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Abstract

Stein Variational Gradient Descent (SVGD) is an
important alternative to the Langevin-type algo-
rithms for sampling from probability distributions
of the form π(x) ∝ exp(−V (x)). In the existing
theory of Langevin-type algorithms and SVGD,
the potential function V is often assumed to be
L-smooth. However, this restrictive condition ex-
cludes a large class of potential functions such
as polynomials of degree greater than 2. Our
paper studies the convergence of the SVGD al-
gorithm in population limit for distributions with
(L0, L1)-smooth potentials. This relaxed smooth-
ness assumption was introduced by Zhang et al.
(2019a) for the analysis of gradient clipping algo-
rithms. With the help of trajectory-independent
auxiliary conditions, we provide a descent lemma
establishing that the algorithm decreases the KL
divergence at each iteration and prove a complex-
ity bound for SVGD in the population limit in
terms of the Stein Fisher information.

1 Introduction

Bayesian methods are widely implemented in various
inference tasks that emerge in computational statistics
(Neal, 1992; Roberts and Tweedie, 1996), machine learning
(Grenander and Miller, 1994; Şimşekli, 2017), inverse prob-
lems (Zhou et al., 2020; Durmus et al., 2018) and model
selection (Feroz and Skilling, 2013; Cai et al., 2021). Often
Bayesian methods boil down to approximate integration
problems which are solved using Markov Chain Monte-
Carlo algorithms (Robert and Casella, 1999). In practice,
the target distribution π defined on Rd is often absolutely
continuous w.r.t. the Lebesgue measure and we have access
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to its density up to a normalization constant. Throughout
the paper we will use the same notation for probability dis-
tributions and their corresponding densities. In Bayesian
statistics the target distribution is generally given by

π(x) =
1

Z
e−V (x),

where Z is the normalization constant and V : Rd → R is
called potential function. Here, we usually do not know the
value of Z. The approximate sampling methods are proceed
as follows. For every ε > 0, the goal is to construct a distri-
bution µ that approximates the target π in some probability
distance dist:

dist(µ, π) < ε.

In this paper, we will study the case when dist is the
Kullback-Leibler divergence:

KL(µ | π) :=

∫
log

Å
µ(x)

π(x)

ã
µ(dx)

= EX∼µ
[
V (X)

]
−H(µ).

(1)

Here,H(µ) := −
∫

log(µ(x))µ(dx) is the negative entropy.
The sampling problem can also be seen as a minimization
problem in the space of probability measures (see e.g. (Liu
and Wang, 2016; Wibisono, 2018; Durmus et al., 2019)).
Indeed, consider the functional F(·) := KL(· | π). This
functional is non-negative and it admits its minimum value
0 only for the target distribution π = arg minµ F(µ). The
connection of sampling and optimization has been repeat-
edly leveraged in the previous literature of Langevin sam-
pling. Various algorithms such as Langevin Monte-Carlo
(e.g. Dalalyan (2017a); Wibisono (2019); Durmus et al.
(2019)), Underdamped Langevin Algorithm (e.g. Ma et al.
(2019); Chatterji et al. (2018)) have often been influenced
by the known optimization methods. Conversely, another
line of research has studied the application of sampling algo-
rithms to solve optimization problems (see e.g. (Raginsky
et al., 2017)). In this paper, we will study another algo-
rithm called Stein Variational Gradient Descent (SVGD),
which is designed as a gradient descent algorithm for the
KL divergence in the space of probability measures.
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1.1 SVGD

The LMC algorithm, treats the functional KL(·|π) as a com-
posite functional described in (1). For details, we refer the
reader to Appendix A (see also (Wibisono, 2018)). Unlike
the LMC, the Stein Variational Gradient Descent (SVGD)
algorithm applies gradient descent directly to KL(·|π) (see
Section 2.2 for the complete definition). SVGD is an im-
portant alternative to the Langevin algorithm and already
has been used extensively in different settings of machine
learning, such as variational auto-encoders (Pu et al., 2017),
reinforcement learning (Liu et al., 2017), sequential decision
making (Zhang et al., 2018, 2019b), generative adversarial
networks (Tao et al., 2019) and federated learning (Kassab
and Simeone, 2022).

The seminal work of Liu and Wang (2016) introduced
SVGD as a sampling method. Since then several variants
of SVGD have been proposed. Here is a non-exclusive
list: random batch method SVGD (Li et al., 2020), matrix
kernel SVGD (Wang et al., 2019), Newton version SVGD
(Detommaso et al., 2018), stochastic SVGD (Gorham et al.,
2020) and mirrored SVGD (Shi et al., 2021). However, the
theoretical understanding of SVGD is still limited to its pop-
ulation limit or the so called infinite-particle regime. See
Section 4 for a discussion on the finite-particle regime. The
work by Liu (2017) was the first that proved a convergence
result of the SVGD in the population limit. Later, Duncan
et al. (2019) studied the geometry related to the SVGD and
proposed a scheme to choose the kernel. In (Korba et al.,
2020), a descent lemma was established for the SVGD in
population limit in terms of Kullback-Leibler divergence.
The drawback of this result was that the analysis relied on
the path information of the SVGD which is unknown before-
hand. Salim et al. (2021) improved the work of Korba et al.
(2020) and provided a clean analysis for the convergence.
They assumed π satisfies Talagrand’s T1 (see Section 2)
inequality which essentially replaced the initial trajectory
condition. This implied a complexity bound for the SVGD
in terms of the desired accuracy ε and dimension d. To the
best of our knowledge, this is the state of the art result on
SVGD.

1.2 Contributions

The main contribution of the paper relies on its weaker set
of assumptions, that allow to treat a larger class of probabil-
ity distributions which includes densities with polynomial
potentials. We enlarge the class of probability distributions
two-fold.

Smoothness: The L-smoothness assumption is very com-
mon in the sampling literature (see e.g., Durmus and
Moulines (2017); Dalalyan (2017b); Dalalyan and Karag-
ulyan (2019); Durmus et al. (2019); Vempala and Wibisono
(2019); Shen and Lee (2019); Korba et al. (2020); Salim

et al. (2021)). It is formulated as the L-Lipschitz continuity
of the gradient. That is the Hessian ∇2V (·) is well-defined
on Rd and ∥∥∇2V (x)

∥∥
op
≤ L, ∀x ∈ Rd, (2)

where L > 0 and ‖·‖op is the operator norm defined in Sec-
tion 2.1. Though people have made great progress towards
the understanding of these algorithms, the L-smoothness
condition is quite restrictive. In fact from L-smoothness
condition we can easily deduce that V has at most quadratic
growth rate. In particular, the large class of polynomial
potentials whose order is higher than 2 does not satisfy this
condition. For the LMC algorithm, several papers have pro-
posed different methods to relax or remove this assumption
(Lehec, 2021; Brosse et al., 2019; Hutzenthaler et al., 2012;
Sabanis, 2013; Erdogdu and Hosseinzadeh, 2021; Chewi
et al., 2021; Balasubramanian et al., 2022).

However, to the best of our knowledge there is no result
for the SVGD under a relaxed smoothness assumption.
In this paper we use (L0, L1) smoothness (see Assump-
tion (L0, L1) for the definition). The latter was initially
proposed by Zhang et al. (2019a), for the gradient clipping
algorithm. The new condition with parameters (L, 0) is
equivalent to the L-smoothness and therefore, it is indeed a
weaker assumption. Important example of such functions
are the higher order polynomials (see Section 5 for details).

Functional inequalities: The analysis of Langevin algo-
rithms often relies on the strong convexity of the potential
function V . A line of work has proposed different methods
to relax or bypass this assumption. One possible solution
is to slightly modify the original algorithm (e.g. (Dalalyan
et al., 2022; Karagulyan and Dalalyan, 2020)). Another
approach relies on functional inequalities such as Poincaré
or logarithmic Sobolev inequalities (e.g. (Vempala and
Wibisono, 2019; Chewi et al., 2020; Ahn and Chewi, 2021)).
However, the verification of these inequalities is not straight-
forward.

Unlike the Langevin algorithm, the SVGD algorithm does
not require convexity in any form. However, functional in-
equalities also serve for the analysis of the SVGD but with
a different purpose. Salim et al. (2021) have proved a com-
plexity result in dimension and precision error for the SVGD
algorithm performed on the targets that satisfy Talagrand’s
T1 inequality (see (6) for details). This assumption replaces
the bound on the trajectory that was initially proposed by
Korba et al. (2020). Despite the major improvement, they
still assumed the L-smoothness of the potential, which as
mentioned previously does not cover the polynomials.

In this regard, we propose to replace the Talagrand’s inequal-
ity with the generalized Tp (see Assumption (Tp,S) for the
definition). Due to its general form, this new condition in-
cludes inequalities that are easy to verify (see Appendix E).
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See also the Table 1 for a visual representation of the litera-
ture review.

1.3 Paper structure

The paper is organized as follows. In Section 2, we present
the mathematical setting of our problem. We introduce the
basic notions, describe the SVGD algorithm in population
limit and list the necessary assumptions. The first part of
Section 3 is devoted to the main result, which is a descent
lemma for KL(· | π) functional on the Wasserstein space.
The second part contains the complexity results and dis-
cussions. In Section 4 we briefly discuss the finite particle
regime. Section 5 presents examples of distributions from
practical problems that satisfy our assumptions. Section 6
concludes the results of the paper and discusses possible
future work. Finally in the Appendix, the reader may find
the postponed proofs, intermediary technical lemmas and
supplementary discussions.

