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Abstract

Quoting robust uncertainties on machine learning
(ML) model metrics, such as f1-score, precision,
recall, etc., from sources of uncertainty such as
data sampling, parameter initialization, and target
labelling, is typically not done in the field of data
science, even though these are essential for the
proper interpretation and comparison of ML mod-
els. This text shows how to calculate and visualize
the impact of one dominant source of uncertainty
– the sampling uncertainty of the test dataset –
on each point of the Precision-Recall (PR) and
Receiver Operating Characteristic (ROC) curves.
This is particularly relevant for PR curves, where
the joint uncertainty on recall and precision can
be large and non-linear, especially at low recall.
Four statistical methods to evaluate this uncer-
tainty, both frequentist and Bayesian in origin, are
compared in terms of coverage and speed. Of
these, Wilks’ method is the winner: it provides
(near) correct coverage for samples as small as 10
records, works fine when the precision or recall
are close to the edges of zero or one, and can be
evaluated quickly for practical use. The presented
algorithms are available through a public Python
library. We recommend that showing uncertainty
bands of PR or ROC curves becomes the norm,
and believe our methodology forms a useful and
necessary addition to any data scientist’s toolbox.

1 INTRODUCTION

A meaningful comparison between any two ML methods
is difficult without knowing the correct uncertainties on
their corresponding model metrics. Knowledge of the un-
certainties allows one to use best judgement in selecting
and deploying a model (e.g. using heuristics such as those
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described in Cumming (2009)). Surprisingly perhaps, these
uncertainties are typically not evaluated. Two reasons come
to mind. First, their evaluation can be complex and time-
consuming, e.g. most existing methods involve bootstrap-
ping or cross-validation, which require retraining multiple
times. Second, there are no out-of-the-box methods to cal-
culate these, as far as we are aware.

The sources of uncertainty on model metrics are many, such
as data sampling, model initialization, and hyper-parameter
optimization (Bouthillier et al., 2021). The sampling uncer-
tainty is often the dominant source (Bouthillier et al., 2021,
Fig. 1). Priority is given here to the sampling uncertainty
of the test set, which we refer to as the classifier uncer-
tainty. Since the test set is usually smaller than the training
set, its sampling uncertainty is generally the largest. This
work calculates the confidence intervals from the classifier
uncertainty on each point of a PR (or ROC) curve.

The classifier uncertainty is particularly impactful on PR
curves in the low-recall, high-precision region, where the
number of false and/or true positives can be small, and the
dependency between recall and precision is strongly non-
linear with a large joint uncertainty.

The following scenario is assumed, and often encountered
in business settings. A trained binary classification model
has been built, including a discrimination threshold at which
to operate. A test set is available of limited size, several
thousand data points or less.

This work compares four different statistical methods, based
on the fact that any confusion matrix in the PR (or ROC)
curve can be modelled with a multinomial distribution.

1. A frequentist approach using the profile likelihood ratio
as a test statistic, which forms our baseline method.

2. Wilks’ theorem (Wilks, 1938) states that – under cer-
tain conditions – the distribution of test statistic values
follows the known χ2 distribution.

3. A Bayesian approach, where for reasons of speed the
Dirichlet conjugate prior is used, resulting in a closed-
form posterior distribution.

4. The approximation of the precision-recall probability
distribution as a bivariate normal distribution.
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The comparison focuses on: statistical coverage in case of
small datasets, edge cases where the recall or precision are
close to zero or one, evaluation speed, and extendability
with other sources of uncertainty.

One could argue that running cross-validation and quoting
the standard deviation over multiple folds is a form of report-
ing sampling uncertainties. Compared with an independent
test set, however, this is not an unbiased uncertainty: a bias
is introduced by overlapping training folds, introducing a
correlation in the trained models (Bengio and Grandvalet,
2003). In addition, this uncertainty depends on the size of a
fold, and is likely larger than on the test set.

Another standard method for computing uncertainties on
precision and recall is the bootstrap, in this case applied to
the test set exclusively. Three drawbacks of this approach
are: it is (relatively) computationally expensive; when posi-
tives are scarce in the test set, the joint PR distribution will
display artifacts in the form of banded, discrete structure;
and that retrieving valid 2D confidence contours from the
observed PR values is non-trivial (Kernel Density Estimates
can be used, but these are CPU-intensive and not really fit
for purpose). See Appendix A for further discussion on this.

Our contributions are as follows. The joint classifier uncer-
tainty on recall and precision is derived (and on the true
versus false positive rate), and a comparison of statistical
methods to evaluate the classifier uncertainty in a PR (and
ROC) curve is provided. To the best of our knowledge,
Wilks’ method – while used in other research fields, in par-
ticular in high energy physics (Cowan et al., 2011) – has
never been used for model evaluation and comparison in the
machine learning literature. In addition, we are not aware of
functionality in the major scientific Python libraries that al-
lows one to easily compute and visualise the uncertainty on
the performance metrics of a classifier. (Though there is de-
mand for this within the community, see Lemaitre (2021).)

Our recommendation is that, by default, every PR (or ROC)
curve should show the classifier uncertainty, in order to pro-
vide a more complete view of the performance. Sampling
uncertainties also have implications on the optimization of
classifiers based on the area under the PR curve, which
should itself be used with caution (Flach and Kull, 2015).

Relevant details of each statistical method are provided be-
low, followed by their visualization (Sec. 8) and comparison
(Sec. 9). The focus lies on PR curves; the procedure for
ROC curves is illustrated in Appendix G.

2 RELATED WORK

The estimation of uncertainty as one of the central purposes
of statistical learning – and the role of probabilistic mod-
elling within that task – is perhaps most eloquently argued
for by Lindley (2000). A modern review on the topic of
uncertainty estimation as related to machine learning can

be found in Hüllermeier and Waegeman (2021). A recent
and comprehensive study to cover the topic of uncertainty
estimation as it relates to model selection and accounting for
multiple sources of variation in realistic setups, is Bouthillier
et al. (2021).

The present work focuses on the uncertainty due to sampling
variability in the test set, in contrast to previous seminal
works Nadeau and Bengio (1999); Dietterich (1998) which
consider uncertainty due to training set variability.

Focusing on probabilistic modelling of the confusion ma-
trix, and thereby deducing uncertainty intervals on perfor-
mance metrics derived from it, the most similar results to the
present work are Caelen (2017) and Tötsch and Hoffmann
(2021), where the former employs a multinomial distribution
to model the confusion matrix, and the latter decomposes the
two-class confusion matrix into three binomial processes.

For the particular case of the ROC curve, Hall et al. (2004)
develops an asymptotic estimator for confidence intervals.
Previous work also exists targeting the estimation of the
area under the PR curve (AUCpr) and confidence intervals
on it (Boyd et al., 2013), as well as functionality to use soft
labels and visualize loose bounds on PR curves (Grau et al.,
2015).

The present work differs from these existing approaches
in that it focuses on the modelling the joint uncertainty on
precision and recall (ROC). In addition, this work tackles the
uncertainty estimation with a frequentist approach, making
use of e.g. profile likelihood methods, next to a Bayesian
approach.

Other works which have generated intervals on performance
curves (i.e. not pointwise) using the bootstrap have been for
example Everingham et al. (2015) on PR curves and Bertail
et al. (2008) for ROC curves.

