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Abstract

The classification bandit problem aims to de-
termine whether a set of given K arms con-
tains at least L good arms or not. Here, an
arm is said to be good if its expected reward
is no less than a specified threshold. To solve
this problem, we introduce an asymptoti-
cally optimal algorithm, named P-tracking,
based on posterior sampling. Unlike previ-
ous asymptotically optimal algorithms that
require solving a linear programming prob-
lem with an exponentially large number of
constraints, P-tracking solves an equivalent
optimization problem that can be computed
in time linear in K. Additionally, unlike ex-
isting algorithms, P-tracking does not require
forced exploration steps. Empirical results
show that P-tracking outperforms existing al-
gorithms in sample efficiency.

1 INTRODUCTION

We consider an adaptive combinatorial exploration
problem based on a stochastic bandit setting, which
is called the classification bandit (Tabata et al., 2021).
This problem involves a set of K arms, and each arm
is associated with a reward distribution. The agent at
each time step chooses one of the arms and receives a
sample from the corresponding distribution. The goal
of the agent is to classify the model1 as a whole into
positive or negative. If there are L or more arms with
means at least a (predefined) threshold ξ, then the
model is defined to be positive. Otherwise, the model
is negative.

1We use the word model to refer a set of K (unknown)
distributions.
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The classification bandit problem is a versatile model
that can be applied to many real-world problems, in-
cluding the following two examples.
Example 1.1. (Cytodiagnosis, Helal et al. 2019) Sup-
pose a screening test for cytodiagnosis using a device
that requires high cost and long time for accurate mea-
surements such as Raman microscopy. In this test,
a pathological diagnosis is made based on whether the
ratio of malignant cells to the total number of cells in
the specimen exceeds a specified threshold. The malig-
nancy of each cell is quantified by averaging the ma-
lignancy measures of all pixels within the cell on the
Raman image. If the number of malignant cell is small
(i.e., the ratio below a certain threshold) under im-
mune system, a doctor may not necessarily diagnose
as the patient being at the fatal, malignant stage. How-
ever, if the number of malignant cells is high enough,
the patient is diagnosed as being at a certain stage re-
quiring further inspection.
Example 1.2. (Quality inspection) Suppose a quality
control that requires a verification of the overall quality
of items prior to shipment. An inspector, tasked with
this responsibility, selects a random sample of items to
manually inspect for defects at a factory. To minimize
bias in the random sampling, the inspector is required
to confirm that no more than L out of K items fail
to meet the desired quality, while ensuring the required
accuracy of inspection.

The two examples above are pure exploration problems
in which the goal is to determine the overall quality of
the set of populations using as few samples as possible.
Considering an affinity for these tasks, we deal with
the fixed confidence setting, in which the confidence
level δ ∈ (0, 1) is given, and the agent stops the the
sampling process immediately once his/her confidence
on the correct answer reaches 1− δ.

The classification bandit problem is a special instance
of general structured exploration problems (Huang
et al., 2017; Degenne and Koolen, 2019). In some class
of problems (including classification bandit problem),
general algorithms called C-Tracking and D-Tracking
(Garivier and Kaufmann, 2016; Degenne and Koolen,
2019) are known. These algorithms “track” the opti-
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mal allocation; while the optimal allocation requires
the true model parameters, these algorithms use plug-
in estimators instead. Although these tracking algo-
rithms are asymptotically optimal in a small δ regime,
they have two drawbacks. First, to stabilize the allo-
cation, C-Tracking and D-Tracking involve forced ex-
ploration over all arms, which does not necessarily bal-
ance the exploration and exploitation. Second, to de-
termine the allocation, these algorithms need to solve
a computationally intensive convex optimization for
each round. To address the second issue, Wang et al.
(2021) proposed an algorithm based on first-order op-
timization. Although this algorithm is free of convex
optimization, it requires solving linear programming
whose number of constraints is exponential in L in our
case.

Tabata et al. (2021) explored a class of problems that
is slightly more general than the classification bandit
problem considered in the paper. However, the algo-
rithm they proposed lacks regret analysis and is not
designed to be asymptotically optimal. The classifica-
tion bandit problem is a generalization of Sequential
Test for the Lowest Mean (Kaufmann et al., 2018) and
Bad Arm Existence Checking (Tabata et al., 2020),
which correspond to the case of L = K and L = 1,
respectively.

The classification bandit problem is also closely related
to several problems, such as the thresholding bandit
problem (Locatelli et al., 2016; Xu et al., 2020). The
goal of the thresholding bandit problem is to deter-
mine whether each arm is above or below the thresh-
old, which predicates the class (i.e., positive or nega-
tive) of the model. Therefore, the use of a threshold
bandit algorithm suffices for the classification bandits.
Although there is no exact inclusion relationship, solv-
ing the top-L subset selection problem (Kalyanakrish-
nan et al., 2012) usually suffices to solve the classifi-
cation bandit problem. At first glance, this seems to
imply that there is no particular demand for tailor-
ing an algorithm for the classification bandit problem.
However, as we show in this paper, if we focus on classi-
fication, the sample complexity of the problem is much
smaller than that for solving the thresholding bandit
problem. The sample complexity of the thresholding
bandit problem and the top-L subset selection prob-
lem is O(K log 1/δ), whereas the sample complexity of
the classification bandit problem is only O(L log 1/δ)
(resp. O((K − L) log 1/δ)) for “positive” (resp. “neg-
ative”) case as we show in this paper. In summary,
(1) C-Tracking and D-Tracking algorithms are feasi-
ble but not very computationally efficient and involve
forced exploration. (2) Thresholding bandit and top-L
subset selection algorithms are sample inefficient when
L < K. These facts incentivize us to invent an al-

gorithm that is optimized for the classification bandit
problem. The methodological contributions of this pa-
per are as follows:

• We characterize the sample complexity of the clas-
sification bandit problem. Although optimiza-
tions in the fixed confidence best arm identifica-
tion problem (Garivier and Kaufmann, 2016; De-
genne and Koolen, 2019) as well as many struc-
tured bandit problems (e.g., Magureanu et al.
(2014); Komiyama et al. (2015, 2016); Lattimore
and Szepesvári (2017)) are known as a form of
linear semi-infinite programming2. Solving such
an optimization for each round limits the utility
of the method. Instead, we propose an equivalent
discrete optimization that runs in Õ(K) time.

• We propose a posterior-tracking (P-Tracking) al-
gorithm that has an optimal sample complexity
when δ → +0. Similarly to C-Tracking and D-
Tracking, we follow the optimal allocation. Unlike
C-Tracking and D-Tracking, P-Tracking does not
require forced exploration. Using the posterior
sample instead of the empirical mean, P-Tracking
conducts implicit exploration.

• We conduct an extensive set of simulations. In
particular, we tested many different values of
L, K. We verify the advantage of P-Tracking
in terms of dependence on L (over thresholding
bandit algorithms and top-L identification algo-
rithms) as well as in terms of amount of forced ex-
ploration (over C-Tracking and D-Tracking that
are also asymptotically optimal).

A byproduct of our proposed method is the use of pos-
terior samples in fixed confidence structured bandit
problems. While posterior sampling is widely used to
balance exploration and exploitation in an online ob-
jective (i.e., Thompson sampling (TS) for the multi-
armed bandit problem), limited results are known
about its use in the best arm identification, partly due
to its challenge in the analysis. One of the well-known
versions of TS for the best arm identification is the top-
two Thompson sampling (TTTS Russo 2016; Shang
et al. 2020). However, TTTS is not directly applicable
to structured pure-exploration. More importantly, we
use TS in a different way than TTTS. While TTTS
uses posterior samples to (implicitly) calculate the op-
timal allocation, we use posterior sampling so that we
do not require forced exploration given an optimal al-
location. Such a use of posterior sampling potentially
benefits many other structured pure exploration prob-
lems.

2Linear programming with infinite number of con-
straints.
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2 CLASSIFICATION BANDITS

In this section, we formulate the Classification Bandit
problem. We give a notation list in Table A in the
supplementary material.

2.1 Problem Setting

Let K be the number of arms. The reward of each
arm i ∈ [K] := {1, 2, . . . , K} follows a distribution
with mean µi. In this paper, we assume that the dis-
tributions are Bernoulli. Parameters µ := {µi}K

i=1 ∈
(0, 1)K are unknown to the agent.
Definition 1 (good arm and bad arm). For a given
threshold ξ ∈ (0, 1), we define an arm with its mean
larger than or equal to (smaller than) ξ as a good arm
(bad arm), respectively.

We consider the following adaptive setting, which is
common in the structured pure exploration literature.
For any time t ≥ 1, the agent chooses an arm it from
[K] = {1, 2, . . . , K}, and observes a reward from the
underlying distribution associated with it. The agent
can stop anytime and returns “positive” or “negative”
upon stopping time τ . We use the term algorithm to
describe the strategy for choosing it and τ that the
agent uses.
Definition 2 (δ-correct). An algorithm is called δ-
correct if the algorithm returns a correct answer “pos-
itive” or “negative” with probability at least 1− δ.

In the following, we limit our interest to δ-correct al-
gorithms. That is, we consider the following problem.
Problem 1. For given L ∈ [K], δ ∈ (0, 0.5), and
the threshold ξ, if the number of good arms is larger
than or equal to L, answer “positive” with probability
at least 1 − δ as few samples as possible. Otherwise,
answer “negative” with probability at least 1− δ as few
samples as possible.

3 OPTIMAL ALLOCATION

In this section, we discuss the asymptotically optimal
allocation of arm selection and its computation.

First, we denote the number of good arms with param-
eters µ by M̂(µ), that is, M̂(µ) =

∑
i∈[K] 1{µi ≥ ξ}.

For the vector µ of the arms’ expected rewards, a set
Alt(µ) is defined as

Alt(µ) =
{
{ν | M̂(ν) < L} (M̂(µ) ≥ L)
{ν | M̂(ν) ≥ L} (M̂(µ) < L),

that is, the set of models ν for which the answer of
Problem 1 is negative (resp. positive) when the true
answer is positive (resp. negative).

3.1 Lower Bound

Recent papers (Garivier and Kaufmann, 2016; De-
genne and Koolen, 2019) shows that we can construct
an asymptotic lower bound of the expected stopping
time τδ for structured pure-exploration problems. In
particular, the bound is represented as follows:

lim inf
δ→0

Eµ[τδ]
log (1/δ) ≥

(
sup

w∈∆K

inf
µ′∈Alt(µ)

K∑
i=1

wid(µi, µ′
i)
)−1

,

(1)

where ∆K is {w ∈ [0, 1]K :
∑K

i=1 wi = 1}, and d(x, y)
is a Kullback-Leibler divergence of two Bernoulli dis-
tributions with mean x and y.

The maximizer w in the above expression corresponds
to the optimal allocation for arm selection, that is,
when the arms are chosen so that the number of selec-
tions of each arm i is proportional to wi, the stopping
time is asymptotically optimal for δ → 0.

