which is also used by
London| (2017). Bégin et al.|(2016) and |/Alquier and Gued;j
(2018)) use the Renyi-divergence (a-divergence). |(Ohnishi
and Honorio| (2021) propose several PAC-bounds based
on the general notion of f-divergences, which includes the
Kullback—Leibler-, a- and y2-divergences. We develop a
general PAC theorem based on exponential families. In this
general approach, the role of prior, posterior, divergence
and data dependence will be given naturally. Moreover,
this approach allows us to implement a general learning
framework that can be applied to a wide variety of algo-
rithms.

Boundedness of the Loss Function. A major drawback
of many of the existing PAC-Bayes bounds is the assump-
tion of a bounded loss-function. However, this assump-
tion is mainly there to apply some exponential moment
inequality like the Hoeffding- or Bernstein-inequality (Ri-
vasplata et al., 2020; |Alquier, 2021). Several ways have
been developed to solve this problem: |Germain et al.
(2009) explicitly include the exponential moment in the
bound, |Alquier et al.| (2016) use so-called Hoeffding- and
Bernstein-assumptions, |Catoni| (2004)) restricts to the sub-
Gaussian or sub-Gamma case. Another possibility, of
which we make use of here, is to ensure the generalization
or exponential moment bounds by properties of the algo-
rithm in question. |London| (2017) uses algorithmic stability
to provide PAC-Bayes bounds for SGD. We consider suit-
able properties of optimization algorithms aside from algo-
rithmic stability to ensure the exponential moment bounds.
To the best of our knowledge, this has not been done before.

Minimization of the PAC-Bound. The PAC-bound is a
relative bound and relates the risk to other terms such as
the empirical risk. Yet, it does not directly say anything
about the actual numbers. Thus, one aims to minimize
the bound: [Langford and Caruanal (2001) compute non-
vacuous numerical generalization bounds through a combi-
nation of PAC-bounds with a sensitivity analysis. [Dziugaite
and Roy| (2017) extend this by minimizing the PAC-bound
directly. |Pérez-Ortiz et al.|(2021) also consider learning by
minimizing the PAC-Bayes bound and provide very tight
generalization bounds. [Thiemann et al.| (2017) are able to
solve the minimization problem resulting from their PAC-
bound by alternating minimization. Further, they provide
sufficient conditions under which the resulting minimiza-
tion problem is quasi-convex. We also follow this approach
and consider learning as minimization of the PAC bound,
however, applied to the context of learning-to-optimize.

Choice of the Prior. A common difficulty in learning
with PAC-Bayes bounds is the choice of the prior distribu-

tion, as it heavily influences the performance of the learned
models and the generalization bound (Catoni, 2004; Dziu-
gaite et al., 2021} |[Pérez-Ortiz et al., 2021). In part, this is
due to the fact that the divergence term can dominate the
bound, keeping the posterior close to the prior. This leads
to the idea to choose a data- or distribution-dependent prior
(Seeger}, 2002; |Parrado-Hernandez et al., 2012; [Lever et al.}
2013; Dziugaite and Roy, 2018}, [Pérez-Ortiz et al.| [2021]).
As we also found the choice of the prior distribution to be
crucial for the performance of our learned algorithms, we
use a data-dependent prior. Further, we point out how the
prior is essential in preserving necessary properties during
learning. It is key to control the trade-off between conver-
gence guarantee and convergence speed.

More Generalization Bounds. There are many areas of
research that study generalization bounds and have not
been discussed here. Importantly, the vast field of stochas-
tic optimization (SO) provides generalization bounds for
specific algorithms. The main differences to our setting are
the learning approach and the assumptions made:

* Learning approach: In most of the cases, the concrete
algorithms studied in SO generate a single point by ei-
ther minimizing the (regularized) empirical risk func-
tional over a possibly large dataset, or by repeatedly up-
dating the point estimate based on a newly drawn (small)
batch of samples. Then, one studies the properties of
this point in terms of the stationarity measure of the true
risk functional (see e.g. Bottou et al.| (2018)); [Davis and
Drusvyatskiy|(2022); [Bianchi et al.| (2022]))).

* Assumptions: Since the setting in SO is more explicit,
more assumptions have to be made. Typical assump-
tions in SO are (weak) convexity (Shalev-Shwartz et al.,
2009; [Davis and Drusvyatskiy, [2019), bounded gradi-
ents (Défossez et al., 2022)), bounded noise (Davis and
Drusvyatskiyl [2022), or at least smoothness (Kavis et al.,
2022), just to name a few.

We provide a principled way to learn a distribution over
hyperparameters of an abstract algorithm under weak as-
sumptions. Further, the methodology is independent of a
concrete implementation and independent of the concrete
choice of hyperparameters. Furthermore, we go explicitly
beyond analytically tractable quantities.

3 Preliminaries and Notation

If not further specified, we will endow every topological
space X with the corresponding Borel-o-algebra B(X). If
we consider a product space X X Y of two measurable
spaces (X, .A) and (Y, B), we endow it with the product-o-
algebra A ® 5. We use the Fraktur-font to denote random
variables. Let (Q,]-" , IP’) be a probability space, © be a

PAC-Bayesian Learning of Optimization Algorithms

Polish space and
G (Q,]—", P) — ©

be a random variable. Its distribution is denoted by Pg,
following the general notation Px to denote the distribution
of a random Variable f{ Integration w.r.t. Px is denoted
by Ex[g] := Exlg = [g(z) Px(dz). Finally, 14
denotes the 1ndlcator functlon of aset A, Wthh is one for
x € A and zero else, and log denotes the natural logarithm.
Definition 3.1. Let N € N. Further, let (Q,f,]P’) be a
probability space, S; : (Q,F, IP’) — 0,i=1,...,N, be
random variables. A measurable function

(H@ ®B) wHﬁGi(w)

is called a dataset. If the induced distribution Pso fac-
torizes into the product of the marginals, i.e., if it satisfies
Poy = QN Ps,, it is called independent and if, addi-
tionally, it satisfies Py, = ®£V:1 Pg, it is called i.i.d.

Notation 3.2. The space (Hf\il O, ®f\;1 B(©)) will be

denoted by (Dy, B(Dn)). Since ®ZI\;1 B(©) is indeed the
Borel-o-algebra of Dy, it will not be mentioned anymore.

Dy : (Q,F,P) —

In the PAC-Bayesian framework, generalization bounds
typically involve a so-called posterior distribution, which in
turn is referred to as a data-dependent distribution. Often,
this term is left unspecified. However, as also pointed out
by [Rivasplata et al.| (2020), this is an instance of a Markov
kernel. Another commonly used name are regular condi-
tional probabilities, following the definition of a regular
conditional distribution (Catonil 2004} |Alquier, 2008)).

Definition 3.3. Let Dy : (Q,F,P) — Dy be a dataset
and H a Polish space. A Markov kernel from Dy to H is
called a data-dependent distribution.

Remark 3.4. The assumption of a Polish space is not very
restrictive (for practical considerations) and sufficient to
ensure the existence of such Markov kernels. Both defini-
tions can be found in the supplementary material

The following theory will be based on exponential families,
which are a special class of probability distributions with a
specific, mathematically convenient form.