2 Mathematical setting of the problem

2.1 Notations

The space of d-dimensional real vectors is denoted by Rd,
while the set of non-negative real numbers is denoted by
R+. We will use uppercase and lowercase Latin letters for,
respectively, random and deterministic vectors. Our target
distribution π is defined on Rd, which is enhanced with the
Euclidean norm. The notation ‖ · ‖ will correspond to the
`2 norm on Rd unless specified. Also, we will assume that
π has the p-th moment, that is π ∈ Pp(Rd). The Jacobian
of a vector valued function h(·) = (h1(·), . . . , hd(·))> is a
d× d matrix defined as

Jh(x) :=
(
∂xihj

)d,d
i=1,j=1

.

The divergence of the vector valued function h is the trace
of its Jacobian:

div h(x) :=

d∑
i=1

∂xihi(x).

The Hessian of a real valued function U : Rd → R is
defined as the following square matrix:

∇2h(x) :=

Ç
∂2h

∂xi∂xj
(x)

åd,d
i=1,j=1

.

For any Hilbert space H, we denote by 〈·, ·〉H the inner
product ofH and by ‖·‖H its norm. Let µ, ν ∈ Pp(Rd). The
set of couplings Γ(µ, ν) is the set of all joint distributions
defined on Rd × Rd having µ and ν as its marginals. The
Wasserstein-p distance between two probability measures is
defined as

Wp(µ, ν) := inf
η∈Γ(µ,ν)

ï∫
‖x− y‖pη(dx, dy)

ò1/p
.

The Kullback-Leibler divergence is defined as

KL(µ | ν) =

®∫
Rd log

Ä
µ(x)
ν(x)

ä
µ(dx), if µ� ν;

+∞, otherwise.

We will use the spectral and the Hilbert-Schmidt norms for
matrices. For M ∈ Rd×d they are respectively defined as

‖M‖op :=
»
λmax(M>M),

‖M‖HS :=

Ã
d∑
i=1

d∑
j=1

M2
i,j .

Here λmax corresponds to the largest eigenvalue.

2.2 SVGD in the population limit

Let us present briefly Reproducing Kernel Hilbert Spaces
(RKHS) and some of its essential properties. We refer the
reader to (Steinwart and Christmann, 2008)[Chapter 4] for
a detailed introduction. Let the map k : Rd × Rd → R be a
reproducing kernel and letH0 be its corresponding RKHS.
This means thatH0 consists of real-valued maps from Rd to
R, including the feature maps Φ(x) := k(x, ·) ∈ H0, and
the reproducing property is satisfied:

f(x) = 〈f, k(·, x)〉H0 .

See the discussion on the reproducing property in Ap-
pendix E.1. LetH be the space of the d-dimensional maps
{(f1, . . . , fd)

> | fi ∈ H0, i = 1, . . . , d}. For two vector
functions f = (f1, . . . , fd)

> and g = (g1, . . . , gd)
> from

H, we define the scalar product as

〈f, g〉H :=

d∑
i=1

〈fi, gi〉H0
.

Suppose that we have a kernel k : Rd × Rd → R+ andH0

is its corresponding RKHS. As described above, we con-
struct the Hilbert space H = Hd0 . Our goal is to construct
an iterative algorithm, that has its iterates in the space of
probability measures Pp(Rd). Each iterate is defined as a
pushforward measure from the previous one in a way that
it minimizes the KL distance the most. To do so, for every
ψ ∈ H and γ > 0 let us define the operator

Tγ(x) := x− γψ(x).

The operator ψ will serve us as the direction or the perturba-
tion, while as γ is the step-size. The goal is to choose the
direction in which the KL error descends the most. Thus,
for every µ, the optimal choice of ψ is the solution of the
following problem:

gµ := arg max
‖ψ‖H≤1

ß
− d

dγ
KL (Tγ#µ | π)

∣∣∣
γ=0

™
. (3)
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Paper Method Smoothness Other
conditions

Can deal with
higher-order
polynomials?

Complexity to get ε error Criterion

Vempala and
Wibisono

(2019)
LMC L-smoothness λLS -Log-

Sobolev 7 ‹O ï d

λ2
LS

ε

ò
KL

Balasubramanian
et al. (2022) LMC L-smoothness - 7 ‹O [L2d2

ε2

]
FI

Chewi et al.
(2021) LMC Hölder

continuity

α-tails +
Modified

Log-
Sobolev

7 ‹O [ d(2/α)(1+1/s)−1/s

ε1/s

]
KL

Chatterji et al.
(2020) LMC

(L,α)-Hölder
continuity +

Gaussian
smoothing

Log-
concavity 7 ‹O [ d(5−3α)/2

ε4/(1+α)

]
W2

Korba et al.
(2020) SVGD L-smoothness Trajectory

bounds 7 O
î
d
ε

√
C
ó

IStein

Salim et al.
(2021) SVGD L-smoothness

T1

inequality
with

constant λT

7 ‹O ñ d3/2
λ
1/2
T

ε

ô
IStein

This paper SVGD (L0, L1)
smoothness

Tp
inequality

with
constant λT

3 O
[
(λ
p
2
T ε)
−1

(pd)
(p+1)(p+2)

4

]
IStein

This paper SVGD (L0, L1)
smoothness

Generalized
(Tp, S)

3 O
ï
λ
p
BV

(pd)p+1

ε

ò
IStein

Table 1: This summarizes several previous results on the LMC and SVGD algorithms. Here Õ corresponds to the order
without the log-polynomial factors. One has to bear in mind, that the complexities of the SVGD and LMC cannot be
compared to each other as they use different error metrics. The complexity of (Korba et al., 2020)[Corollary 6] contains the
trajectory bound constant C, which may depend on the dimension d. In the last row of the table, the (Tp,S) is satisfied for
the function S(r) = λBV (r1/p + (r/2)1/2p), where λBV is a constant that may depend on the dimension (see Section 2.3).

The functional objective depends linearly on the perturba-
tion function ψ. Indeed, Liu and Wang (2016) have proved
that

− d

dγ
KL (Tγ#µ | π)

∣∣∣
γ=0

=

∫
Rd

(
− V (x)ψ(x)

+ divψ(x)
)
µ(dx),

(4)

where # is the push-forward of µ by Tγ . If ψ satisfies mild
conditions, then the right-hand side of (4) is equal to zero
if and only if the measures µ and π coincide (Stein, 1972).
This property motivates to define a discrepancy measure
called Stein discrepancy as follows:

IStein(µ | π) := max
‖ψ‖H≤1

{∫
Rd

(
− V (x)ψ(x)

+ divψ(x)
)
µ(dx)

}2

.

Liu et al. (2016) have proved that the solution of the opti-
mization problem (3) is given explicitly by

gµ(·) = −
∫
Rd

[
∇ log π(x)k(x, ·) +∇xk(x, ·)

]
µ(dx)

and ‖gµ‖H =
√
IStein(µ | π). For the proof of this inequal-

ity, we refer the reader to the remark in Appendix B.1. In

our case, IStein is often referred to as the squared Kernelized
Stein Discrepancy (KSD) or the Stein-Fisher information.
Under certain conditions (see Appendix E.4) on the target
distribution π and the kernel k, the convergence in KSD
implies weak convergence:

IStein(µn | π) −→
n→∞

0 =⇒ µn −→
n→∞

π.

Remark 1. Integration by parts yields the following formula
for gµ:

gµ(·) =

∫
Rd
∇ log

Å
µ(x)

π(x)

ã
k(x, ·)µ(dx).

This latter equality is the alternative definition of the optimal
direction gµ given by Korba et al. (2020). The proof of
the remark can be found in Appendix E.5. Thus, we have
determined the descent direction. In order to formulate the
algorithm let us initialize our algorithm at µ0 ∈ Pp(Rd).
The (i + 1)-th iterate µi+1 is obtained by transferring µi
with the map I − γgµi :

µi+1 = (I − γgµi)#µi. (SVGD)

In case when k ∈ Lp(µ), thenH0 ⊂ Lp(µ) (see (Steinwart
and Christmann, 2008)[Theorem 4.26]). This guarantees
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that every iteration of the SVGD has a finite p-th moment,
that is for every i ∈ N, µi ∈ Pp(Rd). The rest of the section
is devoted to the assumptions that we will use later in the
analysis.

2.3 Assumptions

In order to perform SVGD we need the target π, in particular
the gradient of its potential V and the kernel k(·, ·). Below
we present the four main assumptions on π,V and k, that we
use in the analysis. The first assumption is a relaxed form
of smoothness condition for∇V .

We study the SVGD algorithm under the so called (L0, L1)
smoothness, which has been borrowed from optimization
literature. In (Zhang et al., 2019a), the authors studied
the convergence of the clipped gradient descent under this
condition. The assumption goes as follows.