As described in Wang et al. (2021), RHS of equation 1
is a convex programming. However, it requires care on
the discontinuities, and the method proposed by Wang
et al. (2021) requires solving a linear programming of
a size exponential to L. In the following, we show a
more explicit formula on the solution of this problem.

3.2 Equivalent Optimization

For a set of estimated parameters ν = (ν1, ν2, . . . , νK).
We denote the sorted indices by ν(1) ≥ ν(2) ≥ . . . ≥
ν(L) ≥ . . . ≥ ν(M̂(ν)) ≥ ξ > ν(M̂(ν)+1) ≥ . . . ≥ ν(K).

Here, we assume M̂(ν) ≥ L (positive model) since the
following remark holds.
Remark 1. In the case of M̂(ν) < L (negative), we
are able to convert the model into an equivalent positive
model with flipped variables (ν′, ξ′, L′) such that

ν′
i = 1− νi,

ξ′ = 1− ξ,

L′ = K − L + 1.

Consider the following optimization problem:

min
S=(S1,S2,...,SK)

K∑
i=1

Si

subject to (2)

min
U⊆[M̂(ν)]:|U |=M̂(ν)−L+1

∑
i∈U

S(i)d(ν(i), ξ) ≥ 1

Si ≥ 0 (i = 1, . . . , K).
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The solution of the optimization of equation 2 can be
given as an explicit formula as shown by the following
theorem.
Theorem 1. Let

L∗(ν) = arg min
l∈[M̂(ν)]\[L−1]

1
l − L + 1

l∑
i=1

1
d(ν(i), ξ) . (3)

S(ν) defined as follows is an optimal solution3 of the
optimization problem of equation 2:

S(i)(ν) =
{

1
L∗(ν)−L+1

1
d(ν(i),ξ) , if i ≤ L∗(ν),

0 otherwise.
(4)

and the optimal value is

Q∗(ν) = 1
L∗(ν)− L + 1

L∗(ν)∑
i=1

1
d(ν(i), ξ) . (5)

In the context where the plug-in parameter is clear
(usually, ν = µ), we omit ν. For example, we use
S = (S1, S2, . . . , SK) to describe the optimal solution.

The equivalence of equation 2 and the right-hand side
of inequality 1 is guaranteed by the following proposi-
tion.
Proposition 2. The solution S(µ) of equation 2 for
ν = µ and the solution w∗

1 , . . . , w∗
K of the optimization

problem maxw∈∆K
infµ′∈Alt(µ)

∑K
i=1 wid(µi, µ′

i) have
relation w∗

i = Si(µ)/Q∗(µ).

Theorem 1 and Proposition 2 state that the optimal
sample complexity of the classification bandit prob-
lem is Q∗(µ) log(1/δ), which is achieved when we draw
each arm proportional to w∗

i .
Remark 2. (implication of the optimization) The
case of L∗(ν) = L corresponds to the top-L identifi-
cation: It draws i-th best arm for log(1/δ)/d(ν(i), ξ),
which corresponds to identifying it as a good arm. The
more interesting case is L∗(ν) > L. In this case, none
of the top-L arms are identified as a good arm, but one
can derive that there are at least L good arms with a
confidence level δ.
Remark 3. (O(K log K) runtime, O(L) sample com-
plexity) Unlike the original optimization, the alterna-
tive optimization of equation 4 no longer requires a
convex optimization. We can run the alternative op-
timization in O(K log K) time in the following proce-
dure: First, we sort the means to obtain ν(1) ≥ ν(2) ≥
· · · ≥ ν(K), which runs in O(K log K) time. Second,
let

Ql = 1
l − L + 1

l∑
i=1

1
d(ν(i), ξ) .

3While the optimal solution can be non-unique, in the
analysis (section 4) we consider the case of the unique op-
timal solution.

Algorithm 1 P-Tracking for Classification Bandit
Require: K, ξ, L, δ
Ensure: “positive” (if |{i ∈ [K] | µi ≥ ξ}| ≥ L),

“negative” (otherwise) with prob. at least 1− δ
1: ai ← 1, bi ← 1 for i = 1, 2, . . . , K
2: for t = 1, 2, . . . do
3: θi(t) ∼ Beta(ai, bi) for i ∈ [K]
4: if

∑
i 1[θi(t) ≥ ξ] ≥ L then

5: S(θ(t))← PO(K, ξ, L, θi(t))
6: else
7: S(θ(t)) ← PO(K, 1 − ξ, K − L + 1, (1 −

θi(t))i∈[K])
8: it ← arg maxi Si(θ(t))/Ni(t) (posterior sam-

pling)
9: ait ← ait + rt; bit ← bit + 1− rt

10: if
∑

i 1[µ̂i(t) ≥ ξ] ≥ L then
11: if SC(K, ξ, L, (µ̂i(t))i∈[K]) = “true” then
12: Return “positive”
13: else
14: if SC(K, 1− ξ, K −L + 1, (1− µ̂i(t))i∈[K])

= “true” then
15: Return “negative”

Algorithm 2 PosteriorOptimization (PO)
Require: K, ξ, L, (θi(t))i∈[K]
1: Return S(θ(t))← Solution of equation 4

We first start with l = L and compute QL, and re-
peat comparing Ql and Ql+1 as long as l < M̂(ν) and
Ql+1 < Ql holds.4 This yields Q∗(µ) = arg minl Ql

and runs in O(K) time.

Note also that the above discussion implies the sample
complexity of Q∗(µ) ≤ QL(µ) = O(L log(1/δ)/∆2

L),
where ∆2

L = (ν(L) − ξ)2.

The optimization above requires the true parameters
µ that requires estimation via some exploration. In
the next section, we propose P-Tracking that adopts
posterior sampling for balancing exploration and ex-
ploitation.

4 P-TRACKING

In this section, we introduce Posterior Tracking
(P-Tracking, Algorithm 1), a conceptually simple
Bayesian algorithm. Following the literature on the
Bayesian multi-armed bandit problem (i.e., Thomp-
son sampling), we adopt the uniform prior Beta(1, 1).
Regarding arm selection, it calculates S(θ) based on a

4Parameter l satisfying this condition is guaranteed to
be L∗(ν) by Proposition 12(1) and (2) in Supplementary
Material.
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Algorithm 3 StoppingCondition (SC)
Require: K, ξ, L, (µ̂i(t))i∈[K]
Ensure: “true” (if L positive arms), “false” (other-

wise).

1: Zi ←

{
Ni(t)d(µ̂i, ξ), if µ̂i > ξ

0, otherwise
.

2: Sort them such that Z(1) ≥ Z(2) ≥ · · · ≥ Z(K).
3: if

∑K
k=L Z(k) ≥ β(t, δ) then

4: Return “true”
5: Return “false”

posterior sample θ, and tries to draw arms proportion-
ally to S(θ) (Algorithm 2). Once we receive a reward,
we update the posterior of the selected arm. Regard-
ing the stopping condition, it stops once the empirical
log-likelihood, which is defined in terms of the empir-
ical means, reaches β(t, δ) (Algorithm 3). The value
β(t, δ) should be an anytime confidence bound β(t, δ),
which satisfies the following properties.

P

 ⋃
t≥1, Î∈2[K]

∑
i∈Î

Ni(t)d(µ̂i(t), µi) ≥ β(t, δ)


 ≤ δ

(6)

∃C1, C2 > 0 β(t, δ) ≤ C1 + log
(

C2 log(t + 1)
δ

)
,

(7)

where Ni(t) =
∑

s<t 1[it = i] and µ̂i(t) =
∑

s<t 1[it =
i, rt = 1]/Ni(t) are the number of selections and the
empirical mean of arm i by time t, respectively. An
example of such an anytime confidence bound is found
in Proposition 21 in Kaufmann and Koolen (2021).

In the following, we derive the correctness (Theorem
5) and an optimal stopping time (Theorem 6) of Al-
gorithm 1.

4.1 Assumptions on the True Parameters

In the following, we state the assumptions on the true
parameters µ = (µ1, µ2, . . . , µK). Let M := M̂(µ).
Assumption 1. (True positive) We assume M ≥ L
(i.e., positive model).5 Without loss of generality, we
assume the true parameters µ satisfies µ1 ≥ µ2 ≥ µ3 ≥
· · · ≥ µM > ξ > µM+1 ≥ · · · ≥ µK .

In view of Remark 1, Assumption 1 can be posed with-
out loss of generality because a true negative model is
flipped into a true positive model.
Assumption 2. (Identifiable parameters) we assume
that no parameter is exactly the same as ξ. That is,
µi ̸= ξ for all i ∈ [K].

5We also drop µ for many functions.

Assumption 3. (Non-degenerate solution) We as-
sume that the solution S(µ) is unique.

Assumption 3 implies the existence of the following
margin constant that guarantees the quality of the so-
lution. For model ν, let the “solution set” Î(ν) =
{i ∈ [K] : Si(ν) > 0}, which is the subset of good
arms {i ∈ [K] : νi > ξ} where the optimal solution in-
cludes drawing these arms. We also denote I = Î(µ)
to be the true solution set.
Remark 4. (Existence of margin constant) For a
Dmin > 0, let

ΘDmin =
{

ν : ∀i∈[K] |νi − µi| ≤ Dmin
}

. (8)

By choosing a sufficiently small6 Dmin > 0, for any
ν ∈ ΘDmin , i ∈ [K], it holds

1
2Si(µ) ≤ Si(ν) ≤ 2Si(µ). (9)

Intuitively speaking, if |νi − µi| ≤ Dmin holds for all
arms, then the solution S(ν) is a constant-ratio ap-
proximation of the true solution S(µ). Note that equa-
tion 9 implies Î(ν) = I. Remark 4 is trivially derived
by using the uniqueness and continuity of the solution
S(µ).
Definition 3. (Subset margin region) We define the
region

ΘDmin,I =
{

ν :
⋂
i∈I
{|νi − µi| ≤ Dmin}

}
.

Definition 3 states that parameter νi of arms in I
are close to the true parameter µi. By definition,
ΘDmin,I ⊃ ΘDmin .

In fact, Remark 4 can be strengthened to the following
lemma.
Lemma 3. (Non-interference) Let i /∈ I. Let ν ∈
ΘDmin,I and νi ≤ µi + Dmin. Then, it holds that

Si(ν) = 0.

Lemma 3 states that if the arms in I are Dmin-accurate
and arm i /∈ I is not very good, then the arm i is
not included in the optimal set regardless of the other
arms.

4.2 Characterization on the Posterior Sample

Lemma 4. (geometry) There exists a (distribution-
dependent) constant C = C(µ) such that, for any µ̂(t),

6Here, the choice of Dmin depends on µ but is indepen-
dent of the confidence level δ. Following the literature, we
consider µ as a set of constants.
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we have

P [θ(t) ∈ ΘDmin ] ≥ C(µ) exp

− ∑
i∈[K]

Ni(t)d(µ̂i(t), µi)

 .

