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Abstract

Generative adversarial networks (GANs) repre-
sent a game between two neural network ma-
chines designed to learn the distribution of data.
It is commonly observed that different GAN for-
mulations and divergence/distance measures used
could lead to considerably different performance
results, especially when the data distribution is
multi-modal. In this work, we give a theoretical
characterization of the mode-seeking behavior of
general f -divergences and Wasserstein distances,
and prove a performance guarantee for the set-
ting where the underlying model is a mixture of
multiple symmetric quasiconcave distributions.
This can help us understand the trade-off between
the quality and diversity of the trained GANs’
output samples. Our theoretical results show
the mode-seeking nature of the Jensen-Shannon
(JS) divergence over standard KL-divergence and
Wasserstein distance measures. We subsequently
demonstrate that a hybrid of JS-divergence and
Wasserstein distance measures minimized by Lip-
schitz GANs mimics the mode-seeking behavior
of the JS-divergence. We present numerical re-
sults showing the mode-seeking nature of the JS-
divergence and its hybrid with the Wasserstein
distance while highlighting the mode-covering
properties of KL-divergence and Wasserstein dis-
tance measures. Our numerical experiments in-
dicate the different behavior of several standard
GAN formulations in application to benchmark
Gaussian mixture and image datasets.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) have attained great success in various distribu-
tion learning problems. The GAN framework reduces the
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learning task to a game between the following two machine
players that are typically chosen to be deep neural networks:
1) A generator machine trying to map a random noise input
to real-like samples that are difficult to distinguish from
actual training data, 2) A discriminator function focusing on
classifying the generated samples from real collected data.

Nevertheless, standard GAN implementations often struggle
in modeling multi-modal distributions comprised of several
distinct modes. Two major issues are: 1) over-generalization
(Bishop, 2006; Lucas et al., 2019), where low-quality or un-
realistic outputs are produced, and 2) mode collapse, where
the generator lacks diversity and captures only one or a few
of the underlying modes. While such struggles in learn-
ing mixture distributions have been reported for various
GAN applications, different GAN formulations empirically
achieve different diversity and sharpness scores in applica-
tion to multi-modal data. Such observations highlight the
following question:

Do different GAN formulations lead to different underlying
solutions in learning mixture models?

In this work, we attempt to address the above question
through an information theoretic approach. Different GAN
problems are known to minimize different divergence mea-
sures between the data and generator’s distributions. For
example, the vanilla GAN (VGAN) (Goodfellow et al.,
2014) targets the Jensen-Shannon (JS) divergence. The f -
GANs (Nowozin et al., 2016) generalize the VGAN problem
by minimizing a general f -divergence. The Least Square
GANs (LSGANs) (Mao et al., 2017) minimize the Pear-
son χ2-divergence. The Wasserstein GANs (WGANs) (Ar-
jovsky et al., 2017) target the 1-Wasserstein distance.

The notions of mode-covering divergences and mode-
seeking divergences have been introduced to describe the
behaviors of different divergence measures (Bishop, 2006).
Mode-covering divergences (Bishop, 2006; Poole et al.,
2016) result in a fitted model that cover all the modes of
the multi-modal data distribution, but may assign mass over
the empty space between the modes. An example is the
Kullback-Leibler (KL) divergence (Bishop, 2006; Goodfel-
low, 2016), which arises in the maximum likelihood estima-
tor. On the other hand, mode-seeking divergences (Bishop,
2006; Ke et al., 2020) result in a model that captures a subset
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of the modes of the data distribution, and tends to avoid as-
signing masses to empty spaces. An example is the reverse
KL divergence (Bishop, 2006; Huszár, 2015).

Mode-covering and mode-seeking divergences have been
observed to affect the quality and diversity of the outputs.
A common observation is that mode-seeking divergences
tend to give a model that produces higher quality outputs
(Huszár, 2015; Ghasemipour et al., 2020; Zhang et al., 2019;
Ke et al., 2020), whereas mode-covering divergences often
produce lower quality or unrealistic samples (Lucas et al.,
2019; Williams et al., 2020), and suffer from the problem of
over-generalization (Bishop, 2006; Lucas et al., 2019). On
the other hand, the use of mode-covering divergences may
improve sample diversity of the generative model (Poole
et al., 2016), whereas mode-seeking divergences may con-
tribute to the problem of mode collapse (Lucas et al., 2019;
Shannon et al., 2020) 1.

Most of the aforementioned works are based on empirical
observations of the behaviors of the f -divergences. There
has not been a unified framework of the classification of
f -divergences based on theoretical guarantees. In particular,
even for the popular JS divergence, whether it is mode-
seeking or mode-covering is debated (see Section 2).

In this work, we give a theoretical characterization of
the mode-seeking behavior of general f -divergences and
Wasserstein distances. We study the setting where the gen-
erator fits a unimodal symmetric quasiconcave distribution
Qθ to a data distribution P that is a mixture of multiple
symmetric quasiconcave components. We demonstrate that
an f -divergence with a function f that is strongly-convex in
the range (0, 1 + ϵ] and grows at most linearly (e.g. reverse
KL, JS, Neyman χ2 or squared Hellinger distance) is guar-
anteed to be mode-seeking, in the sense thatQθ will identify
a mode in P . Our theoretical results, therefore, shed light
on the mode-seeking nature of VGAN and several other
f -GANs under a general theoretical setting.

In addition, we demonstrate that the widely-used Wasser-
stein distances fail to be mode-seeking, and the trained
generator could produce samples not belonging to the ex-
isting modes. Subsequently, we analyze a particular hybrid
of f -divergence and Wasserstein measures studied in (Far-
nia and Tse, 2018) which has been shown to be the target
divergence metric in Lipschitz GANs (Kodali et al., 2017;
Gulrajani et al., 2017; Miyato et al., 2018; Zhou et al., 2019)
such as the vanilla GAN with the spectral normalization
and with the gradient penalty. We show that the hybrid of a
mode-seeking f -divergence and the 1-Wasserstein distance
will preserve the mode-seeking nature of the f -divergence,
and can provably identify a mode even when only samples
from the true data distribution are known. Our analysis
therefore proves that the hybrid divergence can provide a

1It was argued in (Goodfellow, 2016) that the choice of diver-
gence is not a major factor in mode collapse.

mode-seeking distance that retains a major advantage of
WGAN that it is continuously changing with the generator’s
parameters. We summarize the contributions of this paper
as follows:

• We develop a unified theoretical framework of classify-
ing mode-seeking f -divergences.

• We prove a theoretical guarantee for mode-seeking f -
divergences when the data distribution is a mixture of
symmetric quasiconcave distributions.

• We show that a convolutional hybrid of a mode-seeking
f -divergences and the 1-Wasserstein distance remains
mode-seeking, while retaining the continuity property
of the Wasserstein distance.

• We numerically support our theoretical findings on Gaus-
sian mixture and image datasets.

2 RELATED WORKS

Except KL divergence (agreed to be mode-covering (Bishop,
2006; Goodfellow, 2016)) and reverse KL divergence
(agreed to be mode-seeking (Bishop, 2006; Huszár, 2015)),
there was no clear-cut classification of mode-covering and
mode-seeking divergences. For example, JS divergence has
been regarded as 1) comparatively mode-seeking / quality-
driven (Huszár, 2015; Theis et al., 2015; Lucas et al., 2019),
2) comparatively mode-covering (Poole et al., 2016), 3) nei-
ther mode-seeking nor covering (Shannon et al., 2020), and
4) mode-seeking or covering depending on the situation (Ke
et al., 2020). All these claims (except (Shannon et al., 2020))
were based on empirical evidence or heuristics rather than
theoretical analysis, and hence depends greatly on the set-
ting and various factors other than the choice of divergence.
To the best of the authors’ knowledge, the only theoretical
treatment of mode-covering/seeking divergence is (Shannon
et al., 2020), where two quantities about f -divergences –
left and right tail weights – were introduced to describe its
mode-covering and mode-seeking behaviors respectively.
Nevertheless, (Shannon et al., 2020) does not provide any
theoretical guarantee on the mode-seeking performance of
f -divergences in model fitting.

A closely-related concept is zero-avoiding/forcing diver-
gences (Minka, 2005; Bishop, 2006). When fitting a dis-
tribution Q to the data distribution P , a zero-avoiding di-
vergence results in a Q where Q(x) > 0 for any x with
P (x) > 0, whereas a zero-forcing divergences results in
a Q where Q(x) = 0 for any x with P (x) = 0. While
zero-avoiding is conceptually almost the same as mode-
covering, zero-forcing does not necessarily imply (strongly)
mode-seeking in the sense studied in this paper, since we
require Q to capture a mode in P accurately. For works on
mode-covering/seeking α-divergences, see (Minka, 2005;
Hernandez-Lobato et al., 2016; Li and Turner, 2016; Wang
et al., 2018). The α-divergence is zero-avoiding when
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α ≥ 1, and zero-forcing when α ≤ −1 (Bishop, 2006;
Minka, 2005). We will prove that α-divergence is mode-
seeking when α < 1, showing that mode-seeking is not
exactly the same as zero-forcing.

Regarding our evaluation of target divergences in GANs,
the numerical studies in (Lucic et al., 2018; Kurach et al.,
2019) report similar Fréchet inception distance (FID) scores
for different GAN formulations. However, as also discussed
in (Sajjadi et al., 2018; Borji, 2022), this observation does
not indicate the same diversity and quality scores for the
learnt distributions, as FID scores lead to a one-dimensional
evaluation of GANs. To address this issue, (Sajjadi et al.,
2018; Kynkäänniemi et al., 2019) propose the precision and
recall scores to contrast different generative models in the
2-dimensional space of diversity and quality of generated
data. As a complementary approach, our work focuses
on a theoretical framework for mode-seeking divergence
measure to demonstrate their power in improving the quality
of generated data. Also, we use an information-theoretic
decomposition of Inception score (Salimans et al., 2016) to
measure the quality and diversity of generated image data
in our experiments. Finally, regarding the mode collapse
phenomenon in GANs, (Arjovsky et al., 2017) suggests
that Wasserstein GANs can resolve the mode collapse issue.
Furthermore, (Nagarajan and Kolter, 2017) has included a
regularization term to WGAN, and (An et al., 2019) uses
the Brenier potential on a latent space via an autoencoder.

3 PRELIMINARIES

3.1 f -divergence measures and f -GANs

Given a convex function f : [0,∞) → R ∪ {∞} with
f(1) = 0, the f -divergence (Csiszár and Shields, 2004) of
P from Q (both P,Q are regarded as probability density
functions) is defined as

Df (P∥Q) :=

∫
f

(
P (x)

Q(x)

)
Q(x)dx.

f -GAN (Nowozin et al., 2016) attempts to solve the follow-
ing divergence minimization problem for the f -divergence
from the observed data distribution PX to the generator’s
model PG(Z): minG∈G Df (PX∥PG(Z)). In the above, G
represents the set of generator mappings and Z denotes the
noise random vector input to generator G. f -GAN uses the
following variational formulation of f -divergence (Nguyen
et al., 2010) to lower-bound the above divergence minimiza-
tion problem with a minimax optimization problem:

Df (P ∥Q) ≥ sup
T∈T

(
Ex∼P [T (x)]− Ex∼Q[f

∗(T (x))]
)
.