Yet other types of approaches for uncertainty estimation
of performance metrics exist, such as tail bounds on the
error probabilities (Langford, 2005). An example of the rel-
evance of uncertainty estimation on real-world applications
is the study of uncertainty in the context of prediction from
electronic health records (Dusenberry et al., 2020).

3 MODELING THE CONFUSION
MATRIX

In practice there is one confusion matrix per discrimina-
tion threshold along the PR curve. Assume a fixed, binary
classification model and pick one discrimination threshold.
Denote x = (xTP , xFP , xTN , xFN ), where xTP , xFP , xTN ,
and xFN are the number of true positives, false positives,
true negatives, and false negatives respectively, as obtained
from the confusion matrix of the test set. Recall the usual
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definitions for precision and recall:

P̂ =
xTP

xTP + xFP
; R̂ =

xTP

xTP + xFN
, (1)

which are best estimates of the true recall and precision
parameters R and P .

The confusion matrix is described by a multinomial distribu-
tion with four (or more in the case of multi-class) mutually
exclusive categories:

pMN (x) =
n!

xTP ! . . . xFN !
pxTP

TP . . . pxFN

FN , (2)

with corresponding probabilities p = (pTP , pFP , pTN , pFN )
subject to

∑
i pi = 1 and

∑
i xi = n. For our purpose we

rewrite:

pFP =

(
1− P

P

)
pTP ; pFN =

(
1−R

R

)
pTP . (3)

Given a confusion matrix x, the parameters of interest are
R and P , and the auxiliary parameter is pTP .

The assumption that the confusion matrix of an i.i.d. sam-
ple is described by a multinomial distribution can be easily
verified using simulation studies, the results of one such sim-
ulation study are shown in Appendix B. See Caelen (2017)
for an analogous Bayesian interpretation of the confusion
matrix.

4 FREQUENTIST APPROACH

The frequentist method is CPU-intensive, using Monte Carlo
simulations to determine the correct confidence intervals.

4.1 The Profile Log Likelihood Ratio

The aim is to find the uncertainty on the estimated Precision-
Recall point of an observed confusion matrix x. To obtain
this the profile likelihood method is used.

First, p is inferred from x using the multinomial distribution
as likelihood function:

p̂ = argmaxp L(p) . (4)

The maximum value L(R̂, P̂, p̂TP ) is reached at ∀i p̂i =
xi/n, from which R̂ and P̂ follow as in Eqn. 1.

To set the uncertainty contours around R̂, P̂ , hypothesis
tests are performed for a square grid of R, P values in the
surrounding region. Each hypothesis test is for exclusion,
i.e. the aim is to reject the unlikely R, P values in the grid.
The ranges of this grid are described further below.

Next, fixing R and P to each grid coordinate, the likelihood
is maximized with respect to the auxiliary parameter pTP :

ˆ̂pTP = argmaxpTP
L(R,P, pTP ) . (5)

resulting in the maximum likelihood value L(R,P, ˆ̂pTP ),
where ˆ̂pTP can be derived as:

ˆ̂pTP =
xTP + xFN + xFP(

1
P + 1

R − 1
)
n

. (6)

(See Appendix C for details.) One can interpret ˆ̂pTP as the
constrained fraction of true positives that best matches x.

The test statistic qR,P is a function of the likelihood values:

qR,P = −2 log
(
L(R,P, ˆ̂pTP )

L(R̂, P̂, p̂TP )

)
, (7)

known as the profile log likelihood ratio. This ratio is used
in the frequentist approach as ordering variable.

4.2 Monte Carlo Simulation

In the frequentist approach the distribution of the test statis-
tic f(qR,P |R,P, pTP ) is determined using multinomial sam-
ples that are generated as in Baak et al. (2015), described in
detail in Appendix H.

In summary, there is one confusion matrix per discrimina-
tion threshold, and one R, P grid per confusion matrix. For
each R, P grid point the fraction of generated samples is
determined with qR,P values smaller than the corresponding
value of the test set’s confusion matrix. This fraction sig-
nifies the exclusion p-value for that R, P point. Exclusion
iso-contours are constructed based on these values in the
R, P plane, e.g. the contour at p = 0.9 forms the 90%
confidence interval.

By construction, when using this procedure the p-value
obtained for the hypothesis test will not undercover. The
procedure guarantees exact statistical coverage in the case
where the fitted value of pTP corresponds to its true value.
When these are different it will over-cover, for the reason
that any other value is less consistent with the test set: qR,P

must be higher, resulting in a tighter level of exclusion.

5 WILKS’ METHOD

Wilks’ method is similar to the frequentist approach, but
avoids the costly generation of Monte Carlo samples. Per
confusion matrix of the PR curve the test statistic qR,P

is evaluated for each R, P grid point. The test statistic
qR,P has an important property. Wilks’ theorem Wilks
(1938) states that, asymptotically, qR,P is described by a χ2

distribution with two degrees of freedom and is independent
of the actual value of pTP .

The χ2 distribution has a well-known integral that serves as
probability function, P , to obtain the p-value of a hypothesis
test. For example, with two degrees of freedom:

P(qR,P < 4.605) = 0.9 , (8)
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meaning the contour of R, P values at qR,P = 4.605 forms
the 90% confidence interval. (The 95% confidence interval
corresponds to the value 5.991.) More precisely, 90% of the
x vectors corresponding to a multinomial distribution with
p = (R,P, ˆ̂pTP ) have qR,P values smaller than 4.605.

Wilks’ theorem holds asymptotically, meaning for large
statistics samples. The approximation of large statistics
holds reasonably well in many cases, e.g. from as few as
O(10) data points per confusion matrix cell (Baak et al.,
2015; Cochran, 1952). Therefore, one often uses the asymp-
totic approximation to evaluate the p-value of a hypothesis
test, avoiding the need for compute-intensive multinomial
sample generation.

Wilks’ theorem can break down for low-statistics samples,
and when R or P reaches 0 or 1. These scenarios are tested
explicitly in Sec. 9.2.1.

6 BAYESIAN METHOD

A known Bayesian approach Caelen (2017) for computing
credible intervals on any performance metric, is to assume
the multinomial likelihood model for the confusion matrix,
as defined in Eqn 2, and choosing its conjugate prior – the
Dirichlet distribution – for computational convenience.

For a given choice of prior, i.e. the values of the concentra-
tion parameters of the Dirichlet prior, the posterior distribu-
tion over the entries of the confusion matrix is then also a
Dirichlet distribution, giving a nice closed-form posterior
from which to sample or compute credible intervals for the
probability parameters p.

Other forms of Bayesian models for the confusion matrix
are possible, such as the Beta-Binomial model for a binary
classification confusion matrix shown in Tötsch and Hoff-
mann (2021). More general Bayesian models with yet other
likelihood and prior combinations could be devised, how-
ever these would likely not possess a closed-form posterior
and would therefore require Markov Chain Monte Carlo
(MCMC) sampling.

For simplicity we solely make use of the Dirichlet model:

Dir(p|α) =
Γ(αTP + αFP + αTN + αFN )

Γ(αTP )Γ(αFP )Γ(αTN )Γ(αFN )
×

pαTP−1
TP pαFP−1

FP pαTN−1
TN pαFN−1

FN . (9)

Note that pTN can be replaced using
∑

i pi = 1. For the
posterior distribution α = x+ ν, where x are the confusion
matrix counts and ν are the parameters of the prior. The
choices considered here are: Jeffrey’s prior (νi = 1

2 ), the
uniform prior (νi=1), and the Legendre prior (νi=2).