Assumption (L0, L1). The Hessian∇2V of V = − log π
is well-defined and ∃L0, L1 ≥ 0 s.t.∥∥∇2V (x)

∥∥
op
≤ L0 + L1‖∇V (x)‖, (5)

for any x ∈ Rd.

First let us notice that when L1 = 0 the inequality (5)
becomes the usual smoothness condition (2). On the other
hand, let us consider the generalized normal distribution
(also known as exponential power distribution) which is
given by its density π(x) ∝ exp(−‖x−a‖β), where β ≥ 2.
In this case, Hessian∇2V is not bounded by a constant in
terms of the operator norm. However, it is easy to verify
that V satisfies Assumption (L0, L1), which yields that this
assumption is indeed a relaxation of the L-smoothness.

The next two assumptions are intended to replace the tra-
jectory condition (Korba et al., 2020; Duncan et al., 2019)
for polynomial potentials. The latter limits the applicability
of the algorithm as these results cannot guarantee the con-
vergence of the algorithm before actually implementing it.
This condition was replaced by Talagrand’s T1 inequality
in the recent work by Salim et al. (2021), where complexity
bounds are proved for L-smooth potentials. Talagrand’s Tp
inequality goes as follows:

Wp(µ, π) ≤
 

2 KL(µ | π)

λT
, ∀µ ∈ Pp(Rd). (6)

Since the Wasserstein-p distance is increasing with respect
to the order p, Tp implies T1. In general, it is hard to verify
if the distribution satisfies the Tp inequality. However, one
may check that T2 is true for m-strongly log-concave distri-
butions with λT = m. According to Bakry-Émery theory,
sharp estimates on this constant are available due to pertur-
bation arguments, such as the well-known Holley-Stroock
method (see Steiner (2021)). When it comes to bounding
the Stein-Fisher information for (L0, L1) potentials, one

needs to bound the p-th Wasserstein error with p > 2. Thus,
it imposes having a functional inequality involving Wp and
KL. The generalized Tp inequality is a general form of this
condition.

Definition 1 (Generalized Tp inequality). Let p ≥ 1. The
distribution π satisfies the generalized Tp inequality if there
exists an increasing function S : R+ → R+ such that for
all µ ∈ Pp(Rd), we have Wp(µ, π) ≤ S(KL(µ|π)), where
Wp is the Wasserstein-p distance.

Assumption (Tp,S). The target distribution π satisfies
the generalized Tp inequality for some increasing function
S : R+ → R+.

If we take S(r) ≡
√

2r/λT,for every r ∈ R+, then we
retrieve the classical Tp inequality. Thus, we indeed gen-
eralize Tp inequality with this assumption. An important
example of Assumption (Tp,S) is a consequence of Bolley
and Villani (2005)[Corollary 2.3]. They prove that if∫

Rd
exp(s‖x− x0‖p)π(dx) < +∞,

for some x0 ∈ Rd and s > 0, then Assumption (Tp,S)
is satisfied for S(r) = λBV (r1/p + (r/2)1/2p), where λBV
is a constant that may depend on the dimension (see Ap-
pendix E.2 for details). Therefore, in this case the assump-
tion is essentially a condition on the tails of the target distri-
bution π. In particular, for the generalized normal distribu-
tion the verification of this bound is straightforward.

The third assumption is chosen to essentially restrict our-
selves for potentials with (at most) polynomial growth.
Mathematically, it is expressed as follows:

Assumption (poly,Q). For some p > 0, there exists a
polynomial with positive coefficients such that ord(Q) = p
and the following inequality is true:∥∥∇V (x)

∥∥ ≤ Q(‖x‖).

We want to emphasize that this assumption is not very re-
strictive as the vast majority of continuous distributions that
appear in practice satisfy it. Using Taylor formula, one
may check that L-smooth potentials satisfy this condition
with Q(r) = Lr + ‖∇V (0)‖. It is important to notice that
the constant p is the same for the assumptions (Tp,S) and
(poly,Q). This will allow us to treat the polynomials of
order p. For detailed examples of distributions that satisfy
our set of assumptions please refer to Section 5.

We conclude our list of assumptions with a bound on the
kernel k(·, ·).

Assumption (ker, B). There exists B > 0 such that
‖k(x, ·)‖H0

≤ B and

‖∇xk(x, ·)‖H =

(
d∑
i=1

‖∂xik (x, ·)‖2H0

) 1
2

≤ B,
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for all x ∈ Rd.

Due to the reproducing property, these conditions are equiva-
lent to k(x, x) ≤ B and ∂2

xi,xik(x, x) ≤ B2. Here, the first
and the second partial derivatives are operated, respectively,
on the first and the second variables of k(·, ·). Based on
this criterion, one may check that the multiquadratic kernel
k(x, y) := (c2 + ‖x − y‖2)β for some c > 0 > β > −1
satisfies the Assumption (ker, B). See Appendix E.1 for
details on the reproductive property.

3 Main results

In this section we present our main results. We start with a
proposition that bounds the difference between the value of
the objective at two consecutive iterations. The proof of the
proposition can be found in Appendix B.1

Proposition 1. Suppose that Assumptions (ker, B) and
(L0, L1) are satisfied. Let α > 1 and choose

γ ≤ (α− 1) ·min{1, 1/L1}
αB‖gµn‖H

. (7)

Then

KL (µn+1 | π)−KL (µn | π) ≤ −γ
[
1− γ

2
B2

×
(
α2 + (e− 1)An

)]
IStein(µn | π),

(8)

where An := L0 + L1EX∼µn [‖∇V (X)‖].

Proposition 1 may be seen as a descent lemma on the KL
divergence. Let us develop the condition (7). The following
lemma is from Salim et al. (2021) and provides us with an
upper bound on ‖gµn‖H.

Lemma 1. If Assumption (ker, B) is satisfied, then

‖gµn‖H = IStein(µn | π)
1
2 ≤ B

(
EX∼µn

[
‖∇V (X)‖

]
+ 1
)

for all n ∈ N.

Thus, we can get replace ‖·‖H by expectation over µk in the
bound for γ in (7):

γ ≤ (α− 1)

max{1, L1}
[
αB2

(
EX∼µn

[
‖∇V (X)‖

]
+ 1
)]−1

.

(9)
On the other hand, in order to guarantee that the functional
F is decreasing with each iteration of the algorithm, we
would like the right-hand side of (8) to be negative. The
latter yields the following condition on the step-size:

γ <
2

B2

(
α2 + (e− 1)An

)−1

=
2

B2

(
α2 + (e− 1)

(
L0 + L1EX∼µn [‖∇V (X)‖]

))−1

.

(10)

Both in (9) and (10) we have dependence on
EX∼µn [‖∇V (X)‖]. The following lemma will al-
low us to establish an upper bound on this quantity and
which will help us to get rid of trajectory dependent bounds
on the step-size.

Lemma 2. Suppose that the potential function V satisfies
the Assumptions (Tp,S) and (poly,Q) for some constants
p and a polynomial Q. Then,

EX∼µn [‖∇V (X)‖] ≤ Q
(
S
(

KL(µn | π)
)

+Wp(π, δ0)
)
.

The important implication of Lemma 2 is that both up-
per bounds on the step-size are inversely proportional to
KL(µn | π). Let us now state the main theorem.

Theorem 1 (Descent lemma). Let the target distribu-
tion π and its potential function V satisfy the Assump-
tions (ker, B), (L0, L1), (Tp,S), and (poly,Q). Define
C0 := Q

(
S
(

KL(µ0 | π)
)

+Wp(π, δ0)
)

and suppose that
for some α > 1 the step-size γ satisfies

γ <
α− 1

αB2
(
α2 + (e− 1)(max(L0, L1, 1) + max(L1, 1)C0)

) .
(11)

Then for every n = 0, 1, . . . the following inequality is true:

KL (µn+1 | π)−KL (µn | π) ≤ −γ
2
IStein(µn | π).

The proof is postponed to Appendix B.2. It is shown in Mat-
tingly et al. (2002); Hutzenthaler et al. (2012) that ULA (un-
adjusted Langevin algorithm) is not stable if ∇V grows
super-linearly, i.e. lim inf‖x‖→∞

‖∇V (x)‖
‖x‖ → ∞ ( Mat-

tingly et al. (2002, Lemma 6.3) showed a counterexample
with V (x) = x4

4 , x ∈ R). However, the above theorem
shows that, at least in the population limit, SVGD could be
stable even when ∇V grows super-linearly. For an illustra-
tion of this point, see the experiments in Appendix F.

Corollary 1 (Convergence). Let the assumptions of Theo-
rem 1 be satisfied. Then following statements are true.

1. IStein(µn | π) converges to zero, when n→∞.

2. The average Stein-Fisher error of the first n iterates
converges to 0, with O(1/n) rate:

1

n

n−1∑
i=0

IStein (µi | π) ≤ 2

nγ
KL(µ0 | π).

This yields in particular that the series with the general term
IStein(µn | π) is convergent, that is IStein(µn | π) → 0.
When π is distantly dissipative and the k is the inverse mul-
tiquadratic kernel, then convergence in IStein yields weak
convergence of the sequence µn to the target π (see Ap-
pendix E.4). Proofs of the corollary can be found in Ap-
pendix B.3. If we bound the initial KL error, then for every
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precision error ε > 0, Corollary 1 provides us with a stop-
ping rule. Based on this scheme, the next theorem estimates
the complexity of the algorithm for some particular choices
of S and µ0.

