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Abstract

We study the matrix completion problem un-
der joint differential privacy and develop a
non-convex low-rank matrix factorization-based
method for solving it. Our method comes with
strong privacy and utility guarantees, has a lin-
ear convergence rate, and is more scalable than
the best-known alternative (Chien et al., 2021).
Our method achieves the (near) optimal sample
complexity for matrix completion required by the
non-private baseline and is much better than the
best known result under joint differential privacy.
Furthermore, we prove a tight utility guarantee
that improves existing approaches and removes
the impractical resampling assumption used in the
literature. Numerical experiments further demon-
strate the superiority of our method.

1 INTRODUCTION

The completion of low-rank matrices has been extensively
studied in the past decade (Candès and Tao, 2010; Rohde
et al., 2011; Chen and Wainwright, 2015; Zheng and Laf-
ferty, 2016; Wang et al., 2017; Chi et al., 2019) due to its
wide range of applications in real-world problems, such as
recommendation systems (Rennie and Srebro, 2005), clus-
tering (Cai et al., 2008), and sensor localization (Wang et al.,
2008). When personalizing recommendations, the goal is
to learn the preferences of a set of m users on a collection
of n items, using a small portion of the observed ratings.
Specifically, given the observed index set Ω ⊆ [m] × [n]
and the partially observed ratings X∗

ij , (i, j) ∈ Ω, where
X∗

ij denotes the rating of user i for the item j, the goal is to
estimate the user-item rating matrix X∗ ∈ Rm×n. Assum-
ing that X∗ has low-rank, the goal is to learn two matrices,
U ∈ Rm×r and V ∈ Rn×r, of rank r (r ≪ min{m,n})
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such that X∗ ≈ UV⊤. The low-rank matrices U,V repre-
sent the embeddings of users and items, and can be used to
predict i-th user’s rating on j-th item using Ui∗V

⊤
∗j , where

Ui∗,V∗j denote i-th row and j-th column of U and V.

Data sets used to train low-rank models contain sensitive
personal information, such as personal preferences and loca-
tion data, which raise serious privacy concerns (Narayanan
and Shmatikov, 2010; Calandrino et al., 2011). Privacy-
preserving matrix completion (Hardt and Roth, 2012, 2013;
Kapralov and Talwar, 2013) aims to achieve differential
privacy (DP) (Dwork et al., 2006) for individual records.
Unfortunately, these approaches only provide privacy guar-
antees for a single entry in the low-rank matrix, which is
not suitable and can even be detrimental in many real-world
problems. For example, in the context of personalized rec-
ommendations, ratings from a user are often correlated and
can be used to fingerprint this user (Calandrino et al., 2011).
Therefore, the privacy guarantee for a single rating may not
be strong enough to address each user’s privacy concerns.
In addition, if we naively strengthen the privacy guarantee
for each rating, e.g., by achieving the same DP guarantee
for every rating, the DP guarantee (see Definition 3.1) for a
single rating implies that a user’s predicted preference for a
new item cannot be inferred from their own preferences on
similar items. As a result, the predicted recommendations
generated by a privacy-preserving low-rank matrix comple-
tion method are often inaccurate and useless. To address
these concerns, Jain et al. (2018); Chien et al. (2021) devel-
oped more practical methods for private matrix completion
based on user-level privacy or joint DP (Kearns et al., 2014).
Specifically, these methods aim to keep all ratings of a user
private, rather than a single rating. Joint DP implies that
recommendations for a given user cannot be inferred by
other users, even if they collude with each other (see Defi-
nition 3.2). Therefore, it is a strong privacy guarantee for
each user as long as the user herself does not make recom-
mendations given to her public. To achieve more accurate
recommendations under the joint DP, previous work (McSh-
erry and Mironov, 2009; Liu et al., 2015; Jain et al., 2018;
Chien et al., 2021) proposed using the server and user com-
putation framework. More specifically, a (trusted) server
will compute the global model (e.g., the shared item embed-
dings V) using aggregated information from all users. Then,
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each user can independently compute her local model (e.g.,
embedding Ui∗ for user i ∈ [m]) based on the global model
and generate accurate recommendations for herself (e.g.,
Ui∗V

⊤ for user i ∈ [m]). Since we compute the global
model based on the information from all users, we can add
sufficient noise to make it private without significantly re-
ducing the accuracy of recommendations.

We investigate the problem of privacy-preserving matrix
completion and propose a novel method, named DPLMC,
that satisfies joint DP using the server and user computation
framework. Previous work on low-rank matrix completion
under joint DP has provided methods that are computation-
ally inefficient, offer unsatisfactory utility guarantees, and
have much worse sample complexity than non-private meth-
ods (McSherry and Mironov, 2009; Liu et al., 2015; Jain
et al., 2018; Chien et al., 2021). Our proposed method is
based on non-convex low-rank matrix factorization (Tu et al.,
2016; Wang et al., 2017) and overcomes the limitations of
existing approaches. DPLMC is computationally efficient,
has reduced sample complexity requirements, and provides
improved utility guarantees. Table 1 offers a comparison
with existing strong baselines.