Using the transformations in Eqn. 3 and marginalizing over
pTP , the probability distribution for precision and recall can

be obtained as (see Appendix D for derivation):

f(R,P ) =
Γ(αTP + αFP + αFN )

Γ(αTP )Γ(αFP )Γ(αFN )
×(

1− P

P

)αFP−1(
1−R

R

)αFN−1

×(
1

γ

)αTP+αFP+αFN 1

R2P 2
. (10)

where

γ =
1

R
+

1

P
− 1 . (11)

This is a complex shape to integrate over in the R,P plane.
The value of f to use as iso-contour that defines a given
credible interval is determined using MC integration.

7 BIVARIATE NORMAL
APPROXIMATION

An alternative method to obtain the PR uncertainty is based
on the PR covariance matrix. This approach can be used to
combine various sources of uncertainty, of both the training
and test sets. Extendibility is achieved by summing the
covariance matrices of all uncertainties.

The marginal distribution of precision or recall is a binomial
distribution. As such, given sufficient sample size, the joint
PR probability distribution can be readily approximated as
a bivariate normal distribution, which is described by a PR
covariance matrix:

Σ =

[
σ2
R ρ σRσP

ρ σRσP σ2
P

]
, (12)

where σR (σP ) is the width of the probability distribution in
R (P ), and the correlation parameter ρ signifies the linear
tilt between R and P .

The linear approximation results in elliptical uncertainty
contours around (R̂, P̂ ), which holds well for medium to
high statistics datasets, but not for a confusion matrix with
low statistics cells, or when the precision or recall are close
to the limiting values of 0 or 1, both resulting in non-linear
behaviour.

The PR covariance matrix of the test set can be derived
using linear error propagation (see Appendix E), giving the
following variances and covariance terms:

σ2
P =

xTP xFP

(xTP + xFP )3
, (13)

σ2
R =

xTP xFN

(xTP + xFN )3
, (14)

σP,R = σR,P

=
xTP xFP xFN

(xTP + xFP )2 (xTP + xFN )2
. (15)
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For completeness, the correlation ρ, which equals
σP,R/σRσP , is positive in value. This makes sense intu-
itively: if xTP increases, both the precision and recall go up,
meaning a positive correlation.

R and P can be rotated, shifted and scaled into two inde-
pendent random variables Z1, Z2 ∼ N (0, 1):

Z1 =
R− µR

σR
, (16)

Z2 =

P−µP

σP
− ρZ1√

1− ρ2
, (17)

yielding the joint probability distribution:

fb.n.(Z1, Z2) =
1

2π
exp

[
−1

2

(
Z2
1 + Z2

2

)]
. (18)

The score Z2 = Z2
1+Z2

2 follows the χ2 distribution with
two degrees of freedom, with probability function P (as in
Sec. 5).

8 COMBINATION OF UNCERTAINTY
CONTOURS

A PR curve with uncertainty band is composed of many
individual contours: each point on the curve corresponds to
a different discrimination threshold and uncertainty contour.
With many contours present, together these blur into a single
uncertainty band. In addition, drawing individual contours
or ellipse is slow when the number of thresholds is high.
Because of this, an alternative computation and visualisation
is presented here, one that is much faster.

Subsequent PR points are not statistically independent and
neither are their uncertainty contours. No statistical correc-
tion is applied for this effect, for the following reason: only
one discrimination threshold is normally used in practice,
typically determined by business requirements, and one is
interested in the uncorrected uncertainty on that point.

The constructed uncertainty band represent a conservative
view on the uncertainty over the complete PR curve. By
default the precision-recall grid is divided into 1000 bins
per axis. For each point in the R, P grid the highest proba-
bility is retained. Or, put differently, the minimum Z-score
observed for a grid point given the confusion matrices. This
means that for any threshold, the curve’s CI will never be
smaller than the CI of the corresponding threshold. Hence
this method can over-cover the true confidence interval.

While this procedure reduces the need to draw many con-
tours, it still has O(tn2) complexity, where n is the number
of bins per axis, and t the number of available thresholds.
Therefore, only the bins contained by ±6 marginal standard
deviations around P̂ and R̂ (see Eqns. 33,34), with a mini-
mum (maximum) value of 0+ϵ (1−ϵ), are evaluated, where
ϵ guards against floating point errors (default is 10−12).

We argue that, for the purpose of visualisation, the trade-
off between feasibility of generating the plot and the over-
coverage is worthwhile. However, the uncertainty over
the curve should not be directly used for inference or for
threshold selection. For this one should use the uncertainties
estimated for a single discrimination threshold.

The PR curve in Fig. 1 is obtained for a simple binary clas-
sification problem, the separation of two blobs, evaluated
on a test sample of just 500 data points with a class balance
of 50%, where each point on the curve corresponds to a
different discrimination threshold.

The combined uncertainty band, shown in blue, is evalu-
ated using Wilks’ method. The green and red contours
correspond to individual discrimination thresholds. As seen
from the green contours, the combined method can slightly
over-cover the true confidence interval.

Note that the precision uncertainty is relatively constant over
a large part of the curve, except at low and high recall. At
low recall both xTP and xFP decrease in value, eventually
towards zero, resulting in ever larger statistical uncertainties.
For example, with just one false positive remaining at a high
discrimination threshold, the precision can drop down to
low values. Equivalently this results in a relatively small
area under the curve. At full recall the uncertainty on the
precision does not shrink to zero. This simply means that,
at low discrimination thresholds, the observed confusion
matrix can also be explained by a slightly lower, true recall
value.

9 COMPARISON OF METHODS

The four approaches are compared in terms of statistical
coverage and evaluation speed.

9.1 Coverage Study

A coverage comparison study has been performed for Wilks’
method and the bivariate normal approximation. We omit
the Bayesian method as the credible intervals obtained from
it are not directly comparable to the frequentist confidence
intervals considered here. The baseline frequentist approach
is also skipped given it has correct coverage by construction.

If the statistical method estimates the correct confidence
interval, in x% of the tests the true population values should
be contained within the interval. Let ∆cov be the difference
between the observed and nominal coverage for a confidence
interval. If the method is correct ∆cov ∼ Normal(0, σ),
where σ is due to the sample noise inherent to simulation
studies with finite sample sizes.

The ∆cov distributions for both Wilks’ and the Bivariate
method have been estimated using the procedure described
in Alg. 2a. The function f computes the χ2 score given
the population and the sample confusion matrix. If the χ2
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Figure 1: Shows the PR curve (black), the uncertainty over the complete curve (blue) and the uncertainties at discrimination
thresholds of 0.5 (red) and 0.95 (green), as obtained with Wilks’ method. The uncertainty contours are drawn at confidence
levels of 68.3%, 95.4% and 99.7%. See the text for additional details.

score is smaller or equal to the corresponding critical value
of a given confidence interval, the population parameters
are contained within the confidence interval.

Fig. 2b shows the resulting mean ∆cov over 5k (N )
precision-recall scenarios with each 10k (K) simulations
for test set sizes ranging from 10-100k data points. The
green band reflects the sampling uncertainty inherent to
the selected sample sizes, which is determined by drawing
the same number of scenarios and samples from a χ2(2)
distribution that represents the null hypothesis.