Theorem 2. Let assumptions (ker, B), (L0, L1), and
(poly,Q) hold and let µ0 = N (0, Id). Then in order to
have ε average Stein-Fisher error it is sufficient to perform
n iterations of the SVGD, where

• n = O
(
ε−1Q(1)3 max(L1, 1)λpBV (pd)p+1

)
, if the

target π satisfies Assumption (Tp,S) with S(r) =
λBV (r1/p + (r/2)1/2p);

• n = O
(
ε−1Q(1)

p+2
2 max(L1, 1)λ

− p2
T (pd)

(p+1)(p+2)
4

)
,

if the target π satisfies Talagrand’s Tp inequality (6)
with constant λT.

The proof is postponed to Appendix C.1. We observe that in
both cases we achieve polynomial convergence of the algo-
rithm in terms of the dimension and the precision. As men-
tioned in Section 2, in the first setting, (Tp,S) essentially
becomes a tail condition, which can be easily verified for
a wide class of log-polynomial densities. The Talagrand’s
Tp is harder to verify in the general case. However, unlike
λT, the constant λBV may be dimension dependent (see Ap-
pendix E.2). Therefore, when p ≤ 2 Talagrand’s inequality
yields better convergence. In particular, when p = 1, we
recover the complexity O(d3/2) which coincides with the
result from (Salim et al., 2021). On the other hand, when
p is large, the algorithm is likely to perform significantly
faster under the generalized Tp.

4 Finite-particle regime

Up to this point, we have only discussed the SVGD in the
population limit. The latter is an iterative algorithm on the
space of measures and, hence, is not applicable in practical
settings. In this section we present its discretization.

The finite-particle SVGD algorithm approximates each it-
erate µk by a mixture of N Dirac distributions µ̂k =
1
N

∑
i δxki . Then at each iteration k the optimal perturbation

gµk can be approximated empirically by

ĝk(x) :=
1

N

N∑
i=1

[
− k(xki , x)∇V (xki ) +∇xki k

(
xki , x

) ]
.

Using ĝk(x) we can design an algorithm for finite number
of particles evolving as an approximation of SVGD in pop-
ulation limit. The pseudo-code is presented in Algorithm 1.

Liu (2017) proved the weak convergence of the empirical
distribution µ̂k to the target π, when the number of parti-
cles goes to infinity (see also (Lu et al., 2019; Nüsken and
Renger, 2021)). Liu and Wang (2018) studied the algorithm

Algorithm 1 Finite-particle SVGD

1: Input: Initialize a set of particles {x0
i }Ni=1, step-size γ,

number of iterations K
2: for k = 0, 1, 2, . . . ,K − 1 do
3: for i = 1, 2, . . . , N do
4: Compute: ĝk(xki )
5: xk+1

i ← xki + γĝk(xki )
6: end for
7: end for
8: Return: {xKi }Ni=1

using its fixed point properties. If a finite set of particles X
is a fixed point of the SVGD, then they showed that

1

card(X)

∑
x∈X

f(x) = EY∼π
[
f(Y )

]
,

where f is belongs to certain class of functions called Stein’s
matching set. The latter set depends on the linear span of the
feature maps k(x, ·). Their analysis allows to show that for
a certain choice of kernels SVGD can exactly compute the
first and second order moments for multivariate Gaussians.
In a recent paper, Shi and Mackey (2022) prove convergence
for sub-Gaussian distributions with L-smooth potentials
under strong conditions. Although the obtained rate is very
slow, their analysis might be served as a general scheme for
better results.

Overall, getting convergence results for the finite-particle
regime that match the empirical findings remains an open
problem for future work.

5 Examples

Below, we describe several sampling problems that fall into
our setting. The family of generalized Gaussian distributions
satisfy our set of assumptions:

π(x) ∝ exp

Å
−‖x− a‖

p

2σp

ã
.

This family of distributions has received considerable at-
tention from the engineering community, due to its flexible
parametric form. For instance values of p = 2.2 and p = 1.6
have been found to model the ship transit noise and the sea
surface agitation noise respectively Banerjee and Agrawal
(2013). Many important probabilistic quantities of GGs,
such as the moments, the entropy etc., are easy to compute.
It is known that that this class minimizes the entropy un-
der a p-th absolute moment constraint (Cover and Thomas,
2006). An overview of the analytic properties of this family
of distributions can be found in Dytso et al. (2018).

Another model that falls into our framework was proposed
by Ginzburg and Landau (Livingstone et al., 2019; Brosse
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et al., 2019). This model of phase transitions in physics is de-
fined on a three-dimensional d = p3 lattice for p ∈ N∗. The
potential function is given for x = (xijk)i,j,k∈{1,...,p} ∈ Rd
by

V (x) =

p∑
i,j,k=1

ß
1− τ

2
x2
ijk +

τα

2

∥∥∥∇̃xijk∥∥∥2

+
τλ

4
x4
ijk

™
,

where α, λ, τ > 0 and ∇̃xijk is the discrete gradient defined
as

∇̃xijk :=
(
xi+jk − xijk, xij+k − xijk, xijk+ − xijk

)
with i± = i± 1 (mod p) and similarly for j±, k±. The in-
ference problem in this setting is to estimate the expectation
of π(x) ∝ exp(−V (x)). Based on its definition, we deduce
immediately that the π satisfies our assumptions, thus the
SVGD algorithm is applicable in this case.

Bayesian approach to solve the tensor PCA (Richard and
Montanari, 2014) was proposed by Lesieur et al. (2017).
A simple instance of this problem can be formulated as
follows. Consider the model Y = λX⊗k + W , where
Y,W ∈ ⊗kRd are tensors, X⊗k is the k-th tensor power of
the vector X ∈ Rd and λ > 0. We observe the tensor Y
and the goal is to infer the unknown vector X . Suppose for
simplicity that the noise tensor W has i.i.d. N (0, 1) entries.
Then assuming that X ∼ π0 has a log-polynomial prior
distribution, we get the following posterior:

π(x) ∝ e−
∑
i1,i2,...,ik

(λxi1xi2 ...xik−Yi1i2...ik)
2

· π0(x).

One could use the Bayesian posterior mean to estimate the
signalX . In order to do it, sampling methods can be applied.
In particular, the distribution π satisfies our assumptions.
Thus one could use the SVGD algorithm to sample from it.
We would also like to draw the reader’s attention that up to
our knowledge this is the first attempt to solve the Bayesian
PCA using sampling methods. It remains an interesting
problem to examine in future work.

6 Conclusion and Future work

In this work, we studied the convergence of the SVGD
under a relaxed smoothness condition. The latter was first
proposed in the context of gradient clipping for the optimiza-
tion problem. This relaxed smoothness condition allows to
treat distributions with polynomial potentials. Main result
consists of a descent lemma for the KL error of the SVGD
algorithm. The result implies polynomial convergence for
the average Stein-Fisher information error for two types of
functional inequalities.

One could also try to use general analytic functions instead
of polynomials. Then approximating this function by its
Taylor series, one would be able to bound the Stein-Fisher
information using the generalized Tp inequality. However,

to the best of our knowledge, most distributions satisfy
(poly,Q). The latter means that (poly,Q) does not impose
a significant limitation. Generalizing the assumption for ana-
lytic functions would complicate the readability of the paper
and would perhaps diverge from the main contribution.

Numerous applications of the SVGD and its modifications
have been developed in the literature. However, the dis-
cretized algorithm does not have practical convergence guar-
antees in the general case. Despite the performed simple
experiments, this paper is of purely theoretical interest as
the algorithm operates on the space of probability distribu-
tions. We want to underline the fact that the experiments
describe only the convergence of the discretized method.
The theoretical analysis of the discretized regime remains
an open problem to be studied in the future work.
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A Langevin Monte-Carlo from the optimization perspective

Langevin algorithms have extensively been studied by statistics and machine learning communities during the last decades.
The algorithms rely on an SDE called (vanilla) Langevin dynamics:

dXt = −∇V (Xt)dt+
√

2dBt,

where Bt is a d-dimensional Brownian motion on Rd. The important property of this SDE is that under technical conditions
the target π(·) ∝ exp(−V (·)) is its unique invariant distribution. Moreover, it is ergodic and KL(µt | π) converges linearly
to zero, where µt is the distribution of Xt (Bhattacharya, 1978). The Euler-Maruyama discretization of this SDE over the
time axis results in the Langevin Monte-Carlo (LMC) algorithm:

θi+1 = θ − γ∇V (θi) +
√

2hξi+1, for i ∈ N. (12)

Here γ > 0 is the discretization step-size and ξ1, ξ2, . . . is a sequence of independent standard Gaussians independent from
the initial point θ0. This algorithm initially was studied by Roberts and Tweedie (1996); Roberts and Rosenthal (1998);
Roberts and Stramer (2002); Dwivedi et al. (2018) who proposed to apply Metropolis-Hastings step (MALA). The reason
for this adjustment is that the constant step-size γ induces a bias and the target distribution π is no longer the invariant
distribution of the discrete-time process. Later, Dalalyan (2017b) suggested to remove the Metropolis-Hastings step with a
result that essentially controls the bias depending on the step-size γ. This instigated a new line of research which studied the
convergence properties of the LMC in different settings (see Durmus and Moulines (2017); Cheng et al. (2018); Cheng and
Bartlett (2018); Dalalyan and Karagulyan (2019); Durmus and Moulines (2019); Vempala and Wibisono (2019)).

