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Abstract

We introduce a new approach to probabilistic
unsupervised learning based on the recognition-
parametrised model (RPM): a normalised semi-
parametric hypothesis class for joint distributions
over observed and latent variables. Under the key
assumption that observations are conditionally
independent given latents, the RPM combines
parametric prior and observation-conditioned la-
tent distributions with non-parametric observa-
tion marginals. This approach leads to a flexible
learnt recognition model capturing latent depen-
dence between observations, without the need for
an explicit, parametric generative model. The
RPM admits exact maximum-likelihood learn-
ing for discrete latents, even for powerful neural-
network-based recognition. We develop effec-
tive approximations applicable in the continuous-
latent case. Experiments demonstrate the effec-
tiveness of the RPM on high-dimensional data,
learning image classification from weak indirect
supervision; direct image-level latent Dirichlet
allocation; and recognition-parametrised Gaus-
sian process factor analysis (RP-GPFA) applied
to multi-factorial spatiotemporal datasets. The
RPM provides a powerful framework to discover
meaningful latent structure underlying observa-
tional data, a function critical to both animal and
artificial intelligence.

1 INTRODUCTION

Unsupervised representation learning plays a key role in
systems that seek to learn and estimate world state and
latent structure from observations, including those that
address real-world reinforcement learning and robotics,
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tracking, semi-supervised task learning, and scientific dis-
covery. Such systems have long been underpinned by the
methods of probabilistic latent-variable modelling (Bishop,
2006; Barber, 2011; Murphy, 2022). In the most common
approach, a model describes a family of distributions over
a set of latent variables and the conditional dependence of
the observed variables on those latents. Together, these de-
fine a directed acyclic graphical model (Table 1) or DAG.
Marginalising over the latents then results in a hypothesis
class of joint distributions on the observations. Distribu-
tion parameters can be found by standard estimation tech-
niques, identifying a model within the class (or a posterior
over models) that best matches the data distribution.

Although latent-variable models may also be used for sam-
ple simulation (Goodfellow et al., 2014; Kingma et al.,
2021) or density estimation (Rezende and Mohamed,
2015), they play a key role in representation learning.
Many data sets exhibit complex dependence amongst ob-
servations, which arise through common influences from
unobserved but causally relevant features of the data gen-
erating process. By estimating models that render obser-
vations independent conditioned on latent state it is often
possible to tease out and represent such underlying fea-
tures. Indeed, it is this assumption of latent-conditioned
independence—between the inputs to different sensors, be-
tween sensor modalities, or between future and past—that
provides the basis for learning underlying structure in the
absence of strong distributional assumptions.

In this representation-learning view, the generative model
serves to encode structural priors about dependence and
distribution, and the associated marginal on observations
underlies the choice of estimation objective, such as like-
lihood. However, once learnt, neither is used directly. In-
stead, the model structure and parameters are used for in-
ference or recognition—to estimate the state of the world
from sensory data (Helmholtz, 1867). This mismatch be-
tween the way the model is specified and how it is eventu-
ally used poses a challenge to effective learning. Genera-
tive models that are sufficiently complex, flexible and non-
linear to parametrise real-world observations do not gener-
ally admit efficient tractable inference, and so recognition
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is often approximated (e.g. Dayan et al., 1995; Jordan et al.,
1999; Rezende et al., 2014; Kingma and Welling, 2014).
These approximate methods lead to biases in parameter es-
timates (Turner and Sahani, 2011), and result in learnt rep-
resentations that do not, in fact, match the learnt generative
model.

Our goal here is to address such challenges to probabilistic
representation learning. We do so by introducing a form
of semi-parametric model in which an explicit parametri-
sation of the recognition process is paired with a simpli-
fied non-parametric description of the observations. This
recognition parametrised model (RPM) defines a prop-
erly normalised joint distribution, and thus (implicitly) a
proper semi-parametric marginal distribution on observa-
tions. Maximum-likelihood (ML) learning can be achieved
exactly for models with discrete latent variables (and a
tractable internal graph), whilst in other settings it depends
on potentially milder approximations than do methods that
pair recognition modelling with explicit generative mod-
els such as the Helmholtz machine (Dayan et al., 1995;
Vértes and Sahani, 2018) or variational autoencoder (VAE)
(Rezende et al., 2014; Kingma and Welling, 2014). The
RPM allows many different distributional and structural as-
sumptions on the latent variables to be combined with a
recognition parametrisation, and pairs effectively with es-
tablished techniques such as variational message passing
(Winn et al., 2005) or variational Bayesian learning (Attias,
2000) to estimate models with complex latent dependence.

Below, we first present a general formulation of the RPM
(Section 2), discuss inference and learning in this general
case (Section 3), and relate it to existing models (Sec-
tion 4). Thereafter we demonstrate the breadth of the
framework by instantiating different conditional structures
and prior assumptions on the latent factors, and applying
these to appropriate data sets (Section 5).

2 THE RPM

Consider a set of observed (possibly vector-valued) ran-
dom variables X = {xj : j = 1 . . . J}. We seek to
learn a model based on a set of underlying latent variables
Z = {zl : l = 1 . . . L}, given which the different xj are
conditionally independent. These variables may be loosely
interpreted as causally relevant features responsible for the
statistical interdependence of the observations. Our goal is
to learn the joint distribution of the latents, along with a
parametrised model that infers a suitable belief over their
values from observations. We use the symbol P (often
with subscripts) to indicate complete (normalised) model
distributions, and italicised symbols for factors within the
models (Table 1), noting where these are individually nor-
malised. We write X (n) = {x(n)j : j = 1 . . . J} for the
nth joint data observation, and X(N) = {X (1) . . .X (N)}
for the entire set of N observations.
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Table 1: Conditional independence models and factor defi-
nitions. Left column shows a generic factor graph with cor-
responding unnormalised factors. Central column shows
a directed graph. Right column shows the corresponding
RPM factors.

The conditional independence assumption implies a fac-
torisation (and corresponding factor graph)

P(X ,Z) ∝ ψz(Z)
∏
j

ψx
j (xj)

∏
j

ψxz
j (xj ,Z) . (1)

In the RPM, these factors are parametrised as follows:

ψz(Z) → pθz(Z) : a normalised distribution on the latent
variables. For multivariate Z this may itself be factored,
with a corresponding latent graphical model.

ψx
j (xj) → p0j(xj) : a summary of the empirical marginal
distribution of each observed variable, with the prop-
erty that it converges to the true distribution of xj in the
limit of infinite data. In this paper we take p0j(xj) =
1
N

∑
n δ
(
xj − x

(n)
j

)
, the empirical measure with atoms at

the N data points x(n)j . However, the key definitions and
results extend to alternatives, such as an adaptive kernel
density estimate with kernel width that approaches 0 as
N grows, or (if known) a member of the true marginal
distributional family specified by a sufficient statistic of
the data. The key is that p0j is determined by the corre-
sponding observations, with learning of the joint distribu-
tion focused on the other factors of the RPM.

ψxz(xj ,Z) → fθj(Z|xj)∫
dxj p0j(xj)fθj(Z|xj) where fθj(Z|xj) is a

parametrised normalised distribution possibly, but not
necessarily, defined on only a subset of the Z (often on a
single zl). We write Fθj(Z) for the mixture with respect
to p0j that appears in the denominator. The numerator
terms fθj(Z|xj) will be referred to as recognition factors.

Thus the full joint RPM model becomes

Pθ,X(N)(X ,Z) = pθz(Z)
∏
j

(
p0j(xj)

fθj(Z|xj)
Fθj(Z)

)
, (2)

where the observed dataset X(N) appears in the subscript
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to emphasise that the model parametrisation itself depends
on the data through p0j and so Fθj .