For high statistics the two methods are very consistent in
terms of coverage. Below 10k sample size the bivariate
method starts to undercover more and more. The coverage
of Wilks’ method works well for test sets as small as 10 data
points, which is the smallest dataset tested.

9.2 Statistical Coverage of Edge Cases

The focus lies on cases where one (or two) cells of the
confusion matrix are close to zero, for which the differences
in coverage are most pronounced. This happens naturally
for edge cases where the recall or precision are close to zero
or one. Three scenarios are explored, at low, mid and high
recall, each based on the same test set as shown in Fig. 1. In
Fig. 3 the uncertainty contours are drawn for each method
at confidence intervals of 1, 2 and 3 standard deviations, i.e.
at 68.3%, 95.4% and 99.7% confidence level. The results of
this comparison are discussed step-by-step below.

9.2.1 Wilks’ Method vs Frequentist Approach

Wilks’ method is first compared with only the frequentist
approach, as the former is an approximation of the latter.

The prediction of Wilks’ theorem, i.e. asymptotically the
distribution of the test statistic qR,P is the χ2 distribution
with two degrees of freedom, is illustrated in Appendix F.
This approximation can break down for low-statistics sam-
ples or when R and P reach the edge values of 0 or 1.

Overall the the uncertainty contours obtained with Wilks’
approximation (blue) and the frequentist (grey) agree very
well, especially for the mid and high recall scenarios (see
Fig. 3). Note that all uncertainty contours are non-elliptical
in shape. The top-left graph explores the low recall, high
precision scenario, and is based on a confusion matrix with
just 1 false positive. Here the contours are highly non-
elliptical. The two sets of contours still agree rather well,
with some small deviations though in the corners of each
contour.

In practice, Wilks’ method is not observed to break down
for low-statistics samples or when R and P reach the edge
values of 0 or 1. The agreement between the frequentist
approach and Wilks’ method is remarkably good; any dif-
ferences in contours are hardly visible over the full recall
and precision ranges.
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α← 0.95; q ← χ2(2).ppf(α)
S← {10, 30, 50, . . . , 100000}
S ← |S|

score ∈ R; Y,∆ ⊂ ZS×N ; ∆̄ ⊂ RS

for i ∈ {1, 2, . . . , S} do
p← Dirichlet(2, 1, 1, 2)
prec← p[4] / (p[4] + p[2])
rec← p[4] / (p[4] + p[3])
for j ∈ {1, 2, . . . , N} do

for k ∈ {1, 2, . . . ,K} do
cm←Multinomial(S[i], p)
score← f(cm, prec, rec)
if score ≤ q then

Y [i, j]← Y [i, j] + 1
end if

end for
∆[i, j]← (Y [i, j] / K)− α

end for
∆̄[i]← mean(∆[i, :])

end for
(a) Coverage study procedure.

(b) Mean difference between observed and nominal coverage of 2σ confidence
interval (95.4%) for Wilks’ and the Bivariate method.

9.2.2 Bayesian Method

Compared with the frequentist methods, the Bayesian ap-
proach (green) is able to produce credible intervals for any
performance metric that can be computed from the confu-
sion matrices sampled from the posterior. The choice of
prior can be used to encode pre-existing knowledge about
the expected performance, whereas this is less straightfor-
ward to implement in frequentist methods. And whilst cred-
ible intervals are deemed more easily interpretable by some,
the choice of prior does carry its own biases and issues
requiring further choices from the user, as discussed in Cae-
len (2017); Tötsch and Hoffmann (2021). In the top and
bottom-left scenarios of Fig. 3 Jeffrey’s prior is used, which
gives credible intervals that match the confidence intervals
reasonably well. The edge cases are handled properly.

The bottom-right plot shows the low recall point evaluated
with the Bayesian approach with Jeffrey’s prior, the Legen-
dre prior and the uniform prior. A significant dependency
on prior is seen, in particular when one cell (or several) of
the confusion matrix has a low number of counts.

9.2.3 Bivariate Normal Approximation

The bivariate approximation breaks down for low statistics
cells or when the precision or recall care close to the limiting
values of 0 or 1.

The effect of the linearity assumption is visible for all three
scenarios in Fig. 3, particularly at low and high recall. In the
top-left plot the confidence intervals (red) extend beyond
the precision of 1, as it cannot be compressed, and it also
underestimates the density below a precision of 0.95. In
contrast, the other methods are capable of capturing the
higher-order correlations in this region, for which the uncer-
tainty contours are highly non-elliptical.

In fact the uncertainty contours of the bivariate approxima-
tion disappear completely when P̂ = 1, where σP = 0 (and
the same happens for R̂ = 1, with σR = 0). In contrast,
Wilks’ method in Fig. 1 shows an increasing uncertainty for
that region, which is expected given the low cell statistics.

As a rule of thumb, the bivariate normal approximation to
the binomial is good when np(1− p) ≥ 10, and improves
as it becomes larger. For the mid recall scenario, with just
41 (55) false negatives (positives), the bivariate contours
agree better with those of the other methods, though not yet
perfectly. In the edge case of P̂ −→ 1, and thus pFP −→ 0, the
required number of test cases with y = 1 quickly approaches
infinity.

In summary, the bivariate normal approximation has lower
than expected coverage for low statistics confusion matrices,
but this improves for high statistics samples.
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Figure 3: Example uncertainty contours at low (top left), mid (top right) and high (bottom left) recall values. The bottom
right plot is the low recall scenario evaluated with the Bayesian approach using three different priors. For each method the
uncertainty contours are drawn at confidence levels of 68.3%, 95.4% and 99.7%. For additional details see the text.

9.3 Evaluation Speed

The four methods have significantly different runtimes, as
shown in Table 1, which reports the times to evaluate and
draw the 1, 2, 3σ confidence intervals of a single discrimina-
tion threshold and the full uncertainty band. The complexity
per algorithm depends on: the number of discrimination
thresholds (t), the number of bins per axis (n), by default
1000, and the number of multinomial samples per grid point
(s), by default 10k.

The bivariate normal approximation is fastest, particularly
for a single threshold as this solely needs a covariance ma-
trix. This is closely followed by Wilks’ method, where
drawing the full uncertainty band takes just a fraction of
a second. Bayesian methods with conjugate prior are not
computationally competitive. The reason is the MC integra-
tion required to determine the isocontour values of Eqn. 10.
The frequentist approach is extremely CPU-intensive, easily
requiring 100 billion multinomial samples per PR curve.
While doable, in practice this is only feasible for single
confusion matrices, not for a full PR curve.

10 DISCUSSION

For low statistics test samples, with fewer than several thou-
sand data points, or when enforcing a tight discrimination
threshold, resulting in near-zero numbers of false and/or
true positives, the classifier uncertainty is seen to be quite
impactful.