The LMC algorithm essentially performs a Forward-Flow iteration in the space of distributions (see (Wibisono, 2018;
Durmus et al., 2019)). Indeed, if we define by µi the distribution of the i-th iterate θi, then (12) is equivalent to

µi+1/2 =
(
I − γ∇V (µi)

)
#µi

µi+1 = N (0, Id) ∗ µi+1/2,

where the # is the pushforward measure, while ∗ is the convolution. The first equation corresponds to the gradient descent
for EX∼µ[V (X)] where the argument is the measure µ. The second equation can be interpreted as the exact gradient flow
of the negative entropy. The combination of this two steps results in a biased algorithm (as noticed in (Roberts and Tweedie,
1996)) since the flow step is not the adjoint of the gradient step.

B Convergence results

B.1 Proof of Proposition 1

Here we follow the procedure from Korba et al. (2020). The main difference is to upper bound the term ψ2 (see (18)) under
(L0, L1)-smoothness condition. For the sake of brevity we will omit the index when referring to gµn and will write simply g.
Let us define φt := I − tg and ρt := φt#µn for every t ∈ [0, γ]. Then, applying Taylor formula to the function

ϕ(t) := KL (ρt | π) (13)

we have the following

ϕ(γ) = ϕ(0) + γϕ′(0) +

∫ γ

0

(γ − t)ϕ′′(t)dt. (14)

By the definition of the SVGD iteration, we have that ϕ(0) = KL (µn | π) and ϕ(γ) = KL (µn+1 | π). Let us now compute
the term of (14) corresponding to the first order derivative.

Lemma 3. Suppose that Assumption (ker, B) holds. Then, for any x ∈ Rd and h ∈ H,

‖Jh(x)‖HS ≤ B‖h‖H.

The proof of the lemma can be found in Appendix D.3. Applying the lemma to the function g, we obtain the following:

‖tJg(x)‖op ≤ ‖tJg(x)‖HS ≤ tB‖g‖H < 1. (15)
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The latter inequality is due to the condition on the step-size γ. The bound (15) implies that φt is a diffeomorphism. Therefore,
ρt admits a density given by the change of variables formula:

ρt(x) =
∣∣Jφt (φ−1

t (x)
)∣∣−1

µn
(
φ−1
t (x)

)
.

Changing the variable of integration and applying the transfer lemma we get the following formula for ϕ(t):

ϕ(t) =

∫
log

Å
ρt(y)

π(y)

ã
ρt(dy)

=

∫
log

Ç
µn(x) |Jφt(x)|−1

π (φt(x))

å
µn(dx)

=

∫ î
log (µn(x)) + log

Ä
|Jφt(x)|−1

ä
− log (π (φt(x)))

ó
µn(dx).

Let us then compute the time derivative of ϕ(t). Taking the derivative inside and applying Jacobi’s formula for matrix
determinant differentiation we obtain the following equality:

ϕ′(t) = −
∫

tr

Å
(Jφt(x))−1 dJφt(x)

dt

ã
µn(dx)−

∫ ≠
∇ log π (φt(x)) ,

dφt(x)

dt

∑
µn(dx).

By definition, dφt/dt = g. Therefore, we can use the explicit expression of φt to write:

ϕ′(t) =

∫
tr
(
(Jφt(x))−1Jg(x)

)
µn(dx) +

∫
〈∇V (φt(x)) , g(x)〉µn(dx). (16)

The Jacobian at time t = 0 is simply equal to the identity matrix since φ0 = Id. It follows that tr
(
(Jφ0(x))−1Jg(x)

)
=

tr(Jg(x)) = div(g)(x) by the definition of the divergence operator. Using integration by parts:

ϕ′(0) = −
∫

[−div(g)(x)− 〈∇ log π(x), g(x)〉]µn(dx)

= −
∫ 〈
∇ log

(µn
π

)
(x), g(x)

〉
µn(dx).

Based on the alternative definition of gµ (see Remark 1) and the reproducing property, we have∫ 〈
∇ log

(µn
π

)
(x), g(x)

〉
µn(dx)

=

∫∫
k(x, y)

〈
∇ log

(µn
π

)
(x),∇ log

(µn
π

)
(y)
〉
µn(dx)µn(dy)

=

∫∫
〈k(x, ·), k(y, ·)〉H0

〈
∇ log

(µn
π

)
(x),∇ log

(µn
π

)
(y)
〉
µn(dx)µn(dy)

=

≠∫
∇ log

(µn
π

)
(x)k(x, ·)µn(dx),

∫
∇ log

(µn
π

)
(y)k(y, ·)µn(dy)

∑
H

= ‖g‖2H .

Therefore,
ϕ′(0) = −‖g‖2H . (17)

Next, we calculate the term of (14) that contains the second derivative using (16). First,

d

dt
tr
(
(Jφt(x))−1Jg(x)

)
= tr

Å
d

dt
(Jφt(x))−1Jg(x)

ã
= − tr

Å
(Jφt(x))−2 d

dt
Jφt(x)Jg(x)

ã
= tr

(
Jφt(x)−2Jg(x)Jg(x)

)
= tr

Ä(
Jφt(x)−1Jg(x)

)2ä
.
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From the definition of the function φt, we know that Jφt(x) = (Id + tJg)(x). Thus, (Jφt)
−1 and Jg commute. The latter

yields tr
(Ä
Jg(x) (Jφt(x))

−1
ä2)

=
∥∥∥Jg(x) (Jφt(x))

−1
∥∥∥2

HS
. On the other hand, applying the chain rule on second term

of (16) yields
∂t
(
〈∇V (φt(x)) , g(x)〉

)
=
〈
g(x),∇2V (φt(x)) g(x)

〉
.

Summing up, we have the following:

ϕ′′(t) =

∫ ∥∥∥Jg(x) (Jφt(x))
−1
∥∥∥2

HS
µn(dx)︸ ︷︷ ︸

:=ψ1(t)

+

∫ 〈
g(x),∇2V (φt(x)) g(x)

〉
µn(dx)︸ ︷︷ ︸

:=ψ2(t)

. (18)

First, we bound ψ1(t). Cauchy-Schwarz implies that∥∥∥Jg(x) (Jφt(x))
−1
∥∥∥2

HS
≤ ‖Jg(x)‖2HS

∥∥∥(Jφt(x))
−1
∥∥∥2

op
.

From Lemma 3, we have ‖Jg(x)‖HS ≤ B‖g‖H. To bound the second term, let us recall that φt = I − tg and that t ≤ γ.
Thus, the following bound is true:

∥∥∥(Jφt(x))
−1
∥∥∥
op

=
∥∥∥((Id − tJg)(x)

)−1
∥∥∥
op
≤
∞∑
i=0

‖tJg(x)‖iop ≤
∞∑
i=0

‖γJg(x)‖iHS.

Recalling (7) and combining it with Lemma 3 we obtain

∥∥∥(Jφt(x))
−1
∥∥∥
op
≤
∞∑
i=0

(γB‖g‖H)i ≤
∞∑
i=0

Å
α− 1

α

ãi
= α.

Summing up, we have that
ψ1(t) ≤ α2B2‖g‖2H.

Next, we bound ψ2(t). By definition,

ψ2(t) = EX∼µn
[〈
g(X),∇2V (φt(X)) g(X)

〉]
≤ EX∼µn

[
‖∇2V (φt(X)) ‖op‖g(X)‖22

]
.

Let us bound the norm of g(x). The reproduction property of the RKHS yields the following:

‖g(x)‖22 =

d∑
i=1

〈k(x, .), gi〉2H0
≤ ‖k(x, .)‖2H0

‖g‖2H ≤ B2‖g‖2H. (19)

Therefore,
ψ2(t) ≤ B2‖g‖2HEX∼µn

[
‖∇2V (φt(X)) ‖op

]
. (20)

Let us bound EX∼µn
[
‖∇2V (φt(X)) ‖op

]
. Assumption (L0, L1) implies the following inequality:

∥∥∇2V (φt(x))
∥∥
op
≤ L0 + L1‖∇V (φt(x))‖,

for every x ∈ Rd. To bound the term ‖∇V (φt(x))‖, we use the following lemma. Note Lemma 4 has a sharper constant
than (Zhang et al., 2019a)[Lemma 9].

Lemma 4. Let V be an (L0, L1)-smooth function and ∆ > 0 be a constant. For any x, x+ ∈ Rd such that ‖x+ − x‖ ≤ ∆,
we have ∥∥∇V (x+

)∥∥ ≤ L0

L1
(exp(∆L1)− 1) + ‖∇V (x)‖ exp(∆L1).

