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Abstract

Decision making often depends on causal ef-
fect estimation. For example, clinical decisions
are often based on estimates of the probability
of post-treatment outcomes. Experimental data
from randomized controlled trials allow for un-
biased estimation of these probabilities. How-
ever, such data are usually limited in the num-
ber of samples and the set of measured covari-
ates. Observational data, such as electronic med-
ical records, contain many more samples and a
richer set of measured covariates, which can be
used to estimate more personalized treatment ef-
fects; however, these estimates may be biased
due to latent confounding. In this work, we pro-
pose a Bayesian method for combining observa-
tional and experimental data for unbiased condi-
tional treatment effect estimation. Our method
addresses the following question: Given obser-
vational data Do measuring a set of covariates
V, and experimental data De measuring a pos-
sibly smaller set of covariates Vb ⊆ V, which
set of covariates Z leads to the optimal, unbi-
ased prediction of the post-intervention outcome
P (Y |do(X),Z), and when can we use observa-
tional data for this estimation? In simulated data,
we show that our method improves the prediction
of post-intervention outcomes..

1 INTRODUCTION

In decision making, we are often interested in finding the
optimal predictive model for the post-intervention distri-
bution of an outcome Y after we intervene on a variable
X . Ideally, we would like to include in our model a set
of pre-intervention covariates Z that allow us to predict the
post-intervention outcomes Y |do(X) as well as possible.
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An unbiased estimate for P (Y |do(X),Z) can be obtained
from experimental data De where the intervention X has
been randomized, and covariates Z are measured. How-
ever, randomized trials are usually very limited in sample
size and may not be powered to identify conditional distri-
butions. Moreover, they may be missing important covari-
ates that are helpful in predicting the post-intervention out-
come. Observational data on the other hand are often plen-
tiful in sample size and number of measured covariates, but
may be biased for the estimation of post-intervention dis-
tributions due to confounding or other types of bias: Under
causal insufficiency, P (Y |do(X),Z) may not be identifi-
able for some or all covariate sets Z. The condition for
unbiased causal estimation of P (Y |do(X),Z) from obser-
vational data is known as conditional ignorability. Ideally,
we would like to use Do for causal estimation if ignora-
bility holds, and De when it does not hold. However, this
condition is frequently untestable. In this work, we exam-
ine how we can combine large observational and limited
experimental data to get the best of both worlds, when pos-
sible.

Our methods are heavily motivated by clinical settings,
where we may be interested in identifying heteroge-
neous treatment effects for different subgroups of patients.
Hence, we want to estimate P (Y |do(X),Z), for an opti-
mal set Z. We want the set Z to be optimal in the sense that
it includes all the necessary information required for opti-
mal prediction of Y |do(X), and at the same time it keeps
the set as small as possible to reduce the variance of our
estimator, P̂ (Y |do(X),Z). In such cases, we often have
access to two types of data.

1. Observational data Do = {xo
i , y

o
i ,v

o
i }

No
i=1, measuring a

large set of pre-treatment covariates V in a large number
No of patients.

2. Experimental data De = {xe
i , y

e
i ,v

e
bi}

Ne
i=1, measuring

a possibly smaller set of covariates Vb ⊆ V in a smaller
number Ne of patients, where we assume that Ne << No .

Observational data are typically plentiful but we can-
not use them to estimate a post-intervention distribution
P (Y |do(X),Z) unless the treatment assignment is inde-
pendent of the outcome given Z. Set Z is then said to be a
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Figure 1: An example causal graph showing the causal
structure among treatment X , outcome Y , and pre-
treatment covariates Z and W .

valid adjustment set (Shpitser et al., 2010). This condition
is typically untestable from observational data. Experimen-
tal data on the other hand may be missing important covari-
ates, or may be lacking in sample size. Combining obser-
vational and experimental data has the potential to better
predict the most effective treatment for each patient.

Our work addresses the following question: Given obser-
vational and experimental data as described above, can we
identify a set of covariates Z that will lead to optimal pre-
diction of Y |do(X), according to some measure of predic-
tive performance? To answer this question, we split the
problem into two parts: In the first part, we determine
if we can use the observational data in our estimation of
P (Y |do(X),Z), for different possible Z’s, by determining
if Z is an adjustment set. In the second part, we pick the
optimal set Z by choosing the set that maximizes the ex-
pected performance. Notice that Z may include variables
that are not included in De.

To illustrate our method, consider two scenarios related to
the graph shown in Fig. 1. Let X be a treatment, Y an
outcome, and variables Z,W be pre-treatment covariates.
For the first scenario, assume that an RCT takes place, ran-
domizing X and recording Y . Assume that the RCT mea-
sures W for the patients, but not Z. However, X,Y,W and
Z are all observed in a large EHR data set from the same
population. Our method can identify that {Z,W} forms
an adjustment set, and that the set is optimal for predicting
Y |do(X), for some proper criterion. P (Y |do(X), Z,W )
can then be estimated from the observational data, achiev-
ing an unbiased, low-variance estimator.

For the second scenario, assume that the neither the trial nor
the observational data include Z. In that case, the optimal
predictive model for Y |do(X) includes the singleton {W}.
However, {W} is not an adjustment set, and thus, we can-
not use the EHR data in the estimation of P (Y |do(X),W ).
The proposed method can again identify that this is the
case, and return an estimator based on the RCT data alone.

Compared to existing approaches for combining data for
causal effect estimation, our contributions are:

1. We propose a method for deriving the probability that Z
is an adjustment set, in which case P (Y |do(X),Z) can be
estimated from observational data. This allows us to take
a fully Bayesian approach in estimating P (Y |do(X),Z)
given all the data.

2. Our proposed method works in cases where some of
the variables are not measured in the experimental data, al-
lowing it to add important personalization covariates to the
conditional post-intervention distribution.

3. We allow for different criteria in selecting the optimal
set for prediction of Y |do(X). This is particularly impor-
tant in clinical domains, where, for example, a patient’s
utility function needs to be taken into account.

The rest of this paper is as follows: In Section 2 we dis-
cuss preliminaries. Section 3 describes how we can decide
which effects are identifiable from observational data (3.1),
and how we select the optimal set (3.6). Section 4 discusses
related literature, and in Section 5 we evaluate the perfor-
mance of our method using simulated data.

2 PRELIMINARIES

Our method applies to the following setting: We assume
that we have observational data Do measuring variables V
and experimental data De measuring variables Ve ⊂ V.
We are interested in deriving the conditional probability
distribution P (Y |do(X),V, De, Do), and use it for pre-
dicting the outcomes Y |do(X) for different samples (e.g.,
patients). Since we are interested in prediction, we want
to select the minimal set of maximally informative features
for Y |do(X), in the interest of avoiding over-fitting.

We assume the reader is familiar with causal graphical
models and related terminology. We use bold to denote
variable sets, uppercase letters to denote single variables,
and lowercase letters to denote variable values. We assume
that there exists a causal Bayesian network ⟨G′,P ′⟩ over
the set of observed variables V and a possibly empty set
of latent variables L. Let ⟨G,P⟩ be the Acyclic Directed
Mixed Graph (ADMG) and joint probability distribution
(jpd) stemming from marginalizing out the latent variables
L from G′ and jpd P ′, respectively (Richardson, 2003) If
we know the causal ADMG G, a hard intervention where
a treatment X is set to x is denoted with the do-operator,
do(X=x). This operation corresponds to removing all in-
coming edges into X in the graph. The resulting ADMG is
denoted GX . The post-intervention distribution is denoted
PX := P (do(X), Y,V). For brevity, we call the post-
interventional distribution of the outcome Y given some
subset Z of V, P (Y |do(X),Z), a causal effect.

For a given ADMG G, a causal effect P (Y |do(X),Z) may
or may not be identifiable from the observational distri-
bution P . If G is known, IDC (Shpitser and Pearl, 2006)
returns an expression for P (Y |do(X),Z) based on obser-
vational estimands, if one exists, and N/A if the effect is
non-identifiable. For pre-treatment covariates Z, an effect
P (Y |do(X),Z) is identifiable if and only if Z satisfies the
adjustment criterion (Triantafillou et al., 2021). The adjust-
ment criterion consists of a set of graphical conditions that
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can be checked in the graph G. For pre-treatment covari-
ates, the adjustment criterion is identical to the backdoor
criterion (Pearl, 2000), which is satisfied when Z blocks
all paths connecting X and Y that are into X (backdoor
paths). We say that Z is an adjustment set for X and Y
if it satisfies the adjustment criterion. When Z is an ad-
justment set, the conditional pre- and post-interventional
distributions are identical:

P (Y |do(X),Z) = P (Y |X,Z). (1)

Hence, we can use observational data for causal effect esti-
mation. Moreover, for any subset Zb of Z, the conditional
causal effect can be estimated by marginalizing over the
remaining variables Zo := Z \ Zb:

P (Y |do(X),Zb) =
∑
zo

P (Y |X,Zb, zo)P (zo|Zb). (2)

For Zb = ∅, Eq. 2 is the well-known adjustment formula
(Shpitser and Pearl, 2006). The adjustment criterion is
shown to be complete for adjustment, i.e., if Z does not sat-
isfy the adjustment criterion, there exists at least one distri-
bution P induced by G where the adjustment formula does
not hold. For our method, we require a stronger condition,
which we call adjustment faithfulness:

Assumption 1 (Adjustment faithfulness). Eq. 2 holds only
if Zb ∪ Zo is an adjustment set for X and Y .