Definition 3.5. Let A C R*. A family of probability mea-
sures (Qx)aca on a measurable space (H,B(H)) is called
an exponential family, if there is a dominating probability
measure Pg, measurable functions ny, ..., : A — R,
a measurable function A : A — R, measurable func-
tions Ty, ..., Ty : H — Rand h : H — R, such that
every Qy has a Pg-density of the form:

%(a) = h(a)A(N) exp((n(A), T (), Pg — a.s.
9
where 1) := (01, ...,n) and T := (T4, ..., Tk).

In the PAC-Bayesian setting, the dominating measure Pg is
usually referred to as the prior and every distribution Q <
P4, is referred to as a posterior. Note that this deviates from
the standard definitions of prior and posterior in Bayesian
statistics, which are linked through the likelihood. We use a
similar notation as in(Barndorff—Nielsen|(2014)) and denote

(V) :—/Hh(a) exp((n(A), T(@))) Py (da)
= log(c(X)),

or short, x = log(c). It holds that A(\) = ¢(A\) L.

Remark 3.6. In the case h = 1 and n(\) = A\ cis
the Laplace transform (moment generating function) of the
push-forward measure Py, o T~ and k the correspond-
ing log-Laplace transform (cumulant-generating function).
Further, if n(\) actually describes a lower-dimensional
manifold or curve in R¥, (Qy)xen is sometimes also called
a curved exponential family (Efron} |1975)).

3

Remark 3.7. In the following we will consider data-
dependent exponential families, i.e., the sufficient statis-
tic T additionally depends on a dataset © . Hence, also
c and k do depend on ©p. Thus, we will assume that
T : H x Dy — R is measurable. In this case, Q) is
indeed a data-dependent distribution.

Notation 3.8. For notational simplicity, we will omit the
dependence of Qy, T, c and r on the dataset D .

For the rest of the paper, we assume that we are given an
exponential family (Q))xeca W.r.t. Py of the form:

dQy 0) =
iP5,

ep((nN).T(@)). @

Finally, since the loss-function is neither assumed to be
bounded nor to satisfy any self-bounding or bounded-
difference property, the following result will be needed. It
states that non-negative random variables with finite sec-
ond moment satisfy a one-sided sub-Gaussian inequality.
It can be found as Exercise 2.9 on page 47 in the book by
Boucheron et al.|(2013)).

Lemma 3.9. Let X be a non-negative random variable with
finite second moment. Then, for every A\ > 0 it holds:

E{exp(—A(f{—E[i‘]))} <eXp()\ [362])

4 Problem Setup

As described in the introduction, we aim to solve the
following minimization problem with a random objective
function ¢ under Assumption

Helﬁer}v Uz, 6).

M. Sucker, P. Ochs

Assumption 1. © is a Polish space, G : (0, F,P) — ©
is a random variable, and { : R™ x © — R is measurable
and non-negative.

Remark 4.1. The non-negativity assumption is not restric-
tive, as any lower-bounded function f can be rescaled ac-
cording to £(x,0) := f(x,0) — infcrn f(x,0).

To actually solve this problem for a concrete realization 6,
we apply an optimization algorithm A to ¢. For this, we
will consider a similar setting as in [London| (2017), i.e.,
randomized algorithms are considered as deterministic al-
gorithms with randomized hyperparameters.

Definition 4.2. Let H be a Polish space. A measurable
function

A:HXxR"x0O — R"

is called a parametric algorithm and H is called the hyper-
parameter space of A. A random variable

H:(F,P) —H

is called a hyperparameter of A.

Remark 4.3. H corresponds to the hyperparameters of the
algorithm, R™ to the initialization and © to the parameters
of the problem instance.

Learning now refers to learning a distribution Q on . For
this, one needs a reference distribution:

Assumption 2. A is a parametric optimization algorithm
with hyperparameter space H. The prior Pg, is induced by
hyperparameters) : (Q,]-',]P’) — H that are indepen-
dent of the dataset ® n and &. The initialization z(©) € R”
is given and fixed.

The initialization and the probability space (2, F,P) will
not be mentioned anymore. We define the risk of a random-
ized parametric algorithm in the usual way:

Definition 4.4. Let N € Nandlet D = (G1,...,6) be
a data set. Further, let A be a parametric algorithm with
hyperparameter space H. Furthermore, let S ~ Pg be
independent of © . Finally, let { : R" x© — Rx>q satisfy
Assumption[l| The risk of A is defined as the measurable
function:

R:H — Rso, a— Eg[l(Aa,8),8)].

Similarly, the empirical risk of A on Dy is defined as the
measurable map R : H x Dy — Rx>q with:

N
R, Dn) = %ZE(A(a,GiLGi) .

=1

Notation 4.5. We also use {(«, 0) := ((A(, 0),0).

5 General PAC-Bayesian Theorem

In this section we derive a general PAC-Bayes bound,
which will be used to bound the generalization risk of the
learned parametric optimization algorithm 4. As stated
above, PAC-Bayesian theorems are usually based on a
change-of-measure (in-)equality. The following lemma is
a form of the Donsker—Varadhan variational formulation.
Though it is not new, we state it nevertheless for the sake
of completeness. The proof is especially easy in this case
and is given in the supplementary material [A.T]

Lemma 5.1. Ler (Q))xca be an exponential family on H
w.r.t. Pg of the form (@) and k as in (B). Then it holds:

K(A) = sup Eq[(n(A),T) +log(h)] — Drr(Q [Pg).
QP

Furthermore, the supremum is attained at Q.

This change-of-measure equality allows to directly give
the PAC-Bayesian theorem in its general form. Basically,
one uses Markov’s inequality to give a probabilistic bound
on k(A). The restriction to a finite set is made such that
the bound also holds uniformly in A € A by a union-
bound. This idea appeared previously (Langford and Caru-
anal, 2001} |Catonil, 2007; |Alquier, |2021)).

Theorem 5.2. Let (Qy)eca be an exponential family on H
of the form ({). Further, let A be a finite set with cardinality
|A| and let Eg [¢(N)] < 1 forall X € A. Then, for € > 0,
it holds that:

P, {V/\ € A, YQ < Py : Eg[(n(X), T) + log(h)]

A
< Dxr(@ By) +log (M)} 21— c.
The proof of Theorem is given in the supplementary
material [A.2]

Remark 5.3. The restriction to a finite set gets problem-
atic, if the term log(|A|) influences the bound strongly.
In our application the loss is usually much larger than
log(|Al), such that this is not the case even for large |A.

Remark 5.4. By a chaining argument, the finiteness as-
sumption on A\ can be relaxed to assuming that A is totally
bounded (e.g. compact) and that the growth of k can be
controlled on balls of radius 0. For more details, we refer
to the supplementary material [C.6] as this was only found
after the rebuttal phase. Also, note that the experiments in
Section[/Jwere carried out with the setting in Theorem/[5.2)

For the rest of the paper, we will have h = 1. Corollary
[5.3] shows how to transform this general result into a high-
probability bound on the risk. It follows directly by using
the properties of the Euclidean scalar product.

Corollary 5.5. Let the assumptions of Theorem [5.2] hold.
Furthermore, assume that there are T" : H X Dy —

PAC-Bayesian Learning of Optimization Algorithms

R0 o A — RF-Yand ny : A — Ry, such that n
and T are given by:

n(A) = (m(A\), (V)
T(a, D) = (R(a) -

(OZ,QN), T/(Oz,QN)) .

Then it holds for e > 0:

IP’@N{VA € A,YQ < Py : Eg[R] < Eg[R]

L Al
oy (Oxe@IBs) +log(F7))

~Eg[(r(0), T)])} 21—

In Section [6] we provide sufficient conditions, such that
Es, [c(N)] < 1 holds for all A > 0.