(1)
Here, f∗ denotes f ’s convex conjugate, f∗(s) := supt(st−
f(t)), and T is an arbitrary function set.

3.2 Wasserstein distances and Wasserstein GANs

The ρ-Wasserstein distance (Villani, 2003) with parameter
ρ > 0 is defiend as:

Wρ(P,Q) :=
(

inf
R∈Γ(P,Q)

∫
∥x−y∥ρR(dx,dy)

)1/max{ρ, 1}
,

where Γ(P,Q) is the set of couplings of P and Q. The
Wasserstein GAN (WGAN) problem (Arjovsky et al.,
2017) aims to find the generative model with the min-
imum 1-Wasserstein distance to the data distribution
minG∈G W1(PX , PG(Z)). To solve the distance minimiza-
tion problem, WGANs leverage the Kantorovich-Rubinstein
duality result (Villani, 2003) revealing that

W1(P,Q) = sup
T 1-Lipschitz

Ex∼P [T (x)]−Ex∼Q[T (x)], (2)

where the discriminator function T is constrined to be 1-
Lipschitz. Aside from standard WGANs minimizing the 1-
Wasserstein distance, the W2GAN problem minimizing the
2-Wasserstein distance has also been studied in (Bousquet
et al., 2017; Feizi et al., 2020; Taghvaei and Jalali, 2019).

3.3 The hybrid of f -divergence and Wasserstein
distance: Lipschitz GANs

While f -GANs typically lack a stable convergence behavior
which may lead to training failures, the f -GAN problems
with a regularized discrminator with bounded Lipschitz con-
stant, e.g. under spectral normalization and gradient penalty
(Miyato et al., 2018; Kodali et al., 2017), have been empir-
cally observed to enjoy higher training stability. (Farnia and
Tse, 2018) theoretically shows that such an f -GAN problem
with a 1

λ -Lipschitz discriminator minimizes the following
hybrid of the f -divergence and 1-Wasserstein distance:

Dλf,W1
(P
∥∥Q) := inf

P̃

(
W1(P, P̃ ) + λDf (P̃

∥∥Q)
)
,

(3)
where the infimum is taken over all distributions. It can be
seen that the above divergence measure has the continuous
behavior of Wasserstein distances in the input distributions.

4 MODE-SEEKING f -DIVERGENCES

In existing literature, mode-seekingness (Bishop, 2006; Ke
et al., 2020) has a purely operational meaning, where a
divergence/distance is mode-seeking if minimizing the di-
vergence between a multimodal data distribution and the
distribution of the model allows the model to capture one
of the modes. Here we give a theoretical characterization
of mode-seeking f -divergences, which will be proven in
Theorem 4.3 to guarantee the aforementioned operational
behavior.

Consider f -divergence Df , where f(t) is convex with
f(1) = 0. Consider the following conditions:
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Table 1: Mode-seeking and mode-covering f -divergences, ordered loosely in decreasing order of mode-seeking power.

f -divergence f(t) Mode-seeking order f̊(γ)

Uniformly

mode-seeking

(MS1-4)

Neyman χ2-divergence t−1 − 1 O(γ1/3)

Softened reverse KL (Shannon et al., 2020) 2(t+ 1) log t+1
t − 4 log 2 O(γ1/3)

GALT divergence (Poole et al., 2016) log(1 + t−1)− log 2 O(γ1/3)

Reverse KL divergence − log t O(γ1/3
√− log γ)

Jensen-Shannon divergence 1
2

(
t log t

t+1 − log t+1
4

)
O(γ1/3

√− log γ)

Squared Hellinger distance 2(1−
√
t) O(γ1/5)

α-divergence for α < 1, α ̸= −1 4
1−α2 (1− t(1+α)/2) O(γ(1−α)/(5−α) + γ1/3)

Weakly mode-

seeking (MS1-2 only)
Total variation distance max{1− t, 0} O(1)

Mode-

covering

(none of MS1-4)

KL divergence t log t N/A

Pearson χ2-divergence (t− 1)2 N/A

α-divergence for α > 1 4
1−α2 (1− t(1+α)/2) N/A

• (MS1) limt→∞ f(t)/t <∞.

• (MS2) There is no s ∈ (0, 1) such that f(t) is a straight
line (an affine function) for t ∈ [s,∞).

• (MS3) f is strongly convex for t ∈ (0, s] for some s >
1 (i.e., there exists β > 0 such that t 7→ f(t)− βt2/2
is convex for t ∈ (0, s]).

• (MS4) There exists s > 1 such that f is twice con-
tinuously differentiable for t ∈ (0, s], and f ′′(t) is
non-increasing for t ∈ (0, s].

Definition 4.1. We call Df weakly mode-seeking if it satis-
fies MS1–2. We call Df strongly mode-seeking if it satisfies
MS1–3 (it suffices to check MS1 and MS3). We call Df

uniformly mode-seeking if it satisfies MS1–4.

For example, Jensen-Shannon divergence, reverse KL di-
vergence and Neyman χ2-divergence are uniformly mode-
seeking, whereas total variation distance is only weakly
mode-seeking. KL divergence and Pearson χ2-divergence
are not mode-seeking. Refer to Table 1 and Figures 1 and
13 for more examples.

To illustrate the behaviors of various f -divergences, con-
sider the data distribution P = 0.75N (0, 1) + 0.25N (δ, 1),
a mixture of 2 Gaussian distributions (δ ≥ 0 is the sep-
aration between the two modes), and we fit a Gaussian
distribution Q that minimizes Df (P∥Q). The plots of the
center of Q against δ are given in Figures 2 and 14. Observe
the following three kinds of behaviors: 1) Uniformly mode-
seeking divergences (Neyman χ2, reverse KL, JS, squared
Hellinger) where the center of Q tends to the largest mode
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0.00

0.05

0.10

0.15
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0.30 Ground truth P

Neyman χ2

Reverse KL

JS divergence

Squared Hellinger

TV distance

KL divergence

Pearson χ2

Figure 1: Plot of argminQ GaussianDf (P∥Q) for various f -
divergences, where the ground truth P = 0.75N (0, 2) +
0.25N (5, 1/8) is a mixture of 2 Gaussian distributions. A
mode-seeking divergence tends to capture the mode on the
left, whereas a mode-covering divergence tends to be closer
to the center.

0 as δ increases, correctly identifying a mode with increas-
ing accuracy as the modes become more well-separated. 2)
Weakly mode-seeking divergence (TV) where the center
stays within a bounded distance from 0, identifying a mode
without increasing accuracy. 3) Mode-covering divergences
(KL, Pearson χ2), where Q is centered in the middle of the
two modes. The legends of the plot is ordered in decreasing
order of mode-seeking power according to the plot.

We will give a theoretical justification of the aforementioned
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Figure 2: Plot of the center of argminQ GaussianDf (P∥Q) for various f -divergences, where the ground truth P =
0.75N (0, 1) + 0.25N (δ, 1) is a mixture of 2 Gaussian distributions, where δ ≥ 0 is the separation between the two
modes. We plot the center of Q against δ (left: linear scale, right: log-scale).

characterization. First, we state the definition of symmetric
quasiconcave distributions, which includes Gaussian distri-
butions and Laplace distributions as special cases.
Definition 4.2. A probability density function p : Rd → R
is symmetric quasiconcave if the superlevel set {x ∈ Rd :
p(x) ≥ t} is convex for any t ≥ 0, and there exists µ ∈ Rd
(the center) such that p(µ+x) = p(µ−x) for any x ∈ Rd.

Given P which is an arbitrary set of symmetric quasi-
concave distributions with finite second moments over
Rd, we consider the setting where the data distribution
P (x) :=

∑k
i=1 wipi(x) is a mixture of k ≥ 2 distribu-

tions in P , where p1, . . . , pk ∈ P with distinct centers
µ1, . . . ,µk ∈ Rd and covariance matrices Σ1, . . . ,Σk ∈
Rd×d, and w1, . . . , wk > 0 with

∑k
i=1 wi = 1. We are

going to fit Q ∈ P to P according to

Q := argmin
Q∈P

Df (P ∥Q).

We will show that, as long as Df is mode-seeking, Q can
identify one of the modes of P . As observed in Figure 2,
this works only when the components pi are sufficiently
well-separated. Well-separatedness is measured in terms of

σmax := max
i
λ1/2max(Σi), δmin := min

i̸=j
∥µi − µj∥2.

The components are well-separated if σmax/δmin is small.
We now state the main result. The proof is in Appendix C.
Theorem 4.3. Consider the aforementioned setting of fitting
Q := argminQ∈PDf (P ∥Q) to a mixture distribution P
of distributions in P . Denote the center of Q as µQ. If such
minimizer Q exists, then we have:

• If Df is weakly mode-seeking, then there is a constant

Cf,k > 0 (only depends on f , k) such that

min
i

∥∥µQ − µi
∥∥
2
≤ Cf,kσmax. (4)

Hence, a mode is identified without increasing accuracy.

• If Df is strongly mode-seeking, then there is a constant
Cf,k > 0 (only depends on f , k) such that

min
i

∥∥µQ − µi
∥∥
2
≤ Cf,kσmaxf̊ (σmax/δmin) , (5)

where

f̊(γ) := inf
0<ϵ<1/2

{
γ

ϵ

+

√
−ϵf

(
1

ϵ

)
+ (1− ϵ) lim

t→∞

f(t)

t
+ ϵ

}
is called the mode-seeking order of Df . Note that
limγ→0 f̊(γ) = 0. A mode is identified with increasing
accuracy as the modes become more well-separated.

• If Df is uniformly mode-seeking, then there is a constant
Cf > 0 (only depends on f ) such that

min
i

∥∥µQ − µi
∥∥
2
/σmax ≤ Cfkf̊ (kσmax/δmin) (6)

as long as the right hand side is not greater than 1.

Explicit expressions for the constants in (4), (5), (6) can be
found in (10), (25), (28) in the proof respectively. Intuitively,
in the bound for uniformly mode-seeking divergences in (6),
the order of growth with respect to the number of modes
k is stated explicitly, and it is uniform in the sense that the
constant Cf does not depend on k.



Mode-Seeking Divergences: Theory and Applications to GANs

Note that the result is independent of the dimension d. A
limitation of Theorem 4.3 is that it only applies when the
true data distribution P is known, whereas, in practice, only
a dataset containing samples from P is known. The sit-
uation where we are only given samples from P will be
discussed in Section 6. Table 1 lists several f -divergences
with their mode-seeking orders, ordered loosely in decreas-
ing order of mode-seeking power. We choose f(t) satisfying
limt→∞ f(t)/t = 0 for mode-seeking divergences. For a
weakly mode-seeking divergence, let its mode-seeking order
be O(1) so (5) holds.