Given the causal graph G, we can test the graphical condi-
tions of the adjustment criterion, but when G is unknown
these conditions are often untestable. For example, in the
graph of Fig. 1, we cannot test if Z blocks all backdoor
paths between X and Y using observational data. In Sec-
tion 3.1 we show how we can use Eq. 2 and Assumption 1
to test if a set Z is an adjustment set using a smaller exper-
imental data set.

3 THE OVERLAP ALGORITHM

We assume that we have observational data Do measuring
a set of variables V, and experimental data De measuring a
subset of variables Vb ⊆ V. We assume that the two data
sets are sampled from the same population. This assump-
tion is not always realistic, but it holds in an imporatant and
growing set of RCTs called embedded trials (Angus et al.,
2020). We discuss this assumption and the robustness of
our method to it in the Supplementary. Since we are inter-
ested in causal estimation with the purpose of optimizing
treatment assignment, all variables V are assumed to be
pre-treatment variables. Our objective is to select a subset
Z of V that optimizes our prediction for Y |do(X). This in-
volves two separate tasks: (a) Estimating P (Y |do(X),Z)
from Do and De for different sets Z and (b) Evaluating the
performance of these estimators with respect to a selected
performance criterion such as, e.g., accuracy or log loss
(for binary outcomes).

For the first step, the challenges we are faced with are
that (a) some of the variables in Z may be missing
from De, and (b) P (Y |do(X),Z) may not be identifi-
able from the observational data Do available to us. To
address these challenges, we first estimate the probabil-
ity that P (Y |do(X),Z) is identifiable from observational
data. If it is, we can use Do to estimate it. If it is not,
P (Y |do(X),Z) is not estimable with the data available to
us. Instead, we estimate P (Y |do(X),Zb) using De alone,
where Zb ⊂ Z is restricted to be variables measured in the
experimental data. Our method returns a weighted average
of these two cases, weighted by the probability of Z being
an adjustment set.

In the second step, once we have estimated the post-
interventional conditional distributions for many different
Z’s, we select the optimal set according to some criterion
that may be domain-specific. In this work, we present our
method for some common performance criteria: Accuracy,
log loss, and a user-defined utility function.

3.1 Estimating P (Y |do(X),Z, De, Do)

Let Z = Zb ∪ Zo, where Zb is a set of pre-treatment
variables measured in both De and Do, and Zo is
a set of pre-treatment variables measured in Do only
(Zb ∩ Zo = ∅). The main idea underlying the esti-
mation of P (Y |do(X),Z, De, Do) is the following: If
P (Y |do(X),Z) is identifiable from observational data, we
can use Do to estimate it. If not, we can only use De and
we can only condition on Zb, since Zo are missing in De.
Since P (Y |do(X),Z) is only identifiable from observa-
tional data if and only if Z is an adjustment set, and we
do not know the causal graph, we are interested in estimat-
ing the probability that Z is an adjustment set based on the
data available to us.

We now present a method that estimates the probability that
a set is an adjustment set using De and Do. We use a bi-
nary variableHa

Z to denote that Z is an adjustment set for
X and Y , and Ha

Z to denote its complementary hypoth-
esis that Z is not an adjustment set. We want to estimate
P (Ha

Z |De, Do), which is the probability that Z is an ad-
justment set given the observational and experimental data,
and thus can be computed as

P (Ha
Z |De, Do) =

P (De|Ha
Z , Do)P (Ha

Z |Do)∑
A=a,a P (De|HA

Z , Do)P (HA
Z |Do)

(3)
Notice that P (Ha

Z |De, Do) = 1− P (Ha
Z |De, Do). The

terms in Eq. 3 are: (i) P (De|Do,Ha
Z), which is the proba-

bility of observing the experimental data De when the set
Z is an adjustment set, (ii) P (Ha

Z |Do), which is the prob-
ability that Z is an adjustment set based only on the ob-
servational data and (iii) the same two probabilities for the
event that Z is not an adjustment set.
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3.2 Estimating P (Ha
Z |Do), P (Ha

Z |Do)

This represents the probability that Z is (or is not) an ad-
justment set for Y w.r.t. X given only the observational
data. We view this as a prior for Ha

Z given just the obser-
vational data. Several approaches are possible to quantify
this probability, for example, we could reason on the space
of possible ADMGs, similar to an approach presented in
Claassen and Heskes (2012). Let G be an ADMG over
{X,Y,Z} and G ⊢ Ha

Z denote that Z satisfies the ad-
justment criterion for X,Y in G. Then we can compute
P (Ha

Z |Do) as

P (Ha
Z |Do) =

∑
G⊢Ha

Z
P (Do|G)P (G)∑

G P (Do|G)P (G)
(4)

Eq. 4 requires exhaustively enumerating and scoring all
possible ADMGs, both of which are very challenging. For
a similar problem, Triantafillou and Cooper (2021) sug-
gest approximating Eq. 4 by by finding the most proba-
ble Markov equivalence class [G] of graphs and restrict-
ing enumeration of graphs to those in [G] . This is ap-
proximation is reasonable because in large sample sizes
(which we assume for Do), graphs in the true Markov
equivalence class dominates the score P (Do|G). [G] can
be learnt with a sound and complete algorithm like FCI.
We can then use two different approaches: We can con-
sider all ADMGs within [G] to be equally probable, so Eq.
4 amounts to enumerating the members of [G] (for the de-
nominator) and checking in how many of them Z satisfies
the adjustment criterion (for the numerator). This approach
is very expensive computationally. Another approach is
to assume that every set considered in our method may or
may not be an adjustment set with equal probability, hence
P (Ha

Z |Do) = P (Ha
Z |Do) = 0.5. Therefore, to a first

approximation, we consider that the observational data do
not provide a lot of information about whether a set is an
adjustment set or not.

In practice, P (Ha
Z |Do) does not significantly affect the

behavior of the method, because its impact fades quickly
with increasing experimental samples. This is true even
for relatively small sample sizes. We illustrate this point
with an example: We use a simple structure X → Y,X ←
Z → Y . We then compute Eq. 3 with two quite differ-
ent P (Ha

Z |Do): 0.1 and 0.9. We use P0.1, P0.9 to de-
note Eq. 3 computed with P (Ha

Z |Do) = 0.1, 0.9, re-
spectively. We simulated data from a graph with a single
observed confounder Z and computed P0.1, P0.9, for Ha

Z .
We used No = 5000 and Ne = 10, 50, 100 and 500. We
plot the distribution of P0.1 − P0.9. Fig. 2 illustrates the
distribution of the absolute difference |P0.1 − P0.9| over
500 randomly simulated parameters. As we can see, the
difference in estimated P (Ha

Z |Do, De) using very differ-
ent priors P (Ha

Z |Do) diminishes rapidly with increasing
experimental sample size. Similar results are reported in
Triantafillou et al. (2021). For this reason, we use the un-
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Figure 2: Effect of P (Ha
Z |Do) on Eq. 3.

P0.1 = P (Ha
Z |De, Do) computed using Eq. 3 with

P (Ha
Z |Do) = 0.1. Similarly, P0.9 = P (Ha

Z |De, Do)
is computed using Eq. 3 with P (Ha

Z |Do) = 0.9. The
effect of P (Ha

Z |Do) diminishes rapidly with increasing
experimental samples.

informative P (Ha
Z |Do) = P (Ha

Z |Do) = 0.5 in the
remainder of this work, which has the advantage of having
no computational overhead.

3.3 Estimating P (De|Do,Ha
Z )

This represents how likely it is that we observe the ex-
perimental data, if we have already seen the observational
data and Z is an adjustment set. This probability is com-
puted on the basis that, when Z is an adjustment set,
P (Y |do(X),Z) = P (Y |X,Z), hence, the experimental
and observational parameters are the same. For each set
of covariates Z, some of the variables in Z may only be
observed in Do but not De, and some may be observed
in both. We use the following notation: θyx|z are the pa-
rameters for P (y|do(x), z). θy|x,z are the parameters for
P (y|x, z). θzo|zb

are the parameters for P (zo|zb).