5.1 Minimization of the PAC-Bound

In this whole subsection we use 1 and 1" from Corollary
We seek for A € A and Q < Pg that minimizes
the right-hand side of the generalization bound in (3. By

factoring out — ﬁ again, this is actually the same as:

il — (Qgﬂgﬁ Eol(n(\), D)~ Dxr(Q | Bs)
A
~tog(F)).

where T(, Oy) == (—R(a,Dy), T'(a,Dy)). Since
log(|A|/€) is a constant, Lemma shows that the term
inside the brackets is actually given by #(A) — log(|A|/€),
where K corresponds to the exponential family Q) built
upon T,nand h = 1. Furthermore, it shows that the op-
timal posterior distribution is given by the corresponding
member of the exponential family (usually called the Gibbs
posterior (Alquier, [2021)):

10) _ exp(in(d). T(e))
dPs, Es[exp((n(A), T))]
By denoting F'()) := — 455 (R(A) — log(|A|/¢)), one is
left with solving the following minimization problem:
min F(N), (6

which for A C R is one-dimensional. Under mild assump-
tions, one can show that arg min, . o F'(\) lies in a bounded
interval. Thus, one can control the accuracy of the solu-
tion of the minimization problem (6) by the choice of A.
The computational cost for evaluating this one-dimensional
function several times is low compared to solving several
minimization problems during training.

6 Learning Optimization Algorithms with
Theoretical Convergence Guarantees

In this section, we consider properties of optimization algo-
rithms, that assert the necessary condition Eg , [c(A\)] < 1
for all A € A to employ the PAC-Bayes bound from Section
Typically, this yields the functions n’ and T”.

6.1 Guaranteed Convergence

The following convergence property is sufficient to ensure
the assumptions of Theorem[5.2] Essentially, it requires the
loss of the algorithm’s output to be bounded. Nevertheless,
it is shown in that it is too restrictive to learn hyperpa-
rameters that allow for a significant acceleration compared
to the standard choices from a worst-case analysis.

Assumption 3. There is a constant C > 0 and a measur-
able function p : H — R, such that it holds:

(A, 6),8) < Cp(a)l(z?,68) VYaeH.
Remark 6.1. The basic motivation for Assumption|3|is to

take the (possibly known) convergence behaviour of an op-
timization algorithm into account.

Theorem 6.2. Let N € N and Dy be an i.i.d. dataset.
Assume A satisfies Assumption [3| Further, assume that
Es [E(x(o), 6)?|] < oo. Definen : Rsg — R? and
T : H x Dy — R? through:

A2 C?

n(A) == ()\, —?WEg [Z(:C(O),G)QD,
5 2

T(O[, DN) = (R(Oé) - R(Oé, QN)a P (O[)) .
Then, it holds that Eg , [c(A\)] < 1, forall A > 0.

The proof of Theorem [6.2] is given in the supplementary
material [A3]

6.2 Conditioning on Convergence

Most of the time, the previous approach is only able to
learn hyperparameters that ensure convergence. When the
considered class of functions (£(-,0))gpco is that of gen-
eral quadratic functions, the convergence behaviour is ac-
curately represented by analytic quantities from a worst-
case analysis. Thereby, Assumption [3] prevents “aggres-
sive” step-size parameters that lie outside the worst-case
convergence regime. This is also encoded in Assumption
as C and p are independent of &. Moreover, it can be
difficult to compute them. Hence, in this section, a differ-
ent approach is taken: We allow for divergence, if it only
occurs in rare cases with a controllable quantity. Essen-
tially, one only considers the loss for all the hyperparame-
ters, where convergence occurs, as well as the probability
for that. In Section we develop a technique that allows

M. Sucker, P. Ochs

the user to control this probability. Clearly, a higher con-
vergence guarantee trades for convergence speed. To the
best of our knowledge, the following way of dealing with
the rare, unwanted case is completely new.

Definition 6.3. The convergence set is defined as the set-
valued mapping C' : H = © with

Cla) :={0 €0 |L(A,0),0) < (D, 0)}.

Remark 6.4. Other definitions of the convergence set are
possible and the concrete choice will influence the resulting
PAC-bound. For proving the result, the essential property
is that the loss after application of A can be bounded, such
that the (conditional) expectation is finite.

For every « € H, the set C'(«) is measurable, as the map
0 — 0(A(a,0),0)—£(z(), §) is measurable. Nevertheless,
we have to make the following assumption:

Assumption 4. The map p : H — [0,1], a — p(a) :=
Ps[C(a)] is measurable.

Remark 6.5. Although at first Assumption 4| seems very
restrictive, it is actually very mild in the sense that in our
use case one can always find a measurable version of p.
For more details see Lemma whose assumptions are
always met in our setting.

Now we define the convergence risk as the expect loss con-
ditioned on the convergence of the algorithm:

Definition 6.6. The convergence risk is defined as the con-
ditional expectation of the loss given C(«):

Re(a) = Es[l(A(, 6),6) | C(a)]
- {p(lcv)EG[ﬂC(a)(G)f(%@)], if p(a) > 0;

0, else .

Given a dataset Dy = (61, ...
vergence risk is defined as:

, &), the empirical con-

N
A 1
Re(o, D) = @) D) (Gi)la, &)
The following theorem is a generalization of Theorem [6.2}

The proof is given in the supplementary material

Theorem 6.7. Assume that Pg{p > 0} = 1 and
Es[6(z®,8)?] < oo. Define n : Rug — R? and
T :H x Dy — R? through

1) = (A Xlp 1, 7)),

2 N
A 1
T(a,® :z(Rca—Rca,i) ,)
(@95 = (Relo) = R, D), oo
Then, it holds that Eg , [c(A\)] < 1, forall A > 0.
Remark 6.8. Pn{p > 0} = 1 says that, under the prior,
the algorithm should not diverge exclusively.

010 4 =—— n;, =5 :
Nt = 15 |
0.089 .uvv ny, = 45 I
ns = 135 :
0.06 7 prior 1
== Qstd :VI
0.04 1 A
T Lr
e;
0.02 Cl-
N
o
0.00 o == L= Y

T T T T T

0 1 2 3 4

a x1074

Figure 1: Posterior for an increasing number of iterations:
The initial prior is chosen as a Gaussian centered at %(% +
2. The posterior distributions for N;; € {5,15, 45,135}
are shown. For an increasing number of iterations the pos-

terior puts increasingly more mass close to ag1 g = Liw

6.3 Guarantee of Convergence with High Probability

In the previous approach, care has to be taken in the choice
of the prior Pg: Constructing the prior in a way that min-
imizes the upper bound as much as possible can lead to
the case where a high convergence probability is neglected,
i.e., the algorithm converges only on a small subset of the
parameters and for them especially fast, because the term
ﬁ might not compensate for the smaller convergence
risk. Thus, if a certain convergence probability €.,y, has
to be satisfied, one has to ensure this in another way. We
propose to use a direct consequence of absolute continuity:

Lemma 6.9. Let €.ony € [0,1] and Py be such that
Ps{p < €conv} = 0. Then it holds for every Q < Pg:

Q{P < Econv} =0.