We will apply Lemma 4 to φt(x) and φ0(x). By definition, φt(x)− φ0(x) = tg(x) and according to inequality (19),

‖φt(x)− φ0(x)‖2 ≤ tB‖g‖H.
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Thus, using Lemma 4 for x = φ0(x), x+ = φt(x) and ∆ = tB‖g‖H, we obtain the following:

∥∥∇2V (φt(x))
∥∥
op
≤ L0 + L1

Å
L0

L1

(
exp(tB‖g‖HL1)− 1

)
+ ‖∇V (φ0(x))‖ exp(tB‖g‖HL1)

ã
= L0 + L0

(
exp(tB‖g‖HL1)− 1

)
+ L1 ‖∇V (φ0(x))‖ exp(tB‖g‖HL1)

=
(
L0 + L1 ‖∇V (x)‖

)
exp(tBL1‖g‖H).

(21)

Combining (20) and (21) we obtain

ψ2(t) ≤ B2‖g‖2H
(
L0 + L1EX∼µn

[
‖∇V (X)‖

])
exp(tBL1‖g‖H).

Summing up, the bounds on ψ1 and ψ2 yield the following inequality:

ϕ′′(t) ≤ B2‖g‖2H
[
α2 +

(
L0 + L1EX∼µn

[
‖∇V (X)‖

])
exp(tBL1‖g‖H)

]
.

Recall that by definition An =
(
L0 + L1EX∼µn

[
‖∇V (X)‖

])
. Inserting the previous inequality along with (17) to (14),

we get the following bound:

ϕ(γ)− ϕ(0) ≤ −γ‖g‖2H +
[1

2
γ2α2B2‖g‖2H +An

(
exp(γBL1‖g‖H)− γBL1‖g‖H − 1

)]
.

One can check that exp(t)− t− 1 ≤ (e− 1)t2/2, when t ∈ [0, 1]. Since γBL1‖g‖H < 1, we deduce

ϕ(γ)− ϕ(0) ≤
[
− γ +

1

2
(γ2α2B2 + (e− 1)Anγ

2B2)
]
‖g‖2H.

Finally, by the definition of Stein’s information ‖g‖2H = IStein(µn | π). This concludes the proof.

Remark 2. In fact, the derivation of (17) contains the proof of the fact that ‖g‖H =
√
IStein(µn | π). Indeed, by the

definition of the SVGD (Section 2.2) the direction function g is chosen to minimize the descent the most. On the other hand,
the Stein-Fisher information is the maximum of the Stein’s linear operator which coincides with our objective. Thus, the
absolute value of the objective function at g, that is |φ′(0)| equals

√
IStein(µn | π).

B.2 Proof of Theorem 1

Proof. Let us first prove that the sequence KL(µn | π) is monotonically decreasing. We will use the method of mathematical
induction. First let us notice that (11) implies the following system of inequalities for the step-size:γ ≤ (α− 1) min{1, 1/L1}

[
αB2 (C0 + 1)

]−1
;

γ ≤ B−2
[
α2 + (e− 1)

(
L0 + L1C0

)]−1

.
(22)

For n = 0 the first equation of the system (22) combined with Lemma 2 implies that the step-size condition is satisfied.
Thus, according to Proposition 1,

KL (µ1 | π)−KL (µ0 | π) ≤ −γ
[
1− γ

2
B2(α2 + (e− 1)(L0 + L1C0))

]
IStein(µ0 | π).

On the other hand, from the second inequality of (22) we get that

1− γ

2
B2(α2 + (e− 1)(L0 + L1C0)) ≥ 1

2
.

Therefore, KL (µ1 | π) ≤ KL (µ0 | π). Let us define by Cn := Q
(
S
(

KL(µn | π)
)

+Wp(π, δ0)
)
. Since Q and S are

monotonically increasing for positive arguments, we obtain C1 ≤ C0. Therefore,γ ≤ (α− 1) min{1, 1/L1}
[
αB2 (C1 + 1)

]−1
;

γ ≤ B−2
[
α2 + (e− 1)

(
L0 + L1C1

)]−1

.
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We retrieve (22) where the term C0 is replaced by C1. Thus, we can repeat the previous arguments for µ1 and µ2. Similarly,
we can iterate till n. Therefore we obtain the following descent bound:

KL (µn+1 | π)−KL (µn | π) ≤ −γ
[
1− γ

2
B2(α2 + (e− 1)(L0 + L1Cn))

]
IStein(µn | π).

This also yields that the sequence KL(µn | π) is decreasing. Since S and P are monotonically increasing for positive
arguments, Cn is also decreasing. Thus,

KL (µn+1 | π)−KL (µn | π) ≤ −γ
[
1− γ

2
B2(α2 + (e− 1)(L0 + L1C0))

]
IStein(µn | π)

≤ −γ
2
IStein(µn | π).

The last inequality is due to the second condition on the step-size γ.

B.3 Proof of Corollary 1

Let us start with the first statement. Summing the descent bounds of Theorem 1 for i = 0, 1, . . . , n − 1, we obtain the
following:

KL (µn | π)−KL (µ0 | π) ≤ −γ
2

n−1∑
i=0

IStein(µi | π).

Rearranging the terms we get
n−1∑
i=0

IStein(µi | π) ≤ 2

γ
(KL (µ0 | π)−KL (µn | π))

≤ 2

γ
KL (µ0 | π) .

This means that the series on the left-hand side is convergent and thus, its general term converges to zero. Thus the first
point is proved. Dividing both sides of the previous inequality on n, we deduce the second statement.

C Complexity results

C.1 Proof of Theorem 2

Proof. From Corollary 1, we know that if (11) is satisfied, then

1

n

n−1∑
k=0

IStein (µk | π) ≤ 2 KL(µ0 | π)

nγ
.

Let us bound the initial KL error.

Lemma 5. Let Assumption (poly,Q) hold with some polynomial Q and µ0 = N (0, Id). We then have

KL(µ0 | π) ≤ d

2
log

Å
1

2Πe

ã
+ V (0) + Q(1)d

…
2

Π
+

Q(1)(2d)
p+1
2 Γ
(
p+2

2

)
√

Π(p+ 1)
,

where Π is the area of the circle of radius 1.

Since p ≥ 1, Lemma 5 implies that

KL(µ0 | π) = O

(
Q(1)(2d)

p+1
2 Γ
(
p+2

2

)
√

Π(p+ 1)

)
= O

(
Q(1) (pd)

p+1
2

)
.

(23)
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The second equality is due to Stirling’s formula: Γ(r + 1) = O(
√

2Πr(r/e)r), for every r > 0. In order to estimate the
order of the step-size, let us compute the order of C0. By definition,

C0 = Q
(
S
(

KL(µ0 | π)
)

+Wp(π, δ0)
)

≤ Q
(
S
(

KL(µ0 | π)
)

+Wp(π, µ0) +Wp(µ0, δ0)
)

≤ Q
(
2S
(

KL(µ0 | π)
)

+Wp(µ0, δ0)
)
.

Here we applied the triangle inequality of Wp and the Assumption (Tp,S).

Let us now consider the first point of the theorem. Using Q(r) ≤ Q(1)(rp + 1) and S(r) = λBV (r1/p + (r/2)1/2p) =
O(λBV r

1/p), we obtain

C0 ≤ Q(1) ·
Ä(

2S
(

KL(µ0 | π)
)

+Wp(µ0, δ0)
)p

+ 1
ä

= O
(

Q(1) ·
((

2λBV KL
(
µ0 | π

)1/p
+Wp(µ0, δ0)

)p
+ 1
))

= O
(

Q(1) ·
(
(4λBV )p KL

(
µ0 | π

)
+ 2pW p

p (µ0, δ0) + 1
) )
.

(24)

Applying (23) we get
C0 = O

(
Q(1) ·

(
(4λBV )pO

(
Q(1) (pd)

p+1
2

)
+ 2pW p

p (µ0, δ0)
))

= O
(

Q(1)2(4λBV )p (pd)
p+1
2 + Q(1)2pW p

p (µ0, δ0)
)
.

(25)

The following lemma is to bound the (p+ 1)-th norm of the standard multivariate Gaussian.

Lemma 6. Let µ0 be the standard multivariate Gaussian defined on Rd. Then, for every integer m ≥ 2∫
Rd
‖x‖mµ0(dx) ≤ (2d)

m
2

√
Π

Γ

Å
m+ 1

2

ã
.

If we write down the definition of the Wasserstein distance, then Lemma 6 for m = p yields

W p
p (µ0, δ0) =

∫
Rd
‖x‖pµ0(dx) ≤

(2d)
p
2 Γ
(
p+1

2

)
√

Π
= O

Ä
(pd)

p
2

ä
. (26)

This implies
C0 = O

(
Q(1)2(4λBV )p (pd)

p+1
2 + Q(1)2p (pd)

p
2

)
= O

(
Q(1)2(4λBV )p (pd)

p+1
2

)
.

Now let us look back at (11). This inequality yields that Corollary 1 is true for

γ = O
Å{

B2(α2 + (e− 1)(L0 + L1Q(1)2(4λBV )p (pd)
p+1
2 ))

}−1
ã

= O
Å{

B2 max(L1, 1)Q(1)2λpBV (pd)
p+1
2

}−1
ã
.