Case 1: Zo = ∅. This is the case where all variables are
measured both in observational and experimental data. By
integrating over all θyx|z, we get

P (De|Do,Ha
Z)=

∫
θyx|z

P (De|θyx|z)f(θyx|z|Do,Ha
Z)dθyx|z,

(5)

where f(θyx|z|Do,Ha
Z ) is the posterior for θyx|z given the

observational data. When Ha
Z is true, Z is an adjustment

set and therefore f(θyx|z|Do,Ha
Z) = f(θy|x,Z |Do), and

Eq. 5 can be rewritten using observational parameters, and
computed in closed form for families of distributions with
closed form marginal likelihoods. Notice that Z = Zb in
this case.

Case 2: Zo ̸= ∅. In this case, we have some of the variables
in Z not measured in the experimental data. UnderHa

Z , Z
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is an adjustment set and therefore

P (De|Do,Ha
Z) =∫

θyx|zb

P (De|θyx|zb
)f(θyx|zb

|Do,Ha
Z)dθyx|zb

,
(6)

Under Ha
Z , P (y|do(x), zb)=

∑
zo

P (y|x, zb, zo)P (zo|zb)
for all x, y, zb, zo. Hence we can recast Eq.5 using obser-
vational parameters as follows:

P (De|Do,Ha
Z) =∫

θy|x,z

∫
θzo|zb

P (De|θy|x,z)f(θy|x,z, θzo|zb
|Do)θy|x,zdθzo|zb

,

(7)

Eq. 7 includes multiple integrals and cannot be computed
in closed form. However, we can estimate it using a sam-
pling procedure, described in Alg. 1. First, we learn a
Bayesian network B over variables Z, X,Y using Do (Line
1). B consists of a DAG graph GB and the posterior distri-
butions for its parameters f(θi|pai

|GB, Do) (Line 2). We
can then use B to sample from the posterior observational
parameters and compute the predicted post-intervention pa-
rameters under Ha

Z. Notice that B is not a causal graph-
ical model, but rather represents the joint distribution of
Z, X, Y . Then, for every configuration x, zb in De and ev-
ery iteration i, we can sample the posteriors θiv|pav

and then
compute θiyx|zb

=
∑

zo
θiy|x,zθ

i
zo|zb

(Line 6). We then score
De by computing the likelihood given these estimated pa-
rameters P (De|θi

yx|zb
) (Line 7). We repeat the process

over I samples, and take the average over all samples.

3.4 Estimating P (De|Do,Ha
Z )

This term represents how likely it is that we observe the ex-
perimental data, if we have already seen the observational
data and Z is not an adjustment set. Under Assumption 1,
in this case, Eq.2 does not hold. Hence, under this assump-
tion, we cannot use the observational data to compute ob-
tain a point estimate of the post-intervention distribution1.
Therefore f(θyx|zb

|Do,Ha
z) = f(θyx|zb

) in Eqs. 5 and 7,
and we can use a weak prior to score De in both cases (Line
9). The score can be computed in closed form for families
of distributions with closed form marginal likelihoods.

We can now compute P (Ha
Z |De, Do) using Eq. 3. (Line

10).

Equations 5 and 7 do not assume a specific distribution,
and can be computed using the process described above for

1This is true for point estimates, however, it may be possi-
ble to compute bounds on the post-intervention distribution. We
consider this out of the scope of the present work, however, we
believe that if the bounds are very tight, our method will favor
Ha

Z , since Do will be very informative about De.

any distribution where the marginal likelihood can be com-
puted in closed form or approximated. In the Supplemen-
tary, we formulate these equations for discrete variables
with Dirichlet-multinomial distributions.

For discrete variables and Case 1, i.e, when Zo = ∅, the
method will asymptotically correctly identify if Z is an ad-
justment set or not, with probability 1:

Theorem 1. Let Do, De be an observational data set
and an experimental data set, respectively, both measur-
ing treatment X , outcome Y , and pre-treatment covariates
V, all discrete. Let Do, De contain No, Ne cases respec-
tively, sampled from distributions P,PX respectively, both
strictly positive in the sample limit. Also, let P be a per-
fect map for an ADMG G. We assume No and Ne increase
equally without limit. Then the proposed method converges
to the data-generating model in the large sample limit:

lim
N→∞

P (Ha
Z |Do, De) =


1, if Z is an adjustment

set for X and Y

0, otherwise

A proof can be found in the Supplementary. For the case
where Zo ̸= ∅, asymptotic behavior is more complex be-
cause of the sampling procedure, and the convergence of
Alg. 1 is left as future work.

3.5 Estimating P (Y |do(X),Z, De, Do)

Having computed the probability that Z is an adjust-
ment set, we can now estimate the conditional post-
interventional distribution as a weighted average of the two
complementary hypotheses:

P (Y |do(X),Z, De, Do) =∑
A=a,a P (Y |do(X),Z, De, Do,HA

Z )P (HA
Z |De, Do).

(8)

P (Y |do(X),Z, De, Do,Ha
Z) is estimated us-

ing Do if Zo ̸= ∅ and De ∪ Do if Zo=∅.
P (Y |do(X),Z, De, Do,Ha

Z) is estimated based on
De and Zb alone, since including the observational data
would yield a biased estimate. Eq. 8 is used in line 12 of
Alg. 1 to estimate the parameters of the post-intervention
distribution conditional on Z. In all cases, we use posterior
expectations as the probability estimates. Finally, Alg. 1
also estimates P̂ (Z) from the BN B (line 12), to be used in
the next step of selecting the optimal set Z.

3.6 Finding Sets for Optimal Causal Prediction

Once we have estimated P (Y |do(X),Z, De, Do) for dif-
ferent sets Z, we want to identify the set that allows for
optimal prediction of Y |do(X), with respect to some crite-
rion of optimality (e.g., optimal expected utility). We use
a function g to encode this optimality criterion. Hence, the
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Algorithm 1: ScoreDe

input : X,Y,Zb,Zo, Do, De, I
output: P (Ha

Z |De, Do), P (Ha
Z |De, Do), θyx|z, θz

1 ⟨B, θv|pav
⟩ ← LearnBN(Do, X, Y,Z)

2 foreach i = 1, . . . , I do
3 Sample θiv|pav

from B
4 foreach configuration x, zb in De do
5 Compute θiy|x,z, θ

i
zo|zb

using inference on B
6 Compute θiyx|zb

using Eq. 2

7 Compute the likelihood pi = P (De|θi
yx|zb

)

8 P (De|Do,Ha
Z )← 1

I

∑
i p

i

9 P (De|Do,Ha
Z )←∫

θyx|zb
P (De|θyx|zb

)f(θyx|zb
)dθyx|zb

10 P (Ha
Z |De, Do)←

P (De|Do,Ha
Z)/

∑
A=a,a P (De|Do,HA

Z)

11 P (Ha
Z |De, Do)← 1− P (Ha

Z |De, Do)
12 θyx|z ← Compute using Eq.8
13 θz ← Posterior expectations for P (Z) based on B

purpose of function g is to evaluate the expected perfor-
mance of a given set of covariates Z in predicting Y |do(X),
relative to the user’s performance goal.

The expected performance of a goal function will generally
be a function of the covariate set Z, and the corresponding
estimated post-intervention parameters θ̂yx,z. In the formu-
lae described below, we also use θ̂z to denote estimated the
parameters for P (Z). In this section, we derive the expecta-
tions of three different goal functions: Expected accuracy,
expected log loss, and expected utility.

Expected Accuracy: We now derive the ex-
pected accuracy of predicting with the distribution
P (Y |do(X),Z, De, Do) learnt using Alg. 1, for a specific
set Z. For every configuration z of Z and every possible
treatment value x, let y∗ = argmaxy θ̂yx|z. Hence, y∗ is
the predicted value of Y |do(x) according to the probability
distribution P̂ (Y |do(x), z, De, Do) returned by Alg. 1.
The expected accuracy of this prediction is θ̂y∗

x|z. To
compute the overall expected accuracy, we need to weigh
this accuracy by the probability that covariates Z = z will
occur. Since we make a prediction of Y for each value
of X , we take the mean expected accuracy over the |X|
predictions. The expected accuracy gacc(Z, θ̂Z, θ̂yx|z) is
then

gacc(Z, θ̂z, θ̂yx|z) =
1

|X|
∑
x,z

θ̂zθ̂y∗
x|z (9)