The different techniques we have examined have been sum-
marized in Table 2. Of the evaluated methods, the fre-
quentist approach is too slow to evaluate in practice. The
bivariate normal approximation breaks down for low statis-
tics samples or when the precision or recall are close to their
edge values of 0 or 1, but can be combined easily with other
learning algorithm uncertainties. The Bayesian approach
has a closed-form solution, but converting this to credible
uncertainty bands on the PR curve still requires (slow) MC
sampling from the posterior distribution. Wilks’ method
is our recommendation: its uncertainty contours can be ac-
curately evaluated compared with the frequentist approach,
even when some cells of the confusion matrix contain al-
most no entries. Some small discrepancies are observed
in coverage, but these deviations are at an acceptable level,
essentially invisible in the uncertainty bands of the full PR
curve.
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method complexity time (one threshold) time (full band) factor
Bivariate normal O(tn2) 41.7µs± 4.23µs 114ms± 3.1ms 1.0
Wilks’ O(tn2) 107µs± 5.26µs 242ms± 2.59ms 2.7
Bayesian O(t(s+ n2)) 74.9ms± 2.47ms 39.5 s± 556ms 1.8 · 103
Frequentist O(tsn2) 47 s± 514ms 7.5h 1.1 · 106

Table 1: Average times to evaluate the confidence intervals of a single discrimination threshold and the full uncertainty band.
See the text for a description of complexity. The speed tests have been performed with n = 1000, t = 500, s = 10k on
an Intel Core i9 CPU with 8 cores and a clock speed of 2.3Ghz. The factor column is with respect to the bivariate normal
approximation for a single threshold.

method coverage edge effects low statistics impact of prior extendability speed
Bivariate normal +/− − − N.A. + +
Wilks’ + + + N.A. − +
Bayesian + + + − − −
Frequentist + + + N.A. − −−

Table 2: Behaviour of statistical methods, in terms of: statistical coverage, precision or recall close to the edges of zero or
one, confusion matrix with low cell counts, dependency on choice of prior, extendability with other sources of uncertainty,
and speed.

The following is noted regarding the area under the PR curve,
known as the metric AUCpr, which is sometimes used as
reward function to optimize classifiers. This metric depends
strongly on the classifier uncertainty in the low-recall re-
gion. At low recall the uncertainty on the precision grows
substantially, leading to a correspondingly large uncertainty
on the AUCpr. As such, unless the user has interest in the
low-recall region of the PR curve, it is advisable to exclude
this region from the AUCpr metric during optimization.

11 CODE

As far as the authors are aware, there is no functionality in
the major numerical/ML Python libraries that allows one
to easily compute and or visualise the uncertainty on the
performance metrics of a classifier. We have developed
an open-source package named "Model Metric Uncertainty
(MMU)" that implements the classifier uncertainty methods
presented in this work.1 The methods implemented are valid
for any confusion matrix, regardless of the classification
setup and/or dataset origin. In the future we hope to extend
MMU and integrate it into one of the major libraries.

12 CONCLUSION

This work derives the joint test-set sampling uncertainty
on recall and precision (and on true positive versus false
positive rate, in Appendix G), and shows how to evaluate
and plot the related uncertainty band on the points of the PR
(or ROC) curve. Curves with this uncertainty band give a

1See for code, examples and documentation: https://
github.com/RUrlus/ModelMetricUncertainty

more realistic view of the performance of a classifier, and
in our view should be the new standard. This is particu-
larly relevant for low statistics test samples, with fewer than
several thousand data points, and is most impactful in the
low recall region, where the uncertainty can blow up. Of
the four statistical technique that have been tested in terms
of coverage and speed, Wilks’ method is our recommenda-
tion: its uncertainty contours can be quickly and accurately
evaluated, even when some cells of the confusion matrix
contain (almost) no entries. The coverage of Wilks’ method
works for test sets as small as 10 data points. The methods
described are easy to apply through a Python library that
has been made publicly available. We believe this work fills
a gap in the toolbox of any data scientist.

13 BROADER IMPACT

Improvements in the estimation of the uncertainty associ-
ated with the out-of-sample performance of a model should
be a broadly positive influence on the usage of machine
learning discriminators in the real world. Therefore we ex-
pect the present work to be a net-positive contribution to the
community. Potential risks exist if the present methods are
misused (and under-represent the uncertainty), or misinter-
preted as representing the full uncertainty of a model, rather
than just that due to sampling variability in the test set.
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A UNCERTAINTY ESTIMATION BY THE BOOTSTRAP

One of the most common existing techniques to estimate sampling error in the test set is the bootstrap (a vast amount of
literature exists on the bootstrap, see Diciccio and Romano (1988) for a non-exhaustive review), which in the asymptotic
limit is guaranteed to converge to sampling from the population distribution, and therefore to produce valid confidence
intervals.

The bootstrap as it pertains to computing confidence intervals on ROC curves was studied in particular in Hall et al. (2004);
Bertail et al. (2008). These papers allude to shortcomings in the bootstrap approach, related to the need for smoothing. We
also faced a form of this issue, mentioned in the main text and discussed below.

In samples with low numbers of positive examples, the bootstrap results in discrete, banded structure in the precision-recall
distribution, due to particular easy/difficult examples being sampled and contributing to the the true positive/false positive
counts. This small sample effect – which would be smoothed out with increasing sample size – gives the resulting 2D
precision-recall contour deduced from it spurious structure, see Fig. 4. In contrast, the procedures we use correctly smooth
out these banded artifacts.

Figure 4: Example of PR distribution obtained using the bootstrap (red) on a test set with a single false positives, compared
to the confidence contours (blue) obtained from Wilks’ method. The uncertainty contours from both KDE and Wilks’
method are drawn at confidence levels of 68.3%, 95.4% and 99.7%.

A second reason is that though deducing confidence intervals for single variables from bootstrap samples is straightforward
(e.g. using percentiles), for 2D distributions determining the desired confidence contours is less unambiguous since it requires
fitting a density-estimating model (such as a kernel density estimator, which is slow) to the bootstrapped precision-recall
data points, and then deducing the confidence contours from the fitted density. In contrast, the procedures we propose in the
main text naturally produce the required confidence contours.

B ASSUMPTION OF MULTINOMIAL DISTRIBUTION

Here the assumption is tested that the confusion matrix of an independent and identically distributed test sample can be
described by a multinomial distribution. If the confusion matrix can be described by a multinomial distribution, each of the
elements of the confusion matrix follow binomial distributions. Hence, the statistical uncertainty of the elements of the
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confusion matrix are thus described by the second moment of a binomial.

This assumption can be easily verified using simulation studies. For a range of test set sizes, 100–100K, one computes the
standard deviation of the theoretical distribution given the observed probabilities of the test set. These are then compared
to the standard deviation across many hold-out sets that are identically distributed and of equal size to the test set. From
Fig. 5 it is evident that the individual entries of the confusion matrix follow a binomial distribution, as the observed standard
deviation over the hold-out sets closely matches the standard deviation of a binomial.

Figure 5: left: shows the σtn/n and σfp/n of the true negative and false positive elements of the confusion matrix for a
sequence of test sizes. right: contains the same for the false-negative and true-positive entries. These confusion matrices
are generated by fitting a logistic regression to synthetic data generated from the make_blobs dataset generator from
sklearn (Pedregosa et al., 2011).

Using linear error propagation, the first-order statistical uncertainties on both P and R can be derived, as detailed in Eqns. 33
and 34 in Sec. E:

σP =

√
xTP xFP

(xTP + xFP )3
; σR =

√
xTP xFN

(xTP + xFN )3
.