This implies the following equality and concludes the proof of the first point:

n =
KL(µ0 | π)

2γε
= O

Å
1

ε

[
Q(1) (pd)

p+1
2

] [
B2(α2 + (e− 1)(L0 + L1Q(1)2(4λBV )p (pd)

p+1
2 ))

]ã
= O

Å
B2 max(L1, 1)

Q(1)3λpBV (pd)p+1

ε

ã
.

For the second point, we will do the same analysis. In the case of Tp inequality, the target satisfies Assumption (Tp,S) with
S(r) =

√
2r/λT, for some constant λT > 0. Then, similar to (24), we obtain the following complexity for C0:

C0 ≤ Q(1) ·
Ä(

2S
(

KL(µ0 | π)
)

+Wp(µ0, δ0)
)p

+ 1
ä

= Q(1) ·
((

2
»

2 KL
(
µ0 | π

)
/λT +Wp(µ0, δ0)

)p
+ 1
)

≤ Q(1) ·
(

(32/λT)
p
2 KL

(
µ0 | π

) p
2 + 2pW p

p (µ0, δ0) + 1
)
.
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Applying (23)

C0 = O
(

Q(1) ·
(

(32/λT)
p
2O
(

Q(1)
p
2 (pd)

p(p+1)
4

)
+ 2pW p

p (µ0, δ0)
))

= O
(

Q(1)
p+2
2 (32/λT)

p
2 (pd)

p(p+1)
4 + Q(1)2pW p

p (µ0, δ0)
)
.

Applying (26), we conclude

C0 = O
(

Q(1)
p+2
2 λ
− p2
T (pd)

p(p+1)
4

)
.

Thus, in order to have ε average IStein error it is sufficient to perform n iterations, where

n =
KL(µ0 | π)

γε
= O

(
(pd)

p+1
2

ε
·B2

(
α2 + (e− 1)(max(L0, L1, 1) + max(L1, 1)C0)

))

= O

(
B2 max(L1, 1)

Q(1)
p+2
2 λ
− p2
T (pd)

(p+1)(p+2)
4

ε

)
.

This concludes the proof.

D Proofs of the lemmas

D.1 Proof of Lemma 1

Proof. Denote Φ(x) := k(x, ·) ∈ H. Then by the definition of the Stein discrepancy we have the following:

IStein(µn | π)
1
2 =

∥∥EX∼µn[(∇V (X)Φ(X)−∇Φ(X))
]∥∥
H

≤ EX∼µn
[
‖∇V (X)Φ(X)−∇Φ(X)

]
‖H.

Applying the triangle inequality and Cauchy-Schwartz inequality, we obtain

IStein(µn | π)
1
2 ≤ EX∼µn

[
‖∇V (X)Φ(X)‖H

]
+ EX∼µn

[
‖∇Φ(X)‖H

]
= EX∼µn

[
‖∇V (X)‖‖Φ(X)‖H

]
+ EX∼µn

[
‖∇Φ(X)‖H

]
≤ B

(
EX∼µn

[
‖∇V (X)‖

]
+ 1
)
.

D.2 Proof of Lemma 2

Let the polynomial Q have the following explicit form:

Q(r) =

m∑
i=0

air
pi (27)

for every r ∈ R. Here p = p0 > p1 > . . . > pm and ai > 0. Then Assumption (poly,Q) yields

EX∼µn
[
‖∇V (X)‖

]
≤ EX∼µn

[
Q(‖X‖)

]
= EX∼µn

[
m∑
i=0

ai‖X‖pi
]

=

m∑
i=0

aiWpi

(
µn, δ0

)pi
,



Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition

where δ0 is Dirac measure on Rd at point 0. Using the fact that Wr is monotonically increasing w.r.t. to r, we have the
following

EX∼µn
[
‖∇V (X)‖

]
≤

m∑
i=0

aiWp

(
µn, δ0

)pi
≤

m∑
i=1

ai
(
Wp(µn, π) +Wp(π, δ0)

)pi
≤

m∑
i=1

ai
(
S
(

KL(µn | π)
)

+Wp(π, δ0)
)pi

.

≤ Q
(
S
(

KL(µn | π)
)

+Wp(π, δ0)
)
.

The third inequality is due to Assumption (Tp,S). Recalling (27) we conclude the proof.

D.3 Proof of Lemma 3

The proof is based on the reproducing property and Cauchy-Schwarz inequality in the RKHS space. Indeed,

‖Jh(x)‖2HS =

d∑
i,j=1

∣∣∣∣∂hi(x)

∂xj

∣∣∣∣2

=

d∑
i,j=1

〈
∂xjk(x, .), hi

〉
H0

≤
d∑

i,j=1

∥∥∂xjk(x, .)
∥∥2

H0
‖hi‖2H0

= ‖∇k(x, .)‖2H ‖h‖
2
H

≤ B2 ‖h‖2H .

This concludes the proof.

D.4 Proof of Lemma 4

Proof. The proof is similar to the proof of (Zhang et al., 2019a)[Lemma 9]. Let us fix x, x+ ∈ Rd and let τ(t) be defined as
τ(t) = t (x+ − x) + x with t ∈ [0, 1]. Then we have

∇V (τ(t)) =

∫ t

0

∇2V (τ(u))
(
x+ − x

)
dτ +∇V (τ(0)).

Let us bound the norm of∇V (τ(t)). Applying triangle and Cauchy-Schwartz inequalities we obtain:

‖∇V (τ(t))‖ ≤
∫ t

0

∥∥∇2V (τ(u))
(
x+ − x

)∥∥du+ ‖∇V (τ(0))‖

≤
∥∥x+ − x

∥∥∫ t

0

∥∥∇2V (τ(u))
∥∥du+ ‖∇V (x)‖.

Assumption (L0, L1) yields

‖∇V (τ(t))‖ ≤ ∆

∫ t

0

(L0 + L1‖∇V (τ(u))‖) du+ ‖∇V (x)‖

= ∆L0t+ ‖∇V (x)‖+

∫ t

0

∆L1

∥∥∇V (τ(u))
∥∥du.

Applying Grönwall’s integral inequality (see Lemma 8) to the function ‖∇V (τ(·))‖ we obtain

‖∇V (τ(t))‖ = ∆L0t+ ‖∇V (x)‖+

∫ t

0

∆L1

(
∆L0u+ ‖∇V (x)‖

)
exp

(
∆L1(t− u)

)
du.
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Inserting t = 1, we get the following:

‖∇V (x+)‖ ≤ ∆L0 + ‖∇V (x)‖+

∫ 1

0

∆L1

(
∆L0u+ ‖∇V (x)‖

)
exp

(
∆L1(1− u)

)
du

= −L0

L1
+

Å
L0

L1
+ ‖∇V (x)‖

ã
exp(∆L1).

This concludes the proof.

The rest of the section contains the proofs of the lemmas appearing in the proof of Theorem 2. Without loss of generality,
we may assume that the normalizing constant of the density of π is equal to 1. Thus, π(x) = e−V (x) and the following
lemma is true.

D.5 Proof of Lemma 5

Proof. By Assumption (poly,Q), we know that
∥∥∇V (x)

∥∥ ≤ Q(‖x‖). Thus, applying Taylor formula

V (x) =

∫ 1

0

〈∇V (tx), x〉dt+ V (0)

≤
∫ 1

0

‖∇V (tx)‖ ‖x‖dt+ V (0)

≤
∫ 1

0

Q(‖tx‖)‖x‖dt+ V (0).

Since the coefficients of Q are positive, one may verify that for every r ≥ 0

Q(r) ≤ Q(1)(rp + 1).

Therefore,

V (x) ≤
∫ 1

0

Q(1) (‖tx‖p + 1) ‖x‖dt+ V (0)

≤ Q(1)

Å‖x‖p+1

p+ 1
+ ‖x‖

ã
+ V (0).

Now, let us calculate KL(µ0 | π),

KL(µ0 | π) =

∫
Rd

log
(µ0

π
(x)
)
µ0(dx)

=

∫
Rd

log(µ0(x))µ0(x)dx+

∫
Rd
V (x)µ0(dx)

≤ d

2
log

Å
1

2Πe

ã
+

∫
Rd

ï
Q(1)

Å‖x‖p+1

p+ 1
+ ‖x‖

ã
+ V (0)

ò
µ0(dx).

Combining Lemma 6 with the inequality below

‖x‖ =

(
d∑
i=1

|xi|2
) 1

2

≤

(
d∑
i=1

|xi|

)2· 12

=

d∑
i=1

|xi|,

we obtain the following:

KL(µ0 | π) ≤ d

2
log

Å
1

2Πe

ã
+ V (0) +

Q(1)

p+ 1
· (2d)

p+1
2

√
Π

Γ

Å
p+ 2

2

ã
+ Q(1)

∫
Rd

d∑
i=1

|xi|µ0(dx)

=
d

2
log

Å
1

2Πe

ã
+ V (0) +

Q(1)

p+ 1
· (2d)

p+1
2

√
Π

Γ

Å
p+ 2

2

ã
+ Q(1)d

∫
R
|r| 1√

2Π
e−

r2

2 dr

=
d

2
log

Å
1

2Πe

ã
+ V (0) +

Q(1)(2d)
p+1
2 Γ

(
p+2

2

)
√

Π(p+ 1)
+ Q(1)d

…
2

Π
.