Expected Log Loss: Log loss is also a very popular per-
formance metric, particularly if we are interested in select-
ing a proper scoring rule. The log loss of a prediction of
Y in a given instance is log(θ̂y∗

x|z), where y∗ is the ac-
tual outcome of Y , and θ̂y∗

x|z is the estimated probability

Algorithm 2: Overlap
input : Variables X,Y,V, data Do, De, optimality

criterion g, sampling iterations I .
output: Optimal set Z∗, estimated performance gZ∗ ,

optimal prediction parameters θyx|z∗

1 V′ ← Markov Boundary of Y in Do;
2 foreach Z = Zb ∪ Zo ⊆ V′ do
3 P̂ (De|Do,Ha

Z ), P̂ (De|Do,Ha
Z ), θ̂yx|z, θ̂z ←

4 ScoreDe (X,Y,Zb,Zo, Do, De, I)
5 Estimate expected performance:

gZ ← g(Z, θ̂yx|z, θ̂z) using one of Eqs. 9, 10, 11

6 Select set Z∗ that maximizes expected performance:
Z∗ ← argmaxZ gZ

P (Y = y∗ |do(x), z) for that outcome. We can derive the
expected log loss in predicting the next instance as follows:

gll(Z, θ̂z, θ̂yx|z) = −
∑
x,z

θ̂z
∑
y

θ̂yx|z log(θ̂yx|z) (10)

Expected Utility: In many decision-making settings, it
could be the case that different pairs of treatments and out-
comes have different utilities. Let U(x, y) be the utility of
receiving treatment X = x, followed by experiencing out-
come Y = y. Then the expected utility can be computed
as follows:

gU (Z, θ̂z, θ̂yx|z) =
∑
z

θ̂z
∑
y

θ̂yx∗ |zU(x∗, y), (11)

where x∗ = argmaxx
∑

z θ̂z
∑

y θ̂yx|zU(x, y). Thus, x∗

is the action that maximizes the expected utility for patients
with Z = z. This basic problem can be readily extended.

Algorithm 2 describes the final algorithm, which we call
Overlap. Initially, the algorithm selects a set of covari-
ates V′ to include in the search. We opted to chose the
Markov Boundary of Y in Do, since it is guaranteed to in-
clude an adjustment set, if one exists (Line 1). Then, for
each subset of V′, use Alg. 1 to estimate the probability
that Z is an adjustment set or not, and the corresponding
post-interventional parameters using Eq. 8 (Line 4). We
also compute the expected performance of Z (Line 5). Fi-
nally, we select the set Z∗ which optimizes the expected
performance.

4 RELATED WORK

Our proposed methodology combines two tasks: The first
is identifying adjustment sets using possibly overlapping
observational and experimental data, and the second is se-
lecting the optimal set Z for estimating the conditional
post-intervention distribution P (Y |do(X),Z). To the best
of our knowledge, Overlap is the first algorithm to ad-
dress both questions. We discuss connections to related
work in each of these tasks separately.
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Finding adjustment sets: One line of work tries to se-
lect an adjustment set from observational data. Vander-
Weele and Shpitser (2011) adjust for causes of both the
treatment X and the outcome Y , where the causes are as-
sumed to be known. The resulting set is guaranteed to be
an adjustment set if one exists. Entner et al. (2013) use a
set of rules for identifying valid adjustment sets from con-
ditional (in)dependencies in the observational data, when
adjustment sets are identifiable. Both methods focus on
identifiability (returning a valid adjustment set), and not
optimality. Some methods (Perkovic et al., 2017; Rot-
nitzky and Smucler, 2020; Smucler et al., 2021; Witte et al.,
2020) identify adjustment sets that are optimal for Aver-
age Treatment Effect (ATE) estimation. Given a graph
that is known (DAG/ADMG) or may be estimated from
Do (PDAG/PAG), they give graphical criteria for identify-
ing adjustment sets, if it is possible. The methods apply a
graphical adjustment criterion to identify a set of valid ad-
justment sets for estimating the ATE of X on Y , and then
to identify the set that leads to the most efficient estimator.
These methods are not directly comparable to ours since
they focus on estimating ATEs, define optimality as the
efficiency of the ATE estimator and apply to cases where
adjustment sets can be identified (are amenable) from the
graph. Triantafillou and Cooper (2021) use observational
and experimental data to rank adjustment sets and select the
best adjustment set Z for estimating the ATE P (Y |do(X).
Their approach is similar to ours, but their goal is only to
select set that is most likely to be a valid adjustment set.
They do not compute conditional probabilities forHa

Z, and
their goal is to improve the ATE estimation. They also as-
sume that only marginal distributions of variables measured
in De are available.

Another line of work focuses on identifiability of the post-
intervention distribution from observational data, via ad-
justment or otherwise (Shpitser and Pearl, 2006; Tian and
Shpitser, 2003; Jaber et al., 2019). These methods can an-
swer if a causal query is identifiable from observational dis-
tributions, based on d-separation/d-connection constraints
implied by the causal graph, but they are not directly com-
parable to our approach.

Combining observational and experimental data. There
is a growing body of work for combining observational and
experimental data in the field of potential outcomes, mostly
focusing on improving the external validity of the RCT
(See Colnet et al. (2022) and references therein). Most of
these works rely on conditional ignorability, and focus on
generalizability of the causal effects. Kallus et al. (2018)
correct confounding bias in the observational data by as-
suming that it has a parametric structure that can be mod-
eled and computed from the experimental data, measuring
the same variables. There is also a body of work on com-
bining observational and experimental data to learn causal
graphs (Hyttinen et al., 2014; Triantafillou and Tsamardi-

nos, 2015; Mooij et al., 2019; Andrews et al., 2020). Hyt-
tinen et al. (2015) can also combine conditional indepen-
dencies from both De and Do, to answer if causal ef-
fects are identifiable. This method is not directly com-
parable to Overlap since it does not search for optimal
sets for prediction. Moreover, they return expressions for
post-intervention distributions based on observational data
and not all available data. Finally, all methods referred to
above rely on conditional independencies alone, while our
method can make inferences beyond that: for example, in
Fig. 1, the fact that Z is an adjustment set is not identifi-
able from conditional (in) dependencies if Z is measured
in Do but not in De. In contrast, our method can make
this inference based on Eq. 2. Ilse et al. (2021) combine
observational and experimental data by reducing possibly
multiple latent confounders into a single latent variables,
and then derive bounds on causal effects.

Optimal prediction of post-intervention target variable.
Several approaches for estimating CATEs from observa-
tional data build predictive models for the post-intervention
outcome, and implicitly pick variables (e.g., causal forests
(Athey et al., 2019)). However, these methods rely on
the untestable assumption of ignorability. Selecting the
optimal conditioning set for prediction is also closely re-
lated to the notion of Markov Boundaries. The Markov
Boundary MB(Y ) is the minimal set of variables that,
when conditioned upon, make all other variables indepen-
dent from Y , and is shown to lead to optimal prediction
of Y when a proper scoring rule is used (Aliferis et al.,
2010). Triantafillou et al. (2021) discuss Markov bound-
aries for post-intervention outcomes. For post-intervention
outcomes Y |do(x), the corresponding set is the Markov
boundary Z of Y in the post-intervention graph GX , also
called the Interventional Markov Boundary (IMB, denoted
MBX(Y )). If Z is the IMB of Y with respect to X ,
then P (Y |do(X),Z \ X) = P (Y |do(X),V). However,
P (Y |do(X),Z \ X) may not be identifiable from obser-
vational data. To address this issue, (Triantafillou et al.,
2021) propose an algorithm (FindIMB) for identifying in-
terventional Markov boundaries from mixtures of observa-
tional and experimental data. FindIMB takes as input De

and Do, measuring the same set of variables V, and re-
turns a Bayesian estimate for P (Y |do(X),V), computed
by conditioning on possible IMBs Z, using both observa-
tional and interventional data when appropriate. The ap-
proach is similar to Overlap, but it cannot include addi-
tional covariates in Do and does not admit different criteria
for optimality. It also does not compute the probability that
a set is an adjustment set, and its asymptotic behavior is
not discussed, while we prove the asymptotic convergence
of Overlap in the same setting.
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Figure 3: Simulated data based on Fig. 1 and two sce-
narios (Top) Scenario 1: Do measures X,Y, Z,W , while
De measures X,Y, Z. Hence, P (Y |X,Z,W ) estimated in
Do can predict Y |do(X) better than P (Y |do(X), Z) es-
timated in De, therefore Overlap performs on par with
the observational data. FindIMB and the estimator based
on De perform poorly as the ground truth difference of
the two conditional distributions increases. (Bottom) Sce-
nario 2: Both De and Do measure X,Y,W . Conditional
ignorability does not hold, and the estimator P (Y |X,W )
from Do performs poorly as the ground truth bias increases.
Overlap and FindIMB identify that there is bias and per-
form on par with the unbiased estimator from De. Shaded
areas show the 10th and 90th percentile.