Contributions. We develop a differentially private algo-
rithm for matrix completion that comes with a joint differen-
tial privacy guarantee. Unlike the state-of-the-art approach
(Chien et al., 2021), our method has a linear convergence
rate and is more scalable since it does not require matrix in-
version or projection onto the cone of positive semidefinite
matrices. Additionally, we have improved the best-known
sample complexity of a private method (Chien et al., 2021)
by a factor of Õ(r4) and matched the best known sample
complexity for non-private methods (Zheng and Lafferty,
2016; Wang et al., 2017). Furthermore, our utility guarantee
has improved on the best-known utility bound (Chien et al.,
2021) by a factor of Õ(r). Notably, our utility analysis does
not require the impractical resampling assumption made
in Chien et al. (2021). Finally, we have empirically evalu-
ated the performance of the proposed method against the
state-of-the-art approach.

Notation. For a matrix A ∈ Rm×n, we use Ai∗ ∈ Rn

and A∗j ∈ Rm to denote the i-th row and j-th col-
umn of A, respectively. The (i, j)-th element of A is
denoted by Aij . The k-th largest singular value of A
is denoted by σk(A), ∥A∥2,∞ = maxi∈[m] ∥Ai∗∥2 and
∥A∥∞,∞ = maxi,j |Aij |. For two vectors x,y ∈ Rr, we
use [x⊤;y⊤] ∈ R2×r to denote the matrix with rows x⊤ and
y⊤. For any positive integer m, we use [m] to denote the set
{1, 2, . . . ,m}. For two sequences {an} and {bn}, we write
an = O(bn) if there exists C > 0 such that an ≤ Cbn,
and we write an = Ω(bn) if there exists C > 0 such that
an ≥ Cbn. We use Õ(·), Ω̃(·) to further hide logarithmic
factors and ignore polynomial factors in singular values and
the incoherence parameter (c.f. Section 3).

2 RELATED WORK

Our paper is related to the literature on matrix completion
under joint DP (McSherry and Mironov, 2009; Liu et al.,
2015; Jain et al., 2018; Chien et al., 2021). In particular,
McSherry and Mironov (2009) proposed a singular value
decomposition-based method without any utility guaran-
tee analysis, while Liu et al. (2015) developed a stochastic
gradient Langevin dynamics-based algorithm, which lacks
utility guarantees and may require an exponential amount
of computation to obtain privacy parameters. Jain et al.
(2018) developed a differentially private Frank-Wolfe algo-
rithm with provable utility guarantees, but their method has
a sublinear convergence rate and significantly worse sam-
ple complexity and utility bounds than existing non-private
methods. The method by Chien et al. (2021) involves matrix
inversions and projections onto the cone of positive semidef-
inite matrices, making it computationally expensive, and
its utility guarantees depend on the impractical resampling
assumption. In contrast, our proposed algorithm for matrix
completion under joint DP is efficient and has better sam-
ple complexity and utility guarantees compared to existing
methods. See Table 1 for an overview.

It is worth noting that our method shares a similar idea with
differentially private gradient descent methods (Feldman
et al., 2020; Zhou et al., 2021). However, these methods
have certain limitations. For instance, Feldman et al. (2020)
only consider the convex optimization problem and, there-
fore, their method cannot deal with the nonconvex optimiza-
tion problem considered in our paper; see (3.3). On the
other hand, while Zhou et al. (2021) study the general non-
convex optimization problem, their method only guarantees
convergence to a stationary point at a sublinear rate and
cannot exploit the structure of low-rank matrix factorization.
Additionally, they can only provide entry-level privacy guar-
antees instead of the user-level privacy guarantee required
for matrix completion.

3 PRELIMINARIES

We introduce the noisy matrix completion problem and the
projected gradient descent approach to solving it. We further
discuss several differential privacy notions.

3.1 Nonconvex Matrix Completion

We consider the matrix completion problem with noisy ob-
servations (Rohde et al., 2011; Koltchinskii et al., 2011;
Negahban and Wainwright, 2012). Our primary goal is to
recover the unknown low-rank matrix X∗ ∈ Rm×n from
a set of randomly observed noisy entries. We assume the
uniform observation model (Koltchinskii et al., 2011; Ne-
gahban and Wainwright, 2012) in which the elements of the
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Table 1: Comparison of the different methods to recover X∗ under the context of (ϵ, δ)-joint DP (see Definition 3.2). We
report the required sample complexity and utility guarantee, where m is the number of users, n is the number of items, |Ω|
is the number of observations, and r is the rank of X∗. The symbol (†) denotes methods that require a good initialization
(see Section 5.3).