With this choice of parametrisation we have

Pθ,X(N)(Z) =
∏
j

∫
dxj

(
p0j(xj)fθj(Z|xj)

Fθj(Z)

)
pθz(Z)

= pθz(Z) , (3)

so that the parametrised factor on the latents corresponds to
the prior distribution implied by the joint (as is also the case
for a DAG). This result confirms that the RPM is properly
normalised. The posterior

Pθ,X(N)

(
Z|X (n)

)
∝
∏
j

fθj(Z|x(n)j )∫
dxj p0j(xj)fθj(Z|xj)

pθz(Z)

=
1

Wθ(X (n))

∏
j

fθj(Z|x(n)j )
pθz(Z)∏
j Fθj(Z)

(4)

can be found by normalising the product of learnt fac-
tors. The normaliser Wθ(X ) also gives the relative den-
sity of the implicit RPM joint on the observed variables,
Pθ,X(N)(X ) =

∏
j p0j(xj)Wθ(X ). The joint is supported

on the Cartesian product of the supports of p0j(xj)—an ir-
regular grid of atoms for atomic p0j as we assume here.

Exponential-Family Parametrisation Beyond the need
for normalisation, the factors pθz and fθj(·|x(n)j ) in the
RPM as defined above can be chosen freely. In practice,
we will often assume that they lie within a common ex-
ponential family with combined sufficient statistic t(Z)
defined on all the latent variables, and log-normaliser Φ.
The prior factor will be taken to have natural parameter
η0. The natural parameters of the recognition factors are
now parametrised functions of the observations given by
ηj(x

(n)
j ) (which may be constrained to have constant out-

puts along some dimensions when the recognition factors
target a subset of the latent variables). See also Table A1.

With these choices (and assuming uniform base measure
for pθz), we can write the implied generative conditionals
of the RPM as:

Pθ,X(N)(xj |Z) = p0j(xj)
eηj(xj)

Tt(Z)−Φ(ηj(xj))

Fθj(Z)

= χj(xj) e
t(Z)Tηj(xj)−Φxj

(t(Z))

with

χj(xj) =
1

C
p0(xj)e

−Φ(ηj(xj))

for constant C and

Φxj (t(Z)) = log

∫
dxj

1

C
p0(xj)e

−Φ(ηj(xj))eηj(xj)
Tt(Z)

= log

∫
dxj χj(xj)e

ηj(xj)
Tt(Z) .

Thus, this form of RPM induces an exponential family con-
ditional on each xj in which the parameters of ηj(xj) de-
termine both the sufficient statistic and the base measure,
the latter also depending on the observed marginal. This
expression underlines the expressiveness of the RPM with
flexibly parametrised recognition factors.

3 MAXIMUM-LIKELIHOOD LEARNING

3.1 Variational Free Energy

As is the case for other latent-variable models, ML estima-
tion in the RPM can be achieved using the Expectation-
Maximisation (EM) algorithm and related methods. We
adopt the viewpoint of Neal and Hinton (1998) and frame
EM as coordinate ascent of a variational free energy de-
rived by applying Jensen’s inequality to the log likelihood:∑

n

logPθ,X(N)

(
X (n)

)
≥ F(θ, q({Z(n)}))

=
〈∑

n

logPθ,X(N)

(
X (n),Z(n)

)〉
+ H[q]

where angle brackets indicate expectations over the varia-
tional distribution q and H[·] is the entropy. Dropping the
term in p0j which is independent of θ and q, F can be writ-
ten in terms of Kullback-Leibler (KL) divergences as

−F(θ, {q(n)(Z(n))}) =
+C

∑
n

KL
[
q(n)

∥∥pθz]
+
∑
nj

KL
[
q(n)

∥∥fθj(·|x(n)j )
]
−
∑
nj

KL
[
q(n)

∥∥Fθj

]
, (5)

where we have used the fact that the optimal q has the form∏
n q

(n)(Z(n)), and the distributions in the latter KL di-
vergences range over only the zl that are targeted by the
corresponding fθj or Fθj .

Alternating maximisation of F with respect to q (the “E-
step”) and θ (“M-step”) will converge to a (possibly local)
mode of the likelihood, provided that each maximum can
be achieved. This is straightforward in cases where the la-
tent targets of each fθj are discrete-valued variables (so that
Fθj(zk) =

∫
dxj p0j(xj)fθj(zk|xj) is an easily computed

discrete distribution) and pθz has conjugate structure and
sufficiently small junction tree width to be computationally
tractable. Examples of such exact ML learning in an RPM
are explored below in Sections 5.1 and 5.2.

3.2 E-step for Continuous-Valued Latent Variables

The situation is more complex when the latent-variable tar-
gets of fθj are continuous-valued. Even assuming that
the graphical structure and factor potentials that compose
pθz(Z) allow tractable marginalisation, and that the terms
fθj(Z|xj) provide conjugate factors, the inverse expec-
tation factors

(∫
dxj p0j(xj)fθj(Z|xj

)
)−1 will generally
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break conjugacy and thus analytic tractability. A natural
approach in this case is to constrain q(n) to live within
the conjugate family defined by pθz and fθj(·|xj). This
constraint renders the first two KL divergences in Eq. (5)
tractable, but requires approximation to evaluate the third.
However, by contrast to the analogous standard paramet-
ric variational assumption made in the context of non-
conjugate parametrised generative models (e.g. the VAE)
the impact of the constraint in the RPM may be negligi-
ble in the large-data in-model limit. Specifically, if the true
posterior on Z lies within the parametric class of fθj then,
in the limit of large data one potential set of ML parame-
ters will be such that Fθj(Z) =

∫
dxj p0j(xj)fθj(Z|xj) →

pθz(Z). This implies that the penalty of assuming that
Fθj(Z) has the exponential family form will become neg-
ligible in the large data limit for this in-model conjugate
case.

There are at least three approaches to optimising q in
the continuous case. We consider the exponential family
parametrisation, and constrain q(Z(n)) to be in the same
family, with natural parameter η(n)q . We will sometimes
also require the moment parameters of the various distribu-
tions (i.e. the expectations of t(Z) under the corresponding
natural parameter). These will be written µ0, µj(x

(n)
j ) and

µ
(n)
q for the prior, recognition factors and q(n) respectively.

See Table A1.

Reparametrised Monte-Carlo The first approach
adopts a strategy used extensively in the VAE literature
where it is known as “reparametrisation”. It is often
possible to express a sample from the exponential family
of interest as a parametrised function of a sample from
a fixed distribution. A common example is the normal
family, where samples from N (µ,Σ) can be expressed
in terms of ϵi ∼ N (0, I) as Σ

1
2 ϵi + µ. This allows a

Monte-Carlo estimate of the expectation of Fθj to be
written as a function of the parameters η(n)q and a fixed set
of samples {ϵi}. The other expectations can be evaluated
analytically under our conjugacy assumptions. Thus, it
becomes possible to optimise F with respect to η

(n)
q by

gradient ascent. While accurate with large numbers of
samples, this approach may be computationally expensive
for high-dimensional problems.

Second-order Approximation An efficient approxima-
tion of ⟨logFθj⟩ can be obtained by generalising an ap-
proach taken by Braun and McAuliffe (2010). We expand
logFθj(Z) to second order in t(Z) around its expectation
µ
(n)
q under the variational distribution q(n). Then, writing

V
(n)
q for the variance of t(Z) under q(n), we have

〈
logFθj(Z)

〉
≈ log

1

N

N∑
m=1

eηj(x
(m)
j )⊤µ(n)

q −Φ(ηj(x
(m)
j ))

+
1

2
tr
(
η⊤
j V

(n)
q ηj

[
diag(π(n)

j )− π
(n)
j π

(n)
j

⊤
])

(6)

where ηj =
[
ηj(x

(1)
j ), . . . , ηj(x

(N)
j )

]
and π

(n)
j is an N -

dimensional vector with components (for m = 1 . . . N )

π
(n)
mj =

eηj(x
(m)
j )Tµ(n)

q −Φ(ηj(x
(m)
j ))∑

p e
η(ηj(x

(p)
j ))Tµ

(n)
q −Φ(ηj(x

(p)
j ))

. (7)

This approximation no longer guarantees a lower bound on
the free energy but we demonstrate its efficacy in practice.