Lemma 4 is one of the most important lemmas that
guarantees the amount of exploration in posterior sam-
pling. Essentially, it states if the underestimation of
the arms is of q-th quantile7, then with probability
Ω(1/q), the posterior θ(t) is around the true value µ.
This property is used to guarantee the amount of ex-
ploration.

4.3 Main Theorems

This section introduces two main theorems. Theorem
5 states that Algorithm 1 is δ-correct. Theorem 6
shows the optimal sample complexity of the algorithm.
Theorem 5. (Main theorem 1, correctness of the out-
put) With probability at least 1− δ, Algorithm 1 stops
and outputs the correct classification result (i.e., posi-
tive/negative).

Proof of Theorem 5. We defer the fact that the al-
gorithm stops almost surely to Lemma 11. Assum-
ing that, we here show that the probability algorithm
makes an incorrect identification is at most δ. Let

Zflip
i =

{
Ni(t)d(µ̂i, ξ), if µ̂i < ξ

0, otherwise
.

Let the sorted values be

Zflip
(1) (t) ≥ Zflip

(2) (t) ≥ · · · ≥ Zflip
(K)(t).

The algorithm outputs “negative” if

K∑
i=K−L+1

Zflip
(i) (t) ≥ β(t, δ). (10)

Here, we have the following:{
K∑

i=K−L+1
Zflip

(i) (t) ≥ β(t, δ)
}
⊂

∑
i∈[L]

Zflip
i (t) ≥ β(t, δ)


(equation 10 implies that

∑
i∈S Zflip

i (t) ≥ β(t, δ) holds
for any S ⊂ [K] : |S| ≤ L)

⊂

∑
i∈[L]

Ni(t)d(µ̂i(t), µi) ≥ β(t, δ)

 (11)

(by µ̂i < ξ < µi for i ∈ [L]). (12)

7Here, q = exp
(∑

i∈[K] Ni(t)d(µ̂i(t), µi)
)

The anytime confidence bound of equation 6 implies
that

P

⋃
t≥1

∑
i∈[L]

Ni(t)d(µ̂i(t), µi) ≥ β(t, δ)


 ≤ δ,

which states that the stopping with “negative” occurs
at most probability δ.

Theorem 6. (Main theorem 2, sample complexity)
Let τ be the stopping time of the algorithm (i.e., the
round when the algorithm returns “positive” or “nega-
tive”). Then,

E[τ ] ≤ Q∗(µ) log(1/δ) + o(1/δ). (13)

Theorem 6 bounds the expected number of samples
required by the algorithm.

Proof of Theorem 6. First, we define the following
events. Let D(δ) =

√
log(1/δ). Let the events be

D(t) =

∑
i∈[K]

Ni(t)d(µ̂i(t), µi) ≥ log(D(δ))

 , (14)

Ei(t) = {it = i} , (15)

E(t) =
⋃
i/∈I

Ei(t), (16)

H(t) = {θ(t), µ̂(t) ∈ ΘDmin,I} . (17)

Event D(t) states that the empirical divergence is large
enough, which should not occur frequently (i.e., o(1) as
δ → 0). Event E(t) states that one of the arms outside
the solution set I is drawn. Event H(t) states that the
posterior solution set is a constant ratio approximation
of the true solution. For an event A, we use Ac to
denote the complement event.

Let Cbnd > 0 be a constant that we define later in
Lemma 11. Roughly speaking, the algorithm is ter-
minated in Cbnd log(1/δ) + O(1) rounds almost surely.
We have

τ =
∑

t

1[t ≤ τ ] (18)

=
∑

t≤Cbnd log(1/δ)

1[t ≤ τ ] +
∑

t>Cbnd log(1/δ)

1[t ≤ τ ]

(19)

=
∑

t≤Cbnd log(1/δ)

1[t ≤ τ,Dc(t), Ec(t),H(t)] (20)

+
∑

t≤Cbnd log(1/δ)

1[t ≤ τ,Dc(t), E(t),H(t)] (21)

+
∑

t≤Cbnd log(1/δ)

1[t ≤ τ,D(t)] (22)
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+
∑

t≤Cbnd log(1/δ)

1[t ≤ τ,Dc(t),Hc(t)] (23)

+
∑

t>Cbnd log(1/δ)

1[t ≤ τ ]. (24)

Lemma 7. (Leading term)∑
t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t), Ec(t),H(t)]

≤ Q∗(µ) log(1/δ) + o(log(1/δ)). (25)

Lemma 7 is the leading term assuming that the model
parameters are accurately estimated.

Lemma 8. (Drawing nonsolution arms) We have∑
t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t), E(t),H(t)] = o(log(1/δ)).

(26)

Lemma 8 bounds the case where one of the nonsolution
arms I is drawn.

Lemma 9. (Unusual divergence) We have∑
t≤Cbnd log(1/δ)

P[t ≤ τ,D(t)] = o(log(1/δ)). (27)

Lemma 9 considers the case where the empirical diver-
gence is large, which is infrequent, and thus does not
affect the leading O(log(1/δ)) term.

Lemma 10. (Unsaturated rounds)∑
t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t),Hc(t)] = o(log(1/δ)).

(28)

Lemma 10 bounds the case that optimal set is under-
sampled.

Lemma 11. (Drawing more than O(log δ−1) times)
There exists a constant Cbnd such that∑

t>Cbnd log(1/δ)

P[t ≤ τ ] = O(1). (29)

Lemma 11 bounds the case where the stopping time τ
is unusually large.

Lemmas 7–11 in the appendix bound each term of
equation 24 in expectation. Applying these lemmas
immediately yields equation 13, and thus the proof is
completed.

5 EXPERIMENTAL RESULTS

We conducted experiments with artificial data with
K = 100 arms. We use β(t, δ) = log

(
log (t+1)

δ

)
and

δ is set to 10−16 and ξ is set to 0.5. Although this
choice of β(t, δ) does not guarantee the δ-correctness,
it has been used in existing papers such as Garivier and
Kaufmann (2016); Wang et al. (2021), and we follow
them. To make the comparison fair, we use the same
bound and confidence level among all algorithms.

To compare P-Tracking with existing algorithms, we
implemented C-Tracking, D-Tracking (Garivier and
Kaufmann, 2016), Thompson sampling-CB (Tabata
et al., 2021), LUCB (Kalyanakrishnan et al., 2012),
UGapE (Gabillon et al., 2012), APT (Locatelli et al.,
2016), and HDoC (Kano et al., 2019). We modified
some of them for a fair comparison. For C-Tracking
and D-Tracking, we adapted the optimization based on
S(µ̂) that we have proposed. For Thompson sampling-
CB, LUCB, UGapE, APT and HDoC, we changed the
stopping condition so that each algorithm does not
pull an arm after it is identified as good or bad and
stops when it finds the L good arms or K −L + 1 bad
arms. For each arm i, when Ni(t)d(µ̂, ξ) ≥ β(t, δ) is
satisfied, that arm i is classified as good or bad de-
pending on whether µ̂ > ξ or µ̂ < ξ. The parameters
of LUCB and UGapE were set to find the top-L arms
among K arms. Whenever good arm is found, that
arm is eliminated from the candidates and L is decre-
mented.8 Ties are broken by choosing the arm with
the lowest index.

We tested several values of L, and the number of
good arms M for each of K = 100. We set the
mean reward of each arm so that µ1, µ2, . . . , µK−M

and µK−M+1, µK−M+2, . . . , µK are equally spaced, re-
spectively. Here, we did not assign µi in the interval
(ξ − 0.05, ξ + 0.05) = (0.45, 0.55) to avoid a very large
sample complexity. In summary, the value of µi is set
as follows:

µi =
{

0.45i
K−M−1 , i ≤ K −M

0.55 + 0.45(i−K+M−1)
M−1 , i ≥ K −M + 1

.

Figure 1 shows the average and standard deviation of
stopping times for 100 runs of each algorithm for differ-
ent L and M . P-Tracking consistently outperforms (1)

8Sometimes, the value L is equal to the number of the
remaining arms. This happens when K − L bad arms
are identified (note that K − L + 1 bad arms should
be identified to satisfy the stopping condition). If this
is the case, LUCB and UGapE cannot choose the next
arm because they require at least L + 1 arms among
which they choose L. In this case, we decrement L to
(the number of remaining arms) − 1 so that the algorithm
does not crash.
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(a) K = 100, L = 20 (b) K = 100, L = 40 (c) K = 100, L = 60 (d) K = 100, L = 80

(e) K = 100, L = 20 (f) K = 100, L = 40 (g) K = 100, L = 60 (h) K = 100, L = 80

Figure 1: Stopping time of each algorithm for K = 100. We tested K = 100, L = 20, 40, 60, 80 and the number
of good arms M = 30, 50, 70. (a)-(d) P-Tracking and the other algorithms designed for the classification bandit
problem. (e)-(h) P-Tracking and the algorithms with suboptimal sample complexity.
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(a) P-Tracking
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(b) C-Tracking
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(c) D-Tracking
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(d) Thompson sampling-CB
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(e) UGapE
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(f) LUCB (g) APT

0 2500 5000
time round

0

20

40

60

80

ru
n

K = 100, L = 20, M = 30

0.0

0.2

0.4

0.6

0.8

1.0

(h) HDoC

Figure 2: Heat maps of arm selection of each algorithm: each x axis corresponds to time step t and each y axis
corresponds to the number of each run. Note the range of time step in each figure differs to each other. The color
indicated the mean reward µi of the chosen arm at that time. (a) Initially, P-Tracking draws 70 bad arms and
30 good arms evenly, gradually reducing the number of bad arm choices. The exploration is distributed evenly
thanks to randomized exploration. (b) C-Tracking conducts exploration of ratio 2/

√
K2 + t, which is visualized

by the stripes. (c) D-Tracking initiates forced exploration after the round t :
√

t ≥ K/2.

Thompson sampling-CB, UGapE, LUCB, APT, and
HDoc that do not have asymptotically optimal sample
complexity, as well as (2) C-Tracking and D-Tracking

that have an asymptotically optimal sample complex-
ity.

Figure 2 shows which arm is chosen by each algorithm
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(a) K = 100, M = 30 (b) K = 100, M = 50 (c) K = 100, M = 70

Figure 3: Stopping time of each algorithm for K = 100, where µi is set to 0.4 for each i = 1, 2, ..., K−M and 0.6
for each i = K −M + 1, K −M + 2, ..., K. The advantage of P-Tracking is particularly noticeable when |M −L|
is large.

in each time round t over 100 independent runs. One
can see that forced exploration in C-Tracking and D-
Tracking compromises their performance even with a
very small δ. We also conducted experiments with
K = 20, and the results are essentially the same as
those obtained with K = 100. These results are pre-
sented in the Supplemental Material.