5 EXPERIMENTS

In this section, we evaluate the performance of Alg. 2 and
compare against alternative approaches. Most methods for
optimal prediction of Y |do(X) focus on observational or
experimental data alone. We note that under conditional
ignorability, P (Y |do(X),V) = P (Y |X,MBX(Y ) \ X),
and MBX(Y ) is the minimal set for which this equation
holds. We create the following baseline comparisons which
learn only on observational or only on experimental data:
(a) OMB: Use the ground truth (observational) Markov
Boundary MB(Y), assume conditional ignorability, and
estimate P (Y |do(X),V) as P (Y |X,MB(Y ) \ X) from
Do.
(b) IMB: Use the ground truth IMB MBX(Y ) among
the variables Vb measured in De, and estimate
P (Y |do(X),Vb) as P (Y |do(X),MBX(Y )\X) from De.

We also compare with methods combining observational
and experimental data for optimal prediction. Since
these methods assume that De and Do measure the same
variables, we apply the methods on data on Vb only. (c)
FindIMB: The method proposed in Triantafillou et al.
(2021) for finding the IMB by combining observational
and experimental data. (d) FCIt-IMB: In this approach,
we learn a Partial Ancestral Graph P over Vb using
Do and De, and then use the Markov Boundary Y in
the post-intervention GX to be the MBX(Y ). We then
test if MBX(Y ) is an adjustment set in the graph. If
so, we use both De and Do pooled together to estimate
P (Y |do(X),MBX(Y ) \X). Otherwise, we only use De.

We tested our methods in a number of settings, described
below. In all settings, the data are simulated from random
ADMGs with a treatment X , an outcome Y with X → Y ,
a set of covariates V = Vb ∪Vo. Vb,Vo are disjoint sets
corresponding respectively to variables included in both De

and Do and variables included in Do alone. We use No

and Ne to denote the number of cases in Do and De, re-
spectively. We also simulated a data set Dtest with 2000
samples from the post-intervention distribution, where we
evaluate the performance of the methods using log-loss in
the prediction of Y |do(X). To make different simulations
comparable, we report a metric which we call ll − llGT ,
defined as the difference of the log loss to the ground truth
log loss, i.e., the log loss computed using the ground truth
probabilities of P (Y |do(X),V). Larger differences cor-
respond to worse prediction and a zero difference corre-
sponds to perfect estimation of the true distribution.

We first illustrate the benefits of our approach with the two
very simple scenarios, based on Fig. 1. In the first sce-
nario, Do measures X,Y, Z,W and De measures X,Y, Z.
Hence, conditional ignorability holds, but the observa-
tional data include an additional variable W . Asymptoti-
cally, we expect the following behavior: Overlap iden-
tifies that {Z,W} is an adjustment set, and returns it as
the optimal set for predicting Y |do(X). It therefore uses
P (Y |do(X), Z,W ) = P (Y |X,Z,W ) estimated from Do

to predict Y |do(X). OMB and methods relying on con-
ditional ignorability will also return the same estimate.
FindIMB will return P (Y |do(X), Z) estimated from De,
since the method does not admit additional observational
variables. IMB will also use the same prediction. Hence,
Overlap and OMB will perform best.

In the second scenario, the confounder is unobserved in
both De and Do. OMB will use P (Y |X,W ) to pre-
dict Y |do(X), which is a biased estimate. In contrast,
Overlap, FindIMB, and IMB will use P (Y |do(X),W )
estimated from De. Hence, Overlap, FindIMB and
IMB will perform best.2

2We omit FCItiers for clarity of presentation in this part,
as it is asymptotically performs like FindIMB in both scenarios.
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Figure 4: Boxplots of the ll − llGT metric based on 100 random graphs, with No = 5000 and increasing Ne. Overlap
outperforms alternative methods.

Fig. 3 shows simulations based on the scenarios de-
scribed above. For the first scenario, the x-axis shows the
mean difference in the true distributions |P (y|do(x), z) −
P (y|do(x))|, averaged over all possible values x, y, z.
Larger values of these difference indicate increased sig-
nificance of Z in predicting Y |do(X). As expected,
Overlap and OMB perform best, constantly achieving
an almost zero ll − llGT , while methods that cannot use
Do perform worse. In the second scenario, the the x-
axis shows the mean difference in the true distributions
|P (y|do(x), w) − P (y|x,w)|, averaged over all possible
values x, y, w. Larger values of these difference indicate
larger bias of the observational estimate. In this case, OMB
performs worse, while Overlap, FindIMB and IMB per-
form best. Hence, Overlap performs best in both sce-
narios, while the ranking of the other methods depends
on whether the untestable assumption of conditional ig-
norability holds or not. FindIMB performs similarly to
Overlap when Vb = Vo = V for the log loss metric,
but cannot include W in the first scenario.

We also tested our methods on random graphs with 6 co-
variates, 4 observed in both De and Do and 2 observed only
in Do. Results can be seen in Fig. 4, showing boxplots for
the ll− llGT metric for every method, and for different No

and Ne. Overlap performs best in all cases. OMB is sec-
ond best; this is because random graphs often do not lead
to large biases. Additional experiments can be found in the
Supplementary.

6 CONCLUSIONS

In this work we discuss learning causal effects by combin-
ing observational and experimental data. The problem is
split in two parts (a) determining if we can use the obser-
vational data for causal effect estimation and (b) selecting
the optimal covariate set for personalized effect estimation.
To our knowledge, Overlap is the first method to address
both questions, when some of the variables are not mea-
sured in the experimental data. We believe our method is
very relevant to the clinical domain, where it is common
for RCTs to be limited in number of variables and patients

measured. Overlap has some limitations: It assumes that
the observational and experimental data measure the same
population, and it is exhaustively scores all subsets of a
set of variables relevant to the outcome, so it cannot scale
up to large variable sets. In the future, we plan to address
these issues and extend our implementation to continuous
and mixed data sets.
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A ADDITIONAL EXPERIMENTS

In this section, we present some additional experiments in simulated data. We simulated data as described in the main
paper. In Fig. 5, we show results using data with 6 covariates, 4 observed in both De and Do and 2 observed only in Do.
We simulated 1000 samples for Do and a varying number of samples for De. In Fig. 6, we show results in data with 8
covariates, 6 observed in both De and Do and 2 observed only in Do. We simulated 5000 samples for Do and a varying
number of samples for De.

Figure 5: Boxplots of the ll − llGT metric based on 100 random graphs, with No = 1000 and increasing Ne. Overlap
outperforms alternative methods.

Figure 6: Boxplots of the ll − llGT metric based on 100 random graphs with 8 observed and 5 hidden variables, with
No = 5000 and increasing Ne. Overlap outperforms alternative methods.

B CLOSED-FORM FORMULAE FOR DISCRETE VARIABLES

In this section, we present the formulae for computing Eqs. 5, 8 and some terms in Alg. 1 the main paper, for multinomial
distributions with Dirichlet priors. Eq. 7 is computed using sampling in Alg. 1. Subscript jk refers variable Y taking its
k-th out of r configurations, and variable set W = X ∪ Z taking its j-th out of q configurations. αjk is the prior for the
Dirichlet distribution. We set αjk = 1 in all experiments. No,jk, Ne,jk correspond respectively to counts in the data where
Y = k and W = j in Do and De. No,j , Ne,j correspond to counts in the data where W = j. Also, for every configuration
j let jb be the corresponding configuration of the variables Wb = X ∪ Zb measured in De. Let No,jbk, Ne,jbk be the
counts in the data where Y = k and Wb = jb, and let No,j , Ne,j be to counts in the data where Wb = jb. αjbk, αjb are
additional priors for the Dirichlet distribution.

C ON THE ASSUMPTION OF SAMPLING De, Do FROM THE SAME POPULATION

Our method uses the assumption that the observational and experimental populations are the same. This means that the
underlying causal models are the same (apart from edge removals due to randomization). Specifically, we assume that the
conditional distribution of Y given the treatment and an adjustment set Z remains the same between the two populations,
and that the distribution of the covariates that are unobserved in De also remains the same between distributions. Our work
is heavily motivated by embedded clinical trials Angus et al. (2020). These trials take place within usual clinical care, so
the assumption that the observational and experimental populations are the same is reasonable.

While this assumption is reasonable in embedded clinical trials, it often does not hold for trials and observational data
measured in different populations. In this case, Eq. 2 in the main paper will not hold, and Overlap will fail to identify an
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Table 1: Closed-form solutions for Eq. 5 and 8 and Alg. 1 in the main paper, for multinomial distributions with Dirichlet
priors.