Interior Variational Bound A third approach introduces
auxiliary variational parameters to obtain a second bound
on F . Focusing on the Fθj-dependent terms as above (and
again using angle brackets for expectations under q) we in-
troduce functions f̃ (n)j (Z) and use Jensen’s inequality to
write〈
log

fθj(·|x(n)j )

Fθj

〉
≥

〈
log

fθj(·|x(n)j )

f̃
(n)
j q(n)

〉
−log

〈
Fθj

f̃
(n)
j q(n)

〉
= −KL

[
q(n)

∥∥fθj(·|x(n)j )
]
−
〈
log f̃

(n)
j

〉
− log Γ

(n)
j , (8)

where Γ̃(n)
j =

∫
dZ Fθj(Z)

/
f̃
(n)
j (Z). Inserting this bound

into Eq. (5) and rearranging gives

F̃ =
∑
n

logPθ,X(N)

(
X (n)

)
−
∑
n

KL
[
q(n)

∥∥Pθ,X(N)

(
·|X (n)

)]
−
∑
nj

KL
[
q(n)

∥∥∥ 1

Γ̃
(n)
j

Fθj

f̃
(n)
j

]
(9)

with F̃
(
θ, q, {f̃ (n)j }

)
≤ F(θ, q) lower-bounding the con-

ventional free energy. If we now choose f̃
(n)
j (Z) =

exp
(
t(Z)Tη̃

(n)
j

)
with the constraint that ηj(x

(m)
j ) − η̃

(n)
j

is a valid natural parameter for all (m,n), then the right
hand-side of Eq. (8) is closed-form. Furthermore, if Fθj

approaches the exponential family with statistic t(Z), as
in the in-model conjugate case, then it will be possible to
choose η̃(n)j to set the final KL-divergence in Eq. (9) close
to 0, restoring a tight bound.

3.3 M-step

The generalised M-step of EM increases the free energy
with respect to the parameters θ while holding the varia-
tional distribution q fixed (Neal and Hinton, 1998). For
many RPMs, the parameter vector will divide into disjoint
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subsets that determine pθz and the fθj (possibly shared for
multiple j). In this case, the update for the pθz group will
be broadly identical to the usual EM update. For fθj the
update requires gradients of both

〈
log fθj(Z(n)|x(n)j )

〉
and〈

logFθj(Z(n))
〉
.

For discrete-valued latent variables where the E-step is ex-
act, the corresponding M-step is straightforward, possibly
incorporating backpropagation of gradients where fθj has
neural network form and amenable to automated gradient-
based optimisation. For continuous-valued latent variables
the corresponding step depends on the E-step approach
used. Reparametrisation and the second-order approxima-
tion both provide an explicit estimate of F which can be
increased directly. When employing the interior variational
bound, we instead increase the term F̃ (see Appendix).

It is worth noting that, although the discussion above
has focused on cases where the latent distribution pθz is
tractable (in the sense that the marginals needed for learn-
ing can be computed efficiently) the RPM can also be seam-
lessly combined with standard approximate variational in-
ference and learning methods. This includes variational
Bayesian methods to obtain approximate posteriors on pa-
rameters.

4 RELATIONSHIPS TO OTHER
MODELS

Dual Generation-Recognition Models Many archety-
pal learning architectures for latent-variable models, in-
cluding the variational autoencoder (VAE; Kingma and
Welling, 2014) and Helmholtz machine (Dayan et al.,
1995), employ parametrised recognition networks in sup-
port of learning an explicit generative model for data. The
associated objective functions are usually derived from the
likelihood of the generative parameters, with the recogni-
tion model supplying ‘E-step’ inference in an EM-like ap-
proach (Neal and Hinton, 1998; Jordan et al., 1999). How-
ever, the true posterior distribution over the latents implied
by the generative structure rarely lies within the class of
functions described by the recognition model parametrisa-
tion. This mismatch induces an intrinsic bias in the esti-
mates of the generative parameters (e.g. Turner and Sahani,
2011), which can be seen either as a necessary compromise
or (for the VAE) as a reframing of the objective function
from the likelihood to the variational lower bound (Jordan
et al., 1999).

Recent work has sought to lessen the bias by introducing a
more flexible posterior representation (Rezende and Mo-
hamed, 2015; Vértes and Sahani, 2018; Wenliang et al.,
2020), or tighter variational bounds than the classic free
energy form (Burda et al., 2016; Maddison et al., 2017;
Masrani et al., 2019). However, these extensions retain the
emphasis on approximate ML estimation of a parametric

generative process with a specific noise model, potentially
guiding the latent representation towards details of individ-
ual data elements that may not be representationally useful.
By contrast, the RPM likelihood emphasises latent struc-
ture that captures dependence between data elements, dis-
pensing with a parametrisation of the marginal distributions
of individual elements and corresponding noise. Intuition
suggests that this joint structure is most likely to reflect la-
tent “causal” elements, and so may be most valuable for
decision making. Furthermore, although approximation is
necessary for RPM models with continuous-valued latent
variables, the impact of the approximation will not always
persist as the data set grows (see the discussion of in-model
conjugacy in Section 3.2).

The RPM is also directly compatible with graphical (i.e.
conditional-independence-based) prior structure within the
latents, as explored in various models below. Analogous
structured versions have been explored in the context of
generation-recognition parametrisations; but complications
arise from the need to backpropagate gradients through
message passing in the latent graph of structured VAEs
(Johnson et al., 2016) or from the need to approximate mes-
sage passing in complex Helmholtz machines (Vértes and
Sahani, 2019; Wenliang and Sahani, 2019).

Undirected Models Latent-variable models may also be
parametrised in a factored form corresponding to an undi-
rected graph, exemplified by the Boltzmann machine (Ack-
ley et al., 1985). Factor models with observations con-
ditionally independent given the latents and vice versa
(such as the restricted Boltzmann machine (RBM; Smolen-
sky, 1986; Hinton, 2002) or exponential-family harmonium
(Welling et al., 2004)) may be viewed as restricted and
unnormalised variants of the RPM. Inference follows di-
rectly from the parametric form, but only because the la-
tents are also conditionally independent given the observa-
tions. In other words, whereas the RPM can incorporate
factors that link all the latents to each observation sepa-
rately (see Eq. (1)), the RBM is restricted to pairwise fac-
tors linking individual latents and observations, or more
generally factors that link disjoint subsets of each. Further-
more, the marginal prior on the latents is implicit and typi-
cally inaccessible and ML learning requires sampling from
the model, most often by Markov-chain methods. Again
this contrasts with the efficient ML learning of the RPM.

Noise-contrastive Estimation and InfoNCE An alter-
native to ML estimation is often applied to “energy-based”
models, where an unnormalised data density is expressed
as a parametrised non-negative function of the observations
(the logarithm of this function is the “energy”). The idea
behind noise-contrastive estimation (Gutmann and Hyväri-
nen, 2010) is to train the energy as though it were the log-
odds of a classifier that seeks to distinguish genuine obser-
vations from corrupted ones. This makes sense because,
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in the large-data limit, the optimal log-odds values corre-
spond to the ratio of the model log-likelihood on the gen-
uine data to that on the corruptions. One common form
of corruption is to break each observation into two compo-
nents and shuffle these components around. In this case,
known as InfoNCE (Oord et al., 2018), the log-odds-like
cost function approaches the mutual information between
the components.