Though the proof is trivial, this lemma has a very important
consequence, which we want to emphasize here: If one can
guarantee that a required property is satisfied for the prior,
it will be preserved during the PAC-Bayes learning process,
i.e., if the prior only puts mass on hyperparameters that en-
sure a certain convergence probability, also the posterior
will allow only hyperparameters that ensure the same con-
vergence probability. Thus, ensuring a convergence proba-
bility will be part of the construction of the prior.

7 Experiments

In all experiments, we use n = 50 and a quadratic loss
function for which we can choose the smallest and largest
cigenvalue, i.e., a loss of the form || Az — b||>. As opti-
mization algorithms we unroll either the Heavy-ball (2) or
Gradient Descent update step for a fixed number of itera-

PAC-Bayesian Learning of Optimization Algorithms

10% -
] .-......:m:::h'\'—— —
L TTmeremiTaT
—~ 4 <
S g&,,:
g = Qstd N -
g 10° 5 - p(o) =09 4
@ p(a) =07
B T s
e p(a) = 0.5 ’m‘“ -:
p(a) = 0.3 B9y
T T T T T T
0 10 20 30 40 50

Figure 2: Test loss over the iterations: The black lines are
for the standard choices of the hyperparameters. The em-
pirical mean is given by the dashed line, and the median
by the dotted one. The other lines show the test loss for
p(a) € {0.9,0.7,0.5,0.3}. By excluding the worst-case,
one can accelerate the optimization procedure significantly.

tions. In the case of Gradient Descent we learn the (con-
stant) step-size, and in the case of heavy-ball we learn the
step-size and the extrapolation parameter (both constant).
Note that all results are created with a single sample from
the posterior and do not show the expected value under the
posterior. The experiments are a proof-of-concept for our
theory in an easily controllable setting. Actually, our the-
ory does not require a quadratic, in fact not even convex,
loss function. More details about the learning procedure
are given in the supplementary material.

7.1 Convergence of the Posterior

The first experiment considers the posterior distribution
over the step-size parameter of Gradient Descent. The pa-
rameter G is given by the right-hand side b of the quadratic
problem, i.e., all problems have the same strong convexity
parameter £ and the same smoothness parameter L (small-
est and largest eigenvalue of A7 A). We use Nyyqi, = 200
and build the exponential family with 7 and T" from Section
[6.1] i.e., convergence is guaranteed during learning. We
are interested in how the posterior distribution evolves for
an increasing number of iterations of the algorithm. Since
it is known that a gy = L%ru yields the optimal rate in
the worst-case (Nesterov, 2018)), one would expect that the
posterior puts increasingly more mass onto step-sizes close
to agtg. Figure [1| confirms this intuition. Also, it shows
that Assumption|3|prohibits step-sizes larger than %, which
could lead to divergence easily.

1.0 -

T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0

6(!071’[)

Figure 3: Empirical convergence probability: The dashed
diagonal indicates the user-specified convergence probabil-
ity. Each cross represents the empirical convergence prob-
ability on a separate test set. All empirical convergence
probabilities lie well above the diagonal, i.e., the algorithm
indeed ensures the user-specified convergence probability.

7.2 Conditioning on Convergence

Here, the parameters G of ¢ are given by the quadratic
matrix and the right-hand side, i.e., the problems have
a differing strong convexity parameter p and smoothness
parameter L. We sample these from a uniform distri-
bution over [u_,u4] and [L_,L.]. This simulates a
situation where these parameters can only be estimated
roughly. We use the Heavy-ball method for 50 iterations.
The standard choice for the hyperparameters are given by
2 2
Tstd = (\/ﬂi\/ﬁ) and Bstd = (g+\/\/5::> (Nes-
terov, 2018). We use Nppijor = 100, Nypgin = 100 and
Niest = 200. Figure E] shows the convergence behaviour
for different convergence guarantees. As one can see, eX-
cluding the worst-case (€.on, > 0.9) leads to a significantly
better convergence result. However, a further decrease of
the convergence guarantee does not lead to a further accel-
eration. This does not match the expected behaviour, yet is
explained by the next experiment.

7.3 Ensuring a Certain Convergence Probability

We use the same setup as in Section and investigate
the empirical convergence probability on several test sets.
We use Nprior = 100, Nipgin, = 100 and 25 test sets of
size Niest = 250 per user-specified convergence proba-
bility to estimate the true convergence probability of the
algorithm. Note that we use the same datasets for all differ-
ent convergence probabilities, i.e., we create them before-
hand. We use the standard estimator for binomial distribu-
tions as empirical estimate for the convergence probability,
ie., pla) = %""“. Figure [3| shows the result of this ex-

est

periment: All empirical convergence probabilities lie well

M. Sucker, P. Ochs

60

—— 7%test(oépac)
PAC-Bound

| | Astd

==

50

Qpac

Count

0 2500 5000 7500 10000 12500 15000
l(aaai)

Figure 4: Test loss as histogram: The blue thin bars rep-
resent the learned hyperparameters and the red thick bars
the ones from a worst-case analysis. The vertical lines rep-
resent the empirical mean for the learned hyperparameters
(blue dashed) and the corresponding PAC-bound (orange
dotted). The learned hyperparameters clearly outperform
the standard ones, yet the PAC-bound is not perfectly tight.

above the diagonal, i.e., the algorithm indeed ensures the
user-specified convergence probability. However, one can
also see that it clearly favors a higher convergence probabil-
ity than necessary, which can hinder the performance and
explains the somewhat unexpected behaviour in the previ-
ous experiment. As indicated by the theory, this behaviour
is probably due to our construction of the prior distribution.

7.4 Evaluation of the PAC-Bound

This experiment looks at the tightness of the PAC-bound.
We adopt the setting from Section Based on the pre-
vious experiment, we choose €., = 0.9 as convergence
guarantee. Further, we use Npyior = 200, Nypqin, = 1000
and Nys; = 200. The training dataset is chosen larger than
before, since the PAC-bound is not yet very tight for small
datasets. Figure] shows the resulting losses on the test set
as histogram plot, as well as the empirical mean and the
PAC-Bayes bound. One can clearly see the improved per-
formance of Heavy-ball with the learned hyperparameters.
Further, one can see that the PAC-bound is not perfectly
tight, however provides a good estimate of the true mean.

8 Conclusion

We presented a general PAC-Bayes theorem based on expo-
nential families, which allows for a unified implementation
of the learning framework. We applied this framework to
the setting of learning-to-optimize and derived properties,
under which the theorem is applicable to a given algorithm.
Further, we provided a principled way to exclude unwanted
cases by using conditional expectations and showed how to

preserve necessary properties during learning. We believe
that both approaches can be of great interest even aside
the setting of learning-to-optimize. Finally, we provided
a proof-of-concept of our theory on several experiments.

Limitations. We mainly see four limitations of our work:
First, a theoretical guarantee to find the global minimum in
(6] is still missing. Second, the construction of the prior
is difficult and time-consuming. Third, we expect similar
scaling problems for high-dimensional hyperparameters as
with other probabilistic methods. And fourth, the trade-off
between convergence speed and convergence probability is
partly rather conservative. These problems are very related
and will be addressed in future work.

Acknowledgements

We acknowledge funding by the German Research Founda-
tion under Germany’s Excellence Strategy — EXC number
2064/1 —390727645 and the project DFG OC 150/5-1. Fur-
thermore, we thank J. Fadili and one of the anonymous re-
viewers for an important hint for the extension of the union
bound argument to compact sets.