Methods Bounds on |Ω| Utility Convergence Rate

Private FW
Ω̃(nm1/2) Õ

(
rn1/2

(mϵ)2/5

)
Sub-linear(Jain et al., 2018)

Private ALS (†)
Ω̃(r6m) Õ

(
r5n2

m|Ω|ϵ2

)
Linear(Chien et al., 2021)

DPLMC (†)
Ω̃(r2m) Õ

(
r4n2

m|Ω|ϵ2

)
Linear(Theorem 5.2)

observation matrix Y = (Yij) ∈ Rm×n are generated as

Yij :=

{
X∗

ij + Eij , for any (i, j) ∈ Ω,
∗, otherwise,

(3.1)

where Ω ⊆ [m]× [n] is the set of observed indices such that
for any (i, j) ∈ Ω, i ∼ uniform([m]) and j ∼ uniform([n]),
and E = (Eij) ∈ Rm×n is a random noise matrix. Note
that we only consider the uniform observation model in
this paper, but our methods and results can be extended to
the more general weighted sampling model (Negahban and
Wainwright, 2012). The uniform observation model has
been widely assumed in the literature to recover low-rank
matrices, and previous work (Chien et al., 2021) provides
theoretical guarantees based on this model. Real-world
datasets may not necessarily follow the uniform observa-
tion model. Nonetheless, gradient-based algorithms have
demonstrated good performance in practice, as shown in
previous studies (see, e.g., Zheng and Lafferty, 2016; Wang
et al., 2017; Park et al., 2018; Chi et al., 2019).

Recovery of the unknown matrix X∗ of rank r ≪
min{m,n} is impossible if X∗ is too sparse (Gross, 2011;
Negahban and Wainwright, 2012). Therefore, the follow-
ing incoherence condition is assumed on X∗ (Candès and
Recht, 2009). Let X∗ = U∗ΣV∗⊤ be the singular value
decomposition of X∗, where U∗ ∈ Rm×r, V∗ ∈ Rn×r,
Σ ∈ Rr×r, and σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are the singular
values of X∗. The incoherence condition states that

∥U∗∥2,∞ ≤
√

βr

m
and ∥V∗∥2,∞ ≤

√
βr

n
, (3.2)

where β denotes the incoherence parameter. Based on
the incoherence condition (3.2), we have ∥X∗∥∞,∞ ≤
∥U∗∥2,∞ · ∥Σ∥2 · ∥V∗∥2,∞ ≤ βr : σ1/

√
mn.

3.2 Projected Gradient Descent

Gradient descent-based methods (Tu et al., 2016; Zheng and
Lafferty, 2016; Wang et al., 2017; Park et al., 2018; Chi

et al., 2019) are widely used to recover X∗ by minimizing
the following nonconvex optimization problem

min
U∈C1,V∈C2

1

2p

∥∥PΩ

(
UV⊤ −Y

)∥∥2
F
+

1

8
∥U⊤U−V⊤V∥2F ,

(3.3)

where p = |Ω|/(mn), PΩ : Rm×n → Rm×n is a projection
operator such that(

PΩ(Y)
)
ij
:=

{
Yij , if (i, j) ∈ Ω,
0, otherwise,

where C1 = {A ∈ Rm×r
∣∣ ∥A∥2,∞ ≤

√
βrσ1/m}, and

C2 = {A ∈ Rn×r
∣∣ ∥A∥2,∞ ≤

√
βrσ1/n}. To ensure that

the produced estimator satisfies the constraints, a projection
step is often used (Wang et al., 2017). The (projected) gradi-
ent descent-based method enjoys a linear convergence rate
and achieves the (near) optimal sample complexity Ω̃(r2m).
Given these advantages, we propose to develop our differen-
tially private algorithm based on gradient descent.

3.3 Privacy Notion

We give the definition of the data set and the mechanism
that we consider in this paper. Let S = {s1, s2, . . . , sm}
be a data set with m users, where si denotes the data of
user i ∈ [m]. We use S−i to denote the data set without
data from the i-th user, and (si;S−i) denotes the data set
obtained by adding data from the i-th user to S−i. Let
M : Sm → Rm be a mechanism that produces m outputs,
one for each user, and let M−i be the set of outputs without
the output for the i-th user. The standard (ϵ, δ)-differential
privacy provides the privacy guarantee with respect to each
entry in the data set (Dwork et al., 2006).
Definition 3.1 ((ϵ, δ)-DP (Dwork et al., 2006)). A random-
ized mechanism M satisfies (ϵ, δ)-differential privacy if,
for any user i, any adjacent datasets si, s̃i ∈ S , any data set
for other users S−i ∈ Sm−1, and any output O ⊆ Rm, it
holds that

P[M(si;S−i) ∈ O] ≤ eϵ · P[M(s̃i;S−i) ∈ O] + δ.
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We aim to develop a method that satisfies joint differential
privacy.