Recall that the RPM data measure is defined on the cross-
product of the empirical marginal summaries p0j(xj),
weighted by Wθ(X ). RPM learning can thus be viewed
as a process of maximising weights on the observations,
which—as the distribution is normalised—must come at
the expense of weights elsewhere. Thus, with the empir-
ical delta-function measure, the RPM also learns to con-
trast real observations from shuffled versions. Indeed, this
link between InfoNCE and a probabilistic model has been
noted previously (Aitchison and Ganev, 2023), though the
model proposed there was based on the (unknown) true
data marginals rather than the empirical measures, and so
remained intractable.

The “shuffling” in the RPM is implicit, and involves all
J conditionally independent observed variables rather than
just pairs. Furthermore, the normalised latent variable for-
mulation (missing in energy-based approaches) provides
access to efficient message-passing inference in complex
models, as well as to variational and other well-developed
tools of learning in probabilistic graphical models. And the
learnt recognition model provides proper posterior beliefs
over latent variables which can, as argued above, form the
basis of optimal Bayesian decision making.

5 EXPERIMENTS

We demonstrate the flexibility of the RPM on a range
of discrete- and continuous-latent problems: weakly su-
pervised categorisation, a pixel-level extension of Latent-
Dirichlet Allocation (LDA) (Blei et al., 2003) to images,
and non-linear recognition-parametrised Gaussian Process
Factor Analysis (RP-GPFA) (Yu et al., 2008; Duncker and
Sahani, 2018).

The RPM performance was compared to that of appropri-
ate VAEs to provide the most appropriate baseline. Both
VAE and RPM are normalised probabilistic models where
we could equate distributional assumptions and recognition
architecture. In all experiments the training data, prior and
recognition architecture were identical for RPM and VAE.
The only differences were in the generative model that had
to be instantiated for the VAE (which was set to an artificial
neural network plus noise), and the corresponding learning
algorithms. Derivations and details are provided in the ap-
pendices. A comparison of compute time for two of the
experiments is shown in Fig. A3.

x1

x2

z

Generative
Model

. . .

. . .

. . .

. . .

Observations X (n)

x
(n)
1

x
(n)
2

θz(n)

p0p0

p0p0

n=1...N

RPM
Parametrisation

Figure 1: Peer-supervised learning. Each pair of observa-
tions X = {x1, x2} is conditionally independent given their
shared digit identity z.

VQ-VAE GS-VAE GS-S VQ-VAE RPM
0.26± 0.25 0.46± 0.06 0.77± 0.04 0.87± 0.09

Table 2: Accuracy (higher better) on test MNIST data of
recognition networks trained by peer supervision.

5.1 Peer Supervision

In the first experiment, the observations xj are groups of
MNIST (Deng, 2012) images representing J (here 2) dif-
ferent renderings of the same digit. The data set is struc-
tured in this way so that the J images are conditionally
independent given the (unknown) digit identity. Thus, we
expect the RPM to extract identity without explicit label in-
formation – a setting we term “peer supervision” (Fig. 1).
The RPM is constructed with a single discrete-valued la-
tent z, and a recognition network (two convolutional lay-
ers, pooling, two linear layers and rectified linear acti-
vation function (ReLU) trained using Adam) with shared
parameters θ for both factors. The learned recognition
network achieved an average test set classification accu-
racy of 0.87 ± 0.09 over different random seeds, achiev-
ing an accuracy of 0.96 on 4 out of 10 runs. Failures
occurred predominantly when multiple (usually two) dig-
its were systematically mapped to the same latent—a phe-
nomenon possible in the absence of explicit label supervi-
sion. This effect results in a correlation between the aver-
age posterior entropy and the classification accuracy (see
Fig. A1). When comparing the recognition network ac-
curacy on MNIST test set, RPM outperforms both Vec-
tor Quantised-VAE and VQ-VAE trained using the Gumbel
Softmax categorical reparametrisation (GS-Soft VQ-VAE)
(Sønderby et al., 2017; Van Den Oord et al., 2017; Maddi-
son et al., 2016) See Table 2. Implementation details can
be found in Appendix B.1.

5.2 RP-LDA

A second RPM instance builds on latent Dirichlet alloca-
tion (LDA) models and variational Bayes to identify pixel-
level statistical regularities corresponding to textural prop-
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(a) Generative Model

x(n)j

z(n)j

ω(n)

θ

α

j=1...J

image n=1...N

(b) RPM Parametrisation

x(n)j

z(n)j

ω(n)

θ

α

j=1...J

image n=1...N

p0p0

(c) (d)

k=0

k=1

k=2

k=3

k=4

Figure 2: (a) Latent Dirichlet Allocation and (b) RP-LDA.
(c) Splitting of an image in patches. (d) Five most repre-
sentative patches for five texture categories sorted using the
recognition network outputs.

erties of image subpatches (Fig. 2). Images, indexed by
n, are decomposed into J smaller non-overlapping sub-
patches x

(n)
j (Fig. 2c) which are assumed to be condi-

tionally independent given a discrete latent texture identity
z
(n)
j . The z

(n)
j are drawn from random categorical distri-

butions ω(n), which each gives the distribution of textures
in the corresponding image, and is in turn drawn from a
Dirichlet prior (with uniform parameter α). A recogni-
tion network (with the same structure as in Section 5.1)
is shared across patches, and outputs a categorical distri-
bution over texture identities given the patch pixel values.
Writing Z = {zj : j = 1 . . . J} ∪ {ω}, RP-LDA takes the
form

P(X ,Z) =

J∏
j=1

p0j(xj)
fθ(zj |xj)
Fθ(zj)

p (zj |ω) p (ω|α) . (10)

Applied to images from the van Hateren database
(Van Hateren and van der Schaaf, 1998), RP-LDA recovers
textural components (clouds, branches, pavements, etc.).
Fig. 2d shows representative patches xj that are most ro-
bustly assigned to a single textural category. Further details
and derivations are given in Appendix B.2.
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RPM Parametrisation

Figure 3: RP-GPFA

5.3 RP-GPFA

Finally, we model continuous multi-factorial temporal de-
pendencies by introducing recognition-parametrised Gaus-
sian process factor analysis (RP-GPFA; Fig. 3). We con-
sider J observed time-series measured over T timesteps:
X = {xjt : j = 1 . . . J, t = 1 . . . T}. We seek to
capture both spatial and temporal structure in a set of K-
dimensional underlying latent time-series Z = {zt : t =
1 . . . T}, such that the observations are conditionally inde-
pendent across series and across time. The RPM thus takes
the form

Pθ,X(N)(X ,Z) =

J∏
j=1

T∏
t=1

(
p0,jt(xjt)

fθj(zt|xjt)
Fθj(zt)

)
pθz(Z) .

(11)

The prior on Z comprises independent Gaussian Process
priors over each latent dimension Zk = {zkt : t = 1 . . . T}

pθz(Z) =

K∏
k=1

pk(Zk) ; pk(·) = GP(0, κk(·, ·)) . (12)

The recognition factors are parametrised by a neural
network with weight θj that outputs the parameters of
a multivariate normal distribution, i.e. fθj(zt|xjt) =
N (zt;µθ[xjt],Σθ[xjt]). We use the sparse variational GP
approximation (Titsias, 2009) to improve scalability. The
model is augmented with M inducing points (IP) for each
latent dimension (k = 1 . . .K) and each observation (n =
1 . . . N ). This smaller set (M < T ) of fictitious measure-
ments is optimised to efficiently represent function evalu-
ations. For simplicity, IP are defined at fixed and shared
locations. We restrict our experiments to using the radial
basis function kernel, but the method can accommodate any
GP prior.

Performance range

Table 3 gives the median and inter-quartile range for each
of the RP-GPFA experiments described in the main text.