References

Alquier, P. (2008). PAC-Bayesian bounds for randomized
empirical risk minimizers. Mathematical Methods of
Statistics, 17(4):279-304.

Alquier, P. (2021). User-friendly introduction to PAC-
Bayes bounds. arXiv preprint arXiv:2110.11216.

Alquier, P. and Guedj, B. (2018). Simpler PAC-Bayesian
bounds for hostile data. Machine Learning, 107(5):887—
902.

Alquier, P, Ridgway, J., and Chopin, N. (2016). On
the properties of variational approximations of Gibbs
posteriors. Journal of Machine Learning Research,
17(1):8374-8414.

Barndorff—Nielsen, O. (2014). Information and exponen-
tial families: in statistical theory. John Wiley & Sons.

Bégin, L., Germain, P., Laviolette, F., and Roy, J.-F. (2016).
PAC-Bayesian bounds based on the Rényi divergence.
In Artificial Intelligence and Statistics, pages 435-444.
PMLR.

Bianchi, P., Hachem, W., and Schechtman, S. (2022). Con-
vergence of constant step stochastic gradient descent for
non-smooth non-convex functions. Set-Valued and Vari-
ational Analysis, pages 1-31.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimiza-
tion methods for large-scale machine learning. Siam Re-
view, 60(2):223-311.

Boucheron, S., Lugosi, G., and Massart, P. (2013). Con-
centration inequalities: A nonasymptotic theory of inde-
pendence. Oxford university press.

PAC-Bayesian Learning of Optimization Algorithms

Bousquet, O. and Elisseeff, A. (2000). Algorithmic stabil-
ity and generalization performance. Advances in Neural
Information Processing Systems, 13.

Bousquet, O. and Elisseeff, A. (2002). Stability and gen-
eralization. Journal of Machine Learning Research,
2:499-526.

Buzzard, G. T., Chan, S. H., Sreehari, S., and Bouman,
C. A. (2018). Plug-and-play unplugged: Optimization-
free reconstruction using consensus equilibrium. SIAM
Journal on Imaging Sciences, 11(3):2001-2020.

Catoni, O. (2004). Statistical learning theory and stochas-
tic optimization: Ecole d’Eté de Probabilités de Saint-
Flour, XXXI-2001, volume 1851. Springer Science &
Business Media.

Catoni, O. (2007). PAC-Bayesian supervised classifica-
tion: The thermodynamics of statistical learning. Lec-
ture Notes-Monograph Series, 56:1—163.

Chan, S. H., Wang, X., and Elgendy, O. A. (2016). Plug-
and-play ADMM for image restoration: Fixed-point
convergence and applications. [EEE Transactions on
Computational Imaging, 3(1):84-98.

Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang,
Z., and Yin, W. (2021). Learning to optimize: A primer
and a benchmark. arXiv preprint arXiv:2103.12828.

Chen, X., Liu, J., Wang, Z., and Yin, W. (2018). Theoreti-
cal linear convergence of unfolded ISTA and its practical
weights and thresholds. Advances in Neural Information
Processing Systems, 31.

Chen, X., Zhang, Y., Reisinger, C., and Song, L. (2020).
Understanding deep architecture with reasoning layer.

Advances in Neural Information Processing Systems,
33:1240-1252.

Cohen, R., Elad, M., and Milanfar, P. (2021). Regular-
ization by denoising via fixed-point projection. SIAM
Journal on Imaging Sciences, 14(3):1374-1406.

Davis, D. and Drusvyatskiy, D. (2019). Stochastic model-
based minimization of weakly convex functions. SIAM
Journal on Optimization, 29(1):207-239.

Davis, D. and Drusvyatskiy, D. (2022). Graphical con-
vergence of subgradients in nonconvex optimization
and learning. Mathematics of Operations Research,
47(1):209-231.

Défossez, A., Bottou, L., Bach, F., and Usunier, N.

(2022). A simple convergence proof of adam and ada-
grad. Transactions on Machine Learning Research.

Donsker, M. D. and Varadhan, S. S. (1975). Asymptotic
evaluation of certain Markov process expectations for
large time, i. Communications on Pure and Applied
Mathematics, 28(1):1-47.

Dziugaite, G. K., Hsu, K., Gharbieh, W., Arpino, G., and
Roy, D. (2021). On the role of data in PAC-Bayes

bounds. In International Conference on Artificial Intel-
ligence and Statistics, pages 604—612. PMLR.

Dziugaite, G. K. and Roy, D. M. (2017). Computing non-
vacuous generalization bounds for deep (stochastic) neu-
ral networks with many more parameters than training
data. In Proceedings of the Thirty-Third Conference on
Uncertainty in Artificial Intelligence, UAI 2017, Sydney,
Australia, August 11-15, 2017. AUAI Press.

Dziugaite, G. K. and Roy, D. M. (2018). Data-dependent
PAC-Bayes priors via differential privacy. Advances in
neural information processing systems, 31.

Efron, B. (1975). Defining the curvature of a statistical
problem (with applications to second order efficiency).
The Annals of Statistics, pages 1189-1242.

Germain, P., Lacasse, A., Laviolette, F., and Marchand,
M. (2009). PAC-Bayesian learning of linear classifiers.
In Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pages 353-360.

Gregor, K. and LeCun, Y. (2010). Learning fast approx-
imations of sparse coding. In Proceedings of the 27th
international conference on international conference on
machine learning, pages 399-406.

Guedj, B. (2019). A primer on PAC-Bayesian learning. In
Proceedings of the second congress of the French Math-
ematical Society, volume 33.

Honorio, J. and Jaakkola, T. (2014). Tight bounds for the
expected risk of linear classifiers and PAC-Bayes finite-
sample guarantees. In Artificial Intelligence and Statis-
tics, pages 384-392. PMLR.

Kavis, A., Levy, K. Y., and Cevher, V. (2022). High prob-
ability bounds for a class of nonconvex algorithms with
adagrad stepsize. In International Conference on Learn-
ing Representations.

Kobler, E., Effland, A., Kunisch, K., and Pock, T. (2020).
Total deep variation: A stable regularizer for inverse
problems. arXiv preprint arXiv:2006.08789.

Langford, J. and Caruana, R. (2001). (Not) bounding the
true error. In Dietterich, T., Becker, S., and Ghahramani,
Z., editors, Advances in Neural Information Processing
Systems, volume 14. MIT Press.

Langford, J. and Shawe-Taylor, J. (2002). PAC-Bayes and
margins. Advances in neural information processing sys-
tems, 15.

Lever, G., Laviolette, F., and Shawe-Taylor, J. (2013).

Tighter PAC-Bayes bounds through distribution-
dependent priors. Theoretical Computer Science,
473:4-28.

London, B. (2017). A PAC-Bayesian analysis of random-
ized learning with application to stochastic gradient de-
scent. Advances in Neural Information Processing Sys-
tems, 30.

M. Sucker, P. Ochs

McAllester, D. (2003a). PAC-Bayesian stochastic model
selection. Machine Learning, 51(1):5-21.

McAllester, D. (2003b). Simplified PAC-Bayesian margin
bounds. In Learning theory and Kernel machines, pages
203-215. Springer.

Moeller, M., Mollenhoff, T., and Cremers, D. (2019). Con-
trolling neural networks via energy dissipation. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3256-3265.

Nesterov, Y. (2018). Lectures on convex optimization, vol-
ume 137. Springer.