The same experiment is performed for the marginal standard deviation of precision and recall. As seen in Fig. 6 the observed
and theoretical values are quite close even for small test set sizes. Note that the statistical uncertainties σP and σR scale
roughly with 1/

√
n, which can be seen when inserting xi ≈ pin. So the common rule of thumb applies: if the test dataset

quadruples the corresponding uncertainties reduce by a factor of two.

C ANALYTICAL CALCULATION OF THE MAXIMUM LIKELIHOOD FOR FIXED
RECALL AND PRECISION

Once fixing R and P , the likelihood is maximized with respect to pTP only:

ˆ̂pTP = argmaxpTP
L(R,P, pTP ) ,

which results in the maximum likelihood value L(R,P, ˆ̂pTP ). ˆ̂pTP can be derived analytically by finding the maximum
value of the log likelihood with respect to pTP :

log(pMN (pTP )) = log

(
n!

xTP !xFP !xTN !xFN !
pxTP

TP pxFP

FP pxTN

TN pxFN

FN

)
= log (c0) + xTP log(pTP ) + xFP log(c1pTP )

+xTN log (1− c3pTP ) + xFN log(c2pTP ) ,
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Figure 6: Shows σP (left) and σR (right) for a sequence of test sizes. See text for a description.

where c0 is a constant, c1 = 1−P
P and c2 = 1−R

R and c3 = 1 + c1 + c2. Taking the derivative to find the maximum:

∂ log(pMN (pTP ))

∂pTP
= 0 ⇒ xTP

pTP
+

xFP

pTP
+

c3xTN

c3pTP − 1
+

xFN

pTP
= 0 ,

and with some juggling this gives the analytical solution:

ˆ̂pTP =
xTP + xFN + xFP(

1
P + 1

R − 1
)
n

. (19)

D POSTERIOR PROBABILITY DISTRIBUTION OF PRECISION AND RECALL

The Dirichlet distribution is given by:

Dir(p1, p2, p3|ᾱ) =
Γ(α1 + α2 + α3 + α4)

Γ(α1)Γ(α2)Γ(α3)Γ(α4)
pα1−1
1 pα2−1

2 pα3−1
3 pα4−1

4 , (20)

where
p1 + p2 + p3 + p4 = 1 . (21)

Because the Dirichlet function is a conjugate prior of the multinomial distribution, the posterior takes on the same form. The
probability distribution of precision and recall are are derived below from the Dirichlet function.

Given the definitions of precision P and recall R, apply the parameter transformation (pTP , pFP , pFN )→ (t, P,R):

pTP = t

pFP =
1− P

P
t

pFN =
1−R

R
t

pTN = (1− γ t) (22)

where
γ =

1

R
+

1

P
− 1 . (23)
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Note that 0 ≤ t ≤ 1
γ , as 0 ≤ pTN ≤ 1. The determinant of the corresponding Jacobian J is:

|det(J)| = t2

R2P 2
. (24)

Substituting the formulas above into Eq. 20 and integrating over the components containing t gives:

I =

∫ 1
γ

0

tα1+α2+α3−1(1− γ t)α4−1dt

=

(
1

γ

)α1+α2+α3
∫ 1

0

xα1+α2+α3−1(1− x)α4−1dx

=

(
1

γ

)α1+α2+α3 Γ(α1 + α2 + α3)Γ(α4)

Γ(α1 + α2 + α3 + α4)
. (25)

Collecting all components results in the following probability density function for R and P :

f(R,P ) =
Γ(α1 + α2 + α3)

Γ(α1)Γ(α2)Γ(α3)

1

R2P 2

(
1− P

P

)α1−1(
1−R

R

)α3−1(
1

γ

)α1+α2+α3

. (26)

Note that the parameter corresponding to the true negatives (α4) has dropped out completely.

E BIVARIATE NORMAL APPROXIMATION

For the test set, the PR uncertainty contour can be approximated using linear error propagation, resulting in an uncertainty
ellipse. To do so a linear Taylor expansion is made in both P and R. The assumption of local linearity of P and R does
not generally hold, in particular when dealing with a confusion matrix with low statistics cells, or when the precision
or recall are close to their limiting values of 0 or 1. Evidence of such non-linear behaviour can be seen in Fig. 3, in
the differences between the bivariate normal approximation and the other methods. The approximation results in useful
first-order approximations of the (co-)variances of P and R, which work well for medium to high statistics samples.

The covariance matrix of the multinomial distribution is given by:

Σx =

 σ2
x1

. . . σxk,x1

...
. . .

...
σx1,xk

. . . σ2
xk

 =

np1(1− p1) . . . −npkp1
...

. . .
...

−np1pk . . . npk(1− pk)

 , (27)

where the variance per category is on-diagonal, and the covariance between any two categories is off-diagonal. Note that the
variance formula σ2

xi
is the same as for a binomial distribution. The covariance terms σxi,xj tend to be smaller because they

are second order in pi. The negative covariance is understood as follows: for a fixed-size dataset, if the number of data
points in one category goes up, then the (sum of) numbers in the other categories must go down.

For any test dataset, x is now defined as the counts in the confusion matrix: x = (xTP , xFP , xTN , xFN ). Evaluate the
covariance matrix by using the plug-in estimators for the probabilities: p̂i = xi/n. When xi = 0 (n) note that this results in
values of zero variance for σ2

xi
and σxi,xj

.

The covariance matrix of any PR point is then obtained using uncertainty propagation applied to the precision and recall
formulas. Define f as the vector of model metrics to be plotted against each other: f = (P,R). One wishes to evaluate the
covariance matrix of f :

Σ = E[(f − E[f ])⊗ (f − E[f ])] . (28)

To do so one uses:
P =

xTP

xTP + xFP
; R =

xTP

xTP + xFN
,

and makes a first-order Taylor expansion of f with respect to x:

f ≈ f0 + J · x ; E[f ] ≈ f0 + J · E[x] , (29)
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where J is the Jacobian:

J =

[ ∂P
∂xTP

. . . ∂P
∂xFN

∂R
∂xTP

. . . ∂R
∂xFN

]
, (30)

containing the partial derivatives of P and R to x.

For completeness here are the relevant partial derivatives in J :

∂P

∂xTP
=

xFP

(xTP + xFP )2
,

∂P

∂xFP
=

−xTP

(xTP + xFP )2
,

∂R

∂xTP
=

xFN

(xTP + xFN )2
,

∂R

∂xFN
=

−xTP

(xTP + xFN )2
. (31)

Using this formulation, the PR covariance matrix can linearly approximated as:

Σ = E[(f − E[f ])⊗ (f − E[f ])]

≈ E[J(x− E[x])⊗ J(x− E[x])]

≈ J E[(x− E[x])⊗ (x− E[x])] JT

≈ J ΣxJT , (32)

demonstrating that, for each PR point, Σ can be obtained directly from the corresponding covariance matrix of x and the
Jacobian J .