Unsupervised Representation Learning with Recognition-Parametrised Probabilistic Models

sGP-VAE RP-GPFA
1D 2D Monte-Carlo 2nd Order Variational

Textured −F (×104) 3.1 [3.0− 3.2] 2.3 [2.2− 2.4] 0.90 [0.76− 0.97] 0.91 [0.77− 0.98] 0.74 [0.59− 1.2 ]
Bouncing Ball nMSE ≥ 0.99 ≥ 0.99 0.85 [0.06− 1.00] 0.14 [0.04− 0.94] 0.05 [0.03− 0.26]

Structured −F (×103) 40 [28− 46] 26 [21− 30] 1.1 [1.1 − 1.1 ] 0.96 [0.93− 1.0 ] 0.77 [0.75− 0.80]
Background nMSE ≥ 0.99 ≥ 0.9 0.11 [0.10− 0.14] 0.11 [0.10− 0.12] 0.09[0.09− 0.10]

Table 3: Performance on the Textured and Structured Background Bouncing Ball Experiments using negative free energy
(−F ; lower better) and normalised mean squared regression error to the true latent (nMSE; lower better). We compare
different fitting procedures for RP-GPFA with a single latent dimension. sGP-VAE is fitted with both one or two latent
dimensions. Values indicate median and inter-quartile range over 20 random seeds.

5.3.1 Textured Bouncing Ball

We illustrate RP-GPFA on a modified version of the bounc-
ing ball experiment (Johnson et al., 2016), in which a one-
dimensional latent modulates the intensity of observed pix-
els across time (Fig. 4). The stochastic mapping from la-
tent to observation is defined such that the mean and vari-
ance of pixel intensity is independent of the latent position.
We compare our approach to sparse Gaussian process VAE
(sGP-VAE) (Ashman et al., 2020) and report the negative
free energy (−F) and the normalised mean squared error
(nMSE) obtained by linear regression from inferred to true
latent (Table 3). RP-GPFA is fit using a one dimensional
latent space with each of the E-step methods described in
Section 3.2. Reparametrisation employed only 20 sam-
ples to maintain computational comparability. All methods
shared the same recognition network structure (two fully
connected layers of size 50, ReLU activation function) and
were trained using Adam. Kingma and Ba (2014).

The latent variable influences the higher order statistics of
the image (i.e., the texture) but the standard sGP-VAE gen-
erative model maps latent to observations through multi-
variate Gaussian distributions. As a consequence, the one-
dimensional version of this model is predictably blind to
the latent oscillations. Interestingly, this was still the case
when using a two-dimensional latent space. In contrast,
the implicit generative process of RP-GPFA is not subject
to model mismatch and recovers the latent dynamics accu-
rately. The best performance was reached using the interior
variational bound, albeit with high variability. The second
order approximation yielded competitive and more reliable
results across the 20 random seeds.

5.3.2 Structured-Background Bouncing Ball

In a second variant of the bouncing ball experiment, the
ball appeared as a local Gaussian blur imposed over a
structured, striped, moving background (Fig. 4). This ex-
ample helps to illustrate another shortcoming of explicit
generation, beyond the risk of model mismatch illustrated
above. The generative likelihood depends on the capac-
ity to reconstruct the entire observation, including any
structured but independent features that cannot be ascribed

Textured Observation Structured ObservationTexture Dist.

0 1-1 4

Latent

Ball-Pixel

(c)

(e)

(b)(a)

(d)

time [a.u] time [a.u]

Figure 4: Bouncing ball experiments: a latent variable zt
modulates pixel intensity. (a,b) zt influences the higher
order statistics of the image (i.e., the texture). (c) Inten-
sity modulation is imposed over structured background.
(d,e) Latent recovery using RP-GPFA (variational bound
method) or sGP-VAE. Shades indicates 2 standard devia-
tions.

to noise. In this example, the sGP-VAE must work to
model both structured background and ball-related fea-
tures, which proves impossible with one or two latent pro-
cesses. By contrast, the RPM likelihood focuses on la-
tent structure which renders observations conditionally in-
dependent in time (Fig. 4). The difference is again reflected
quantitatively in the free energies achieved and match be-
tween the recovered latent and ball position (Table 3).

5.3.3 Multi-factorial Integration across Time

Last, we considered conditional independence structured
across time and observed signal. Three independent agent
navigate in a bounded environment, moving inanimate
blocks to a designated target. Observations of the agents’
locations are collected in the form of 3D-rendered image
frames of the entire environment x1 = {x1t : t = 1 . . . T},
as well as noisy range-finding sensor data giving the dis-
tances of one of the agents from the four corners of the
room x2 = {x2t : t = 1 . . . T} (Fig. 5). Renderings and
trajectories were generated using Unity Machine Learning
Agents Toolkit (Juliani et al., 2018). In this setting, a (2D)
latent inducing conditional independence should recover
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Agent environment

Image time-series x1t

Range time-series x2t

D
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time →

True agent position zt

Integrated variational est. E[q(zt)]Image-based recog. fθ1(zt|x1t)

Range-based recog. fθ2(zt|x2t)

z1t

z 2
t

Figure 5: Multi-factorial integration across time. RP-GPFA combines image frames x1t and noisy range-finding data x2t
tracking an agent moving amongst distractors. No structural priors on the source of the data streams are included. By
identifying a 2D signal that renders the complex data streams conditionally independent, it recovers the position zt of the
range-finder-equipped agent. In particular the noisy range-finder data is related to only one of the many agents in the
environment, which the RPM-reconstructed zt learns to select.

the location of the range-finder-equipped agent, ignoring
the other agents and the rest of the image data.

We trained RP-GPFA using the 2nd-order approximation
method, 40 inducing points, a convolutional network θ1
acting on image data and a two-layer perceptron θ2 on
range data (resp. similar to Section 5.1 and Section 5.3.1).

Fig. 5 shows one full trajectory Z = {zt : t = 1 . . . T},
the recovered mean of the variational distribution q, and
the individual video and range recording factors fθj(·|xjt)
combined with pθz . These results illustrate how the pursuit
of conditional independence underlying RP-GPFA makes it
possible to (i) learn the nonlinear mapping from distance to
position signal and (ii) learn to track a moving agent from
video recordings. Perhaps more importantly, it is the con-
ditional independence structure across distance sensors and
video that provides the signal guiding the video network to
(iii) learn which agent to track amongst the distractors.

6 CONCLUSION

We have introduced the recognition-parametrised model, a
normalised semi-parametric family in which the latent vari-
ables model the joint dependence of observations but not
their individual marginals. As the parametric part of the
likelihood is defined in terms of the recognition parameters
alone, the RPM avoids issues of mismatch between gener-
ative and recognition models, and enables rapid computa-
tions of latent posterior distributions from observed data.
Furthermore, by incorporating the empirical marginal dis-
tribution of individual latents, the RPM is able to capture
joint structure, regardless of details of the noise distribu-

tion, or of unrelated distractors.

The RPM may be defined using simple exponential family
forms on the latents, allowing access to the wide range of
probabilistic tools. The capacity for structured probabilistic
inference was exploited in the experiments here, with RP-
LDA exemplifying the use of hierarchical models and vari-
ational Bayes, while RP-GPFA combined RPM inference
with the sparse variational GP approximation. The model
can be learned through maximum-likelihood exactly in the
case of discrete latents and we present several approxima-
tions to a variational bound for the continuous case.

Animals and artificial agents acting in the world need to
learn structure in sensory input to build representations of
their environments and infer state, but they rarely need to
generate synthetic observations. The assumptions of the
RPM: that recognition is probabilistic, detailed simulation
is avoided, and learning is unsupervised are likely to be
those that shape natural intelligence. Behavioural stud-
ies reveal Bayesian perception and decision making under
noise, uncertainty and risk; dense cortico-fugal connections
do not extend to the sensory periphery; and natural human
“supervision” in fact corresponds to the RPM principle: ob-
ject category is the thing that makes the utterance of a care-
giver conditionally independent of the picture or object to
which they are pointing. We are unaware of other learn-
ing frameworks that are fully probabilistic, unsupervised,
tractable, and avoid explicit instantiation of a generative
model. Thus models of the RPM type may be central to
replicating general animal-like intelligence. and so we be-
lieve it holds promise both as a model of biological learning
and as a basis for efficient state discovery and action learn-
ing in artificial settings.
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A MAXIMUM LIKELIHOOD LEARNING

We provide further details and complete derivations of key results. Equation numbers without an ’A’ prefix correspond to
those in the main text.