Ohnishi, Y. and Honorio, J. (2021). Novel change of
measure inequalities with applications to PAC-Bayesian
bounds and Monte Carlo estimation. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 1711-1719. PMLR.

Parrado-Herndndez, E., Ambroladze, A., Shawe-Taylor, J.,
and Sun, S. (2012). PAC-Bayes bounds with data de-
pendent priors. Journal of Machine Learning Research,
13(1):3507-3531.

Pérez-Ortiz, M., Rivasplata, O., Shawe-Taylor, J., and
Szepesvari, C. (2021). Tighter risk certificates for neu-
ral networks. Journal of Machine Learning Research,
22(227):1-40.

Rivasplata, O., Kuzborskij, I., Szepesvari, C., and Shawe-
Taylor, J. (2020). PAC-Bayes analysis beyond the usual
bounds. Advances in Neural Information Processing
Systems, 33:16833—16845.

Ryu, E,, Liu, J., Wang, S., Chen, X., Wang, Z., and Yin, W.
(2019). Plug-and-play methods provably converge with
properly trained denoisers. In International Conference
on Machine Learning, pages 5546-5557. PMLR.

Seeger, M. (2002). PAC-Bayesian generalisation error
bounds for Gaussian process classification. Journal of
Machine Learning Research, 3:233-269.

Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan,
K. (2009). Stochastic convex optimization. In COLT,
volume 2, page 5.

Shalev-Shwartz, S., Shamir, O., Srebro, N., and Sridharan,
K. (2010). Learnability, stability and uniform conver-
gence. Journal of Machine Learning Research, 11:2635—
2670.

Sreehari, S., Venkatakrishnan, S. V., Wohlberg, B., Buz-
zard, G. T., Drummy, L. F., Simmons, J. P., and Bouman,
C. A. (2016). Plug-and-play priors for bright field elec-
tron tomography and sparse interpolation. IEEE Trans-
actions on Computational Imaging, 2(4):408-423.

Sun, Y., Wohlberg, B., and Kamilov, U. S. (2019). An
online plug-and-play algorithm for regularized image
reconstruction. [EEE Transactions on Computational
Imaging, 5(3):395-408.

Teodoro, A. M., Bioucas-Dias, J. M., and Figueiredo,
M. A. (2017). Scene-adapted plug-and-play algorithm
with convergence guarantees. In 2017 IEEE 27th In-
ternational Workshop on Machine Learning for Signal
Processing (MLSP), pages 1-6. IEEE.

Terris, M., Repetti, A., Pesquet, J.-C., and Wiaux, Y.
(2021). Enhanced convergent pnp algorithms for image
restoration. In 2021 IEEE International Conference on
Image Processing (ICIP), pages 1684—1688. IEEE.

Thiemann, N., Igel, C., Wintenberger, O., and Seldin, Y.
(2017). A strongly quasiconvex PAC-Bayesian bound. In
International Conference on Algorithmic Learning The-
ory, pages 466—492. PMLR.

Tirer, T. and Giryes, R. (2018). Image restoration by iter-
ative denoising and backward projections. /EEE Trans-
actions on Image Processing, 28(3):1220-1234.

Witting, H. (2013). Mathematische Statistik 1:
Parametrische Verfahren bei festem Stichprobenumfang.
Springer-Verlag.

Xin, B., Wang, Y., Gao, W., Wipf, D., and Wang, B. (2016).
Maximal sparsity with deep networks? Advances in
Neural Information Processing Systems, 29.

PAC-Bayesian Learning of Optimization Algorithms

A MISSING PROOFS

In this section, we collect all the missing proofs from the main text.

A.1 Proof of Lemma/5.1]

Proof. Recall that () hexp({n(\),T))dPs) and A(\) = c¢(\)~. We have to show:
)

1) #(A) = supgep, Eg[(n(A), T) +log(h)] — Dxr(Q || Ps).

2) The supremum is attained at Q.

For this, we first show x(A) > Eq[(n(A), T) + log(h)] — Dk (Q || Pg) for an arbitrary Q < Py and then equality for
Q. Thus, let Q < P, and denote by % its Radon-Nikodym derivative w.r.t. Pg. Then it holds:

Eq |(n(N), T) +log(h)] — Dic1(Q || Bs) = /(n(/\),T> +log(h) — log(jﬂ%) dQ

/log(h exp((n(A),T))) dQ.
d]P’

k5]

Since the logarithm is concave, by Jensen’s inequality this can be bounded by:

<log /—exp),T)) d@)

daPs,

~ 1o / nesp((n(X). 1)) dBs,)
= k()

It remains to show the equality for Q):

log(h) + (n(A),T) dQx + log(A(X))
— Eg, [log(h) + (n(\), T)| — log(c(V))
Eq, [log(h) + (n(2), T)] = k().
which yields:
K(A) = Eg, [log(h) + (n(X), T)| = Dic1(Qx || Ps).

Thus, the supremum is attained at Q. This concludes the proof. O

A.2 Proof of Theorem 5.2]

Proof. We will use ¢(\) and k() as a short-hand for ¢(\, © y) and x(A, ©) respectively. ¢()) is a non-negative random
variable and exp is a monotonically increasing function. Thus, since Eg , [c(A)] < 1 for all A € A, one gets for every
A € A from Markov’s inequality for every s € R:

Eoy[c(M)]

2t < exp(-a).

Po, {e(d) > exp(s)} <

M. Sucker, P. Ochs

Since ¢(A) > exp(s) < k(A) =log(c(N)) > s, this is the same as:

IP’@N{H()\) > s} < exp(—s).

This implies by the union-bound argument, that:

]P’@N{sup K(A) > s} = IP’@N{ U {k(N\) > s}} < ZP@N{H()\) > s} < |A]exp(—s).

AEA AEA AEA
Inserting s = log(‘ |) gives:
_ 1Al
ondsup k(A) > log <e.
AEA €

Hence, the complementary event yields:

P@N{ilégﬁ()\) < log<|%|)} >1—c¢

Using x(\) = supg«p,, Eg [(n(A), T) +log(h)] — Dk r(Q || Pg) then gives:

A
Po, {sup sup Eollog(h) + (n(1).T)] - D (@ By) <log(12)} 21— c.
A€A Q«kPgq €

Rearranging and reformulating then yields the result:

Po, {VA € A, ¥Q < Py : Egllog(h) + (n(\), T)] < Dx1(Q || Px) + m(@)} > 1.

A.3 Proof of Theorem[6.2]
Proof. We use the following short-hand notation:
£(a) == l(A(a, 8),8), £i(a):=L(A(a, &), &), £ =20, &).

By the i.i.d. assumption, one can write for every fixed o € H:

> (5 Eots)]

=1

k. [ﬁexp((2~ Eol2))] 2 [T B[~ 2 (2 - Bols]))].

i=1 =1

2\>*

Eoy [oxp (A(R(a) ~ R, 9x)))| = B, [exp(-~

Since the loss-function is non-negative and A satisfies the convergence property, one gets that £ is a non-negative random
variable with finite second-moment:

Es[8?] = [E(A(a),) }
< C%p(a)’Es [e(xm),eﬂ = C%p(a)*Es|£2] .

Thus, by lemma[3.9] one gets the following bound:

< TLewp(fasBale?]) = exp(AcBale?).