This gives the following variances and covariance terms:

σ2
P =

( ∂P

∂xTP

)2

σ2
xTP

+
( ∂P

∂xFP

)2

σ2
xFP

+ 2
∂P

∂xTP

∂P

∂xFP
σxTP,FP

=
xTP xFP

(xTP + xFP )3
, (33)

σ2
R =

( ∂R

∂xTP

)2

σ2
xTP

+
( ∂R

∂xFN

)2

σ2
xFN

+ 2
∂R

∂xTP

∂R

∂xFN
σxTP,FN

=
xTP xFN

(xTP + xFN )3
, (34)

σP,R = σR,P

=
∂P

∂xTP

∂R

∂xTP
σ2
xTP

+
∂P

∂xTP

∂R

∂xFN
σxTP,FN

+
∂P

∂xFP

∂R

∂xTP
σxFP,TP

+
∂P

∂xFP

∂R

∂xFN
σxFP,FN

=
xTP xFP xFN

(xTP + xFP )2 (xTP + xFN )2
. (35)

The partial derivatives of P and R to xTN are both zero, therefore in Eqn. 32 the column and row of Σx corresponding to
the true negatives drop out. There is still an indirect dependency of σP , σR and σP,R on xTN , albeit weakly, namely via the
(co-)variance terms σx2

i
and σxi,xj

, in particular through n and its impact on the values of pi ̸=TN .

The statistical uncertainties σP and σR scale with 1/
√
n, which can be seen using xi ≈ pin, so a quadratic increase in test

set size results in a linear reduction of their values.

An example of the PR curve using these uncertainties is shown in Fig. 7 (in red). Note that the uncertainties σP and σR

become zero when P̂ = 0 and R̂ = 0 respectively. This is an underestimation of the correct statistical uncertainty, as is
visible when comparing with the uncertainty band from Wilks’ approximation.

F ILLUSTRATION OF WILKS’ APPROXIMATION

The prediction of Wilks’ theorem – i.e. asymptotically the distribution of the test statistic qR,P is the χ2 distribution with
two degrees of freedom – can break down for low-statistics samples or when R and P approach the edge values of 0 or 1.
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Figure 7: Shows the uncertainty over the complete curve, |ytest| = 500, using Wilks’ approximation (blue) and linearly
propagated errors modelled as a bivariate normal distribution (red).

Wilks’ theorem is shown in action in Fig. 8. For two sets of multinomial parameters, with known true recall and precision
values, 10M multinomial samples are generated of size 500, where the test statistic qR,P is determined for each sample. The
test statistic distributions are overlaid with 10M entries drawn from a χ2 distribution with 2 degrees of freedom.

In the top plot, with on average 40 false positives per generated sample (the smallest confusion matrix element), the two
distributions overlap very well, over 6 orders of magnitude. In this asymptotic regime, the distribution of f(qR,P |R,P, pTP )
has become independent of the values of the auxiliary measurements used to generate the multinomial samples, consistent
with Wilks’ theorem.

In the bottom plot, with on average just 5 false positives per sample, the same exponentially dropping behaviour is visible in
both distributions. Bumps are visible in the test statistic distribution of the MC simulation (in blue). Each bump corresponds
to fixed, low numbers of false positives in the generated samples. With a higher number of expected false positives, these
bumps blur together into one smooth distribution. However the overlap between the two distributions is still nearly perfect,
and enough for Wilks’ to serve as a good approximation.
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Figure 8: Wilk’s theorem in action for two sets of multinomial parameter settings. See the text for a description.

G PROCEDURE FOR ROC CURVES

The Receiver Operating Characteristic (ROC) curve is an important graph that shows the True Positive Rate (T ) on the
y-axis as a function of the False Positive Rate (F ) on the x-axis. The best values for T and F are defined as:

T̂ =
TP

TP + FN
,

F̂ =
FP

FP + TN
. (36)

The following subsections are similar to Appendices C, D and E, but discuss the uncertainties for the ROC curve.
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G.1 Approach Based On Profile Log-Likelihood

One can compute the analytical solution of pTP when the multinomial likelihood function is maximized for fixed values of
T and F . In the first step one expresses pFN , pFP and pTN as:

pFN =

(
1− T

T

)
pTP

= a1pTP ,

pFP =

(
F

1− F

)
pTN ,

pTN = 1− pTP − pFP − pFN ,

such that pFP and pTN can be rewritten as functions of T , F and pTP :

pFP = F −
(
F

T

)
pTP

= b0 + b1pTP ,

pTN = 1− F +

(
F − 1

T

)
pTP

= c0 + c1pTP ,

where the constants are functions of F and T . Once fixing T and F , the likelihood is maximized with respect to pTP :

ˆ̂pTP = argmaxpTP
L(T, F, pTP ) .

resulting in the maximum likelihood value L(R,P, ˆ̂pTP ). The expression for ˆ̂pTP is found by solving for the maximum
value of the log likelihood with respect to pTP :

log(pMN (pTP )) = log (c) + xTP log(pTP ) + xFP log(b0 + b1pTP )

+xTN log(c0 + c1pTP ) + xFN log(a1pTP ) ,

where c is another constant. Taking the derivative to find the maximum:

∂ log(pMN (pTP ))

∂pTP
= 0 ⇒ xTP

pTP
+

xFP b1
b0 + b1pTP

+
xTNc1

c0 + c1pTP
+

xFN

pTP
= 0 ,

where after some arithmetic ˆ̂pTP is found to be:

ˆ̂pTP =
T (xFN + xTP )

n
. (37)

This makes sense intuitively: when T = T̂ then ˆ̂pTP = xTP /n.

G.2 Posterior Probability Distribution Of True Positive And Negative Fractions

The probability distribution of the true positive and true negative fraction are are derived below from the Dirichlet function.

Given the true positive fraction T and true negavite fraction F , apply the transformation (pTP , pFP , pFN )→ (t, T, F ):

pTP = t

pFP =
1− T

T
t

pFN =
1− F

F
s

= (1− F )

(
1− t

T

)
pTN = s

= F

(
1− t

T

)
, (38)
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where from Eq. 21:

t

T
+

s

F
= 1

s = F

(
1− t

T

)
. (39)

As 0 < pTN < 1, this implies 0 < t < T . The determinant of Jacobian J reads:

|det(J)| = t

T 2

(
1− t

T

)
. (40)

Substituting these formulas into Eq. 20 and integrating only over the pieces containing t results in:

I =

∫ T

0

tα1+α2−1

(
1− t

T

)α3+α4−1

dt

= Tα1+α2

∫ 1

0

xα1+α2−1(1− x)α3+α4−1dx

= Tα1+α2
Γ(α1 + α2)Γ(α3 + α4)

Γ(α1 + α2 + α3 + α4)
. (41)

Collecting all components results in the probability density function for T and F :

f(T, F ) =
Γ(α1 + α2)Γ(α3 + α4)

Γ(α1)Γ(α2)Γ(α3)Γ(α4)
(1− T )α1−1 Tα2−1 (1− F )α3−1 Fα4−1 , (42)

which is simply the product of two binomial distributions.

G.3 Approach Based On Bivariate Normal Approximation

Similar as in Sec. E one can compute with the linear error propagation, the (first-order) statistical uncertainties for both T
and F . For completeness here are the relevant partial derivatives in J :

∂T

∂xTP
=

xFN

(xTP + xFN )2
,

∂T

∂xFN
=

−xTP

(xTP + xFN )2
,

∂F

∂xFP
=

xTN

(xFP + xTN )2
,

∂F

∂xTN
=

−xFP

(xFP + xTN )2
. (43)

The ROC covariance matrix can approximated similarly as in Eqn. 32 giving the following variances and covariance term:

σ2
T =

xTP xFN

(xTP + xFN )3
, (44)

σ2
F =

xFP xTN

(xFP + xTN )3
, (45)

σT,F = 0 . (46)

The covariance term σT,F is null because T and F are independent.