Equation Analytical Expression

Eq. 5 P (De|Do,Ha
Z ) =

q∏
j=1

Γ(αj +No,j)

Γ(αj +No,j +Ne,j)

r∏
k=1

Γ(αjk +No,jk +Ne,jk)

Γ(αjk +No,jk)

Alg. 1 Line 9 P (De|Do,Ha
Z ) =

q∏
j=1

Γ(αj)

Γ(αj +Ne,j)

r∏
k=1

Γ(αjk +Ne,jk)

Γ(αjk)

Terms in Eq. 8 P (Y = k|W = j,De, Do,Ha
Z ) =

Ne,jbk + αjbk

Ne,jb + αjb

Terms in Eq. 8 P (Y = k|W = j,De, Do,Ha
Z ) =

No,jk + αjk

No,j + αj
, if Zo ̸= ∅

P (Y = k|W = j,De, Do,Ha
Z ) =

No,jk +Ne,jk + αjk

No,j +Ne,j + αj
, if Zo = ∅

adjustment set. In the future, we plan to exploit theoretical results in transporting causal effects across different populations
Bareinboim and Pearl (2014) to extend our method to combine data from trials and observations that sample different
populations.

D PROOFS

D.1 Proof of Convergence

In this section, we present the proof of Theorem 1 in the main paper. The theorem states that in the large sample
limit, P (Ha

Z |De, Do) computed using Eq. 3 in the main paper will go to 1 if and only if Z is an adjustment set.
The proof is for discrete data, where the marginal likelihood P (De|Do,Ha

Z ) can be computed in closed form using
the BDE score. The proof proceeds as follows: In the first part, we prove that the equality of conditional distributions
P (Y |do(X),Z) = P (Y |X,Z) holds only for adjustment sets under faithfulness: Theorem 4 shows that for faithful distri-
butions, P (Y |do(X),Z) ̸= P (Y |X,Z) if Z is not an adjustment sets. The implication is that equality holds only under
Ha

Z, and inequality holds under Ha
Z. Then, use the decomposition of the BDE score into a conditional entropy term and

a complexity penalty term, to obtain the large sample approximation for P (De|Ha
Z , Do). The conditional entropy term

involves the conditional entropy of the observational, experimental, and joint data. Lemma 7 proves an inequality result
among these three conditional entropies, which is then used to show that in the large sample limit, Eq. 3 in the main paper
goes to 1 if P (Y |do(X),Z) = P (Y |X,Z), and to 0 otherwise.

We first state our assumptions:

Assumptions A: Let Do be an observational dataset measuring a discrete treatment X , a discrete outcome Y , and discrete
pre-treatment covariates V that contains No cases that is sampled from distribution P , which is strictly positive as N →∞,
and is a perfect map for an ADMG G. Also, let De be an experimental dataset measuring treatment X , outcome Y , and
pre-treatment covariates V that contains Ne cases, where we assume No and Ne increase equally without limit.

Lemma 2. Let Y , Z, W be sets of discrete-valued variables. Let w denote a configuration of W, and wc denote all
the remaining possible configurations of W. If P (Y |Z,w) = P (Y |Z,wc) for all configurations w of W, then Y is
independent of W given Z.

Proof: This is straightforward from the rules of probability, i.e.

P (y|z) = P (y|z,w)P (w|z) + P (y|z,wc)P (wc|z) =

= P (y|z,w)[P (w|z) + P (wc|z)] = P (y|z,w)
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Lemma 3. Let X , Y be a treatment and an outcome variable such that X → Y in G. Let Z, W be pre-treatment covariates
such that Z ∪W is a adjustment set and Z is not a adjustment set. Then W ⊥̸⊥Y |X,Z in G and W ⊥̸⊥X|Z in G.

Proof: Since Z is not a adjustment set, but Z ∪W is a adjustment set, there exists a path p from X to Y that is active
given Z and blocked given Z ∪W. Thus, some W ∈W is a non-collider on that path, hence p = XpXWWpWY Y .But
then pXW , pWY are also active given Z and X ,Z respectively, so W ⊥̸⊥G Y |X,Z in G and W ⊥̸⊥G X|Z in G.

Theorem 4. Let G be a DAG and P be a distribution faithful to the DAG. Let Z be a set of pre-treatment covariates such
that Z is not an adjustment set for Y with respect to X . Then P (Y |do(X),Z) ̸= P (Y |X,Z).

Proof. We will assume that P(Y |do(X),Z) = P (Y |X,Z) and show that it leads to contradiction. Let Z be a set of
pre-treatment covariates such that Z is not an adjustment set for X and Y , but for which

P (Y |do(X),Z) = P (Y |X,Z). (12)

Let W be a set such that Z ∪W is an adjustment set (W may be unobserved in the ADMG G, but exist in the underlying
DAG). Then by rule 2 of do-calculus,

P (Y |do(X),Z,W) = P (Y |X,Z,W). (13)

Moreover, by Lemma 3,
P (W|X,Z) ̸= P (W|Z). (14)

Let W = w be a configuration of W, and wc denote the event that W does not take configuration w. Then by Eq. 12 and
the rule of total probability,

P (y|do(x), z,w)P (w|z) + P (y|do(x), z,wc)P (wc|z) = P (y|x, z,w)P (w|z, x) + P (y|x, z,wc)P (wc|z, x) ⇔

P (y|x, z,w)P (w|z) + P (y|x, z,wc)P (wc|z) = P (y|x, z,w)P (w|z, x) + P (y|x, z,wc)P (wc|z, x) ⇔

P (y|x, z,w)P (w|z) + P (y|x, z,wc)(1− P (w|z)) = P (y|x, z,w)P (w|z, x) + P (y|x, z,wc)(1− P (w|z, x)) ⇔

P (y|x, z,w)[P (w|z)− P (w|z, x)] = P (y|x, z,wc)(1− P (w|z, x)− 1 + P (w|z)) ⇔

P (y|x, z,w) = P (y|x, z,wc)

But then by Lemma 2 and faithfulness, Y ⊥⊥W|X,Z which is a contradiction based on Lemma 3. Hence,
P (Y |do(X),Z) ̸= P (Y |X,Z).

We now present the definition of conditional entropy, which we will need in our proof:

Definition 1 (Conditional Entropy). Let P be the full joint probability distribution over a set of variables V , let Y ∈ V
be a variable, and let Z ⊆ V \ {Y } be a set of variables. Then, the conditional entropy of Y given Z is defined as follows
Cover (1999):

H(Y |Z) = −
∑
y

∑
z

P (y, z) · logP (y|z) (15)

where y and z denote the values of Y and Z, respectively.

We can now derive large sample approximations for P (De|Ha
Z , Do) and P (De|Ha

Z , Do). In the rest of this document,
we will use W to denote the union of the candidate adjustment set Z with the treatment X: W = Z ∪X .

Lemma 5. Given Assumptions A, the BD score for logP (De|Do,Ha
Z ) in the large sample limit is defined as follows:

lim
N→∞

logP (De|Do,Ha
Z ) =

lim
N→∞

−(No +Ne) ·Ho,e(Y |W) +No ·Ho(Y |W)

− q(r − 1)

2
[log(No +Ne)− logNo] + const,

(16)

where W = Z ∪X.
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Proof. The BD score for P (De|Do,Ha
Z ) is calculated as follows Heckerman et al. (1995):

P (De|Do,Ha
Z ) =

q∏
j=1

Γ(αj +No,j)

Γ(αj +No,j +Ne,j)
·

r∏
k=1

Γ(αjk +No,jk +Ne,jk)

Γ(αjk +No,jk)
, (17)

where q denotes instantiations of variables in W and r denotes values of variable Y . The term Ne,jk is the number of cases
in De in which variable Y = k and W = j; also, Ne,j =

∑r
k=1 Ne,jk. The term No,jk is the number of cases in Do in

which variable Y = k and W = j; also, No,j =
∑r

k=1 No,jk. The term αjk is a finite positive real number that is called
the Dirichlet prior parameter and may be interpreted as representing “pseudo-counts”, where αj =

∑r
k=1 αjk. BD can be

re-written in log form as follows:

logP (De|Do,Ha
Z ) =

q∑
j=1

[
log Γ(αj +No,j)− log Γ(αj +No,j +Ne,j)

+

r∑
k=1

[log Γ(αjk +No,jk +Ne,jk)− log Γ(αjk +No,jk)]

]
.