5 WASSERSTEIN DISTANCE

In this section, we show that the Wasserstein distances Wρ

are not mode-seeking in the operational sense, i.e., it fails to
capture a mode in a mixture distribution. We first consider
the case where we fit a point mass to a discrete distribution,
i.e., P = {δz : z ∈ Rd} (where δz denotes the degenerate
distribution at z), the data distribution is P =

∑k
i=1 wiδzi ,

and we fit Q ∈ P that minimizes Wρ(P,Q), which is equiv-
alent to finding x that minimizes

∑k
i=1 wi∥x − zi∥ρ. A

more general case will be discussed later. We can show
by convexity that if ρ ≥ 1, then the minimizing Q may
not coincide with any of the modes zi’s (if P is symmetric
around 0, then x = 0 is a minimizer). For ρ = 2, the x
that minimizes

∑k
i=1 wi∥x − zi∥ρ is the mean of P . For

ρ = 1, the minimizer is the weighted geometric median,
which generally does not coincide with any zi when the
dimension d ≥ 2.

Nevertheless, when 0 < ρ < 1, the Wasserstein distance
corresponds to a transportation cost with concave cost func-
tion (McCann, 1999; Santambrogio, 2015), which might be
mode-seeking. Indeed, for the one-dimensional case d = 1,
the Q that minimizes Wρ for ρ < 1 must coincide with one
of the modes zi’s. This can be seen by letting z1 < · · · < zk,
and noting that Wρ(P, δx) is concave for x ∈ [zi, zi+1] for
i = 1, . . . , k − 1. However, this fails when the dimension
d ≥ 2, as shown in the following lemma. The proof is given
in Appendix D.

Lemma 5.1. Fix d ≥ 2, ρ > 0. There exists k
and z1, . . . , zk ∈ Rd such that the minimizer of x 7→
k−1

∑k
i=1 ∥x − zi∥ρ is unique and does not belong to

{z1, . . . , zk}. Hence the minimizer of x 7→ Wρ(P, δx)

where P = k−1
∑k
i=1 δzi

does not coincide with any of
the modes in P .

Hence, Wasserstein distances fail to be mode-seeking for the
more general case where pi’s are symmetric quasiconcave
distributions with small variances instead of point masses.

Theorem 5.2. Fix d ≥ 2, 0 < ρ ≤ 2, and any class
of symmetric quasiconcave distributions P satisfying that
supp∈P λ

1/2
max(Σp) =: σmax < ∞ (where Σp is the co-

variance matrix of p), and for each x ∈ Rd, there ex-

ists p ∈ P centered at x. For any β > 0, there exists
p1, . . . , pk ∈ P such that Q := argminQ∈PWρ(P,Q)

(where P := k−1
∑k
i=1 pi) satisfies mini ∥EQ− Epi∥2 >

β, where we write EQ := Ex∼Q[x].

Informally, assuming each p ∈ P is sufficiently concen-
trated around its mean, if we fit a distribution Q to the
mixture distribution P using Wasserstein distances, then the
mean of Q can be arbitrarily far from the closest mode of
P . Refer to Appendix D for the proof. In contrast, Theo-
rem 4.3 showed that a mode-seeking divergence attains a
distance from the closest mode in the order O(σmax). The
only (weakly) mode-seeking Wasserstein distance is W0, i.e.
the total variation distance.

6 HYBRID OF f -DIVERGENCE AND
WASSERSTEIN DISTANCE

Theorem 4.3 shows that a mode-seeking f -divergence can
identify a mode when the true data distribution P is known.
Nevertheless, in practice, we are only given the empirical
distribution P̂ := n−1

∑n
i=1 δxi

, where {xi} is the data
set, and δxi

is the degenerate distribution at xi. Applying
Theorem 4.3 on P̂ instead of P shows that the optimizer Q
would merely be the degenerate distribution at one of the
data points, which is in some sense the “intended behavior”
of a mode-seeking divergence, since each point xi is a mode
and is well-separated from other modes. Therefore, being
“too mode-seeking” may be detrimental.

The variational formulation of f -divergence (1) in (Nowozin
et al., 2016), including the vanilla GAN (Goodfellow et al.,
2014), works even on empirical distributions, by restricting
the function T ∈ T to be representable by a neural network.
This approach requires a careful balance in training the gen-
erator and the discriminator, and may perform poorly if the
discriminator is trained to optimality (Arjovsky and Bottou,
2017; Arjovsky et al., 2017). On the other hand, WGAN
(Arjovsky et al., 2017) imposes a Lipschitz condition on the
discriminator, allowing the discriminator to be trained to
optimality when only the empirical distribution is known.

The hybrid of f -divergence and Wasserstein distance (3)
in (Farnia and Tse, 2018) retains the advantage of WGAN.
We now show that the hybrid divergence can be applied
on empirical distributions while retaining the mode-seeking
behavior of f -divergence. We present an informal version of
the theorem, which states that as long as λ = O(σmax), we
have mini ∥µQ − µi∥2 = O(σmax) with high probability.
The formal theorem and the proof is in Appendix E.
Theorem 6.1. (Informal) Consider the hybrid divergence
Dλf,W1 , where the f -divergence Df is weakly mode-
seeking. Let P be a set of symmetric quasiconcave dis-
tributions. Define P (x) :=

∑k
i=1 wipi(x) and σmax

as in Theorem 4.3. Let x1, . . . ,xn
iid∼ P , and P̂ :=

n−1
∑n
i=1 δxi

be the empirical distribution. Let Q :=
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Figure 3: Samples generated by the trained generator (colored blue) and the original training data for the 8 and 25-component
Gaussian mixture model (colored red). Rows 1-3 show the samples generated by the VGAN, WGAN-WC, and WGAN-GP.

argminQ∈PDλf,W1
(P̂ ∥Q), and denote its center as µQ.

For fixed d, k and ζ > 0, if λ = O(σmax), then

P
(
min
i

∥µQ − µi∥2 ≥ kσmaxζ
)

≤O
(
λ−1

(
E
[
∥x− E[x]∥32

])1/3
Gd(n)

)
,

where x ∼ P , and Gd(n) := n−1/max{2,d} if d ̸= 2,
Gd(n) := n−1/2 log(1 + n) if d = 2.

The term Gd(n) comes from the sample size needed to es-
timate a distribution within a small Wasserstein distance
(Fournier and Guillin, 2015), which grows exponentially
with the dimension d. The curse of dimensionality is in-
evitable uness a stronger assumption is made on P .

7 NUMERICAL EXPERIMENTS

In this section, we present the results of our numerical ex-
periments on applying the discussed GAN problems to learn
Gaussian mixture models and image data distributions. The
numerical experiments have been performed over the fol-
lowing datasets that are used as benchmark cases in the
literature: 1) An 8-component Gaussian mixture dataset
adapted from Gulrajani et al. (2017) with the modes cen-
tered around the vertices of a regular 8-sided polygon. The
standard deviation parameter of every isotropic Gaussian
mode is set to be the 0.02, 2) A 25-component Gaussian
mixture dataset adapted from Gulrajani et al. (2017) with

modes centered around a two-dimensional 5× 5-grid with
a unit column and row size and the standard deviation of
0.05, 3) CIFAR-10 dataset Krizhevsky and Hinton (2009)
including 50,000 training samples with ten labels.

We performed the numerical experiments using the follow-
ing GAN formulations: 1) the Vanilla GAN Goodfellow
et al. (2014) with no regularization which targets the JS
divergence, 2) the KL-GAN which targets the KL diver-
gence, 3) the ReverseKL-GAN Nowozin et al. (2016) which
targets the reverse-KL divergence 4) the Wasserstein GAN
implemented via weight clipping Arjovsky et al. (2017)
and gradient penalty Gulrajani et al. (2017) targeting the
1-Wasserstein distance, 5) Spectrally-normalized VGAN
(SN-GAN) Miyato et al. (2018) which uses the spectral nor-
malization on the discriminator neural net’s layers to ensure
the discriminator is a K-Lipschitz function with the value
of K determined by the product of the spectral norms of the
neural net’s layers. The Lipschitz VGAN targets the hybrid
divergence D(1/K)f,W1

. We defer the detailed description
of the numerical settings to the Appendix A.

7.1 Different divergence measures in learning
multi-modal Gaussian Data

In our numerical experiments for the 8-component and 25-
component Gaussian mixture data, we consistently observed
that the JS divergence in the VGAN led to a mode seeking
fit of the underlying Gaussian mixture in comparison to the



Mode-Seeking Divergences: Theory and Applications to GANs

Figure 4: Samples generated by the trained generator (colored blue) and the original training data for the 8 and 25-component
Gaussian mixture model (colored red). Rows 1 and 2 show the samples generated by the ReverseKL-GAN and KL-GAN.

1-Wasserstein distance in WGAN and WGAN-GP. Figure 3
shows the samples generated by the trained generator (in
blue) and the original training data (in red). The empirical
results suggest that the vanilla GAN with no regularization
tends to fit only one of the existing Gaussian modes, when
the generator is an affine map and produces only one Gaus-
sian mode. The number of captured modes are increasing
with the number of layers in the generator network. On
the other hand, both of the standard implementations of the
Wasserstein GAN displayed a mode covering tendency. In
the Appendix Table 2, we report the log-likelihood scores
of the generated samples indicating the lower quality of
WGAN samples than VGANs. For an affine generator map-
ping, the trained WGANs covered all the modes which led
to lower-quality samples. For the generators with greater
depths, although WGANs captured all the modes, they still
generated lower quality samples compared to VGAN, sug-
gesting the mode covering nature of Wasserstein distances.

Furthermore, we applied the ReverseKL-GAN minimizing
the Reverse-KL divergence and the KL-GAN targeting the
KL divergence to the same Gaussian mixture datasets. As
shown in Figure 4, the trained KL-GAN did not demon-
strate a mode-seeking behavior, while the ReverseKL-GAN
behaved in a mode seeking fashion in the numerical exper-
iments. The numerical observations were consistent with
our theoretical results in Theorems 4.3 and 5.2. For the
complete results of the experiments including the results for
different generator network’s depth, we refer the readers to
the Appendix A – Figures 6, 7, 8, 9.

7.2 Hybrid-divergence in Lipschitz GANs

In another set of experiments, we tested the Lipschitz
VGAN problem with different Lipschitz coefficients in fit-

ting mixture models. In our experiments, we simulated
different Lipschitz coefficients by altering the spectral norm
of the neural net’s layers in {1, 2, 3, 4}. As illustrated in
Figure 5, the higher Lipschitz constant 4.0 resulted in a
mode-seeking fit of the underlying mixture model, while
the lower Lipschitz constant 1.0 led to a mode-covering fit
of the underlying distribution. As the experiment suggests,
the Lipschitz constant hyperparameter allows the VGAN
learner to adjust the mode seeking power of the divergence
measure. For the complete set of our numerical results, we
refer the reader to Figures 10 and 11 in the Appendix A.