G.4 Example ROC Curve

An example ROC curve using elliptical uncertainties is shown in Fig. 9.

One interesting difference with PR curves is that the uncertainty band does not blow up (as much) at low recall, as the
number of true negatives generally does not go down to zero, so the uncertainty σF stays relatively small.
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Figure 9: Example of ROC curve (black), the uncertainty over the complete curve (blue) and the uncertainties at discrimi-
nation thresholds of 0.5 (red) and 0.95 (green), as obtained with Wilks’ method. The uncertainty contours are drawn at
confidence levels of 68.3%, 95.4% and 99.7%.

H ALGORITHMS

This section gives the pseudo code of each of the four statistical methods. For each PR curve there is one confusion matrix
per discrimination threshold, and one R, P grid per confusion matrix. The same, configurable R, P grid is used for each
confusion matrix. The subsection below describes how for each statistical method the exclusion p-value or Z-score is
determined for each R, P grid point. Extra explanation is first provided for the baseline frequentist method. Exclusion
iso-contours are then constructed based on these values in the full R, P plane, e.g. the contour at p = 0.9 forms the 90%
confidence interval. For the Bayesian approach the algorithm is presented to draw credible contours.

H.1 Frequentist Method

The frequentist approach generates multinomial samples following the procedure of Baak et al. (2015).

Given a confusion matrix, the parameters of interest are R and P , and the auxiliary parameter is pTP . Since the true value of
pTP is unknown, ideally one scans pTP for each R, P point and generates a sufficiently high number of multinomial samples
for each set. In this way one can find the pTP value that gives the most conservative exclusion p-value for each R, P point.
For example, one cannot exclude an R, P point if there is a pTP value where the exclusion p-value is greater than 10%.

This is an inefficient procedure when there is a large set of R, P values to consider. However, it turns out a good estimate can
be made of which pTP value maximizes the p-value per R, P point. As the p-value is based on the observed data, the largest
value essentially corresponds to the scenario that is most compatible with the observed confusion matrix. Therefore one fits
pTP based on the confusion matrix and the hypothesized values of R and P . Based on the pTP value thus found (Eqn. 5) one
generates the multinomial samples that are expected to maximize the p-value for each R, P point. The observed p-value is
evaluated as below. This procedure is called “the profile construction”, where pTP has been “profiled” on the observed data.

There is one confusion matrix per discrimination threshold, and one R, P grid per confusion matrix. Each R, P grid has a
configurable number of scan points (default is 100 steps per axis). For each R, P grid point 100.000 multinomial samples
are generated, and the fraction of samples is determined with qR,P values smaller than the value on the confusion matrix of
the test set.
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H.2 Pseudo Code

Algorithm 1 Frequentist Method

x ⊂W4 ▷ the confusion matrix
Rgrid ∈ (0, 1)N ⊂ RN ▷ recall vector
Pgrid ∈ (0, 1)M ⊂ RM ▷ precision vector
grid← Rgrid ⊗ Pgrid ▷ precision and recall grid
pgrid ∈ [0, 1]N×M ⊂ RN×M ▷ p-values
procedure FREQUENTISTMETHOD(x, grid, pgrid)

xTN ← x[0] ▷ true negative count
xFP ← x[1] ▷ false positive count
xFN ← x[2] ▷ false negative count
xTP ← x[3] ▷ true positive count
y ⊂W4

qR,P , qsim ∈ R+

for all i ∈ {0, . . . , N−1} do
for all j ∈ {0, . . . ,M−1} do

c← 0
qR,P ← PROFILELIKELIHOOD(xTN , xFP , xFN , xTP , grid[i, j]) ▷ See Equation 7
ˆ̂pTP ← F(x) ▷ See Equation 6
for all i ∈ {0, . . . , s−1} do

y ← MULTINOMIAL(grid[i, j], ˆ̂pTP )) ▷ See Equation 3
qsim ← PROFILELIKELIHOOD(yTN , yFP , yFN , yTP , grid[i, j])
if qsim < qR,P then

c← c+ 1
end if

end for
pgrid[i, j]← c/s

end for
end for

end procedure

Algorithm 2 Wilks’ method

x ⊂W4 ▷ the confusion matrix
Rgrid ∈ (0, 1)N ⊂ RN ▷ recall vector
Pgrid ∈ (0, 1)M ⊂ RM ▷ precision vector
grid← Rgrid ⊗ Pgrid ▷ precision and recall grid
fgrid ⊂ RN×M ▷ likelihood scores
procedure WILKSMETHOD(x, grid, fgrid)

xTN ← x[0] ▷ true negative count
xFP ← x[1] ▷ false positive count
xFN ← x[2] ▷ false negative count
xTP ← x[3] ▷ true positive count
for all i ∈ {0, . . . , N−1} do

for all j ∈ {0, . . . ,M−1} do
fgrid[i, j]← PROFILELIKELIHOOD(xTN , xFP , xFN , xTP , grid[i, j]) ▷ See Equation 7

end for
end for

end procedure
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Algorithm 3 Bayesian approach

CL← 0.954 ▷ confidence level, by default 2 standard deviations
x ⊂W4 ▷ the confusion matrix
v ⊂ R4 ▷ prior, by default Uniform prior
Rgrid ∈ (0, 1)N ⊂ RN ▷ recall vector
Pgrid ∈ (0, 1)M ⊂ RM ▷ precision vector
grid← Rgrid ⊗ Pgrid ▷ precision and recall grid
fgrid ⊂ RN×M

+ ▷ likelihood scores
procedure BAYESIANMETHOD(x, v, CL, fgrid, grid)

α ⊂ R4

α← v + x
p ∈ (0, 1)4 ⊂ R4

q ⊂ Rs
+

for i ∈ {0, . . . , s−1} do
p← DIRICHLET(α)
R← RECALL(p)
P ← PRECISION(p)
q[i]← F(R,P, α) ▷ See Equation 10

end for
SORT(q)
qσ ← QUANTILE(q, CL)
for i ∈ {0, . . . , N−1} do

for j ∈ {0, . . . ,M−1} do
fgrid[i, j]← F(grid[i, j], α) ▷ See Equation 10

end for
end for
CONTOUR(grid, fgrid, qσ)

end procedure

Algorithm 4 Bivariate normal method

x ⊂W4 ▷ the confusion matrix
Rgrid ∈ (0, 1)N ⊂ RN ▷ recall vector
Pgrid ∈ (0, 1)M ⊂ RM ▷ precision vector
grid← Rgrid ⊗ Pgrid ▷ precision and recall grid
fgrid ⊂ RN×M ▷ likelihood scores
procedure BIVARIATENORMALMETHOD(x, grid, fgrid)

xTN ← x[0] ▷ true negative count
xFP ← x[1] ▷ false positive count
xFN ← x[2] ▷ false negative count
xTP ← x[3] ▷ true positive count
for all i ∈ {0, . . . , N−1} do

for all j ∈ {0, . . . ,M−1} do
fgrid[i, j]← ZSCORE(xTN , xFP , xFN , xTP , grid[i, j]) ▷ See Equations 16, 17

end for
end for

end procedure
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