In order to demonstrate the advantage of P-Tracking
with respect to the dependency on L over algorithms
designed for other purposes such as best arm identifi-
cation, we also conducted experiments in the setting
where all the M good arms has expected mean 0.6,
and all the K −M bad arms have expected mean 0.4.
The result is shown in the fig. 3. P-Tracking stops ear-
lier when L deviates from M , while the other methods
exhibit less variation.

6 CONCLUSION

We have considered the classification bandit problem
where the goal is to judge whether there are enough
good arms or not. We have introduced P-Tracking
and show its advantage in theory and empirical perfor-
mance. We show that an equivalent optimization for
determining the optimal allocation runs in O(K log K)
time. As a result, P-Tracking runs computationally
efficiently. Possible future work includes expanding
the use of posterior sampling algorithm in a wider class
of structured pure-exploration problems.

References

Degenne, R. and Koolen, W. M. (2019). Pure
exploration with multiple correct answers. In
Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, volume 32.

Gabillon, V., Ghavamzadeh, M., and Lazaric, A.
(2012). Best arm identification: A unified approach

to fixed budget and fixed confidence. Advances in
Neural Information Processing Systems, 25.

Garivier, A. and Kaufmann, E. (2016). Op-
timal best arm identification with fixed confi-
dence. In Proceedings of the 29th Conference on
Learning Theory, COLT 2016, volume 49 of JMLR
Workshop and Conference Proceedings, pages 998–
1027. JMLR.org.

Helal, K. M., Taylor, J. N., Cahyadi, H., Okajima,
A., Tabata, K., Itoh, Y., Tanaka, H., Fujita, K.,
Harada, Y., and Komatsuzaki, T. (2019). Ra-
man spectroscopic histology using machine learning
for nonalcoholic fatty liver disease. FEBS Letters,
593(18):2535–2544.

Huang, R., Ajallooeian, M. M., Szepesvári, C., and
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Supplementary Material:
Posterior Tracking Algorithm for Classification Bandits

A NOTATION

The following table summarizes our notation.

symbol definition
K number of the arms
it arm drawn at round t

[K] = {1, 2, . . . , K}
µ ∈ (0, 1)K true model parameters
µi i-th component of µ

µ̂(t) ∈ [0, 1]K empirical means
µ̂i(t) i-th component of µ̂(t)
θ(t) ∈ (0, 1)K posterior sample
θi(t) i-th component of θ(t)
δ ∈ (0, 1/2) required confidence level
d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q))
M̂(ν) = |{i ∈ [K] : νi ≥ ξ}|
M = M̂(µ)
L model parameter (if M ≥ L, then the model is identified as positive)
I = {i ∈ [K] : Si(µ) > 0}
L∗ ∈ {L, L + 1, L + 2, . . . , M} = |I|
N(CG, δ) min(CG, Cmin(δ))
β(t, δ) anytime confidence bound (equation 6)
Dmin > 0 a sufficiently small constant (Remark 4)
ΘDmin ⊂ (0, 1)K defined in Remark 4
ΘDmin,I ⊂ ΘDmin defined in Definition 3
Cbnd > 0 a constant such that the algorithm stops

before Cbnd log(1/δ) (defined in Lemma 11)
Q∗(µ) =

∑
i Si(µ)
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B LEMMAS

B.1 Proof of Proposition 2

Proof of Proposition 2. First, we consider the following optimization problem instead of Problem (2):

min
S=(S1,S2,...,SK )

K∑
i=1

Si

subject to (30)

inf
µ′∈Alt(µ)

K∑
i=1

Sid(µi, µ′
i) ≥ 1

Si ≥ 0 (i = 1, . . . , K).

We show that w∗
i = S∗

i /
∑K

i=1 S∗
i (i = 1, . . . , K) holds for the solution S∗

1 , . . . , S∗
K of this problem, and

K∑
i=1

S∗
i =

(
max

w∈∆K

inf
µ′∈Alt(µ)

K∑
i=1

wid(µi, µ′
i)
)−1

(31)

also holds for the optimal value
∑K

i=1 S∗
i of this problem.

The solution S∗
1 , . . . , S∗

K of (30) satisfies infµ′∈Alt(µ)
∑K

i=1 S∗
i d(µi, µ′

i) = 1 because if
infµ′∈Alt(µ)

∑K
i=1 S∗

i d(µi, µ′
i) > 1, then

∑K
i=1 Si defined by Si = S∗

i

infµ′∈Alt(µ)
∑K

i=1
S∗

i
d(µi,µ′

i
)

(i = 1, . . . , K)

is smaller than
∑K

i=1 S∗
i , which contradicts the fact that S∗

1 , . . . , S∗
K is a solution of (30). Furthermore, there

are no S1, . . . , SK with
∑K

i=1 Si =
∑K

i=1 S∗
i that satisfies infµ′∈Alt(µ)

∑K
i=1 Sid(µi, µ′

i) > 1 by the similar reason.
This means that T ∗ =

∑K
i=1 S∗

i is a solution of equation

max
S∈T ∆K

inf
µ′∈Alt(µ)

K∑
i=1

Sid(µi, µ′
i) = 1 (32)

for T , and S∗
1 , . . . , S∗

K is the solution of maxS∈T ∗∆K
infµ′∈Alt(µ)

∑K
i=1 Sid(µi, µ′

i). Since µ′ ̸= µ for µ′ ∈ Alt(µ),
f(T ) = maxS∈T ∆K

infµ′∈Alt(µ)
∑K

i=1 Sid(µi, µ′
i) is a strictly increasing function of T for T > 0, the so-

lution T ∗ of Eq. (32) coincides with the optimal value
∑K

i=1 S∗
i of (30), and the solution S′

1, . . . , S′
K of

maxS∈T ∗∆K
infµ′∈Alt(µ)

∑K
i=1 Sid(µi, µ′

i) is also a solution of (30). Thus, solving optimization problem (30)
for the optimal value

∑K
i=1 S∗

i and the solution S∗
1 , . . . , S∗

K is equivalent to solving Eq. (32) for the solution
T ∗, S∗

1 , . . . , S∗
K .

Trivially, the solution w∗
1 , . . . , w∗

K of maxw∈∆K
infµ′∈Alt(µ)

∑K
i=1 wid(µi, µ′

i) and the solution T ∗, S∗
1 , . . . , S∗

K of
(32) have a relation w∗

i = S∗
i /T ∗, and

T ∗ max
w∈∆K

inf
µ′∈Alt(µ)

K∑
i=1

wid(µi, µ′
i) = max

Si∈T ∗∆K

inf
µ′∈Alt(µ)

K∑
i=1

Sid(µi, µ′
i) = 1

holds, which implies Eq. (31).

Next, we show the equivalence of Problems (2) and (30). To show the equivalence, we prove the following
equation:

inf
µ′∈Alt(µ)

K∑
i=1

Sid(µi, µ′
i) = min

U ⊆ [M ],
|U | = M − L + 1

∑
i∈U

S(i)d(µ(i), ξ) (33)

for M = M̂(µ). Note that (i) is the index j of the ith largest parameter µj , that is, µ(1) ≥ µ(2) ≥ · · · ≥ µ(K).
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Let U denote a family of subsets U of [K] with |U | ≥ K − L + 1. Define V (µ′) as V (µ′) = {i | µ′
i < ξ}. Then,

Alt(µ) =
⋃

U∈U
{µ′ | V (µ′) = U}

holds. Let UM = {U | |U | = M − L + 1, U ⊆ {(i) | i ∈ [M ]}}. Then, Eq. (33) is rewritten as

inf
µ′∈Alt(µ)

K∑
i=1

Sid(µi, µ′
i) = min

U∈UM

∑
i∈U

Sid(µi, ξ). (34)

Note that UM := {U ⊆ [K] | U = UM ∪ {i | µi < ξ} for some UM ∈ UM} are a subset of U.

Let DS(µ′) =
∑K

i=1 Sid(µi, µ′
i) and define µU as µU = arg infµ′:V (µ′)=U DS(µ′). Then, for any S =

(S1, . . . , SK) : S1, . . . , SK ≥ 0,

(µU )i =
{

µi (µi < ξ, i ∈ U or µi ≥ ξ, i /∈ U)
ξ (µi ≥ ξ, i ∈ U or µi < ξ, i /∈ U)

holds. Thus, for any U ∈ U

inf
µ′:V (µ′)=U

DS(µ′) = DS(µU ) =
∑

i: µi ≥ ξ, i ∈ U or
µi < ξ, i /∈ U

Sid(µi, ξ)

holds. Let U ′ ∈ UM be U ′ = UM ∪ {i | µi < ξ} with UM ∈ UM satisfying UM ⊆ {i | µi ≥ ξ, i ∈ U}, then

DS(µU ) =
∑

i: µi ≥ ξ, i ∈ U or
µi < ξ, i /∈ U

Sid(µi, ξ)

≥
∑

i:µi≥ξ,i∈U

Sid(µi, ξ)

≥
∑

i∈UM

Sid(µi, ξ) = DS(µU ′)

holds. Therefore,

inf
µ′∈Alt(µ)

K∑
i=1

Sid(µi, µ′
i) = min

U∈U
inf

µ′:V (µ′)=U
DS(µ′) = min

U∈UM

DS(µU ) = min
UM ∈UM

∑
i∈UM

Sid(µi, ξ)

holds.

B.2 Proof of Theorem 1

Proposition 12. Let L and M be positive integers with 0 < L ≤M . For 0 < C1 ≤ C2 ≤ · · · ≤ CM , define l∗ as

l∗ = arg min
l∈{L,L+1,...,M}

1
l − L + 1

l∑
i=1

Ci.

Then, the followings hold. If l∗ is unique, Ineq. (1),(2) and (3) hold strictly.

(1) 1
l∗−L+1

∑l∗

i=1 Ci ≥ Cl for l = 1, . . . , l∗

(2) 1
l∗−L+1

∑l∗

i=1 Ci ≤ Cl for l = l∗ + 1, . . . , M

(3) 1
l∗−L+1−|U |

∑
i∈[l∗]\U Ci ≥ Cl for U ⊆ [l∗] with |U | ≤ l∗ − L and l = 1, . . . , l∗
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(4) For unique l∗ < M ,

l∗ < l⇔ ∃l′ ∈ {L, L + 1, . . . , l − 1}

s.t. 1
l′ − L + 1

l′∑
i=1

Cj < Cl. (35)

Proof of Proposition 12. Unique-l∗ case proofs for the strict versions of Ineq. (1),(2) and (3) can be obtained
from the following proofs by replacing “≤” and “≥” with “<” and “>”, respectively.