.,:12

=1

PAC-Bayesian Learning of Optimization Algorithms

Since the exponential function is monotonically increasing, by the convergence property this can again be bounded by:

)\2
< exp(5 C2pl0) Es[£])

Thus, for any o € H one arrives at the following inequality:

. \2
Eoy [exp(A(R(2) = R(a, Dx))) | < exp(-C20(a) EsL]])
Since the right-hand side is a constant w.r.t. Pg , , rearranging terms gives:

- A2 C?
Eo, [exp(A(R(a) = R(@. D)) — 5 —=pla) Es[e]])| < 1.
By integrating both sides with respect to Pg and using Fubini’s theorem (note that this is possible, since Py, is independent
of ®), one gets:
- \2C? 9 9
Eoy [Es [en(AR(S) - RS, 2x)) - 5 509 Be (2] < 1.

Inserting the definition of 1 and T" now gives:

Eo, [Es [eoxp (100, 7(5.90))] | < 1.
By definition of the Laplace transform, this is the same as:

E@N[C(/\,@N)] S 1

A.4 Proof of Theorem[6.7]

Proof. The proof is very similar to the proof of lemma 5.1 and basically follows the same line of argumentation. We use
Le(a, 0) := 1o a)(0)€(c, 0) as short-hand and call this the convergence loss. First, consider o € H fixed with p(a) > 0.
Then it holds:

Mz

Eo, [exp()\(Rc(a) —7%6(04791\{)))} =Eo, {exp((a,8;) — Egll.(a, 6)]))}

=Ep, [ﬁexp<—N;\(a)(€ (@, 1) — Es[le(o, 6)]»}

Since ® p is assumed to be i.i.d., this is the same as:

N

- [Tz ol 0.9 -5kt o)

=1

Since the convergence loss is non-negative and has a finite second-moment (since Eg [(.(c, G)?] < Eg[l(2(?), &)?] <
00), by lemma 3.14 this can be bounded by:

N
1:[(2N2A2)Ea{ﬁc(a,G)ﬂ)exp<2N;\§a)2E6[£c(a,6)zD.

By definition of the convergence set, this can in turn be bounded by:
/\2

2Np(a)?

)\2

Es []10(6)6@(0)7 G)ZD < eXP(W

< exp(Eg {E(a:(o), (‘5)2D .

M. Sucker, P. Ochs

Thus, one gets Pg-a.s.:
. A2
Eoy [exp(A(Re(e) = Re(a, Dx))] < eXp(WIEG (@, &)?]).
Since the right-hand side is independent of © y, this is equivalent to:

Ea [oxp (AR.(a) - Refa D)) - 30— Ba 1610, 677])] <1.

Since Py, { p($H) > 0} = 1, one can integrate both sides w.r.t. Pg. Furthermore, since Py, is independent of © y, one can
use Fubini’s theorem to get:

A Ee[a®,?))]] <1.

Eo, [Eﬁ [exp(/\('Rc(fJ) —Re($,Dn)) - 2Np(a)?

Using the definition of and T, this is the same as:

Eay [Es [exp((n(0), T(5,D3))]| <1.

which is equivalent to:
Ep, [C(A,@N)] <1.

PAC-Bayesian Learning of Optimization Algorithms

B Description of the Learning Procedure

In this section we provide further details about the implementation.

B.1 General Setup

We use n = 50 as dimension of the optimization problem, 50 iterations of the algorithm, z(°) = 0 € R" as initialization and
€ = 0.01 as threshold in the PAC-bound. For every implementation of the parametric optimization algorithm .4, we specify
all (learnable) hyperparameters in a named dictionary, such that we can match all involved quantities like corresponding
priors during learning by their unique names. Furthermore, since we perform first-order gradient-based optimization, we
implement every algorithm in the form A(z(?), 0, V¢, o, n;;), where V¢ denotes the gradient of £ w.r.t. z as function of
6. Through this, the following learning procedure can be applied to all tested algorithms in the same way.

B.2 Creation of the Parametric Problems

Fixed strong convexity and smoothness parameters. We create the matrix A € R™*" randomly, where every entry
is created by sampling an integer in {—10, ..., 10} uniformly at random and then adding noise from a standard normal
distribution. This matrix is fixed across the different instances of the problem, such that all problems have the same strong
convexity and smoothness parameter. For the right-hand side b € R"™, which in this case is the only parameter of the
parametric optimization problem, we first create a mean m and a covariance matrix X by sampling every entry uniformly
atrandom in {—5, ..., 5} (and updating ¥ + YTY to make it positive definite), and then we sample Ny, ior +Nepain +Niest
right-hand sides from the multivariate normal distribution N'(m, X).

Varying strong convexity and smoothness parameters. The creation of the right-hand sides is the same as in the
previous paragraph. Thus, we will only describe the creation of the matrices A, which define the strong convexity parameter
w and smoothness parameter L. First of all, we restrict to a diagonal matrix. Further, since we found the strong convexity
parameter u to have only a negligible influence in previous experiments (if the problem is not generally well-conditioned,
in which case one would not have to learn anything), we fix it (typically ;. = 0.05) and only vary the smoothness parameter
L. First, we sample Ny, ior + Nipain + Niest sSmoothness parameters uniformly at random in [1,5000]. Then, for each
smoothness parameter we create the matrix A by linearly interpolating between ,/zz and V'L and inserting these elements
(randomly permutated) into the diagonal of A.

B.3 Learning Procedure

At first, we setup the sufficient statistics 7" and the natural parameters 1 as functions in o and A, which can be called during
training. We hand these, together with the specified priors, over to the general implementation of the learning procedure,
which performs the following steps:

i) First, we create samples from the initial prior (depending on the experiment between 50 and 500).

ii) Then we evaluate the sufficient statistics T on these samples and find arg min, ., F'()\) by a simple grid search. For
this we use a linear grid A over (0,1] with 25000 entries (note that this corresponds to log(|A|) ~ 10 and has,
compared to solving the minimization problems during learning, a negligible computational cost). Note that this also
directly yields the PAC-bound.

iii) Then, we calculate the posterior density on these samples through the formula for the Gibbs posterior, i.e., if f denotes
the density of the prior (w.r.t. the Lebesgue measure), we calculate f (ai)w for every sample a;. Here

- . . Eg [exp((n(A),T))]
we use the empirical mean as approximation for the integral.

iv) Finally, we normalize the resulting values, such that we have a distribution over these samples.

Through this, we effectively build a discrete distribution. For visualization purposes, we take a single instance (the argmax
from the discrete posterior) as learned hyperparameter.

M. Sucker, P. Ochs

B.4 Construction of the Prior

If we actively construct the prior for a given hyperparameter (instead of using a fixed one as in the first experiment), we do
this in an iterative fashion (typically two iterations) on a separate dataset:

i) First, since we assume that we have access to the standard choice of the hyperparameters a4, we put a uniform prior
around augyg, i.e., U[C1, Ca], where C1 < aisq and Co > ausq depend on the user-specified convergence probability,
i.e., they are chosen more ”aggressive”, if a smaller convergence guarantee has to be satisfied. In our experiments, we
actually used C7 = efjv ﬁ and Cy = Eciw Lfm for the step-size parameter and C, = %Bstd and Cy = 2[4 for
the extrapolation parameter. Here €con, denotes the user-specified convergence probability. Initially, we started also
with more “aggressive” values for the extrapolation parameter depending on the convergence probability. However,

we found that the learned values almost exclusively ended up in that range, such that we directly restricted it.

ii) Then we run the learning procedure with this prior dataset. As described above, this yields a discrete distribution
over some samples from the initial prior. From these samples, we retain only those that satisfy the user-specified
convergence probability (see Section[B.3)) and, if these are many, only those with highest posterior density.

iii) Then we build a new uniform distribution U [a, b] as initial distribution for the next iteration (i.e., start from ii) again).
For this, we use the standard estimators for ¢ and b, i.e., min and max over the remaining samples.