(18)

We can re-arrange the terms in Equation (18) to gather the terms as follows:

logP (De|Do,Ha
Z ) =

q∑
j=1

[
−log Γ(αj +No,j +Ne,j) +

r∑
k=1

log Γ(αjk +No,jk +Ne,jk)

]

+

q∑
j=1

[
log Γ(αj +No,j)−

r∑
k=1

log Γ(αjk +No,jk)

] (19)

Using the Stirling’s approximation of limn→∞ log Γ(n) = (n− 1
2 ) log(n)− n+ const., we can re-write Equation (19) as

follows:

lim
N→∞

logP (De|Do,Ha
Z ) =

lim
N→∞

q∑
j=1

[
−(αj +No,j +Ne,j −

1

2
) log(αj +No,j +Ne,j) + (αj +No,j +Ne,j)

+

r∑
k=1

(
(αjk +No,jk +Ne,jk −

1

2
) log(αjk +No,jk +Ne,jk)− (αjk +No,jk +Ne,jk)

)]

+

q∑
j=1

[
(αj +No,j −

1

2
) log(αj +No,j)− (αj +No,j)

+

r∑
k=1

−(αjk +No,jk −
1

2
) log(αjk +No,jk) + (αjk +No,jk)

]
(20)
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= lim
N→∞

q∑
j=1

[
−αj log(αj +No,j +Ne,j)−No,j log(αj +No,j +Ne,j)−Ne,j log(αj +No,j +Ne,j)

+
1

2
log(αj +No,j +Ne,j) + αj +No,j +Ne,j

+

r∑
k=1

(
αjk log(αjk +No,jk +Ne,jk) +No,jk log(αjk +No,jk +Ne,jk) +Ne,jk log(αjk +No,jk +Ne,jk)

− 1

2
log(αjk +No,jk +Ne,jk)− αjk −No,jk −Ne,jk

)]

+

q∑
j=1

[
αj log(αj +No,j) +No,j log(αj +No,j)−

1

2
log(αj +No,j)− αj −No,j

+

r∑
k=1

−αjk log(αjk +No,jk)−No,jk log(αjk +No,jk) +
1

2
log(αjk +No,jk) + αjk +No,jk

]

The terms not involving a log term cancel out; then, we used the facts that
∑r

k=1 No,jk = No,j ,
∑r

k=1 Ne,jk = Ne,j , and∑r
k=1 αjk = αj and re-arranged the remaining terms to obtain:

lim
N→∞

logP (De|Do,Ha
Z ) =

lim
N→∞

q∑
j=1

[
−No,j log(αj +No,j +Ne,j) +

r∑
k=1

No,jk log(αjk +No,jk +Ne,jk)

]

+

q∑
j=1

[
−Ne,j log(αj +No,j +Ne,j) +

r∑
k=1

Ne,jk log(αjk +No,jk +Ne,jk)

]

+

q∑
j=1

[
−αj log(αj +No,j +Ne,j) +

r∑
k=1

αjk log(αjk +No,jk +Ne,jk)

]

+

q∑
j=1

[
No,j log(αj +No,j)−

r∑
k=1

No,jk log(αjk +No,jk)

]

+

q∑
j=1

[
αj log(αj +No,j)−

r∑
k=1

αjk log(αjk +No,jk)

]

+
1

2

q∑
j=1

[
log(αj +No,j +Ne,j)−

r∑
k=1

log(αjk +No,jk +Ne,jk)

]

+
1

2

q∑
j=1

[
− log(αj +No,j) +

r∑
k=1

log(αjk +No,jk)

]

(21)
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We can apply the identities mentioned above again to Equation (21) to obtain the following:

lim
N→∞

logP (De|Do,Ha
Z ) =

lim
N→∞

q∑
j=1

r∑
k=1

[
No,jk log(

αjk +No,jk +Ne,jk

αj +No,j +Ne,j
) +Ne,jk log(

αjk +No,jk +Ne,jk

αj +No,j +Ne,j
) + αjk log(

αjk +No,jk +Ne,jk

αj +No,j +Ne,j
)

]

− lim
N→∞

q∑
j=1

r∑
k=1

[
No,jk log(

αjk +No,jk

αj +No,j
) + αjk log(

αjk +No,jk

αj +No,j
)

]

+
1

2

q∑
j=1

[
log(αj +No,j +Ne,j)−

r∑
k=1

log(αjk +No,jk +Ne,jk)

]

+
1

2

q∑
j=1

[
− log(αj +No,j) +

r∑
k=1

log(αjk +No,jk)

]
(22)

Given that

lim
N→∞

αjk +No,jk +Ne,jk

αj +No,j +Ne,j
=

No,jk +Ne,jk

No,j +Ne,j
,

lim
N→∞

αjk +No,jk

αj +No,j
=

No,jk

No,j
,

lim
N→∞

q∑
j=1

r∑
k=1

αjk log(
αjk +No,jk +Ne,jk

αj +No,j +Ne,j
) = const.,

and

lim
N→∞

q∑
j=1

r∑
k=1

αjk log(
αjk +No,jk

αj +No,j
) = const.,

in the limit, Equation (22) becomes:

lim
N→∞

logP (De|Do,Ha
Z ) =

lim
N→∞

q∑
j=1

r∑
k=1

(No,jk +Ne,jk) log
No,jk +Ne,jk

No,j +Ne,j
−

q∑
j=1

r∑
k=1

No,jk log
No,jk

No,j

+
1

2

q∑
j=1

[
log(αj +No,j +Ne,j)−

r∑
k=1

log(αjk +No,jk +Ne,jk)

]

+
1

2

q∑
j=1

[
− log(αj +No,j) +

r∑
k=1

log(αjk +No,jk)

]
+const.,

(23)



Sofia Triantafillou, Fattaneh Jabbari, Gregory F Cooper

or equivalently:

lim
N→∞

logP (De|Do,Ha
Z ) =

lim
N→∞

(No +Ne) ·
q∑

j=1

r∑
k=1

No,jk +Ne,jk

(No +Ne)
log

No,jk +Ne,jk

No,j +Ne,j
−No ·

q∑
j=1

r∑
k=1

No,jk

No
log

No,jk

No,j

+
1

2

q∑
j=1

[
log(αj +No,j +Ne,j)−

r∑
k=1

log(αjk +No,jk +Ne,jk)

]

+
1

2

q∑
j=1

[
− log(αj +No,j) +

r∑
k=1

log(αjk +No,jk)

]
+const.

= lim
N→∞

−(No +Ne) ·Ho,e(Y |W) +No ·Ho(Y |W)

+
1

2

q∑
j=1

[
log(αj +No,j +Ne,j)−

r∑
k=1

log(αjk +No,jk +Ne,jk)

]

+
1

2

q∑
j=1

[
− log(αj +No,j) +

r∑
k=1

log(αjk +No,jk)

]
+const.

(24)

where H(.) terms denote conditional entropies.

To simplify the last two terms in Equation (24), we perform the following transformations:

lim
N→∞

1

2

q∑
j=1

[
log(αj +No,j +Ne,j)−

r∑
k=1

log(αjk +No,jk +Ne,jk)

]

+
1

2

q∑
j=1

[
− log(αj +No,j) +

r∑
k=1

log(αjk +No,jk)

]

= lim
N→∞

1

2

q∑
j=1

[
log(

αj +No,j +Ne,j

No +Ne
) + log(No +Ne)

−
r∑

k=1

log(
αjk +No,jk +Ne,jk

No +Ne
) + log(No +Ne)

]

+
1

2

q∑
j=1

[
− log(

αj +No,j

No
)− logNo +

r∑
k=1

log(
αjk +No,jk

No
) + logNo

]

= lim
N→∞

1

2

q∑
j=1

(
log(No +Ne)−

r∑
k=1

log(No +Ne)

)

+
1

2

q∑
j=1

(
− logNo +

r∑
k=1

logNo

)

+
1

2

q∑
j=1

[
log(

αj +No,j +Ne,j

No +Ne
)−

r∑
k=1

log(
αjk +No,jk +Ne,jk

No +Ne
)

]

+
1

2

q∑
j=1

[
− log(

αj +No,j

No
) +

r∑
k=1

log(
αjk +No,jk

No
)

]

= −q(r − 1)

2
log(No +Ne) +

q(r − 1)

2
logNo + const.

= −q(r − 1)

2
[log(No +Ne)− logNo] + const.

(25)
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Combining Equations (24) and (25), we obtain:

lim
N→∞

logP (De|Do,Ha
Z ) =

lim
N→∞

−(No +Ne) ·Ho,e(Y |W) +No ·Ho(Y |W)

− q(r − 1)

2
[log(No +Ne)− logNo] + const.

(26)

Lemma 6. Given Assumptions A, limN→∞ logP (De|Do,Ha
Z ) is defined as follows:

lim
N→∞

logP (De|Do,Ha
Z ) =

lim
N→∞

−Ne ·He(Y |W)− q(r − 1)

2
logNe + const.

(27)

where

lim
N→∞

P (De|Do,Ha
Z ) =

q∏
j=1

Γ(αj)

Γ(αj +Ne,j)
·

r∏
k=1

Γ(αjk +Ne,jk)

Γ(αjk)
(28)

Proof. Proof is similar to the proof of Lemma 5.

Lemma 7. Let Po, Pe, Po,e denote the frequentist distribution in the observational, experimental, and joint data, respec-
tively. Also, let Z ⊂ V be a subset of variables and W = Z ∪X . Then, when N →∞

2Ho,e(Y |W) ≥ Ho(Y |W) +He(Y |W) (29)

or equivalently
2H(Po,e(Y |W)) ≥ H(Po(Y |W)) +H(Pe(Y |W)), (30)

where the equality in Equation (30) holds if and only ifHa
Z is true.