Finally, we trained the VGAN, WGAN, WGAN-GP and
SN-VGAN on the CIFAR-10 dataset and measured the
sharpness and diversity components of the Inception score
(Salimans et al., 2016) to evaluate the effect of the under-
lying divergence measure on the quality and diversity of
the generated samples. Given sample X and the pre-trained
Inception-net’s output Y , the Inception score is defined as

IS(PX,Y ) := exp
(
E[DKL(p(Y |X)∥p(Y ))]

)
= exp

(
H(Y )

)
exp
(
−H(Y |X)

)
,

where H(·) denotes the Shannon entropy. Hence,
exp(H(Y )) can be interpreted as a measure of the diver-
sity of generated data, while exp(−H(Y |X)) can be inter-
preted as a sharpness score. In our CIFAR-10 experiments,
the (sharpness,diversity) scores for the generated samples
were (0.75, 9.23) for the VGAN, (0.73,9.61) for the Lips-
chitz VGAN, (0.49,9.72) for the WGAN, and (0.66,9.70)
for the WGAN-GP. As suggested by the evaluated scores,
the WGAN formulation seems to attain higher diversity
at the cost of lower sharpness, while the VGAN achieved
higher quality while leading to a lower diversity score. On
the other hand, the Lipschitz VGAN managed to balance
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Figure 5: Samples generated by the Lipschitz Vanilla GAN with different Lipschitz constants (colored blue) and the Gaussian
mixture data (colored red). Rows 1,2 show the samples generated with the spectral norms 1,4 for the discriminator’s layers.

the quality and sharpness scores, which also resulted in the
maximum product of the two scores that is the Inception
score. We defer the generated CIFAR-10 samples of the
trained generators to the Appendix A.

8 CONCLUSION

In this paper, we provided a unified theoretical frame-
work for mode-seeking f -divergences and their hybrid with
Wasserstein distances. According to this framework, we
analyzed the divergence minimizing solution of fitting a
unimodal distribution to a multi-modal underlying model.
Our analysis reveals simple conditions on a convex function
f , under which the corresponding f -divergence results in
fitting an existing mode in the underlying mixture model. In
addition, we supported our theoretical findings through sev-
eral numerical results on standard Gaussian mixture models.

We note that our theoretical and numerical analysis sug-
gests several future directions. Since our analysis focuses
on mode-seeking divergence measures, an interesting fu-
ture direction is to create a similar theoretical framework
for mode-covering distances which applies to Wasserstein
distances. In addition, our numerical experiments mostly
focus on synthetic Gaussian mixture models as it offers prior
knowledge of the ground-truth model. However, the multi-
modal distribution of standard image datasets is typically
unknown and is formed by several unknown hidden factors.
A future extension is to develop an empirical methodology
for counting the number of existing modes in an image gen-
erative model and its dependency on the choice of fitting
divergence measure.

Another future direction is to analyze the local optima of
the divergence minimization problem. While this paper
focuses on the global optimum, local optima are relevant to

practical implementations with gradient-based optimization
algorithms. We finally note that the theoretical results in
this paper focus on fitting a unimodal model distribution
to a multimodal data distribution. We may also investigate
the implication of mode-seeking divergences in fitting a
multimodal model distribution, either in a theoretical setting
or in practical algorithms such as (Gurumurthy et al., 2017;
Khayatkhoei et al., 2018).

Acknowledgements

The work of Cheuk Ting Li was supported in part by the
Hong Kong Research Grant Council Grant ECS No. CUHK
24205621. The work of Farzan Farnia was supported by
Hong Kong Research Grant Council Grant GRF No. CUHK
14209920. The authors would also like to thank the anony-
mous reviewers for their constructive feedback.

References
An, D., Guo, Y., Lei, N., Luo, Z., Yau, S.-T., and Gu, X. (2019).

AE-OT: a new generative model based on extended semi-
discrete optimal transport. ICLR 2020.

Arjovsky, M. and Bottou, L. (2017). Towards principled methods
for training generative adversarial networks. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon,
France.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein
generative adversarial networks. In International conference on
machine learning, pages 214–223. PMLR.

Bishop, C. M. (2006). Pattern recognition and machine learning.
Springer Science+Business Media.

Borji, A. (2022). Pros and cons of gan evaluation measures: New
developments. Computer Vision and Image Understanding,
215:103329.

Bousquet, O., Gelly, S., Tolstikhin, I., Simon-Gabriel, C.-J.,
and Schoelkopf, B. (2017). From optimal transport to gen-



Mode-Seeking Divergences: Theory and Applications to GANs

erative modeling: the VEGAN cookbook. arXiv preprint
arXiv:1705.07642.

Csiszár, I. and Shields, P. C. (2004). Information theory and
statistics: A tutorial.

Farnia, F. and Tse, D. (2018). A convex duality framework for
GANs. Advances in Neural Information Processing Systems,
31:5248–5258.

Feizi, S., Farnia, F., Ginart, T., and Tse, D. (2020). Understanding
GANs in the LQG setting: Formulation, generalization and
stability. IEEE Journal on Selected Areas in Information Theory,
1(1):304–311.

Fournier, N. and Guillin, A. (2015). On the rate of convergence
in Wasserstein distance of the empirical measure. Probability
Theory and Related Fields, 162(3):707–738.

Ghasemipour, S. K. S., Zemel, R., and Gu, S. (2020). A divergence
minimization perspective on imitation learning methods. In
Conference on Robot Learning, pages 1259–1277. PMLR.

Goodfellow, I. (2016). NIPS 2016 tutorial: Generative adversarial
networks. arXiv preprint arXiv:1701.00160.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014).
Generative adversarial nets. Advances in neural information
processing systems, 27.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. (2017). Improved training of Wasserstein GANs.
In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, page 5769–5779,
Red Hook, NY, USA. Curran Associates Inc.

Gurumurthy, S., Kiran Sarvadevabhatla, R., and Venkatesh Babu,
R. (2017). Deligan: Generative adversarial networks for diverse
and limited data. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 166–174.

Hernandez-Lobato, J., Li, Y., Rowland, M., Bui, T., Hernández-
Lobato, D., and Turner, R. (2016). Black-box alpha divergence
minimization. In International Conference on Machine Learn-
ing, pages 1511–1520. PMLR.

Huszár, F. (2015). How (not) to train your generative model:
Scheduled sampling, likelihood, adversary? arXiv preprint
arXiv:1511.05101.

Ke, L., Choudhury, S., Barnes, M., Sun, W., Lee, G., and Srinivasa,
S. (2020). Imitation learning as f -divergence minimization.
In International Workshop on the Algorithmic Foundations of
Robotics, pages 313–329. Springer.

Khayatkhoei, M., Singh, M. K., and Elgammal, A. (2018). Discon-
nected manifold learning for generative adversarial networks.
Advances in Neural Information Processing Systems, 31.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Kodali, N., Abernethy, J., Hays, J., and Kira, Z. (2017). On conver-
gence and stability of GANs. arXiv preprint arXiv:1705.07215.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of
features from tiny images.
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Figure 6: Plot of the samples generated by the trained generator (in blue color) and the original training data for the
8-component Gaussian mixture (in red color). Rows 1,2,3 show samples generated by the VGAN, WGAN-WC, and
WGAN-GP respectively, while the generators in columns 1,2,3,4 include 0,1,2,3 hidden layers.

A APPENDIX – DETAILED DESCRIPTION OF THE NUMERICAL SETUP &
ADDITIONAL NUMERICAL RESULTS

Regarding the numerical experiments, for the generator and discriminator architectures, in the experiments on the Gaussian
mixture data we used a 3 hidden-layer multilayer perceptron (MLP) neural net discriminator with 64 ReLU (ReLU(z) =
max{z, 0}) neurons per layer. To simulate generators with different capacities, we experimented four different multilayer
perceptron neural networks with the following number of ReLU-based hidden layers: 0,1,2,3. Note that the network
with zero layers in fact represents an affine map from the hidden space to the sample space. In all the Gaussian mixture
experiments, we used a two-dimensional latent variable Z ∈ R2 ∼ N (0, I2) with an isotropic normal distribution. In
the case of CIFAR-10 experiments, we used the standard 4-layer architecture of DCGAN for both the generator and
discriminator.

For the optimization of generator and discriminator parameters, we used the ADAM optimizer (Kingma and Ba, 2014)
for 200,000 generator iterations. We applied 5 discriminator ADAM updates per generator iteration. For the SN-GAN
experiments, we used the standard implementation of spectral normalization in (Miyato et al., 2018) that is based on the
power method for computing the layers’ operator norm.

For the complete set of the experimental results in Figures 3 and 5, we refer the readers to Figures 6, 7, 8, 9, 10, 11. Also,
to have a quantitative comparison between the models learned in the Gaussian mixture settings, we report the averaged
log-likelihood of the generated samples based on the true distribution of the 8 and 25 Gaussian mixture models in Table 2.
Our numerical results suggest the superiority of the models learnt by minimizing the mode-seeking Reverse-KL, JS and the
hybrid divergences in producing higher quality samples.

B APPENDIX – PLOTS FOR VARIOUS f -DIVERGENCES

In Figure 13, we plot the function f for various f -divergences. For the sake of comparison, we plot αf(t)+β(t− 1) instead
of f , where α, β are chosen such that limt→∞ f(t)/t = 0 and the left derivative of f is −1 at t = 1 for mode-seeking
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Figure 7: Plot of the samples generated by the trained generator (in blue color) and the original training data for the
8-component Gaussian mixture (in red color). The upper and lower rows show samples generated by the Reverse-KL-GAN
and KL-GAN, respectively, while the generators in columns 1,2,3,4 include 0,1,2,3 hidden layers.

Figure 8: Samples generated by the trained generator (colored blue) and the original training data for the 25-component
Gaussian mixture model (colored red). Rows 1,2,3 show samples generated by the VGAN, WGAN-WC, and WGAN-GP,
respectively, while the generators in columns 1,2,3,4 include 0,1,2,3 hidden layers.
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Figure 9: Samples generated by the trained generator (colored blue) and the original training data for the 25-component
Gaussian mixture model (colored red). The upper and lower rows show samples generated by the Reverse-KL-GAN and
KL-GAN, respectively, while the generators in columns 1,2,3,4 include 0,1,2,3 hidden layers.