Note that this procedure is contractive, i.e., it does not yield a distribution that puts mass outside the very first initial
distribution.

B.5 Ensuring a Certain Convergence Probability

As described above and in the main text, ensuring the convergence probability is part of the construction of the prior. For
this, we simply split the prior data set into two parts of size Nprior,1 and Nppior.2 (typically Nprior1 = Nprior,2). The
first one is used in the learning procedure in the construction of the prior as described above in Section[B.4] and the second
one is used as a separate test set to check for the convergence probability. Here we use the standard estimator for the
binomial distribution Peon, () = MZUZ Based on this estimate, we only keep those samples in Section that satisfy
the user-specified convergence prob;bilify during the construction of the prior. Hence, since the construction of the prior is
contractive (as described in Section[B.4), this constrains the prior to only put mass on regions that satisfy the convergence
guarantee. However, as seen in the experiments, it is also partly rather conservative.

PAC-Bayesian Learning of Optimization Algorithms

C Further Remarks & Definitions

This section provides further details on statements made throughout the paper for which no proof has yet been provided.
Furthermore, we provide a few (standard) definitions that were used in the main text, but might not be known by every
reader.

C.1 Further Definitions

The following two definitions are needed in Definition 3.3 of a data-dependent distribution.

Definition C.1 (Polish Space). A topological space X that is separable, i.e. it has a countable dense subset, and completely
metrizable, i.e. there is a complete metric that generates the topology, is called a Polish space.

Definition C.2 (Markov Kernel). Ler (21,.41), (Q2,.Az) be measurable spaces. A map
K x Ay — [0,1]
is called a Markov kernel, if:

i) Forevery wy € §y, the map As — k(w1, A2) is a probability measure on As.

ii) For every As € Ay, the map w1 — r(w1, Ag) is measurable.

C.2 On the Measurability Assumption of p(«)

Lemma C.3. Let (Q,.F, IP’) be a probability space and §) : (Q,f, IP’) - H S (Q,.F, P) — © be random variables.
Assume that © is a Polish space and that G and $) are independent. Then there is a measurable function p' : H — [0, 1],
such that it holds:

pofH=poH Py — a.s.

Proof. Denote by:
g(Oé, 9) = é(.A(O[, G)v 9) - E(I(O)v 0) .

Then, by definition, it holds for o € H:

p(0) = Pe{ga(6) < 0} = /@ 10001 (90 (0)) P (dar)

where g, (0) : © = R, 0 — g(«,) denotes g with fixed argument « € . Since © is a Polish space, there exists a regular
version of the conditional probability
(@, B) - Pejo—a(B)

of & given) = «. With this, for every measurable function f : H x © — R, such that E[f($, &)] exists, it holds (see
e.g. (Witting}, 2013| p.124, Thm. 1.122)):

B 9.6) |5 = ol = [fol0)Peipmaldd) Py
By independence, one further gets that (see e.g. (Witting, 2013 p.126, Thm. 1.123)):
PG\.%:& = Pg Pyj — a.s.

Hence, in total one gets Pg-a.s.:
PLo(5.6) |9 =} = [1 0(0a(6)) Peis—a(d)

- /@ 1 s0.0] (90 (60)) Pes(d0)
=pla).

Since a — P{g($, &) | $H = a} is measurable by definition of regular conditional probabilities, the claim follows. O

M. Sucker, P. Ochs

C.3 On the Finiteness Assumption of A
We denote the open ball of radius r around a point x by B(x; r) and the corresponding closed ball by B[x; r|. For a set .S,
the notation |S| denotes the cardinality of S.

Definition C.4 (Totally Bounded Space). A metric space (X, d) is called totally bounded, if for every € > 0 there exists
néeN, xq,...,x, € X, such that

The typical example of a totally bounded space is a compact space. The important property of this space, which is used in
the following, is that they have a finite covering number. In the end, this allows again to apply the union bound argument.

Definition C.5 (6-Covering Number). Let (X, d) be a totally bounded metric space and let & > 0. A proper d-covering of
X is a finite set X5 C X, such that

X C U Blz; 4] .

zeXs

The minimal cardinality of any §-covering is denoted N.(5, X) and is called the §-covering number of X :

N:(6,X) :=min{|X5| : X5 is a proper §-covering of X'} .

Taken together, and using the proof of Theorem [5.2] as entry point, one gets the following Lemma. This is a direct
generalization of the result in Theorem@ as in the case where A is finite, A can be covered by itself, such that it holds
N.(6,A) = |A] and C = 0.

Lemma C.6. Let (A, d) be a totally bounded metric space and let 6 > 0. Assume that there is a constant C := C(0), such
that for all A € A it holds:

sup k(N —k(A) < C.
AEBIA,0)

Finally, assume that Pg ,{x(\) > s} < exp(—s) forall s € R, A € A. Then it holds that:

() o)

Po,, {sup k() < log
AEA

Proof. Since (A, d) is a totally bounded metric space, its covering number N, (8, A) is well-defined and finite. For nota-
tional simplicity, set N := AN_(d, A). Hence, there are A1, ..., \x € A, such that:

AC

C=

B[\:,] .

i=1

Therefore, one directly gets:

sup k(A) < max sup k(A).

A€A i=1,...N' xeB[\;,0]

Further, by assumption it holds:

sup k(A) =k(N)+ sup (K(A) — K;()\Z-)>§ k(A) +C.
AEB[A;,8] AEB[A;,8]

PAC-Bayesian Learning of Optimization Algorithms

Hence, in total one gets for s € R:

PQN{iIEIIZKJ(A) > s} < IP’@N{‘ HlaXNl-’\Z()\i) +C > 5}

i=1,...,
N

- P@N{U{n(x\i) +O> 5}}

=1

< iP@N{n(Ai) +C > s}
i=1

N

<> ew(C—9)
i=1

= Nexp(C —s).

Since e = Nexp(C —s) <= s= 1og<%> + C, one gets:

P@N{ilelﬁfﬁ(/\) > log(%) + C’} <e.

Taking the complementary event yields the result:

PQN{?ERH()\) < log<g> JrC} >1—e.

	Introduction
	Our Contributions

	Related Work
	Preliminaries and Notation
	Problem Setup
	General PAC-Bayesian Theorem
	Minimization of the PAC-Bound

	Learning Optimization Algorithms with Theoretical Convergence Guarantees
	Guaranteed Convergence
	Conditioning on Convergence
	Guarantee of Convergence with High Probability

	Experiments
	Convergence of the Posterior
	Conditioning on Convergence
	Ensuring a Certain Convergence Probability
	Evaluation of the PAC-Bound

	Conclusion
	MISSING PROOFS
	Proof of Lemma 5.1
	Proof of Theorem 5.2
	Proof of Theorem 6.2
	Proof of Theorem 6.7

	Description of the Learning Procedure
	General Setup
	Creation of the Parametric Problems
	Learning Procedure
	Construction of the Prior
	Ensuring a Certain Convergence Probability

	Further Remarks & Definitions
	Further Definitions
	On the Measurability Assumption of p()
	On the Finiteness Assumption of