Recall that the full joint distribution associated with a Recognition-Parametrised Model (RPM) takes the form

labeleq : jointPθ,X(N)(X ,Z) = pθz(Z)
∏
j

(
p0j(xj)

fθj(Z|xj)
Fθj(Z)

)
, (2)

where X = {xj : j = 1 . . . J} is a set random variables and Z = {zl : l = 1 . . . L} is a set of underlying latent variables
given which xj are conditionally independent. The factors are defined as

pθz(Z) : a normalised distribution on the latent variables whose factorisation depends on a latent graphical model.

p0j(xj) =
1
N

∑
n δ(xj − x

(n)
j ) : the empirical measures with atoms at the N data points x(n)j .

fθj(Z|xj) : parameterised distributions that we call “recognition factors”.

Fθj(Z) =
∫
dxjp0j(xj)fθj(Z|xj) : mixture of recognition factors with respect to the empirical measures.

As we take p0j(xj) to be the empirical measures throughout, the mixtures have the forms Fθj(Z) = 1
N

∑
n fθj(Z|x(n)j ).

A.1 Variational Free Energy

We use Expectation-Maximisation coordinate ascent of the variational free energy (sometimes referred to as Evidence
Lower Bound or ELBO) derived by applying Jensen’s inequality to the log likelihood (Neal and Hinton, 1998):∑

n

logPθ,X(N)

(
X (n)

)
≥ F(θ, q({Z(n)}))

=
〈∑

n

logPθ,X(N)

(
X (n),Z(n)

)〉
+ H[q]

=
∑
n

(〈
log pθz(Z(n))

〉
+
∑
j

(〈
log fθj(Z(n)|x(n)j )

〉
−
〈
logFθj(Z(n))

〉))
+
∑
jn

log p0j(x
(n)
j ) +

∑
n

H
[
q(n)

]
(A1)

where, as in the main text, angle brackets indicate expectations with respect to the variational distribution q, H[·] is the
entropy, and we have used the fact that the optimal q has the form

∏
q(n)(Z(n)). When the latent variables that appear

in Fθj(Z) are discrete, and the graphical structure of pθz admits exact belief propagation, the expressions in Eq. (A1)
can be evaluated in closed form and optimisation is straightforward. For the more challenging case of continuous-valued
latent variables, we introduced three approximation approaches in the main text. These are reviewed and developed further
below.

A.2 E-step for Continuous-Valued Latent Variables

We consider the case in which pθz , fθj(.|xj) and q(n) are all members of the same exponential family with natural pa-
rameters η0, ηj(x

(n)
j ) and η(n)q respectively, corresponding to minimal sufficient statistic t(Z) and log-normaliser Φ. The

expectations of t(Z) under the corresponding distribution are written µ0, µj(x
(n)
j ) and µ(n)

q respectively (notation is sum-
marised in table A1). With this set of assumptions, the only term from Eq. (A1) that cannot be expressed analytically is〈
logFθj(Z(n))

〉
. As discussed in the main paper, if a sample from q can be expressed as a parametrised function of a sam-

ple from a fixed distribution (as is the case with multivariate normal distributions) it can be evaluated using Monte-Carlo
estimates. Nevertheless, this approach may be computationally expensive for high dimensional problems. We therefore
propose two additional approaches to handle intractable terms.
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Name Distribution Natural Parameter E(t(Z)) V(t(Z)) Normalised ?
Prior pθz η0 µ0 N/A Yes

Recognition Factors fθj(.|xj) ηj(x
(n)
j ) µj(x

(n)
j ) N/A Yes

Variational q(n) η
(n)
q µ

(n)
q V

(n)
q Yes

Auxiliary Factors f̃
(n)
j η̃

(n)
j N/A N/A No

Normalised Auxiliary f̂
(n)
j ηj(x

(n)
j )− η̃

(n)
j N/A N/A Yes

Mixture Fθj N/A N/A N/A Yes

Table A1: Notation Glossary for Continuous Exponential Family Case

A.2.1 Second-order Approximation

First, we generalise the approach introduced by (Braun and McAuliffe, 2010) and expand g(t(Z)) = logFθj(Z) to second
order in t(Z) around its expectation µ(n)

q . This gives

g(t(Z)) ≈ g(µ(n)
q ) + ∂g⊤

(
t(Z)− µ(n)

q

)
+

1

2

(
t(Z)− µ(n)

q

)⊤
∂2g

(
t(Z)− µ(n)

q

)
, (A2)

where
∂g =

∑
m

η(x
(m)
j )π

(n)
jm , (A3)

∂2g =
∑
m

η(x
(m)
j )η(x

(m)
j )⊤π

(n)
jm −

∑
m,m′

η(x
(m)
j )η(x

(m′)
j )⊤π

(n)
jmπ

(n)
jm′ , (A4)

with

π
(n)
jm =

eη(x
(m)
j )⊤µ(n)

q −Φ(η(x
(m)
j ))∑

p e
η(x

(p)
j )⊤µ

(n)
q −Φ(η(x

(p)
j ))

. (7)

The first order term vanishes when taking the expectation over q(n) so that

⟨g(t(Z))⟩ ≈ g(µ(n)
q ) +

1

2
tr
(
V (n)
q ∂2g

)
. (A5)

Finally, we gather the recognition factor natural parameters in

ηj =
[
η(x

(1)
j ), . . . , η(x

(N)
j )

]
and the weights in

π
(n)
j =

[
π
(n)
1j , . . . , π

(n)
Nj

]⊤
,

yielding

〈
logFθj

〉
≈ log

1

N

N∑
m=1

eη(x
(m)
j )⊤µ(n)

q −Φ(η(x
(m)
j )) +

1

2
tr
(
η⊤
j V

(n)
q ηj

[
diag(π(n)

j )− π
(n)
j π

(n)
j

⊤
])

. (6)

This form can be inserted into Eq. (A1) to yield a tractable, approximate free energy.

In the case where q(n) is a multivariate distribution with mean m(n) and variance S(n), we recall

µ(n)
q =

[
m(n)

Vec
(
S(n) +m(n)m(n)⊤

)] (A6)

and

V (n)
q =

[
S(n) m(n)⊤ ⊗ S(n) + S(n) ⊗m(n)⊤

m(n) ⊗ S(n) + S(n) ⊗m(n) S(n)

]
(A7)
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where
S(n) = h(S(n), S(n)) + h(S(n),m(n)m(n)⊤) + h(m(n)m(n)⊤, S(n)) .

and

h(A,B) = A⊗B +
(
Γ⊤ ⊗A⊗ Γ

)
⊙
(
Γ⊗B ⊗ Γ⊤) with Γ = 1K×1 (A8)

⊗ and ⊙ are the Kronecker and Hadamard products.

A.2.2 Interior Variational Bound

The previous approach gives a compact approximation of the free energy but it is not guaranteed to lower bound the log-
likelihood. Thus, we considered a second strategy in which we introduced a further relaxation of the free-energy bound,
by introducing auxiliary functions f̃ (n)j (Z). Focusing on the Fθj-dependent terms as above, we have〈

log
fθj(·|x(n)j )

Fθj

〉
=

〈
log

fθj(·|x(n)j )

f̃
(n)
j q(n)

〉
−

〈
log

Fθj

f̃
(n)
j q(n)

〉

≥

〈
log

fθj(·|x(n)j )

f̃
(n)
j q(n)

〉
− log

〈
Fθj

f̃
(n)
j q(n)

〉
(by Jensen)

=

〈
log

fθj(·|x(n)j )

f̃
(n)
j q(n)

〉
− log

∫
dZ Fθj(Z)

f̃
(n)
j (Z)

.