Figure 10: Samples generated by the Lipschitz Vanilla GAN (colored blue) and the training data for the 8-component
Gaussian mixture (colored red). The rows show samples generated using the spectral norm values 1,2,3,4 for the discriminator
network’s layers, and the generators in columns 1,2,3,4 have 0,1,2,3 hidden layers.
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Figure 11: Samples generated by the Lipschitz Vanilla GAN (colored blue) and the training data for the 25-component
Gaussian mixture model (colored red). The rows show samples generated using the spectral norm values 1,2,3,4 for the
discriminator network’s layers, and the generators in columns 1,2,3,4 have 0,1,2,3 hidden layers.
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Figure 12: CIFAR-10 samples generated by the trained generator of the VGAN, WGAN, WGAN-GP, spectrally-normalized
VGAN.

divergences, and we choose α = 1 and β such that the left derivative is −1 for mode-covering divergences. The most
mode-seeking divergences are Neyman χ2, softened reverse KL and GALT divergence, where f is lower-bounded by a
constant, and the mode-seeking order is O(γ1/3). The functions f for mode-covering divergences (KL and Pearson χ2)
grow faster than linearly. While Jeffreys divergence also grows faster than linearly (it does not satisfy the definition of
weakly mode-seeking), it is unclear whether it should be considered as mode-covering.

Figure 14 is a more complete version of Figure 2 for the mixture data distribution P = 0.75N (0, 1) + 0.25N (δ, 1), where
we also include the softened reverse KL divergence (Shannon et al., 2020), GALT divergence (Poole et al., 2016), and
Jeffreys divergence. While Jeffreys divergence does not satisfy the definition of weakly mode-seeking in this paper, it
appears to have a weakly mode-seeking behavior similar to total variation distance in this example.

C APPENDIX – PROOF OF THEOREM 4.3

Before we prove Theorem 4.3, we show the following results about symmetric quasiconcave distributions.

Proposition C.1. Let x ∈ Rd be a random vector with a symmetric quasiconcave distribution centered at 0, and a ∈ Rd\{0}.
We have

1. aTx also has a symmetric quasiconcave distribution centered at 0 (i.e., aTx is symmetric and unimodal).

2. For t ≥ 0,

P(aTx ≥ t) ≤ 1

2
max

{
1− t

9
√
E[(aTx)2]

,
1

3

}

≤ 1

2
max

{
1− t

9∥a∥2
√
λmax(Σ)

,
1

3

}
,

where Σ is the covariance matrix of x.

3. For t, r > 0,
P(aTx ∈ [t− r, t+ r]) ≤ r

t
.
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Figure 13: Plot of the function f for various f -divergences.
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Figure 14: Plot of the center of argminQ GaussianDf (P∥Q) for various f -divergences, where the ground truth P =
0.75N (0, 1) + 0.25N (δ, 1) is a mixture of 2 Gaussian distributions, where δ ≥ 0 is the separation between the two modes.
We plot the center of Q against δ (left: linear scale, right: log-scale).
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8-comp GMM Non-Hybrid Divergences

GAN / Gen. Layers 0 1 2 3
JS-GAN 2.01 2.05 1.92 1.88
WGAN -0.05 0.78 1.51 1.86
WGAN-GP 0.16 0.89 1.78 1.89
KL-GAN 0.10 -0.4 0.03 0.15
Reverse-KL 0.18 2.02 2.05 1.98

8-comp GMM: JS-W1 Hybrid Divergence

Lip. Cons. / Gen. Layers 0 1 2 3
1.0 0.16 0.98 1.56 1.88
2.0 0.28 0.94 1.63 1.92
3.0 0.48 0.90 1.57 1.96
4.0 2.05 1.34 1.78 2.00

25-comp GMM: Non-Hybrid Divergences

GAN / Gen. Layers 0 1 2 3
JS-GAN 3.15 2.34 2.89 2.78
WGAN 0.31 1.56 1.48 1.89
WGAN-GP 0.24 1.23 1.64 2.27
KL-GAN 0.17 0.28 0.25 1.87
Reverse-KL 3.04 3.01 2.41 2.24

25-comp GMM: JS-W1 Hybrid Divergence

Lip. Cons. / Gen. Layers 0 1 2 3
1.0 0.29 1.20 2.21 2.14
2.0 0.12 1.12 2.08 2.43
3.0 3.00 1.41 1.95 2.74
4.0 3.02 1.61 2.78 2.89

Table 2: Averaged normalized log-likelihood of GANs’ generated samples

Proof. First we show that aTx has a symmetric quasiconcave distribution centered at 0. We first consider the case
x ∼ Unif(A), where A ⊆ Rd is a convex set with finite positive volume that is symmetric around 0. We also assume
a = [1, 0, . . . , 0] without loss of generality. Assume x ∼ Unif(A). Write At := {z ∈ Rd−1 : [t, z] ∈ A} for the cross
section of A. Since A is convex, we have

t+ s

2t
At +

t− s

2t
A−t ⊆ As

for 0 ≤ s < t, where the “+” stands for Minkowski sum. By Brunn-Minkowski theorem and that A−t = −At (since A is
symmetric around 0),

Vol(As) ≥
(
Vol1/d

(
t+ s

2t
At

)
+Vol1/d

(
t− s

2t
A−t

))d
=

(
t+ s

2t
Vol1/d(At) +

t− s

2t
Vol1/d(At)

)d
= Vol(At).

Therefore Vol(At) is non-increasing for t ≥ 0. The result follows from that the probability density function of aTx is
t 7→ Vol(At)/Vol(A).

Consider the general case where x has a symmetric quasiconcave probability density function p. For α > 0, since the
superlevel set L+

α := {x ∈ Rd : p(x) ≥ α} has finite volume and is convex and symmetric around 0, when x ∼ Unif(L+
α ),

the density function of aTx (let it be qα) is symmetric quasiconcave and centered at 0. Note that we can generate x ∼ p
by first generating α according to the probability density function α 7→ Vol(L+

α ), and then generating x ∼ Unif(L+
α ).

Therefore, when x ∼ p, the density function of aTx is
∫∞
0

Vol(L+
α )qα(x)dα, which is also symmetric quasiconcave (since

it is non-increasing for x ≥ 0) and centered at 0.

For the second claim, let z = |aTx|, and let its probability density function be p : [0,∞) → R. Then p is a non-increasing
function. We have

E[z21{z < t}] ≥ t3

3
p(t).

And

E[z21{z ≥ t}] ≥ 1

3

((
P(z ≥ t)

p(t)
+ t

)3

− t3

)
p(t).
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Hence,

E[z2] ≥ 1

3

(
P(z ≥ t)

p(t)
+ t

)3

p(t)

≥ 1

3

(P(z ≥ t))3

(p(t))2

≥ 1

3

(P(z ≥ t))3

((1− P(z ≥ t))/t)2

=
t2

3
· (P(z ≥ t))3

(1− P(z ≥ t))2
.

If P(z ≥ t) ≥ 1/3, then

E[z2] ≥ t2

81
· 1

(1− P(z ≥ t))2
,

P(z ≥ t) ≤ 1− t

9
√

E[z2]
.

Hence we have

P(z ≥ t) ≤ max

{
1− t

9
√
E[z2]

,
1

3

}
.

For the third claim, assume a = [1, 0, . . . , 0] and t = 1 without loss of generality. It suffices to consider the case where
x ∼ Unif(A), where A ⊆ Rd is a convex set with finite positive volume that is symmetric around 0. For r < 1,

Vol(A ∩ {z : 1− r ≤ z1 ≤ 1 + r})

=

∫ 1+r

1−r
Vol(As) ds

≤ 2r

1 + r

∫ 1+r

0

Vol(As) ds

≤ r

1 + r
Vol(A)

≤ rVol(A).

Clearly Vol(A ∩ {z : 1− r ≤ z1 ≤ 1 + r}) ≤ rVol(A) also holds for r ≥ 1. The result follows.

We now prove Theorem 4.3.

Proof of Theorem 4.3. We use the notation Df (s∥t) = Df (Bern(s)∥Bern(t)) where Bern(s) denotes the Bernoulli distri-
bution with parameter s. Assume Df is weakly mode-seeking. By condition MS1, we can let

f2(x) = f(x)− (x− 1) lim
t→∞

f(t)

t
,

which is a nonincreasing function with limt→∞ f2(t)/t = 0. We have Df (P∥Q) = Df2(P∥Q). Therefore, without loss
of generality, we can assume f is convex and nonincreasing with limt→∞ f(t)/t = 0. By condition MS2, there does not
exist s ∈ (0, 1) such that f(t) is constant for t ∈ [s,∞). Since f is convex and nonincreasing, we know that f(t) is strictly
decreasing for t ∈ [0, 1]. Let the center of Q be µ = µQ. Let

wmax := max
i
wi,
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and assume wmax = wi∗ . Note that

Df

(
P
∥∥ pi∗)

=

∫
f

(
P (x)

pi∗(x)

)
pi∗(x)dx

≤
∫
f

(
wi∗pi∗(x)

pi∗(x)

)
pi∗(x)dx

= f(wmax).

Let Q be a symmetric quasiconcave distribution with center µ = µQ. Let

δµ := min
i

∥µi − µ∥2.

Without loss of generality, assume δµ := ∥µ1 − µ∥2. It remains to prove that Df (P∥Q) > f(wmax) whenever δµ is not
small.

We first prove the case for weakly mode-seeking. Let r > 0, and

T :=

{
x ∈ Rd : ∃i ∈ {1, . . . , k}.

∣∣∣∣ (µi − µ)T

∥µi − µ∥2
(x− µ)− ∥µi − µ∥2

∣∣∣∣ ≤ r

}
.

We have, by Proposition C.1.3,

Q(T ) ≤
k∑
i=1

Q

(
x :

∣∣∣∣ (µi − µ)T

∥µi − µ∥2
(x− µ)− ∥µi − µ∥2

∣∣∣∣ ≤ r

)

=

k∑
i=1

Q

(
x :

(µi − µ)T

∥µ− µi∥2
(x− µ) ∈ [∥µ− µi∥2 − r, ∥µ− µi∥2 + r]

)

≤
k∑
i=1

r

∥µ− µi∥2

≤ kr

δµ
. (7)

Let 0 < ϵ < 1/2, and we choose r such that Q(T ) = ϵ (this is possible since Q has a density, so Q(T ) changes continuously
from 0 to approach 1 as r increases from 0 to ∞). We have kr/δµ ≥ ϵ,

r ≥ δµϵ

k
. (8)

Also, by Chebyshev’s inequality,

pi(T
c) ≤ pi

(
x :

∣∣∣∣ (µi − µ)T

∥µi − µ∥2
(x− µ)− ∥µi − µ∥2

∣∣∣∣ > r

)
≤ pi

(
x :

∣∣∣∣ (µ− µi)
T

∥µ− µi∥2
(x− µi)

∣∣∣∣ > r

)
≤ λmax(Σi)

r2

≤ σ2
max

r2

≤
(kσmax

δµϵ

)2
, (9)

and hence
P (T c) ≤

(kσmax

δµϵ

)2
.
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Therefore,

Df

(
P
∥∥Q)

≥ Df

(
P (T )

∥∥Q(T )
)

≥ Df

(
max

{
1−

(kσmax

δµϵ

)2
, ϵ
}∥∥∥∥ ϵ) .