Proof. Let Po(W = j), Pe(W = j), Po,e(W = j) denote the frequentist probabilities of W = j in the observational,
experimental, and joint data, respectively. Also, let Po(Y |W = j), Pe(Y |W = j), Po,e(Y |W = j) be the frequentist
conditional probabilities of Y given W = j in the observational, experimental and joint data, respectively. We use No,jk,
Ne,jk and No,e,jk to denote the number of cases where Y = k and W = j in the observational, experimental, and
joint data, respectively. We use No,j , Ne,j and No,e,j denote the number of cases where W = j in the observational,
experimental, and joint data, respectively. Hence the following hold:

Po(W = j) =
No,j

No
, Pe(W = j) =

Ne,j

Ne
, Po,e(W = j) =

No,e,j

No,e

Po(Y = k|W = j) =
No,jk

No,j
, Pe(Y = k|W = j) =

Ne,jk

Ne,j
, Po,e(Y = k|W = j) =

No,e,jk

No,e,j

By Assumptions A, we assume that in the limit, No = Ne := N . Then, for each W = j,

limN→∞Po,e(W = j) = limN→∞
No,j +Ne,j

No +Ne
=

limN→∞
(No,j

2N
+

No,j

2N

)
= limN→∞

1

2
(Po(W = j) + Pe(W = j)) ,

(31)

Additionally, we can derive Po,e(Y |W = j) as follows

Po,e(Y |W = j) =
No,jk +Ne,jk

No,j +Ne,j
=

No,jk

No,j +Ne,j
+

Ne,jk

No,j +Ne,j
=

No,j

No,j

No,jk

No,j +Ne,j
+

Ne,j

Ne,j

Ne,jk

No,j +Ne,j
=

No,j

No,j +Ne,j

No,jk

No,j
+

Ne,j

No,j +Ne,j

Ne,jk

Ne,j
,

(32)
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where in line 2 we first multiply each fraction with either No,j

No,j
or Ne,j

Ne,j
and then switch the order in the denominators in

each part of the sum. By dividing numerators and denominators in Eq. 32 with N we get

Po,e(Y |W = j) =
Po(W = j)

Po(W = j) + Pe(W = j)
Po(Y |W = j) +

Pe(W = j)

Po(W = j) + Pe(W = j)
Pe(Y |W = j), (33)

for every j. The final formula reflects the fact that Po,e(Y |W = j) is a mixture of Po(Y |W = j) and Pe(Y |W = j),
with proportions Po(W=j)

Po(W=j)+Pe(W=j) and Pe(W=j)
Po(W=j)+Pe(W=j) .

Given that entropy is a concave function, the following hold for probability mass functions p1, p2

H(λp1 + (1− λ)p2) ≥ λH(p1) + (1− λ)H(p2), (34)

where inequality is strict if p1 ̸= p2Cover (1999) (page 32).

For each W = j, we define λj to be the proportion of observational data where W = j to the proportion of the joint data
where W = j : λj =

Po(W=j)
Po(W=j)+Pe(W=j) , 1−λj =

Pe(W=j)
Po(W=j)+Pe(W=j) . Using p1 = Po(Y |W = j), p2 = Pe(Y |W = j),

and λj as defined above in Equation (34), we can write

H(λjPo(Y |W = j) + (1− λj)Pe(Y |W = j)) ≥
λjH(Po(Y |W = j)) + (1− λj)H(Pe(Y |W = j))

(35)

where the right-hand size is equal to H(Po,e(Y |W = j)). We can multiply both sides with 1
2 (Po(W = j)+Pe(W = j))

to obtain the following

Po,e(W = j)H(Po,e(Y |W = j)) ≥
1

2
Po(W = j)H(Po(Y |W = j)) +

1

2
Pe(W = j)H(Pe(Y |W = j)),

(36)

which can be re-written as follows by multiplying both sides by 2

2Po,e(W = j)H(Po,e(Y |W = j)) ≥
Po(W = j)H(Po(Y |W = j)) + Pe(W = j)H(Pe(Y |W = j)).

(37)

We then sum over all possible j’s to obtain

2
∑
j

Po,e(W = j)H(Po,e(Y |W = j)) ≥

∑
j

Po(W = j)H(Po(Y |W = j)) +
∑
j

Pe(W = j)H(Pe(Y |W = j)),
(38)

where each sum term is the definition of the conditional entropy as given in the following equations:

H(Po,e(Y |W)) =
∑
j

Po,e(W = j)H(Po,e(Y |W = j))

H(Po(Y |W)) =
∑
j

Po(W = j)H(Po(Y |W = j))

H(Pe(Y |W)) =
∑
j

Pe(W = j)H(Pe(Y |W = j)).

Therefore, we can re-write Equation (38) as follows:

2H(Po,e(Y |W)) ≥ H(Po(Y |W)) +H(Pe(Y |W)). (39)

Moreover, under Ha
z , Po(Y |W) = Pe(Y |W) = Po,e(Y |W) when N → ∞ and equality holds, while under Ha

z

Po(Y |W) ̸= Pe(Y |W) and the inequality is strict.
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We can now prove our main theorem:
Theorem 1. Let Do, De be an observational data set and an experimental data set, respectively, both measuring treatment
X , outcome Y , and pre-treatment covariates V, all discrete. Let Do, De contain No, Ne cases respectively, sampled from
distributions P,PX respectively, both strictly positive in the sample limit. Also, let P be a perfect map for an ADMG G.
We assume No and Ne increase equally without limit. Then the proposed method converges to the data-generating model
in the large sample limit:

lim
N→∞

P (Ha
Z |Do, De) =


1, if Z is an adjustment

set for X and Y

0, otherwise

Proof. For a set Z, let W = Z ∪X . We have that

lim
N→∞

P (Ha
Z |Do, De) lim

N→∞
=

P (De|Do,Ha
Z )P (Ha

Z |Do)

P (De|Do,Ha
Z )P (Ha

Z |Do) + P (De|Do,Ha
Z )P (Ha

Z |Do)
. (40)

By inverting Equation (40), and for P (Ha
Z |Do) = 1/2 we obtain the following:

lim
N→∞

1

P (Ha
Z |Do, De)

= lim
N→∞

P (De|Do,Ha
Z ) + P (De|Do,Ha

Z )

P (De|Do,Ha
Z )

=

1 + lim
N→∞

(
P (De|Do,Ha

Z )

P (De|Do,Ha
Z )

) =

1 + lim
N→∞

exp(log
P (De|Do,Ha

Z )

P (De|Do,Ha
Z )

)

(41)

Using Equations (26) and (27), we obtain log(
P (De|Do,Ha

Z )
P (De|Do,Ha

Z ) ) in the large sample limit as follows:

lim
N→∞

log(
P (De|Do,Ha

Z )

P (De|Do,Ha
Z )

) = lim
N→∞

logP (De|Do,Ha
Z )− lim

N→∞
logP (De|Do,Ha

Z )

= lim
N→∞

−Ne ·He(Y |W) + (No +Ne) ·Ho,e(Y |W)−No ·Ho(Y |W)

− q(r − 1)

2
logNe +

q(r − 1)

2
[log(No +Ne)− logNo] + const.

= lim
N→∞

N · [−He(Y |W) + 2Ho,e(Y |W)−Ho(Y |W)]

− (r − 1)

2
(q logN − q log 2) + const

= lim
N→∞

N · [−He(Y |W) + 2Ho,e(Y |W)−Ho(Y |W)]

− q(r − 1)

2
(log

N

2
) + const.

(42)

where the last step is possible since Ne = No := N .

If Z is an adjustment set, it follows from Lemma 7 that

Ho,e(Y |W) = Ho(Y |W) = He(Y |W);

therefore

lim
N→∞

log(
P (De|Do,Ha

Z )

P (De|Do,Ha
Z )

) = lim
N→∞

−q(r − 1)

2
(log

N

2
) + const = −∞ (43)

Hence by Eq. 41,

lim
N→∞

1

P (Ha
Z |Do, De)

→ 1
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and therefore P (Ha
Z |Do, De) goes to 1 as N goes to infinity.

If Z is not an adjustment set, then by Lemma 7, when N →∞

−He(Y |W) + 2Ho,e(Y |W)−Ho(Y |W) > 0

and therefore
lim

N→∞
N · [−He(Y |W) + 2Ho,e(Y |W)−Ho(Y |W)] =∞.

Notice that this term is O(N) and will dominate the second term, − q(r−1)
2 log N

2 . Therefore

lim
N→∞

log(
P (De|Do,Ha

Z )

P (De|Do,Ha
Z )

) =∞, (44)

and by Eq. 40

lim
N→∞

1

P (Ha
Z |Do, De)

=∞,

thus P (Ha
Z |Do, De) goes to 0 as N goes to infinity.