(Proof of (1)) Ineq. (1) trivially holds for l∗ = L. Assume that L < l∗. By the definition of l∗,

1
l∗ − L

l∗−1∑
i=1

Ci ≥
1

l∗ − L + 1

l∗∑
i=1

Ci ⇔
l∗−1∑
i=1

Ci ≥ (l∗ − L)Cl∗

⇔
l∗∑

i=1
Ci ≥ (l∗ − L + 1)Cl∗

⇔ 1
l∗ − L + 1

l∗∑
i=1

Ci ≥ Cl∗

⇔ 1
l∗ − L + 1

l∗∑
i=1

Ci ≥ Cl (l = 1, . . . , l∗)

holds.

(Proof of (2)) If l∗ = M , there exists nothing to prove, thus we can assume l∗ < M . By the definition of l∗,

1
l∗ − L + 1

l∗∑
i=1

Ci ≤
1

l∗ − L + 2

l∗+1∑
i=1

Ci ⇔
l∗∑

i=1
Ci ≤ (l∗ − L + 1)Cl∗+1

⇔ 1
l∗ − L + 1

l∗∑
i=1

Ci ≤ Cl∗+1

⇔ 1
l∗ − L + 1

l∗∑
i=1

Ci ≤ Cl (l = l∗ + 1, . . . , M)

holds.

(Proof of (3)) By Ineq. (1),

1
l∗ − L + 1

l∗∑
i=1

Ci ≥ Cl∗ ⇔
l∗∑

i=1
Ci ≥ (l∗ − L + 1)Cl∗

⇔
∑

i∈[l∗]\U

Ci ≥ (l∗ − L + 1− |U |)Cl∗ +
(
|U |Cl∗ −

∑
i∈U

Ci

)
for U ⊆ [l∗] with |U | ≤ l∗ − L

⇔
∑

i∈[l∗]\U

Ci ≥ (l∗ − L + 1− |U |)Cl∗ for U ⊆ [l∗] with |U | ≤ l∗ − L

⇔ 1
l∗ − L + 1− |U |

∑
i∈[l∗]\U

Ci ≥ Cl∗ for U ⊆ [l∗] with |U | ≤ l∗ − L

⇔ 1
l∗ − L + 1− |U |

∑
i∈[l∗]\U

Ci ≥ Cl (l = 1, . . . , l∗)

for U ⊆ [l∗] with |U | ≤ l∗ − L
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holds.

(Proof of (4)) (⇒) Assume l∗ < l. By the strict version of Ineq. (2),

1
l∗ − L + 1

l∗∑
i=1

Ci < Cl∗+1

holds. Thus, for l′ = l∗ < l, 1
l′−L+1

∑l′

i=1 Cj < Cl holds.

(⇐) Assume that, for some l′ ∈ {L, L + 1, . . . , l − 1},

1
l′ − L + 1

l′∑
i=1

Cj < Cl

holds. Then, by the minimality for l∗,
1

l∗ − L + 1

l∗∑
i=1

Cj < Cl

holds. Assume l∗ ≥ l. Then, Ineq. (1) holds, which is a contradiction to the above inequality. Therefore
l∗ < l.

Proof of Theorem 1. We show that the solution of equation

max
S∈T ∆K

min
U ⊂ [M̂(ν)],

|U | = M̂(ν) − L + 1

∑
i∈U

S(i)d(ν(i), ξ) = 1, (36)

is T = Q∗(ν) and S = S(ν), where Eq. (36)’s equivalence to Problem (2) can be shown as with Eq. (32)’s
equivalence to problem (30). We only show that the solution of

max
S∈Q∗(ν)∆K

min
U ⊂ [M̂(ν)],

|U | = M̂(ν) − L + 1

∑
i∈U

S(i)d(ν(i), ξ) (37)

is S(ν) because if so, the fact

min
U ⊂ [M̂(ν)],

|U | = M̂(ν) − L + 1

∑
i∈U

S(ν)(i)d(ν(i), ξ) = min
U ⊂ [M̂(ν)],

|U | = M̂(ν) − L + 1

∑
i∈U∩[L∗(ν)]

1
L∗(ν)− L + 1 = 1

implies that T = Q∗(ν) is the solution of Eq. (36). Note that Q∗(ν) = 1
L∗(ν)−L+1

∑L∗(ν)
i=1

1
d(ν(i),ξ) can be

calculated without solving Eq. (36) for T .

Let
Q∗(ν)∆ℓ

K = {S ∈ Q∗(ν)∆K | S(ℓ+1) = · · · = S(K) = 0}.

We first prove

max
S∈Q∗(ν)∆K

min
U ⊂ [M̂(ν)],

|U | = M̂(ν) − L + 1

∑
i∈U

S(i)d(ν(i), ξ) = max
S∈Q∗(ν)∆L∗(ν)

K

min
U ⊂ [M̂(ν)],

|U | = M̂(ν) − L + 1

∑
i∈U

S(i)d(ν(i), ξ). (38)

Since S that maximizes minU⊂[M̂(ν)],|U |=M̂(ν)−L+1
∑

i∈U S(i)d(µ(i), ξ) is trivially in Q∗(µ)∆M̂(ν)
K , we show

max
S∈Q∗(ν)∆M̂(ν)

K

min
U ⊂ [M̂(ν)],

|U | = M̂(ν) − L + 1

∑
i∈U

S(i)d(ν(i), ξ) = max
S∈Q∗(ν)∆L∗(ν)

K

min
U ⊂ [M̂(ν)],

|U | = M̂(ν) − L + 1

∑
i∈U

S(i)d(ν(i), ξ). (39)
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In the case with L∗(ν) = M̂(ν), Eq. (39) trivially holds, thus we assume that L∗(ν) < M̂(ν) holds. For any
S ∈ Q∗(ν)∆M̂(ν)

K , define S′ ∈ Q∗(ν)∆L∗(ν)
K as

S′
(i) =

{
S(i) +

∑M̂(ν)
j=L∗(ν)+1

1
L∗(ν)−L+1

1
d(νi,ξ)

Q∗(ν) S(j) ((i) ≤ L∗(ν))
0 ((i) ≥ L∗(ν) + 1).

Then, for any U ⊂ [M̂(ν)] with |U | = M̂(ν)− L + 1,

∑
i∈U

S′
(i)d(ν(i), ξ) =

∑
i∈U∩[L∗(ν)]

S(i)d(ν(i), ξ) +
M̂(ν)∑

j=L∗(ν)+1

1
L∗(ν)−L+1

Q∗(ν) S(j)


=

∑
i∈U∩[L∗(ν)]

S(i)d(ν(i), ξ) + |U ∩ [L∗(ν)]|
M̂(ν)∑

j=L∗(ν)+1

1
L∗(ν)−L+1

Q∗(ν) S(j)

≥
∑

i∈U∩[L∗(ν)]

S(i)d(ν(i), ξ) + |U ∩ [L∗(ν)]|
L∗(ν)− L + 1

M̂(ν)∑
j=L∗(ν)+1

S(j)d(ν(j), ξ)

≥
∑
i∈U

S(i)d(ν(i), ξ)

holds, where the first inequality holds by inequality Q∗(ν) ≤ 1
d(ν(j),ξ) for j = L∗(ν) + 1, . . . , M̂(ν),

which is derived from the definition of L∗(ν) and Q∗(ν) using Proposition 12(2), and the second inequal-
ity holds by |U ∩ [L∗(ν)]| ≥ L∗(ν) − L + 1. Therefore minU⊂[M̂(ν)],|U |=M̂(ν)−L+1

∑
i∈U S(i)d(ν(i), ξ) ≤

minU⊂[M̂(ν)],|U |=M̂(ν)−L+1
∑

i∈U S′
(i)d(ν(i), ξ) holds. Thus, Eq. (39) holds.

Finally, we prove
S(ν) ∈ arg max

S∈Q∗(ν)∆L∗(ν)
K

min
U ⊂ [M̂(ν)],

|U | = M̂(ν) − L + 1

∑
i∈U

S(i)d(ν(i), ξ).

Since

max
S∈Q∗(ν)∆L∗(ν)

K

min
U ⊂ [M̂(ν)],

|U | = M̂(ν) − L + 1

∑
i∈U

S(i)d(ν(i), ξ) = max
S∈Q∗(ν)∆L∗(ν)

K

min
U ⊂ [L∗(ν)],

|U | = L∗(ν) − L + 1

∑
i∈U

S(i)d(ν(i), ξ)

holds trivially, we only have to prove

S(ν) ∈ arg max
S∈Q∗(ν)∆L∗(ν)

K

min
U ⊂ [L∗(ν)],

|U | = L∗(ν) − L + 1

∑
i∈U

S(i)d(ν(i), ξ). (40)

Let S be any element in Q∗(ν)∆L∗(ν)
K . Let i1, . . . , iL∗(ν) be a permutation of 1, ..., L∗(ν) such that

S(i1)d(ν(i1), ξ) ≤ S(i2)d(ν(i2), ξ) ≤ · · · ≤ S(iL∗(ν))d(ν(iL∗(ν)), ξ). Define S̄
(c)
(ij) as

S̄
(c)
(ij) = S(ν)(ij) +

c−1∑
h=1

(S̄(h)
(ih) − S(ih))

1/d(ν(ij), ξ)∑
i∈[L∗(ν)]\{i1,...,ih} 1/d(ν(i), ξ) (41)

for c = 1, . . . , L∗(ν)− L + 1 and j ∈ [L∗(ν)] \ {i1, . . . , ic−1}. Then,

L∗(ν)∑
j=c

S̄
(c)
(ij) =

L∗(ν)∑
j=1

S(ν)(ij) −
c−1∑
j=1

S(ij) = Q∗(ν)−
c−1∑
j=1

S(ij) =
L∗(ν)∑
j=c

S(ij) and

S̄
(c)
(ij)d(ν(ij), ξ) =S(ν)(ij)d(ν(ij), ξ) +

c−1∑
h=1

(S̄(h)
(ih) − S(ih))

1∑
i∈[L∗(ν)]\{i1,...,ih} 1/d(ν(i), ξ)
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= 1
L∗(ν)− L + 1 +

c−1∑
h=1

(S̄(h)
(ih) − S(ih))

1∑
i∈[L∗(ν)]\{i1,...,ih} 1/d(ν(i), ξ) (j = c, . . . , L∗(ν))

hold for c = 1, . . . , L∗(ν) − L + 1. For S̄
(c)
(ic) defined by Eq. (41), S(ic)d(ν(ic), ξ) ≤ S̄

(c)
(ic)d(ν(ic), ξ), that is,

S(ic) ≤ S̄
(c)
(ic) holds because

∑L∗(ν)
j=c S̄

(c)
(ij) <

∑L∗(ν)
j=c S(ij) holds otherwise, which contradicts the fact

∑L∗(ν)
j=c S̄

(c)
(ij) =∑L∗(ν)

j=c S(ij). Therefore,

L∗(ν)−L+1∑
j=1

S(ij)d(ν(ij), ξ) =
L∗(ν)∑
j=1

(S̄(j)
(ij) − (S̄(j)

(ij) − S(ij)))d(ν(ij), ξ)

=
L∗(ν)−L+1∑

j=1
S̄

(j)
(ij)d(ν(ij), ξ)−

L∗(ν)−L+1∑
j=1

(S̄(j)
(ij) − S(ij))d(ν(ij), ξ)

=1 +
L∗(ν)−L+1∑

j=1
(S̄(j)

(ij) − S(ij))
L∗(ν)− L + 1− j∑

i∈[L∗(ν)]\{i1,...,ij} 1/d(ν(i), ξ)

−
L∗(ν)−L+1∑

j=1
(S̄(j)

(ij) − S(ij))d(ν(ij), ξ)

≤1 +
L∗(ν)−L∑

j=1
(S̄(j)

(ij) − S(ij))d(ν(ij), ξ)−
L∗(ν)−L+1∑

j=1
(S̄(j)

(ij) − S(ij))d(ν(ij), ξ)

≤1 =
L∗(ν)−L+1∑

j=1
S(ν)(ij)d(ν(ij), ξ)

holds, where the first inequality is derived using inequality
∑

i∈[L∗(ν)]\{i1,...,ij} 1/d(ν(i), ξ) > L∗(ν)−L+1−j
d(ν(ij ),ξ) for

j = 1, . . . , L∗(ν)− L, which can be proved by Proposition 12 (3) and the definition of L∗(ν). Thus, Expression
(40) holds.