Hence Df (P∥Q) > f(1/k) ≥ f(wmax) (and hence Q cannot be the minimizer) whenever δµ/σmax > f̌(k), where

f̌(k) = inf

{
γ > 0 : ∃ϵ > 0. Df

(
max

{
1−

(
k

γϵ

)2

, ϵ

}∥∥∥∥∥ ϵ
)
> f

(
1

k

)}
. (10)

Note that f̌(k) is well-defined and finite since after substituting ϵ = (k/γ)2/3, we have

Df

(
1−

(
k

γ

)2/3
∥∥∥∥∥
(
k

γ

)2/3
)

→ lim
t→0

f(t) > f

(
1

k

)
as γ → ∞. As a result,

min
i

∥∥µQ − µi
∥∥
2
≤ f̌(k)σmax.

We now prove the case for strongly and uniformly mode-seeking. Let r > 0 (not the same as the previous r). We partition
the space into three parts:

Sϵ :=

{
x ∈ Rd : ∃i ∈ {2, . . . , k}.

∣∣∣∣∣∣∣∣ (µi − µ)T

∥µi − µ∥2
(x− µ)

∣∣∣∣− ∥µi − µ∥2
∣∣∣∣ ≤ r

}
,

S+ :=
{
x ∈ Rd : (µ1 − µ)T (x− µ) ≥ 0

}
\Sϵ,

S− :=
{
x ∈ Rd : (µ1 − µ)T (x− µ) < 0

}
\Sϵ.

Similar to (7), we have

Q(Sϵ) ≤
k∑
i=2

Q

(
x :

∣∣∣∣∣∣∣∣ (µi − µ)T

∥µi − µ∥2
(x− µ)

∣∣∣∣− ∥µi − µ∥2
∣∣∣∣ ≤ r

)

=

k∑
i=2

Q

(
x :

∣∣∣∣ (µi − µ)T

∥µ− µi∥2
(x− µ)

∣∣∣∣ ∈ [∥µ− µi∥2 − r, ∥µ− µi∥2 + r]

)
(a)

≤
k∑
i=2

2r

∥µ− µi∥2
(b)

≤ 4kr

δmin
, (11)

where (a) is by Proposition C.1.3, and (b) is because

δmin ≤ ∥µ1 − µi∥2
≤ ∥µ− µ1∥2 + ∥µ− µi∥2
≤ 2∥µ− µi∥2.

Let 0 < ϵ < 1/2, and we choose r such that Q(Sϵ) = ϵ (this is possible since Q has a density, so Q(Sϵ) changes
continuously from 0 to approach 1 as r increases from 0 to ∞). By (11),

r ≥ δminϵ

4k
.
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Also, since Q is symmetric around µ,

Q(S−) = Q(S+) =
1− ϵ

2
.

Moreover, by Proposition C.1.2,

p1(S−) ≤ p1
({

x : (µ1 − µ)T (x− µ) ≤ 0
})

= p1
({

x : (µ− µ1)
T (x− µ1) ≥ ∥µ− µ1∥22

})
≤ 1

2
max

{
1− ∥µ− µ1∥22

9∥µ− µ1∥2
√
λmax(Σi)

,
1

3

}

≤ 1

2
max

{
1− δµ

9σmax
,
1

3

}
=

1

2

(
1−min

{
δµ

9σmax
,
2

3

})
, (12)

and by Chebyshev’s inequality, for i ≥ 2,

pi(S
c
ϵ ) ≤ pi

(
x :

∣∣∣∣∣∣∣∣ (µi − µ)T

∥µi − µ∥2
(x− µ)

∣∣∣∣− ∥µi − µ∥2
∣∣∣∣ > r

)
≤ pi

(
x :

∣∣∣∣ (µ− µi)
T

∥µ− µi∥2
(x− µi)

∣∣∣∣ > r

)
≤ λmax(Σi)

r2

≤
(
4kσmax

δminϵ

)2

. (13)

Assume (
4kσmax

δminϵ

)2

≤ 1

6
,

or equivalently,

ϵ ≥ 4
√
6kσmax

δmin
.

We have

P (S−) ≤
w1

2

(
1−min

{
δµ

9σmax
,
2

3

})
+ (1− w1)

(
4kσmax

δminϵ

)2

≤ wmax

2

(
1−min

{
δµ

9σmax
,
2

3

})
+ (1− wmax)

(
4kσmax

δminϵ

)2

=: υ−. (14)

Also

P (Sϵ) ≥ (1− w1)

(
1−

(
4kσmax

δminϵ

)2
)

≥ (1− wmax)

(
1−

(
4kσmax

δminϵ

)2
)

=: υϵ. (15)

Let

υ+ := 1− υ− − υϵ

= wmax

(
1− 1

2

(
1−min

{
δµ

9σmax
,
2

3

}))
=
wmax

2

(
1 + min

{
δµ

9σmax
,
2

3

})
. (16)
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We have

Df (P ∥Q)

≥ Q(Sϵ)f

(
P (Sϵ)

Q(Sϵ)

)
+Q(S+)f

(
P (S+)

Q(S+)

)
+Q(S−)f

(
P (S−)

Q(S−)

)
= ϵf

(
P (Sϵ)

ϵ

)
+

1− ϵ

2
f

(
2P (S+)

1− ϵ

)
+

1− ϵ

2
f

(
2P (S−)

1− ϵ

)
(c)

≥ ϵf

(
1

ϵ

)
+

1− ϵ

2
f

(
2(1− υϵ − P (S−))

1− ϵ

)
+

1− ϵ

2
f

(
2P (S−)

1− ϵ

)
(d)

≥ ϵf

(
1

ϵ

)
+

1− ϵ

2
f

(
2υ+
1− ϵ

)
+

1− ϵ

2
f

(
2υ−
1− ϵ

)
≥ ϵf

(
1

ϵ

)
+

1− ϵ

2
f

(
1 + ζ

1− ϵ
wmax

)
+

1− ϵ

2
f

(
1− ζ

1− ϵ
wmax + γ2ϵ−2

)
(17)

where (c) is because f is nonincreasing, and (d) is by the convexity of f , and we let

ζ := min

{
δµ

9σmax
,
2

3

}
γ :=

8kσmax

δmin
.

Note that as ϵ→ 0 and γϵ−1 → 0, we have ϵf(1/ϵ) → 0 since limt→∞ f(t)/t = 0, and

ϵf

(
1

ϵ

)
+

1− ϵ

2
f

(
1 + ζ

1− ϵ
wmax

)
+

1− ϵ

2
f

(
1− ζ

1− ϵ
wmax + γ

)
→ 1

2
f ((1 + ζ)wmax) +

1

2
f ((1− ζ)wmax)

> f(wmax)

since f is strictly convex in a neighborhood of wmax. Hence, for any fixed δµ/σmax, this Q is suboptimal if ϵ and γϵ−1 are
small enough. This shows that if wmax is fixed, then f being strictly convex in (0, 1] and limt→∞ f(t)/t <∞ is sufficient
to show that δµ/σmax → 0 as ϵ → 0 and γϵ−1 → 0. Nevertheless, the definition of strongly mode-seeking allows us to
characterize the mode-seeking order.

Now we prove the mode-seeking order in Theorem 4.3. By strong convexity in MS3, let β > 0 be such that t 7→ f(t)−βt2/2
is convex for t ∈ (0, s]. Write f ′(t) for the left derivative of f . We have, for w ∈ (0, 1], t ∈ (0, s],

f(t) ≥ f(w) + f ′(w)(t− w) +
β

2
(t− w)2. (18)

Note that

1 + ζ

1− ϵ
w ≤ s

as long as ϵ ≤ 1− s−1/2 since 1 + ζ ≤ √
s. Also,

1− ζ

1− ϵ
w + γ2ϵ−2 ≤ s

as long as ϵ ≤ 1− s−1/2 and γ2ϵ−2 ≤ s−√
s. Hence, as long as

γ√
s−√

s
≤ ϵ ≤ 1− s−1/2,

(note that we can assume γ is small enough that the above interval is nonempty, since otherwise (5) is implied by (4)), by
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(18),

ϵf

(
1

ϵ

)
+

1− ϵ

2
f

(
1 + ζ

1− ϵ
w

)
+

1− ϵ

2
f

(
1− ζ

1− ϵ
w + γ2ϵ−2

)
− f(w)

≥ ϵf

(
1

ϵ

)
− ϵf(w) + f ′(w)

(
ϵw +

1− ϵ

2
γ2ϵ−2

)
+

1− ϵ

2

β

2

((
1 + ζ

1− ϵ
w − w

)2

+

(
1− ζ

1− ϵ
w + γ2ϵ−2 − w

)2
)

≥ ϵf

(
1

ϵ

)
− ϵf(w) + f ′(w)

(
ϵw +

1

2
γ2ϵ−2

)
+
β(1− ϵ)

4

((
ζ + ϵ

1− ϵ
w

)2

+

(
ζ − ϵ

1− ϵ
w − γ2ϵ−2

)2
)

≥ ϵf

(
1

ϵ

)
− ϵf(w) + f ′(w)

(
ϵw +

1

2
γ2ϵ−2

)
+
β

4

(
((ζ + ϵ)w)

2
+
(
(ζ − ϵ)w − (1− ϵ)γ2ϵ−2

)2)
≥ ϵf

(
1

ϵ

)
− ϵf(w) + f ′(w)

(
ϵw +

1

2
γ2ϵ−2

)
+
β

4

(
ζ2w2 + ϵ2w2 + 2ζϵw2 + ζ2w2 + ϵ2w2 − 2ζϵw2

+ (1− ϵ)2γ4ϵ−4 − 2(1− ϵ)ζwγ2ϵ−2 + 2(1− ϵ)wγ2ϵ−1
)

= ϵf

(
1

ϵ

)
− ϵf(w) + f ′(w)wϵ+

1

2
f ′(w)γ2ϵ−2

+
β

4

(
2w2ϵ2 + 2ζ2w2 + 2(1− ϵ)wγ2ϵ−1

− 2(1− ϵ)ζwγ2ϵ−2 + (1− ϵ)2γ4ϵ−4
)

≥ ϵf

(
1

ϵ

)
− (f(w)− f ′(w)w) ϵ−

(
β

2
ζw − 1

2
f ′(w)

)
γ2ϵ−2 +

β

2
ζ2w2

≥ ϵf

(
1

ϵ

)
− (−f ′(w)(1− w)− f ′(w)w) ϵ

−
(
β

2
ζw − 1

2
f ′(w)

)
γ2ϵ−2 +

β

2
ζ2w2

≥ ϵf

(
1

ϵ

)
+ f ′(w)ϵ−

(
β

2
− 1

2
f ′(w)

)
γ2ϵ−2 +

β

2
ζ2w2

≥ −
(√

−f ′(w) + 1

√
−ϵf

(
1

ϵ

)
+ ϵ+

√
β

2
− 1

2
f ′(w)

γ

ϵ

)2

+
β

2
ζ2w2

≥ −
(
β

2
− f ′(w) + 1

)(√
−ϵf

(
1

ϵ

)
+ ϵ+

γ

ϵ

)2

+
β

2
ζ2w2. (19)

Let

f̊(γ, ϵ) :=

√
−ϵf

(
1

ϵ

)
+ ϵ+

γ

ϵ
. (20)

Then we take f̊(γ) = inf0<ϵ<1/2 f̊(γ, ϵ). We will show that there exists a constant C1 > 0 (that can depend on f, s) such
that

inf
γ√

s−
√

s
≤ϵ≤1−s−1/2

f̊(γ, ϵ) ≤ C1f̊(γ). (21)
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To show this, note that if ϵ ≤ γ/
√
s−√

s, then

(
sup0<ϵ′<1/2 f̊(0, ϵ

′)√
s−√

s
+ 1

)
f̊(γ, ϵ)

≥ sup
0<ϵ′<1/2

f̊(0, ϵ′) +

√
s−√

s

≥ f̊
(
γ, γ/

√
s−√

s
)
.