(A9)

If we now choose f̃ (n)j (Z) = exp
(
t(Z)Tη̃

(n)
j

)
with the constraint that ηj(x

(m)
j )− η̃

(n)
j is a valid natural parameter for all

(m,n), then the right hand-side of Eq. (A9) is closed-form

Γ̃
(n)
j =

∫
dZ Fθj(Z)

f̃
(n)
j (Z)

=
1

N

∑
m

eΦ(ηj(x
(m)
j )−η̃

(n)
j )−Φj(ηj(x

(m)
j )) . (A10)

By rearranging terms, we obtain (c.f. main text eq. 8)〈
log

fθj(zj |x(n)j )

Fθj(zj)

〉
≥− KL

[
q(n)

∥∥∥f̂ (n)j

]
+ log Γ

(n)
j , (A11)

where f̂ (n)j is a properly normalised exponential family distribution with natural parameter ηj(x
(n)
j )− η̃

(n)
j and

Γ
(n)
j =

eΦ(ηj(x
(n)
j )−η̃

(n)
j )−Φ(ηj(x

(n)
j ))

1
N

∑
m eΦ(ηj(x

(m)
j )−η̃

(n)
j )−Φj(ηt(x

(m)
j ))

=
eΦ(ηj(x

(n)
j )−η̃

(n)
j )−Φ(ηj(x

(n)
j ))

Γ̃
(n)
j

. (A12)

This fully tractable expression can then be inserted in Eq. (A1). Furthermore, the terms of the resulting expression can be
rearranged to make explicit the bound to the conventional free energy and the log-likelihood∑

n

logPθ,X(N)

(
X (n)

)
≥ F(θ, q) ≥ F̃

(
θ, q, {f̃ (n)j }

)
, (A13)

where

F̃
(
θ, q, {f̃ (n)j }

)
=
∑
n

logPθ,X(N)

(
X (n)

)
−
∑
n

KL
[
q(n)

∥∥Pθ,X(N)

(
·|X (n)

)]
−
∑
nj

KL
[
q(n)

∥∥∥ 1

Γ̃
(n)
j

Fθj

f̃
(n)
j

]
. (9)

Thus, as might be expected, the second variational relaxation introduces a further KL-divergence penalty, beyond the term
in KL[q(Z)∥p(Z|X )] introduced by the standard variational approach.
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B DISCRETE EXPERIMENTS

In all discrete experiments, the recognition network θ was shared across factors and comprised 2 convolutional layers with
max pooling and one fully connected layer of 50 units followed by a ReLU (Rectified Linear Unit) activation function.

B.1 Peer-Supervision

In this case, the RPM had a single categorical latent variable z (so L = 1) with uniform prior, and J = 2 observations xj
each corresponding to an MNIST image. The data set comprised random pairs of images of the same digit, with each digit
appearing in only one pair. The factors fθj(z|xj) were parametrised by a single convolutional neural network (i.e., the
parameters θj were tied), which outputs categorical probabilities. Inference is thus conjugate. Assuming that z can take
K = 10 values, the E-step has the closed form:

q(n)(z = k) ∝
∏
j

fθ(k|x(n)j )∑
m fθ(k|x(m)

j )
. (A14)

The RPM is compared to Gumbel Softmax Variational Autoencoder (GS-VAE) (Maddison et al., 2016), Vector Quantised
Variational Autoencoder (VQ-VAE) (Van Den Oord et al., 2017)1 and Gumbel-Softmax VQ-VAE (GS-VQVAE) (Sønderby
et al., 2017)2 (temperature of 0.5) . The Gumbel-Max reparametrisation trick allows the sampling of discrete random
variables to be a sum of a deterministic function of the discrete probabilities and a fixed noise distribution, followed by
an argmax operation. The Gumbel Softmax replaces the argmax with a softmax operation such that the gradients of the
probabilities can be calculated. Thus this allows the VAE to learn using samples of the discrete latents in the loss. The
VQ-VAE is a deterministic autoencoder whose encoder produces a continuous vector that then gets compared to a nearest
neighbour embedding. The nearest neighbour is then used in the decoder for reconstructing data. Gradients are passed using
the straight through estimator and the encoder, decoder, and nearest neighbour embedding is learned. The GS-VQVAE
computes the variational posterior using the distances from encoder output to nearest neighbour embedding vectors as
logits of a categorical distribution. Then learns to maximise the free energy using the Gumbel Softmax reparametrisation
trick.

All VAE models shared the same generative neural network and all methods fundamentally shared the same recognition
network. They differ in that the output dimension of RPM and GS-VAE was of dimension 10, while Vector Quantised
Models recognition networks first output to an embedding space of dimension 64 before being mapped to one of 10
categories.

Each model was fit 10 times with different random initialisation. Once fit, the output of the recognition factor neural
network was evaluated for classification accuracy on the MNIST test dataset on the basis of the best mapping from network
output to digit identity (using Kuhn–Munkres algorithm).

Fig. A1 shows the accuracy achieved for each random seed as a function of the entropy of the average posterior. The
RPM (alone) achieved performance of 96.5% for 3/10 random initialisations, but in other cases drew sharp classification
boundaries that confused or divided single digit classes, as seems reasonable given the lack of label supervision. This
effect can be seen in the confusion matrices shown in Fig. A1. None of the baseline models achieved better than about
80% accuracy, and all of them created more distributed errors, confusing examples of many digit types.

B.2 Latent Dirichlet Allocation (LDA)

The goal of the RPM-LDA is to infer the statistics of local image properties in natural images. We start by decomposing
each image into sub-patches and denote:

1https://github.com/bshall/VectorQuantizedVAE
2https://github.com/YongfeiYan/Gumbel_Softmax_VAE
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Figure A1: Accuracy and entropy of average posterior achieved by each of the four model types initialised with 10 different
random seeds. Insets show confusion matrices (for the best digit assignment of latent values) for the least and most accurate
RPM, and most accurate example of the baseline models.
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x(n)j

z(n)j

ω(n)

θ

α

j=1...J

image n=1...N

LDA DAG

x(n)j

z(n)j

ω(n)

θ

α
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image n=1...N

p0p0

RPM parametrisation

• x
(n)
j the j-th patch of image n

• z
(n)
j the categorical identity of x(n)j

• ω(n) the distribution of categories for image n

• p(ω) = Dirichlet(α, ..., α) the prior over the category dis-
tribution

• θ the recognition network shared for all the patches that
outputs the probabilities that a patch x

(n)
j belongs to each

category.

The RPM has the form

Pθ,α,X(N)(X ,Z) =

N∏
n=1

J∏
j=1

p0(x
(n)
j )

fθ(z
(n)
j |x(n)j )

1
N

∑
m fθ(z

(n)
j |x(m)

j )
p
(
z
(n)
j |ω(n)

)
p
(
ω(n)|α

)
, (A15)

where Z =
{
{z(n)j }j , ω(n)

}
n

.

We model the variational distribution as

q(Z) =

N∏
n=1

q(n)ω (ω(n))

J∏
j=1

q
(n)
j (z

(n)
j ) (A16)

where

q(n)ω = Dirichlet(α(n)
1 , ..., α

(n)
K ) and q

(n)
j (z

(n)
j = k) = γ

(n)
jk . (A17)

The E-Step is closed form and follows

α
(n)
k = α+

J∑
j=1

γ
(n)
jk and γ

(n)
jk ∝ exp

(
Ψ(α

(n)
k ) + log fθ(k|x(n)j )− log fθ(k)

)
(A18)

where Ψ is the digamma function.