B.3 Lemmas: Posterior sample probability

Lemma 13. (Anti-concentration) Let µ ∈ (0, 1) and X ∼ Beta(1 + nµ, 1 + n(1− µ)). Then,

P [u ≥ X ≥ l] ≥ (u− l)
√

n

25 min
ν∈[l,u]

e−nd(µ,ν). (42)

Lemma 13 is a useful anti-concentration result when u− l is small.

Proof of Lemma 13. We have

P [u ≥ X ≥ l] (43)

:= 1
B(1 + nµ, 1 + n(1− µ))

∫ u

l

xnµ(1− x)n(1−µ)dx (44)

≥ u− l

B(1 + nµ, 1 + n(1− µ)) min
ν∈[l,u]

νnµ(1− ν)n(1−µ) (45)

= (u− l)Γ(2 + n)
Γ(1 + nµ)Γ(1 + n(1− µ)) min

ν∈[l,u]
νnµ(1− ν)n(1−µ) (by definition) (46)

≥ (u− l)
e1/6
√

2π

(n + 2)n+3/2

(nµ + 1)nµ+1/2(n(1− µ) + 1)n(1−µ)+1/2 min
ν∈[l,u]

νnµ(1− ν)n(1−µ), (47)

where, in the last transformation we used the Stirling’s formula
√

2π ≤ Γ(z)
zz−1/2e−z

≤
√

2πe1/12.
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Moreover, for any ν we have

(u− l)
e1/6
√

2π

(n + 2)n+3/2

(nµ + 1)nµ+1/2(n(1− µ) + 1)n(1−µ)+1/2 νnµ(1− ν)n(1−µ) (48)

≥ (u− l)
e1/6
√

2π

√
(n + 2)3

(nµ + 1)(n(1− µ) + 1)
e−nd(µ,ν)(

1 + 1
nµ

)nµ (
1 + 1

n(1−µ)

)n(1−µ) (49)

≥ (u− l)
e2+1/6

√
2π

√
(n + 2)3

(nµ + 1)(n(1− µ) + 1)e−nd(µ,ν) (50)

≥ (u− l)
√

n

e2+1/6
√

2π
e−nd(µ,ν) (51)

(by using (1 + x/n)n ≤ ex) (52)

≥ (u− l)
√

n

25 e−nd(µ,ν), (53)

which completes the proof.

Lemma 14. (Concentration of beta distribution) Let X ∼ Beta(1 + nµ, 1 + n(1− µ)). Then,

P
[
|X − µ| ≥ 1

n
+ ϵ

]
≤ 2 exp

(
−nϵ min(ϵ, 1/

√
n)

4

)
(54)

for any ϵ > 0.

Proof of Lemma 14. Theorem 1 in Skorski (2021) states that

P [|X − E[X]| ≥ ϵ] ≤ 2 exp
(
− ϵ2

2v2 + 2cϵ

)
, (55)

where

α = 1 + n(1− µ) (56)
β = 1 + nµ (57)

v2 = αβ

(α + β)2(α + β + 1) (58)

c = max
{

|β − α|
(α + β)(α + β + 2) ,

√
αβ

(α + β)2(α + β + 2)

}
. (59)

By using v ≤ 1/n, c ≤ 1/
√

n, and

|E[X]− µ| =
∣∣∣∣1 + nµ

2 + n
− µ

∣∣∣∣ ≤ 1
n

,

it holds that
P
[
|X − µ| ≥ 1

n
+ ϵ

]
≤ 2 exp

(
−nϵ min(ϵ, 1/

√
n)

4

)
. (60)

Note that if ϵ ≤ 1/
√

n then the equation above is exp(−O(nϵ2)), which is similar to standard concentration
inequality of a mean.
Lemma 15. (convergence of θi(t), µ̂i(t)) Let δ′ ∈ (0, 1) and n, T ≥ 1 be arbitrary. Let arm i ∈ [K] be arbitrary.
Then, the following inequality holds:

P

 ⋃
t:Ni(t)≥n,t≤T

{
|θi(t)− µi| ≥

6 log(4T/δ′)√
n

∪ |µ̂i(t)− µi| ≥
√

log(4T/δ′)
2n

} ≤ δ′. (61)
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Lemma 15 is the mean and posterior convergence that uniformly holds over all rounds.

Proof of Lemma 15. Union bound and Hoeffding’s inequality imply

P

 ⋃
t:Ni(t)≥n,t≤T

{
|µ̂i(t)− µi| ≥

√
log(4T/δ′)

2n

} ≤ ∑
t:Ni(t)≥n,t≤T

P

[
|µ̂i(t)− µi| ≥

√
log(4T/δ′)

2n

]
≤ T×2× δ′

4T
= δ′

2 .

(62)
Lemma 14 implies

∑
t≤T

P

[
|θi(t)− µ̂i(t)| ≥

1
Ni(t)

+ 4 log(4T/δ′)√
Ni(t)

∣∣∣∣Ni(t)
]
≤ T × 2× δ′

4T
= δ′

2 . (63)

By using these and |θi(t)− µi| ≤ |µ̂i(t)− µi|+ |θi(t)− µ̂i(t)|, we have

∑
t≤T

P

[
|θi(t)− µi| ≥

6 log(4T/δ′)√
Ni(t)

]
≤
∑
t≤T

P

[
|θi(t)− µi| ≥

4 log(4T/δ′)√
Ni(t)

+ 1
Ni(t)

+

√
log(4T/δ′)

2Ni(t)

]
(64)

≤ δ′

2 + δ′

2 ≤ δ′. (65)

B.4 Proof of Lemma 3

Proof of Lemma 3. Let ν ∈ ΘDmin,I , and let i /∈ I and νi ≤ µi + Dmin. Assume that νi is the jth largest value
in {νk | k ∈ [K]}, that is, ν(j) = νi. If νi < ξ, then j > M̂(ν) ≥ L∗(ν). Thus, Si(ν) = 0 by Eq. (4). Assume
that νi ≥ ξ. In this case, j ≤ M̂(ν) holds. Define ν′ as ν′

k = min{νk, µ + Dmin}. Note that ν′
i = νi. Then, by

the definition of Dmin (Remark 4), Î(ν′) = I holds9. Since νk ≥ ν′
k holds,

1
L∗(ν)− L + 1

L∗(ν′)∑
k=1

1
d(ν(k), ξ) ≤

1
L∗(ν′)− L + 1

L∗(ν′)∑
k=1

1
d(ν′

(k), ξ)

holds. Thus,

1
L∗(ν)− L + 1

L∗(ν)∑
k=1

1
d(ν(k), ξ) ≤

1
L∗(ν′)− L + 1

L∗(ν′)∑
k=1

1
d(ν′

(k), ξ) (66)

holds. Since i /∈ I = Î(ν′), by the strict version Ineq. (2) of Proposition 12,

1
L∗(ν′)− L + 1

L∗(ν′)∑
k=1

1
d(ν′

(k), ξ) <
1

d(νi, ξ) (67)

holds. Therefore, by combining Ineqs. (66) and (67) and using the fact that νi = ν(j), we obtain

1
L∗(ν)− L + 1

L∗(ν)∑
k=1

1
d(ν(k), ξ) <

1
d(ν(j), ξ) .

Thus, by Proposition 12 (4), L∗(ν) < j holds, which means Si(ν) = S(j)(ν) = 0 by Eq. (4).

B.5 Proof of Lemma 4

Proof of Lemma 4. In the following, we derive the following inequality for any i ∈ [K]:

P [θi(t) ∈ [µi −Dmin, µi + Dmin]] ≥ C1(µ) exp (−Ni(t)d(µ̂i(t), µi)) (68)
9νk < µk − Dmin may hold for some k /∈ I, but that does not affect S(ν).
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Figure 4: Illustration of Lemma 4 for each i. We consider two cases and derive a bound for each case. The left
illustration is the case of |µ̂i(t)− µi| ≥ Dmin/2, and the right illustration is the case of |µ̂i(t)− µi| < Dmin/2.

for some distribution-dependent constant C1 = C1(µ) > 0. Remark 4 implies that θi(t) ∈ (µi−Dmin, µi + Dmin)
for all i ∈ [K] suffices to be θ(t) ∈ ΘI . Therefore, multiplying equation 68 for all i immediately yields Lemma 4
with C = (C1)K .

We derive equation 68 for the two cases separately. Namely, |µ̂i(t)− µi| ≥ Dmin/2 or |µ̂i(t)− µi| < Dmin/2.