If 1− s−1/2 ≤ ϵ ≤ 1/2, then by the convexity of f ,

2

1− s−1/2
f̊(γ, ϵ)

≥
√
−2ϵf

(
1

ϵ

)
+ ϵ+

γ

ϵ(1− s−1/2)

≥
√
− (1/ϵ− 1)

−1
f

(
1

ϵ

)
+ 1− s−1/2 +

γ

1− s−1/2

≥
√
−
(
1/(1− s−1/2)− 1

)−1
f

(
1

1− s−1/2

)
+ 1− s−1/2 +

γ

1− s−1/2

≥ f̊(γ, 1− s−1/2).

Hence (21) holds. Combining (21) with (17), (19), and wmax ≥ 1/k, we have

Df (P ∥Q)− f(wmax)

≥ −C2
1

(
β

2
− f ′(wmax) + 1

)
(f̊(γ))2 +

β

2
ζ2w2

max (22)

≥ −C2
1

(
β

2
− f ′(k−1) + 1

)
(f̊(γ))2 +

β

2
ζ2k−2

> 0

as long as

ζ = min

{
δµ

9σmax
,
2

3

}
(23)

≥ 2C1k√
β

(√
β

2
− f ′(k−1) + 1

)
f̊(γ) (24)

=: C̃f,kf̊(γ). (25)

Due to (4), we can assume δµ/σmax ≤ Cf,k, and hence ζ ≥ δµ/(max{9, 3Cf,k/2}σmax). Therefore, Df (P∥Q) >

f(wmax) (and hence Q cannot be the minimizer) whenever δµ/(max{9, 3Cf,k/2}σmax) ≥ C̃f,kf̊(γ). The result follows.

For the uniformly mode-seeking case, we first prove the claim that MS1-4 implies that there exist constants ϕ > 0, s > 1
such that

f(t) ≥ f(w) + f ′(w)(t− w)− ϕ

2
f ′(w)(t− w)2 (26)

for any w ∈ (0, 1], t ∈ (0, s]. To prove this, note that by MS3 and MS4, we can let s > 1 such that f ′′(t) is non-increasing
and f ′′(t) ≥ β for t ∈ (0, s]. For any t ≤ s, we have

− f ′(t) = −f ′(s) +
∫ s

t

f ′′(τ)dτ. (27)
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Fix w ∈ (0, 1]. For t ≤ w,

f(t)− f(w)− f ′(w)(t− w)

=

∫ w

t

(f ′(w)− f ′(τ))dτ

=

∫ w

t

(τ − t)f ′′(τ)dτ

≥ (t− w)2

2
f ′′(w)

≥ (t− w)2

2(s− w)

∫ s

w

f ′′(τ)dτ

≥ 1

2
(t− w)2

(
1

2
β +

1

2(s− w)

∫ s

w

f ′′(τ)dτ

)
≥ 1

2
(t− w)2(−f ′(w))min

{
β

−2f ′(s)
,
1

2s

}
,

where the last line is by (27). For w < t ≤ s,

f(t)− f(w)− f ′(w)(t− w)

=

∫ t

w

(t− τ)f ′′(τ)dτ

≥ t− w

2

∫ t

w

f ′′(τ)dτ

≥ (t− w)2

2(s− w)

∫ s

w

f ′′(τ)dτ

≥ 1

2
(t− w)2(−f ′(w))min

{
β

−2f ′(s)
,
1

2s

}
.

The claim (26) follows.

By (26) and the same arguments as (19) and (22),

Df (P ∥Q)− f(wmax)

≥ −
(
−ϕ
2
f ′(wmax)− f ′(wmax) + 1

)
(f̊(γ))2 − ϕ

2
f ′(wmax)ζ

2w2
max

≥ −f ′(wmax)
(
−
(ϕ
2
+ 1− 1

f ′(1)

)
(f̊(γ))2 +

ϕ

2
ζ2k−2

)
> 0

as long as

ζ ≥ 2kf̊(γ)

√
1

2
+

1

ϕ
− 1

ϕf ′(1)
.

The result follows from ζ = min{δµ/(9σmax), 2/3} ≥ (1/9)min{δµ/σmax, 1}, giving a constant

Cf = 144

√
1

2
+

1

ϕ
− 1

ϕf ′(1)
(28)

for (6).

D APPENDIX – PROOF OF LEMMA 5.1 AND THEOREM 5.2

We first prove Lemma 5.1. We assume d = 2, 0 < ρ < 1 (the case ρ ≥ 1 can be proved simply by considering an equilateral
triangle). Write e1 := [1, 0], Br := {x ∈ R2 : ∥x∥ ≤ r}, B + z := {x + z : x ∈ B}. Let 0 < ϵ < 1. Consider the



Cheuk Ting Li, Farzan Farnia

probability density function p(x) := 1{x ∈ B1\Bϵ}/(π(1− ϵ2)) of the uniform distribution over B1\Bϵ. We will prove
that, as long as a /∈ int(Bϵ) (where int(Bϵ) is the interior of Bϵ which is the open disk), we have

E [∥x− a∥ρ] > E [∥x∥ρ] ,
where x ∼ p, and hence the a that minimizes E[∥x− a∥ρ] must be in int(Bϵ). Without loss of generality, assume a = ae1
where a ∈ [ϵ, 1] (we can assume a ≤ 1 since a > 1 results in a larger average distance than a = 1). We have

π(1− ϵ2) (E [∥x− ae1∥ρ]− E [∥x∥ρ])

=

∫
B1−ae1

∥x∥ρdx−
∫
Bϵ−ae1

∥x∥ρdx−
∫
B1

∥x∥ρdx+

∫
Bϵ

∥x∥ρdx

≥
∫
(B1−ae1)\B1

∥x∥ρdx−
∫
B1\(B1−ae1)

∥x∥ρdx−
∫
Bϵ−ae1

∥x∥ρdx

=

∫
(B1+ae1)\B1

(∥x∥ρ − ∥x− ae1∥ρ) dx−
∫
Bϵ−ae1

∥x∥ρdx

≥
∫
(B1+ae1)\B1

(∥x∥ρ − ∥x− ae1∥ρ) dx− 2ρπϵ2aρ,

where the last line is because ∥x∥ ≤ a+ ϵ ≤ 2a for x ∈ Bϵ − ae1. Let g(a) :=
∫
(B1+ae1)\B1

(∥x∥ρ − ∥x− ae1∥ρ)dx for
a ≥ 0. Note that g(a) is a continuous function with g(0) = 0, and g(a) > 0 for a > 0 since ∥x∥ ≥ 1 ≥ ∥x− ae1∥ for any
x ∈ (B1 + ae1)\B1, and the inequality is strict for a set of x with positive measure. Also lima→∞ g(a) = ∞. Hence there
exists a0 > 0 such that∫

B1\(B1−ae1)

(∥x+ ae1∥ρ − ∥x∥ρ) dx

≥
∫
{x∈B1\(B1−ae1): x1≥1/2}

(
(∥x+ ae1∥2)ρ/2 − (∥x∥2)ρ/2

)
dx

(a)

≥
∫
{x∈B1\(B1−ae1): x1≥1/2}

(∥x∥2 + (a+ 1

2

)2

−
(
1

2

)2
)ρ/2

− (∥x∥2)ρ/2
dx

≥
∫
{x∈B1\(B1−ae1): x1≥1/2}

(
(∥x∥2 + a)ρ/2 − (∥x∥2)ρ/2

)
dx

(b)

≥
∫
{x∈B1\(B1−ae1): x1≥1/2}

(
(1 + a)ρ/2 − 1ρ/2

)
dx

(c)

≥ min

{
a,

√
3− 1

2

}(
(1 + a)ρ/2 − 1

)
(d)

≥ min{a, 1/4}2ρ/2−2ρa

≥ min{ϵ, 1/4}2ρ/2−2ρϵ1−ρaρ

≥ 2ρ+1πϵ2aρ

for small enough ϵ > 0 such that min{ϵ, 1/4}2ρ/2−2ρϵ1−ρ ≥ 2ρ+1πϵ2, where (a) is because ∥x + ae1∥2 − ∥x∥2 ≥
(a + 1/2)2 − (1/2)2 as long as x1 ≥ 1/2, (b) is by ∥x∥ ≤ 1 and the concavity of t 7→ tρ/2, (c) is by straightforward
geometric arguments on the area of the set {x ∈ B1\(B1 − ae1) : x1 ≥ 1/2}, and (d) is by 1 + a ≤ 2, the concavity
of t 7→ tρ/2 and that dtρ/2/dt = 2ρ/2−2ρ at t = 2. Hence there exists ϵ > 0 (that only depends on ρ) such that for any
a ∈ [ϵ, 1],

E [∥x− ae1∥ρ]− E [∥x∥ρ] ≥ 2ρπϵ2aρ

π(1− ϵ2)

≥ 2ρϵ2+ρ

1− ϵ2

≥ ϵ2+ρ.
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Let y1, . . . ,yn
iid∼ p. Let p̂ := n−1

∑n
i=1 δyi be the empirical distribution. We have W1(p̂, p) → 0 as n → ∞. Also, for

x ∼ p, y ∼ p̂, and a such that p(a) > 0, for any ξ > 0,

E [∥y − a∥ρ]− E [∥y∥ρ]
≥ E [(max{∥y − a∥, ξ})ρ]− ξρ − E [(max{∥y∥, ξ})ρ]
(a)

≥ E [(max{∥x− a∥, ξ})ρ]− ξρ − E [(max{∥x∥, ξ})ρ]− 2ρξρ−1W1(p̂, p)

≥ E [∥x− a∥ρ]− E [∥x∥ρ]− 2ρξρ−1W1(p̂, p)− 2ξρ

≥ ϵ2+ρ − 2ρξρ−1W1(p̂, p)− 2ξρ,

where (a) is because x 7→ (max{∥x∥, ξ})ρ is (ρξρ−1)-Lipschitz. Hence we have E[∥y − a∥ρ] − E[∥y∥ρ] > 0 for any
a /∈ int(Bϵ), by taking ξ small enough such that 2ξρ < ϵ2+ρ/4, and p̂ close enough to p such that 2ρξρ−1W1(p̂, p) < ϵ2+ρ/4
(which happens with probability approaching 1 as n→ ∞).