This concludes the proof.
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D.6 Proof of Lemma 6

Proof. By Jensen inequality we have

‖x‖m =

(
d∑
i=1

|xi|2
)m

2

= d
m
2

(
1

d

d∑
i=1

|xi|2
)m

2

≤ d
m−2

2

d∑
i=1

|xi|m.

Thus, we obtain ∫
Rd
‖x‖mµ0(dx) ≤ 1

(2Π)d/2

∫
Rd
d
m−2

2

d∑
i=1

|xi|m exp

Å
−‖x‖

2

2

ã
dx

≤ d
m−2

2

(2Π)d/2

d∑
i=1

∫
Rd
|xi|m exp

Å
−‖x‖

2

2

ã
dx

≤ d
m−2

2

√
2Π

d∑
i=1

∫
R
|xi|m exp

Å
−x

2
i

2

ã
dxi.

From Winkelbauer (2012), we know the m-th central absolute moment of the standard one-dimensional Gaussian is equal to
2m/2Γ((m+1)/2)/

√
Π. Thus, we obtain∫

Rd
‖x‖mµ0(x)dx ≤ d

m−2
2

√
2Π

d∑
i=1

∫
R
|xi|m exp

Å
−x

2
i

2

ã
dxi

≤ d
m
2

√
2Π

∫
R
|r|m exp

Å
−r

2

2

ã
dr

≤ (2d)
m
2

√
Π

Γ

Å
m+ 1

2

ã
.

E Miscellaneous

In this section, we present previously known auxiliary results that were mentioned in the paper. Some of the results are
proved, the others refer to their papers of origin.

E.1 Reproducing property

Here we remind you of the reproducing property: let f ∈ H0, then we have f(x) = 〈f(·), k(x, ·)〉H0
, if we choose

f(·) = k(y, ·) ∈ H0, then k(y, x) = 〈k(y, ·), k(x, ·)〉H0 .

Let us first use the reproducing property to calculate ‖k(x, ·)‖H0
. The definition of the norm in Hilbert spaces yields:

‖k(x, ·)‖2H0
= 〈k(x, ·), k(x, ·)〉H0 = k(x, x).

Now, let us proceed to ‖∂xik(x, ·)‖H0
. Let ei be the i-th standard basis of Rd. Then

〈∂xik(x, ·), ∂yik(y, ·)〉H0
= lim
ε1→0

lim
ε2→0

≠
k(x+ ε1ei, ·)− k(x, ·)

ε1
,
k(y + ε2ei, ·)− k(y, ·)

ε2

∑
H0

= lim
ε1→0

lim
ε2→0

k(x+ ε1ei, y + ε2ei)− k(x+ ε1ei, y)− k(x, y + ε2ei) + k(x, y)

ε1ε2

= lim
ε1→0

lim
ε2→0

(k(x+ ε1ei, y + ε2ei)− k(x+ ε1ei, y))− (k(x, y + ε2ei)− k(x, y))

ε1ε2

= lim
ε1→0

∂yik(x+ ε1ei, y)− ∂yik(x, y)

ε1
= ∂xi∂yik(x, y).

Setting x = y, we obtain ‖∂xik(x, ·)‖2H0
= ∂xi∂xik(x, x) =: ∂2

xi,xik(x, x), where the first ∂xi is operated on the first
variable of k(·, ·), the second ∂xi is operated on the second variable of k(·, ·).
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E.2 The generalized Tp inequality

The following lemma is from Bolley and Villani (2005). The proof is omitted.

Lemma 7. (Bolley and Villani, 2005, Corollary 2.3) Let Rd be the Euclidean space with its usual norm. Let p ≥ 1 and let π
be a probability measure on Rd. Assume that there exist x0 ∈ Rd and s > 0 such that

∫
Rd exp(s‖x0 − x‖p)π(dx) is finite.

Then

∀µ ∈ P(Rd), Wp(µ, π) ≤ λBV

[
KL(µ | π)

1
p +

Å
KL(µ | π)

2

ã 1
2p

]
, (28)

where

λBV := 2 inf
x0∈X,s>0

Å
1

s

Å
3

2
+ log

∫
Rd

exp(s‖x0 − x‖p)π(dx)

ãã 1
p

< +∞. (29)

We want to underline the fact that the constant here may depend on the dimension. Below, we explicit the dimension-
dependence of λBV for the general class of distributions π(x) ∝ exp(−‖x‖p) with p ≥ 1. It is straightforward the condition
of the lemma is satisfied for x0 = 0. Now, let us compute the objective function in (29). We start with the integral term:∫

x∈Rd
exp(s ‖x‖p)π(x)dx =

1

Z

∫
x∈Rd

exp(−(1− s) ‖x‖p)dx

=
1

Z
(1− s)−

d
p

∫
x∈Rd

exp(−‖x‖p)dx

= (1− s)−
d
p .

Inserting the previous formula into (29), we obtain

λBV : = 2 inf
x0∈Rd,s>0

Å
1

s

Å
3

2
+ log

∫
exp(s ‖x− x0‖p)dπ(x)

ãã 1
p

= 2 inf
s∈(0,1)

Å
3

2s
− d log(1− s)

ps

ã 1
p

≥ 2 inf
s∈(0,1)

Å
3

2s
+
d

p

ã 1
p

= 2d
1
p .

Thus, indeed the constant λBV can be dimension dependent.

E.3 Grönwall’s integral inequality

The following lemma is the integral form of Grönwall inequality from (Amann, 2011, Chapter II.).

Lemma 8 (Grönwall Inequality). Assume φ,B : [0, T ] → R are bounded non-negative measurable function and C :
[0, T ]→ R is a non-negative integrable function with the property that

φ(t) ≤ B(t) +

∫ t

0

C(τ)φ(τ)dτ for all t ∈ [0, T ] (30)

Then

φ(t) ≤ B(t) +

∫ t

0

B(s)C(s) exp

Ç∫ t

s

C(τ)dτ

å
ds for all t ∈ [0, T ]. (31)

E.4 Stein-Fisher information and weak convergence

We provide a sufficient condition on which limn→∞ IStein(µn | π) implies µn → π weakly. This condition can be found in
Gorham and Mackey (2017). Since Stein Fisher information IStein(· | π) depends on the target distribution π and the kernel
k(·, ·), we need the following two properties, respectively:
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1. π is distantly dissipative, that is κ0 , lim infr→∞ κ(r) > 0 with

κ(r) = inf

ß
2
〈∇V (x)−∇V (y), x− y〉

‖x− y‖2
: ‖x− y‖ = r

™
.

If V is strongly convex outside a compact set, then π is distantly dissipative, for instance V (x) = ‖x‖2+δ with δ ≥ 0.

2. k(·, ·) is an inverse multiquadratic kernel, i.e., k(x, y) =
(
c2 + ‖x− y‖2

)β for some c > 0 and β ∈ (−1, 0). It is easy
to check that Assumption (ker, B) is satisfied.

E.5 Proof of Remark 1

Chain rule implies ∫
Rd
∇ log

Å
µ(x)

π(x)

ã
k(x, ·)µ(dx)

=

∫
Rd
∇ log(µ(x))k(x, ·)µ(dx)−

∫
Rd
∇ log(π(x))k(x, ·)µ(dx)

=

∫
Rd
∇µ(x)k(x, ·)dx−

∫
Rd

log(π(x))∇xk(x, ·)µ(dx).

Since µ(x)→ 0, when ‖x‖ → +∞, the integration by parts yields∫
Rd
∇µ(x)k(x, ·)dx−

∫
Rd

log(π(x))∇xk(x, ·)µ(dx)

= −
∫
Rd
{µ(x)∇k(x, ·) + log(π(x))∇xk(x, ·)}µ(dx)

= gµ(·).

This concludes the proof.

F Experiments

We run some experiments to test the stability of the SVGD on distributions with (L0, L1)-smooth potential functions. The
model we choose is the one dimensional generalized Gaussian distributions:

πs,p(x) =
e−|

x−µ
s |

p

Z(s, p)
, with Z(s, p) =

2s

p
Γ

Å
1

p

ã
,

where Γ(·) is the well-known Gamma function. It can be calculated that Eπs,p [x] = µ and Varπs,p [X] = s
(

Γ( 3
p )/Γ( 1

p )
) 1

2 ,
see Achim et al. (2008).

In the experiments, µ = 2 and p varies between 2, 3, 4, 5. We choose s = 3
(

Γ( 1
p )/Γ( 3

p )
) 1

2 , that is the all the variances
are equal to 3. The set of initial samples

{
x0
i

}250

i=1
are chosen independently from N (−10, 1). Then we run SVGD with

the step-size γ = 0.5 for n = 250, 500, 1000 times respectively. The reproducing kernel is chosen to be k(x, y) =»
1

2Πe
− |x−y|

2

2 . The results are shown in Figure 1. We ran the experiments on Google Colab. The code can be found in
https://github.com/Iwillnottellyou/l0l1-SVGD.git.

https://colab.research.google.com/
https://github.com/Iwillnottellyou/l0l1-SVGD.git
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Figure 1: The performance of SVGD on πs,p. The blue dashed line is the target distribution πs,p, while the green line is the
distribution generated by SVGD. We observe that the SVGD is stable with respect to the parameter p.
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