Case 1 (|µ̂i(t)− µi| ≥ Dmin/2): Let R be the line segment defined by two points

µi and µi − sgn(µi − µ̂i(t))Dmin/2

which is a subset of [µi −Dmin, µi + Dmin] (c.f. Figure 4 left). Therefore,

P[θi(t) ∈ [µi −Dmin, µi + Dmin]] (69)
≥ P[θi(t) ∈ R] (70)

≥

(
(Dmin/2)

√
Ni(t)

25

)
min
ν∈R

exp (−Ni(t)d(µ̂i(t), νi)) (by Lemma 13) (71)

=
(

(Dmin/2)
√

Ni(t)
25

)
exp (−Ni(t)d(µ̂i(t), µi)) (by monotonicity of KL divergence) (72)

= Ω(1)× exp (−Ni(t)d(µ̂i(t), µi)) . (73)

Case 2 (|µ̂i(t)− µi| < Dmin/2): Let the line segment R be defined by two points

µ̂i(t) and µ̂i(t) + sgn(µi − µ̂i(t)) min
(

Dmin/2, 1/
√

Ni(t)
)

,

which is a subset of [µi − Dmin, µi + Dmin] (c.f., Figure 4 right). Note that Dmin ≤ µi ≤ 1 − Dmin and
|µ̂i(t)− µ|, |ν − µ| ≤ Dmin/2 hold for an ν ∈ R, and thus

Dmin/2 ≤ ν, µ̂i(t) ≤ 1−Dmin/2. (74)

Therefore,

P[θi(t) ∈ [µi −Dmin, µi + Dmin]] (75)
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≥ P[θi(t) ∈ R] (76)

≥

min
(

Dmin/2, 1/
√

Ni(t)
)√

Ni(t)
25

min
ν∈R

exp (−Ni(t)d(µ̂i(t), νi)) (by Lemma 13) (77)

= Ω(1)×min
ν∈R

exp (−Ni(t)d(µ̂i(t), νi)) (78)

≥ Ω(1)×min
ν∈R

exp

−Ni(t)
1

2(Dmin/2)(1−Dmin/2)

(
1√

Ni(t)

)2
 (79)

(by equation 74 and d(p, q) ≤ (p− q)2/(2x(1− x)) for p, q ∈ [x, 1− x]) (80)
= Ω(1)× Ω(1) = Ω(1). (81)

Lemma 16. (Minimum nonzero value, to be deleted) For any i, ν

Si(ν) = 0 or Si(ν)β(t, δ) > Cmin(δ) (82)

holds for some Cmin(δ) = Θ(log(1/δ)).

It is easy to confirm Lemma 16 with Cmin(δ) = minp
β(1,δ)

Kd(p,ξ) = min
(

β(1,δ)
Kd(0,ξ) , β(1,δ)

Kd(1,ξ)

)
. Lemma 16 states that, if

the arm is included in the solution set, then the number of draw required is at least C log(1/δ) for some universal
constant C > 0. This property contributes to the stability of the solution.

B.6 Proof of Lemma 7

In this section, we first propose Lemmas 17 and 18. By using them, we derive Lemma 7.

Let

F(t) =
{

S(θ) ∈ ΘDmin,I , ∩j /∈ISj(θ) = 0
}

(83)

G(t, CG) =
{∑

s<t

1{F(t)} ≥ 4Q∗(µ)
mini Si(µ)CG + K

}
. (84)

Lemma 17. Event G(t, CG) implies

Ni(t) ≥ N(CG, δ) := min(CG, Cmin(δ)) (85)

for all i ∈ I.

Note that the value Si(µ)
Q∗(µ) is the minimum ratio of draw of arm i under the optimal solution S(µ). Intuitively

speaking, under H(t), S(ν) is a constant-ratio approximation of S(µ), and thus it draws every arm i ∈ I in
accordance of the ratio. The minimum with Cmin(δ) in the RHS of equation 85 is derived from the fact that
the algorithm attempts to draw any arm i : Si(µ) > 0 at least Cmin(δ) time by Lemma 16. The following proof
make this discussion rigorous.

Proof of Lemma 17. Consider a subsequence {s < t : H(s), s ≤ Cmin(δ))} (subset of rounds). Let N sub
i (t)

be the number of draw of arm i assuming the algorithm faces this subsequence. Under H(s) at round s,
1
2 ≤

Si(θ(s))
Si(µ) ,

Sj(θ(s))
Sj(µ) ≤ 2 holds, and thus

Si(θ(s))
Sj(θ(s)) ≥

Si(µ)
4Sj(µ)

always holds on this subsequence. This implies that,

N sub
i (t) ≥ Si(µ)

N sub
j (t)

4Sj(µ) − 1
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holds for any i, j ∈ [K]. From this and Q∗(µ) =
∑

j Sj(µ) we can obtain

N sub
i (t) ≥ Si(µ)

4Q∗(µ) ×
4Q∗(µ)

mini Si(µ)CG ≥ CG. (86)

Next, for any sequence of rounds, adding another round at any position never decreases N sub
i (t). For two vectors

N ′(s), N(s) of size [K], we say N ′(s) weakly dominates N(s) if N ′
j(s) ≥ Nj(s) holds for each coordinate j ∈ [K].

Then, it is easy to derive that the weak domination is preserved if we add another round at any position of the
subsequence. This implies that Ni(t) ≥ N sub

i (t), which completes the proof.

The following lemma bounds the case where non-solution arm j has positive (non-zero) value of Sj(θ).
Lemma 18. ∑

t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t),H(t),Fc(t)] = o(log(1/δ)) (87)

Proof of Lemma 18.∑
t≤Cbnd log(1/δ)

P [t ≤ τ,Dc(t),H(t),Fc(t)] ≤
∑
j /∈I

∑
t≤Cbnd log(1/δ)

P [t ≤ τ,Dc(t),H(t), Sj(t) > 0] (88)

The event H(t), Sj(θ) > 0 implies Sj(θ)/Q∗(θ) ≥ 1/K2 because otherwise Sj(θ) = 0. By using a subsequence
discussion similarly to Lemma 17, we have

Nj(t) ≥ K2C + K2

after the event t ≤ τ,Dc(t),H(t), Sj(t) > 0 occurs C times. However, after the round

t : Nj(t) >
log(D(δ))

d(µj + Dmin/2, ξ) = Θ(log log(1/δ)),

Dc(t) implies µ̂j(t) ≤ µj + Dmin/2, and

P
[
θj(t) ≥ µj + Dmin

∣∣∣∣µ̂j(t) ≤ µj + Dmin/2, Nj(t) = Ω(log log(1/δ))
]

= o(1)

by Lemma 14. By using this, we finally have∑
t≤Cbnd log(1/δ)

P [t ≤ τ,Dc(t),H(t),Fc(t)] ≤ K2 log(D(δ))
d(µj + Dmin/2, ξ) +K2+Cbnd log(1/δ)×o(1) = o(log(1/δ)). (89)

Proof of Lemma 7. Let G(t) = G(t, (log(1/δ))1/2) and N(δ) = N((log(1/δ))1/2, δ) = o((log(1/δ))1/2). We have∑
t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t), Ec(t),H(t)] ≤
∑

t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t), Ec(t),F(t)] + o(log(1/δ)) (90)

(by Lemma 18) (91)

≤
∑

t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t), Ec(t),G(t)] + o(log(1/δ)) (92)

≤
∑

t≤Cbnd log(1/δ)

P[t ≤ τ, Ec(t),G(t)] + o(log(1/δ)) (93)

≤
∑

t≤Cbnd log(1/δ)

P

[
t ≤ τ, Ec(t),

⋂
i∈I
{Ni(t) ≥ N(δ)}

]
+ o(log(1/δ)) (94)
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(by Lemma 17). (95)

Lemma 15 implies that, with probability 1−Kδ′, we have

|θi(t)− µi|, |µ̂i(t)− µi| ≤
6 log(4Cbnd log(1/δ)/δ′)√

N(δ)
:= V (δ, δ′) (96)

for all i ∈ I, t ≤ Cbnd log(1/δ) such that Ni(t) ≥ N(δ) holds. Here,

V (δ, δ′) = O

(
log(log(1/δ)/δ′)

(log(1/δ))1/2

)
Choose δ′ to be sufficiently small.10 This makes V (δ, δ′) = o(1), and thus for a sufficiently small11 δ > 0, we
have V (δ, δ′) ≤ Dmin. Inequality V (δ, δ′) ≤ Dmin implies µ̂(t), θ(t) ∈ ΘDmin,I for all rounds t < Cbnd log(1/δ)
such that equation 96 and H(t) hold. Continuity of the solution around S(µ) implies that

|Si(µ)− Si(µ̂(t))|, |Si(µ)− Si(θ(t))| ≤ o(1), (97)

for all i, t.

In this case, the algorithm draws arm i ∈ I no more than

(1 + o(1))S(µ)β(Cbnd log(1/δ), δ) = (1 + o(1))Si(µ) log(1/δ) + o(log(1/δ)) (98)

times because once the algorithm draws arms proportional to Si(θ(t)) and stops once it draws each arm i ∈ I
for Si(µ̂(t))β(Cbnd log(1/δ), δ) = Si(µ̂(t)) log(1/δ)(1+o(1)) times. Moreover, equation 96 holds with probability
at least 1−Kδ′ = 1− o(1). By using the discussion above, equation 94 is bounded as:

∑
t≤Cbnd log(1/δ)

P

[
t ≤ τ, Ec(t),

⋂
i∈I
{Ni(t) ≥ N(δ)}

]
≤ Q∗(µ) log(1/δ) + o(log(1/δ)) (99)

+ Cbnd log(1/δ)×Kδ′ (100)
= Q∗(µ) log(1/δ) + o(log(1/δ)). (101)

B.7 Proof of Lemma 8

In the proof, we show that it is unlikely to draw arm i /∈ I at most o(log(1/δ)) times.

Proof. We have, ∑
t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t), E(t),H(t)] ≤
∑
i/∈I

∑
t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t), Ei(t),H(t)]. (102)

Lemma 3 implies that, under H(t), if θi(t) ≤ µi + Dmin then arm i /∈ I is not drawn. Let

NDmin = max
(

2
Dmin

,
36

D2
min

log
(
4Cbnd(log(1/δ))2)) ,

which is O(log log(1/δ)). By using this,∑
t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t), Ei(t),H(t)] (103)

≤
∑

t≤Cbnd log(1/δ)

P[t ≤ τ, Ei(t), θi(t) > µi + Dmin] (104)

10For example, δ′ = (log(1/δ))−1.
11While the discussion here is asymptotic, we can obtain a (involved) finite-time bound if desired.
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≤ NDmin +
∑

t≤Cbnd log(1/δ)

P[t ≤ τ, θi(t) > µi + Dmin, Ni(t) ≥ NDmin ] (105)

(by {Ei(t), it = n} occurs at most once) (106)

≤ NDmin + Cbnd log(1/δ)× P

 ⋃
t≤Cbnd log(1/δ)

{Ei(t),H(t), Ni(t) ≥ NDmin}

 (107)

≤ NDmin + Cbnd log(1/δ)× 1
log(1/δ) (108)

(by Lemma 15 with δ′ = log(δ)) (109)
≤ NDmin + Cbnd = O(log log(1/δ)) + O(1). (110)

B.8 Proof of Lemma 9

Proof. We have

∑
t≤Cbnd log(1/δ)

P[t ≤ τ,D(t)] ≤ Cbnd log(1/δ)× P

 ⋃
t<Cbnd log(1/δ)

D(t)

 (111)

≤ Cbnd log(1/δ)q, (112)

where q = q(δ) be such that β(Cbnd log(1/δ), q) = log(D(δ)). By using equation 6,

log(q) = C1 + log(C2 log(Cbnd log(1/δ) + 1))− log(D(δ)), (113)

which implies q−1 = O((log(1/δ))1/2), and thus

Cbnd log(1/δ)q = O((log(1/δ))1/2).