During the M-Step, the recognition model is updated using Adam (Kingma and Ba, 2014) on the free energy. We applied
RPM-LDA to 100 images from the van Hateren database and fixed K = 10. Given a texture k, its most representative
patch is the one maximising the probability of being assigned to k: fθ(k|x). We plot such patches Fig. A2-(a), and see that
RPM-LDA learns meaningful textural information (clouds, branches, etc.). The statistics of each image can be described
by ω̄(n) = ⟨ω(n)⟩q . We confirmed the inferred textural grouping by reporting examples of images with low entropy on
A2-(b) and one where ω(n) is multimodal A2-(c).
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Figure A2: RPM-LDA. (a) Five most representative patches for all textures. (b) Three most representative images for
some textures. (c) Texture distribution of a given image.
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C CONTINUOUS EXPERIMENTS: RP-GPFA

x11 x12 . . . x1T

...
...

...

xJ1 xJ2 . . . xJT

z1 z2 . . . zT

Generative Model

κ z(n)t

x(n)tj

θj

U(n)

p0,jtp0,jt

factor j=1...J

time t=1...T

observation n=1...N

RP-GPFA parametrisation

Recognition-Parametrised Gaussian Process Factor Analysis (RP-GPFA) models continuous multi-factorial temporal de-
pendencies. We consider J observed time-series measured over T timesteps: X = {xjt : j = 1 . . . J, t = 1 . . . T}. We
seek to capture both spatial and temporal structure in a set of K-dimensional underlying latent time-series Z = {zt : t =
1 . . . T}, such that the observations are conditionally independent across series and across time. The full joint has the form:

Pθ,X(N)(X ,Z) =

J∏
j=1

T∏
t=1

(
p0,jt(xjt)

fθj(zt|xjt)
Fθj(zt)

)
pθz(Z) , (A19)

Each recognition factor is parametrised by a neural network θj that outputs the natural parameters ηj(x
(n)
j ) of a multivariate

normal distribution given input x(n)jt and we recall that

Fθj(zt) =
1

N

N∑
n=1

fθj

(
zt|x(n)jt

)
. (A20)

The prior on Z comprises independent Gaussian Process priors over each latent dimension Zk = {zkt : t = 1 . . . T}

pθz(Z) =

K∏
k=1

pk(Zk) ; pk(·) = GP(0, κk(·, ·)) , (A21)

C.1 Variational Distribution and inducing points

We use sparse variational GP approximations (Titsias, 2009) to improve scalability of RP-GPFA. The model is augmented
with M inducing points (IP) for each latent dimension (k = 1 . . .K) and each observation (n = 1 . . . N ). This smaller
set (M < T ) of fictitious measurements is optimised to efficiently represent function evaluations. For simplicity, IP are
defined at fixed and shared locations τ = [τ1, . . . , τM ]

⊤. We denote them

U (n) =
[
U (n)
1 , . . . ,U (n)

K

]
∼M ×K . (A22)

Given an observation n, the variational distribution writes

q
(
U (n),Z(n)

)
=

K∏
k=1

q
(
U (n)
k ,Z(n)

k

)
. (A23)

In practice, we only need the marginals over inducing points and latents. The former are optimised numerically and denoted

q
(
U (n)
k

)
= N

(
µ
(n)
k ,Σ

(n)
k

)
. (A24)
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For the latter, we simplify inference by adopting the form

q
(
U (n)
k ,Z(n)

k

)
= pk

(
Z(n)

k |U (n)
k

)
q
(
U (n)
k

)
, (A25)

which gives closed form expression for
q
(
z
(n)
k,t

)
= N

(
m

(n)
k,t , S

(n)
k,t

)
. (A26)

Indeed, we denote κτk = κk(τ, τ) and use the law of total expectations to obtain

m
(n)
kt = Eu(Ez|u(z)) = κk(t, τ)κ

τ−1
k µ

(n)
k (A27)

and

s
(n)
kt =Vu(Ez|u(z)) + Eu(Vz|u(z)) = κk(t, τ)

(
κτ−1
k Σ

(n)
k κτ−1

k − κτ−1
k

)
κk(τ, t) + κk(t, t) . (A28)

We gather those centred moments in the K dimensional vector m(n)
t and diagonal matrix S(n)

t .

C.2 Variational Free Energy

The free energy is given by

logPθ,X(N)(X ) =

∫∫
dZ dU Pθ,X(N)(X ,Z,U)

≥
∫∫

dZ dU q (Z,U) log
Pθ,X(N)(X|Z)pθz(Z|U)pθz(U)

pθz(Z|U)q(U)

= ⟨logPθ,X(N)(X|Z)⟩q(Z,U) − KL
[
q(U)

∥∥∥pθz(U)] = F

(A29)

The KL divergence between the variational and the prior distribution over IP is closed form and can be broken down to

KL
[
q(U)

∥∥∥P (U)] =∑
n,k

KL
[
q(U (n)

k )
∥∥∥pk(U (n)

k )
]

(A30)

The remaining term has the RPM form〈
Pθ,X(N)(X|Z)

〉
q(Z,U)

= NJT log
1

N
+
∑
njt

〈
log fθj(zt|x(n)jt )

〉
q
(
z
(n)
t

) −
〈
logFθj(zt)

〉
q
(
z
(n)
t

) , (A31)

and is estimated by using one of the inference methods described above. Finally, the free energy (or its lower bound) is
optimised with respect to the kernel parameters, the inducing point variational distributions, and the recognition networks
(and the auxiliary factors) using Adam. When necessary, we ensure the validity of f̂ (n)j by soft-thresholding the eigenvalues
of the natural parameters.

C.3 RP-GPFA Experiments

In all RP-GPFA experiments, the recognition networks consisted in at least two fully connected hidden layers of size 50.
When input included image frames, they were preceded by two convolutional layer with max pooling. All layers were
followed by Rectified Linear Unit (ReLU) and trained with Adam.

Bouncing Balls

In Bouncing ball experiments, the latent was generated with a randomly initialised two dimensional oscillating linear
system from which we extracted the first components. We fixed the number of observation to N = 50, the number of
time points to T = 50, and used M = 20 inducing points. As described in the main text, in the textured experiment, the
stochastic mapping from latent to observation is defined such that the mean and variance of pixel intensity is independent
of the latent position (respectively fixed to 0 and 1). This is achieved with a mixture of Gaussian distributions with fixed
variance, but whose weights and position depend on the latent.
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Figure A3: Relative free energy vs clock time for MNIST peer supervision (left) and a Bouncing ball data set (right). Free
energy is shown relative to the highest value at convergence (rather than on an absolute scale) to emphasise relative timing.
In both cases the RPM approaches converged to higher absolute values of free energy than alternatives.

Multi-factorial experiment

In the multi-factorial experiment, three independent agents are placed in a bounded environment where they work to move
inanimate blocks to a designated target. Once the task is complete, the arena ground colour changes. Observations of
the agents’ locations are collected in the form of 3D-rendered image frames of the entire environment and noisy range-
finding sensor data giving the distances of one of the agents from the four corners of the room. Sensor noise is modelled
as additive Gaussian with zero mean and variance 0.1. Renderings and trajectories were generated using Unity Machine
Learning Agents Toolkit (Juliani et al., 2018). We used N = 50 observations of length T = 200 and M = 40 inducing
points.

D Compute time

Compute time for the RPM experiments was competitive with the baseline comparison methods for full-batch training with
both discrete and continuous latents.

Fig. A3 shows wall-clock comparisons for MNIST peer supervision, and for a bouncing ball (with noise better matched
for sGPVAE so that it converges to a non-trivial value). Learning curves are scaled vertically to emphasise relative timing.
The RPM always converged to a higher value of free energy on an absolute scale.

We used 20 samples per latent in reparametrisation to ensure that the compute time was comparable. Note that although
the variational method is fast here, the current implementation scales poorly with GP dimension.

E Code

Implementation and code of all discrete and continuous latent experiments can be found at https://github.com/
gatsby-sahani/rpm-aistats-2023
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