Finally, for the uniqueness of the minimizer, assume the set of minimizers of a 7→ E[∥y−a∥ρ] is S ⊆ R2, and the minimum
is θ. By continuity of a 7→ E[∥y − a∥ρ], S is a closed set. We have proved that S ⊆ int(Bϵ). Let b := argmaxa∈S∥a∥
(choose any maximizer if not unique). We have ∥b∥ < ϵ. Let z2i−1 := yi − b, z2i := b − yi for i = 1, . . . , n,
p̃ := (2n)−1

∑2n
i=1 δzi

, z ∼ p̃. Note that

E[∥z− a∥ρ] = 1

2

(
E[∥y − (b− a)∥ρ] + E[∥y − (b+ a)∥ρ]

)
(29)

≥ θ,

where equality is attained at a = 0. For any a ̸= 0, we either have ∥b − a∥ > ∥b∥ or ∥b + a∥ > ∥b∥, implying that
at least one of b − a, b + a is not in S (by the maximality of b), and hence at least one of the two terms in (29) is
strictly greater than θ. Therefore, a = 0 is the unique minimizer of E[∥z− a∥ρ], and does not coincide with any zi since
zi ∈ ((B1\Bϵ) + b) ∪ ((B1\Bϵ)− b) and ∥b∥ < ϵ.

We will prove Theorem 5.2 using Lemma 5.1. Since g(x) := k−1
∑k
i=1 ∥x − zi∥ρ is continuous, if the minimizer x∗

is unique and does not belong to {z1, . . . , zk}, there exists ϵ > 0, 0 < δ < mini ∥x∗ − zi∥ such that any x satisfying
(g(x))1/max{ρ,1} ≤ (g(x∗))1/max{ρ,1}+ϵ has ∥x−x∗∥2 ≤ δ (by Bolzano-Weierstrass theorem since it suffices to consider
the compact set {x : ∥x∥2 ≤ 3maxi ∥zi∥2}, as any x not in this set has g(x) bounded away from the optimum). Take pi
to be centered at αzi for a large α. For Q ∈ P , we have Wρ(Q, δEQ) ≤ σ

min{ρ,1}
max , and hence |α−min{ρ,1}Wρ(P,Q) −

(g(EQ/α))1/max{ρ,1}| = α−min{ρ,1}|Wρ(P,Q) −Wρ(k
−1
∑k
i=1 δαzi , δEQ)| ≤ (k + 1)(σmax/α)

min{ρ,1}. If α is large
enough such that (k + 1)(σmax/α)

min{ρ,1} < ϵ/2, for Q = argminQ∈PWρ(P,Q), we must have ∥EQ/α − x∗∥2 ≤ δ,
giving mini ∥EQ− Epi∥2 > α(mini ∥x∗ − zi∥ − δ), which can be arbitrarily large.

E APPENDIX – FORMAL VERSION AND PROOF OF THEOREM 6.1

We now state the formal version of Theorem 6.1.

Theorem E.1. Consider the hybrid divergence Dλf,W1
, where the f -divergence Df is weakly mode-seeking. Let ψ > 2. Let

P be an arbitrary set of symmetric quasiconcave distributions over Rd with Ex∼p[∥x∥ψ2 ] <∞ for any p ∈ P . Let P (x) :=∑k
i=1 wipi(x) be a mixture of distributions in P , where p1, . . . , pk ∈ P with distinct centers. Define σmax as in Theorem

4.3. Let x1, . . . ,xn
iid∼ P , and P̂ := n−1

∑n
i=1 δxi be the empirical distribution. Let Q := argminQ∈PDλf,W1(P̂ ∥Q),

and denote its center as µQ. If such minimizer Q always exists, then for any ζ > 2
√
2, if λ ≤ ζ1/3σmax/(2f̆(ζ

−2/3)) where
2

f̆(t) := − d

dτ
Df (1− t− τ ∥ t),

then we have

P
(
min
i

∥µQ − µi∥2 ≥ kσmaxζ
)

≤ Cd,ψ
λ

·

(
E
[
∥x− E[x]∥ψ2

])1/ψ
Gd(n)

Df (ζ−2/3 ∥ 1− ζ−2/3)− limt↗1Df (k−1 ∥ t)
2We use the notation Df (s∥t) = Df (Bern(s)∥Bern(t)) where Bern(s) is the Bernoulli distribution with parameter s.
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as long as the right hand side above is positive, where x ∼ P , and Cd,ψ > 0 only depends on d, ψ, and

Gd(n) :=


n−1/2 if d = 1

n−1/2 log(1 + n) if d = 2

n−1/d if d ≥ 3.

Loosely speaking, Theorem E.1 implies that, when f, k, d, ψ are fixed, as long as λ = O(σmax), we have mini ∥µQ−µi∥2 =

O(σmax) with probability 1−O(λ−1(E[∥x−E[x]∥ψ2 ])1/ψGd(n)). To ensure a high probability of success, we propose the
following method to select λ:

λ ∝
√
λmax(Σ̂) ·Gd(n),

where Σ̂ is the covariance matrix of P̂ . We use the second moment
√
λmax(Σ̂) instead of the ψ-th moment since they are

close when ψ ≈ 2. Note that this λ is approximately the upper bound on W1(P, P̂ ) given in (Fournier and Guillin, 2015),
Theorem 1 (which is used in the proof of Theorem E.1).

Before we prove Theorem E.1, we show the following results about symmetric quasiconcave distributions.
Proposition E.2. Let p be a symmetric quasiconcave distribution over Rd centered at 0 with covariance matrix Σ. Let
x ∼ p, x̃ ∼ p̃, where W1(p, p̃) ≤ ϖ. Let a ∈ Rd\{0}. For t > 0,

P(|aT x̃| ≥ t) ≤ E[(aTx)2] + 2tϖ∥a∥2
t2

≤ ∥a∥22λmax(Σ)

t2
+

2ϖ∥a∥2
t

.

Proof. By Proposition C.1.1, it suffices to consider d = 1, a = [1]. Consider h(x) := x2 for |x| ≤ t, h(x) := 2t|x| − t2 for
|x| > t. By Markov inequality,

P(|x̃| ≥ t) ≤ t−2E[h(x̃)]
≤ t−2 (E[h(x)] + 2tϖ)

≤ t−2
(
E[x2] + 2tϖ

)
.

We now prove Theorem E.1.

Proof of Theorem E.1. Let p̃1, . . . , p̃k be distributions such that P̃ =
∑k
i=1 wip̃i and ϖ := W1(P, P̃ ) =

∑k
i=1 wiϖi,

where ϖi := W1(pi, p̃i). We prove Theorem 6.1 by modifying the proof of Theorem 4.3. Instead of (9), we have, by
Proposition E.2,

p̃i(T
c) ≤ p̃i

(
x :

∣∣∣∣ (µ− µi)
T

∥µ− µi∥2
(x− µi)

∣∣∣∣ > r

)
≤ λmax(Σi)

r2
+

2ϖi

r

≤ σ2
max

r2
+

2ϖi

r

≤
(kσmax

δµϵ

)2
+

2kϖi

δµϵ
, (30)

where the last line is by (8). Hence,

P̃ (T c) =

k∑
i=1

wip̃i(T
c)

≤
(kσmax

δµϵ

)2
+

2kϖ

δµϵ
.
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Therefore,

Df

(
P̃
∥∥Q)

≥ Df

(
P̃ (T )

∥∥Q(T )
)

≥ Df

(
max

{
1−

(kσmax

δµϵ

)2
− 2kϖ

δµϵ
, ϵ
}∥∥∥∥ ϵ)

≥ Df

(
max

{
1− ζ−2ϵ−2 − 2ϖ

ζϵσmax
, ϵ
}∥∥∥∥ ϵ) ,

where

ζ :=
δµ

kσmax
.

Substituting ϵ = ζ−2/3, we have

W1(P, P̃ ) + λDf (P̃
∥∥Q)− λf(wmax)

≥ λ

(
Df

(
max

{
1− ζ−2ϵ−2 − 2ϖ

ζϵσmax
, ϵ
}∥∥∥∥ ϵ)− f

(
1

k

))
+ϖ

= λ

(
Df

(
max

{
1− ζ−2/3 − 2ϖ

ζ1/3σmax
, ζ−2/3

}∥∥∥∥ ζ−2/3

)
− f

(
1

k

))
+ϖ

≥ λ

(
Df

(
1− ζ−2/3

∥∥∥ ζ−2/3
)
− f

(
1

k

))
=: θ,

where the last inequality occurs by convexity of Df and monotonicity in ϖ if the derivative of the second-to-last line (with
respect to ϖ)

− λ
2

ζ1/3σmax
f̆(ζ−2/3) + 1 ≥ 0

⇔ λ ≤ ζ1/3

2f̆(ζ−2/3)
σmax.

We have shown that any Q with mini ∥µQ − µi∥2 ≥ kσmaxζ is suboptimal when the minimization objective is
Dλf,W1(P ∥Q), by a gap at least θ. It remains to show that W1(P, P̂ ) < θ/2. If this is true, since |Dλf,W1(P∥Q) −
Dλf,W1

(P̂∥Q)| < θ/2, we know that any Q with mini ∥µQ − µi∥2 ≥ kσmaxζ is suboptimal when the minimization
objective is Dλf,W1(P̂ ∥Q). By Theorem 1 in (Fournier and Guillin, 2015), there exists constant Cd,ψ such that

E
[
W1(P, P̂ )

]
≤ Cd,ψ

2

(
E
[
∥x∥ψ

])1/ψ
G(n).

By Markov inequality,

P
(
W1(P, P̂ ) ≥ θ/2

)
≤ Cd,ψ

λ
·

(
E
[
∥x∥ψ

])1/ψ
G(n)

Df (1− ζ−2/3 ∥ ζ−2/3)− f(k−1)
.

The result follows.

Remark E.3. While it may be possible to extend Theorem E.1 to the strongly and uniformly mode-seeking cases so as to
obtain mini ∥µQ − µi∥2 = o(σmax) instead, we do not consider these cases here due to their complexity.
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