B.9 Proof of Lemma 10

Proof of Lemma 10.∑
t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t),Hc(t)]

≤
∑

t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t),Gc(t, (log log(1/δ))4)] +
∑

t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t),G(t, (log log(1/δ))4),Hc(t)]

(114)

Lemma 4 states that, conditioned on Dc(t), with probability at least C(µ)/D(δ) we have θ(t) ∈ ΘDmin . By using
this fact we can bound the first term of equation 114 as:∑

t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t),Gc(t, (log log(1/δ))4)] ≤ (C(µ))−1D(δ)× 4Q∗(µ)
mini Si(µ) (log log(1/δ))4 (115)

= O((log(1/δ))1/2 × (log log(1/δ))4). (116)

Moreover, we bound the probability of ∪t|θi(t)− µi| ≥ Dmin uniformly as follows:∑
t≤Cbnd log(1/δ)

P[t ≤ τ,Dc(t),G(t, (log log(1/δ))4),Hc(t)] (117)
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≤
∑

t≤Cbnd log(1/δ)

P

[
t ≤ τ,Dc(t),

⋂
i∈I
{Ni(t) ≥ N((log log(1/δ))4, δ)},Hc(t)

]
(118)

(by Lemma 17) (119)

≤ Cbnd log(1/δ)×
(

4Cbnd log(1/δ) exp
(
−
√

N((log log(1/δ))4, δ)D2
min

36

))
(120)

(by Lemma 15, transformed from 6 log(4T/δ′)√
N((log log(1/δ))4, δ)

= Dmin with T = Cbnd log(1/δ) to obtain δ′)

(121)
= o(1), (122)

(by
√

N((log log(1/δ))4, δ) = Ω((log log(1/δ))2) and (exp(x))2 exp(−cx2) = o(1) for x = log log(1/δ))
(123)

which bounds the second term of equation 114.

B.10 Proof of Lemma 11

Let Li(t) be the event that arm i is the (L∗(θ))-th largest arm on posterior θ. By the property of the solution,
Li(t) implies maxj Sj(θ) = Si(θ) ≤ 1/d(µi, ξ). Let

Ui(t) =
{
Li(t), |θi(t)− ξ| ≤ |µi − ξ|

2

}
(124)

U(t) =
⋃

i

Ui(t). (125)

Intuitively speaking, Ui(t) states that Si(t) can be extremely large12, which does not occur often if Ni(t) is
sufficiently large. Note that, under Uc(t), Si(θ) for any j ∈ [K] is not extremely large,13 and thus Si(θ)/Sj(θ)
for any i, j is bounded by a constant, which we denote CU .

In the following, we derive Lemma 11 by following the steps below. First, we define an event W(η), which holds
with probability at least 1 − O(η). In the case of W(η), we can expect all means and posteriors are bounded
with respect to the number of draws and time step t. We bound the stopping time by T stop(η, δ) under W by
using several lemmas. Finally, integrating T stop(η, δ) over the η yields the bound of τ in expectation.

Proof of Lemma 11. Let µ̂i,n is the value of µ̂i(t) when Ni(t) = n. Let

W(η) :=

⋂
i,n

{
|µ̂i,n − µi| ≤

√
log(n2/η)

2n

}
,
⋂
i,t

{
|θi(t)− µ̂i(t)| ≤

1
Ni(t)

+ 4 log(t2/η)√
Ni(t)

} . (126)

By Hoeffding’s inequality,

P

⋃
i,n

{
|µ̂i,n − µi| >

√
log(n2/η)

2n

} ≤∑
i,n

P

[
|µ̂i,n − µi| >

√
log(n2/η)

2n

]
≤ K

∑
n

η/n2 = Kηπ2/6 (127)

Moreover, by Lemma 14, we have

P

⋃
i,t

{
|θi(t)− µ̂i(t)| >

1
Ni(t)

+ 4 log(t2/η)√
Ni(t)

} ≤∑
i,t

P

[
|θi(t)− µ̂i(t)| >

1
Ni(t)

+ 4 log(t2/η)√
Ni(t)

]
(128)

≤
∑
i,t

η

t2 = Kηπ2

6 . (129)

12Si(t) can be arbitrarily large if θi(t) is very close to ξ.
13Bounded by a constant 1/ min(d(ξ − µi/2, ξ), d(ξ + µi/2, ξ)).
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In summary,

Pr[W(η)] ≥ 1− Kηπ2

6 − Kηπ2

6 = 1− Kηπ2

3 . (130)

In the following, we bound the stopping time τ under event W(η).

Lemma 19. Let NU (t) =
∑t−1

s=1 1[Ui(t)]. Then,

Ni(t) ≥
NU (t)

K
(131)

holds.

Lemma 20. Assume that W(η) holds. For any T , we have

T∑
t=1

1[Ui(t)] ≤ K

(
12 log(T 2/η)
|µi − ξ|

)2

. (132)

Lemma 21. Let Î ∈ 2[K] and ΘÎ = {ν ∈ [0, 1] : {i : Si(ν) > 0} = Î}}, which is the set of parameters where
arms Î are drawn. Let CU be an upper bound of KSi(θ)/Sj(θ) under Uc(t), which is a constant when we view
µ, ξ as constants. Let

TÎ(t) =
t−1∑
t′=1

1[θ(t) ∈ ΘÎ ,Uc(t)]. (133)

Then, for any i ∈ Î and t, Ni(t) ≥ TÎ(t)/CU − 1 holds.

Lemma 22. Under W(η), if there exists Î ∈ 2[K] such that

TÎ(t) ≥ CU

 β(t, δ)
d
(

µi+ξ
2 , ξ

) +
(

12 log(t2/η)
|µi − ξ|

)2
 =: CU TU (t, η),

then the algorithm stops.

Lemmas 19–22 are used to derive the following Lemma 23.

Lemma 23. UnderW(η), there exists a function T stop(η, δ) = O(log(1/δ)+(log(1/η))2) such that τ ≤ T stop(η, δ)
holds.

By using Lemma 23, we finally bound the stopping time. Let Cbnd > 0 be a (distribution-dependent) constant
such that

T stop(η, δ) ≤ Cbnd((log(1/η))2 + log(1/δ)).

We have ∑
t=Cbnd log(1/δ)+1

P[t ≤ τ ] ≤ 1 +
∫

t′
P[Wc(η) : Cbnd log(1/η) = t′]dt′ (134)

(by Lemma 23, t′ = t− Cbnd log(1/δ)) (135)

= 1 +
∫ 1

η=0
P[Wc(η)]2Cbnd log(1/η)

η
dη (136)

(by η = e−
√

t′/Cbnd) (137)

≤ 1 +
∫ 1

η=0

Kηπ2

3
2Cbnd log(1/η)

η
dη (138)

(by equation 130) (139)

= 1 + 2CbndKπ2

3 = O(1), (140)
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(by
∫ 1

0
log(1/η)dη = 1) (141)

(142)

which completes the proof.

B.10.1 Proofs of the lemmas used by Lemma 11

Proof of Lemma 19. Similarly to Lemma 17, we use the “subsequence” argument. If we count Ni(t) on the
subsequence {t : Ui(t)}, then Ni(t) ≥ Nj(t) holds for any j ∈ [K] because under this subsequence Si(θ(t)) >

Sj(θ(t)) always holds, which implies i is drawn at least NU (t)
K times on the subsequence. The number of draws

on the full sequence Ni(t) is always larger than that of subsequence, which is Ni(t) ≥ NU (t)
K .

Proof of Lemma 20. Under W, we have

|θi(t)− µi| ≤

√
log(t2/η)

2Ni(t)
+ 1

Ni(t)
+ 4 log(t2/η)√

Ni(t)
≤ 6 log(t2/η)√

Ni(t)
.

Assume that for some round t ≤ T we have

NU (t) ≥ K

(
12 log(T 2/η)
|µi − ξ|

)2

.

Then, by Lemma 19 we have,

Ni(t) ≥
(

12 log(T 2/η)
|µi − ξ|

)2

. (143)

Then

|θi(t)− ξ| ≥ |µi − ξ| − |θi(t)− µi| ≥ |µi − ξ| − 6 log(t2/η)√
Ni(t)

(144)

≥ |µi − ξ| − |µi − ξ|
2 (by equation 143) (145)

≥ |µi − ξ|
2 , (146)

and thus Ui(t) never occurs.

Proof of Lemma 21. Lemma 21 is proven by using a subsequence argument similar to Lemmas 17 and 19.

Proof of Lemma 22. If
TÎ(t) ≥ CU TU (t, η) (147)

then by Lemma 22 it holds that
Ni(t) ≥ TU (t, η) (148)

for all i ∈ Î. Similar discussion as equation 146 yields |µ̂i(t)− ξ| ≤ |µi − ξ|/2, and if

Ni(t) ≥
β(t, δ)

d
(

µi+ξ
2 , ξ

) ≥ β(t, δ)
d (µ̂i(t), ξ) (by |µ̂i(t)− ξ| ≤ |µi − ξ|/2)

holds for all i ∈ Î, then the algorithm stops, which completes the proof.

Proof of Lemma 23. Let

T stop(η, δ) = min
t

{
t ≥ 2KCU TU (t, η) + K2

(
12 log(t2/η)
|µi − ξ|

)2}
. (149)
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Since TU (t, η) = O((log t)2 +log(1/δ)+(log(1/η))2), it holds that T stop(η, δ) = O(log(1/δ)+(log(1/η))2). Lemma
20 implies

t∑
t′=1

1[U(t)] ≤ K2
(

12 log(t2/η)
|µi − ξ|

)2

, (150)

and thus there exists at least one Î ∈ 2[K] such that

TÎ(t) ≥ CU TU (t, η)

at round t = T stop, and by Lemma 22 the algorithm stops.



Koji Tabata, Junpei Komiyama, Atsuyoshi Nakamura, Tamiki Komatsuzaki

(a) K=20, L=4 (b) K=20, L=8 (c) K=20, L=12 (d) K=20, L=16

(e) K=20, L=4 (f) K=20, L=8 (g) K=20, L=12 (h) K=20, L=16

Figure 5: Stopping time of each algorithm for K = 20. We tested L = 4, 8, 12, 16 and M = 6, 10, 14. In this
experiments, the arms 1, 2, . . . , K −M are bad arms and whereas the arms K −M + 1, . . . , K − 1, K are good
arms. (a)-(d) P-Tracking and the asymptotically optimal algorithms. (e)-(h) P-Tracking and the algorithms
with suboptimal sample complexity.

C SUPPLEMENTARY EXPERIMENTS

We conducted simulation experiments similar to those presented in the main text by changing the number of
arms to K = 20. The results for the stopping time of each algorithm are shown in the Figure 5. In these
experiments, we found that Thompson sampling-CB works better for K = 20 when compared to K = 100.
However, we can observe that P-Tracking still outperforms the other algorithms in many cases, as observed in
the results for K = 100.
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