Definition 3.2 (Joint Differential Privacy (Kearns et al.,
2014)). A randomized mechanism M satisfies (ϵ, δ)-joint
differential privacy if, for any user i, any possible values
si, s̃i ∈ S, any data set for other users S−i ∈ Sm−1, and
any output O ⊆ Rm−1, we have

P[M−i(si;S−i) ∈ O] ≤ eϵ · P[M−i(s̃i;S−i) ∈ O] + δ.

Although Joint DP is widely used in the literature, it suffers
from the loose composition result, which makes it unsuitable
for iterative learning algorithms. Instead, we will use the
following notion of joint Rényi differential privacy, which
is an extension of joint DP. Joint Rényi differential privacy
is particularly useful when the data set is accessed by a
sequence of randomized mechanisms (Mironov, 2017).

Definition 3.3 (Joint Rényi Differential Privacy). A random-
ized mechanism M satisfies (γ, ρ)-joint Rényi differential
privacy if, for any user i, any possible values si, s̃i ∈ S , any
data set for other users S−i ∈ Sm−1, we have

Dγ

(
M−i(si;S−i)∥M−i(s̃i;S−i)

)
≤ ρ,

where γ > 1, ρ > 0, and Dγ is the Rényi divergence

Dγ

(
M−i(si;S−i)∥M−i(s̃i;S−i)

)
:= logE

[(
M−i(si;S−i)/M−i(s̃i;S−i)

)γ]
/(γ − 1).

First, we will show that our procedure satisfies the joint RDP.
Using the results in Mironov (2017), we can subsequently
show that it also satisfies the joint DP.

4 PROPOSED METHOD

We present a projected gradient descent-based method for
solving the noisy matrix completion problem that has a lin-
ear convergence rate, achieves a strong utility guarantee,
and satisfies the joint RDP. As we discuss in Section 1, we
follow the idea of the server and user computation frame-
work (McSherry and Mironov, 2009; Liu et al., 2015; Jain
et al., 2018; Chien et al., 2021) to develop our algorithm:
(1) a trusted server obtains a private global model using the
aggregated information from all users; (2) each user attains
a local model to generate her own recommendations based
on the private global model. This framework requires com-
munication between the server and users, and therefore it is
important to develop a method with a fast convergence rate
so that the number of rounds of communication is small, as
the communication cost is the key bottleneck in practice.

Local and global updates. We describe our proposed
global and local updates in detail. At the t-th iteration,

the gradient descent-based method performs the following
update

Ut+1 = Ut − η

p
PΩ

(
Ŷt −Y

)
Vt − η

2
Ut

(
(Ut)⊤Ut

− (Vt)⊤Vt
)
, (4.1)

Vt+1 = Vt − η

p
PΩ

(
Ŷt −Y

)⊤
Ut − η

2
Vt

(
(Vt)⊤Vt

− (Ut)⊤Ut
)
, (4.2)

where η is the step size and Ŷt = Ut(Vt)⊤. The update
above is used to solve the nonconvex optimization problem
in (3.3). Therefore, we can rewrite the update rule for U in
(4.1) as follows:(Ut+1

1∗ )⊤

. . .
(Ut+1

m∗ )
⊤

 =

 (Ut
1∗)

⊤

. . .
(Ut

m∗)
⊤

− η

p

 PΩ1∗

(
Ô⊤

1∗
)
Vt

. . .

PΩm∗

(
Ô⊤

m∗
)
Vt


− η

2

 (Ut
1∗)

⊤Rt

. . .
(Ut

m∗)
⊤Rt

 , (4.3)

where Ωi∗ = {j : (i, j) ∈ Ω}, Rt =
∑m

i=1 U
t
i∗(U

t
i∗)

⊤ −
(Vt)⊤Vt, Ôi∗ = Ŷt

i∗ − Yt
i∗, and Ŷt

i∗ = VtUt
i∗. As a

result, we propose to perform the following local update for
user i ∈ [m] given Vt, Rt and its own observation Yi∗:

(Ut+1
i∗ )⊤ = (Ut

i∗)
⊤ − η

p
PΩi∗

(
(Ŷt

i∗)
⊤ −Y⊤

i∗
)
Vt

− η

2
(Ut

i∗)
⊤Rt. (4.4)

Furthermore, we can rewrite the update rule for V in (4.2)
as follows:

Vt+1 = Vt − η

p

 PΩ1∗

(
Ô⊤

1∗
)

. . .

PΩm∗

(
Ô⊤

m∗
)
⊤  (Ut

1∗)
⊤

. . .
(Ut

m∗)
⊤

+
η

2
VtRt.

(4.5)

Therefore, we propose to perform the global update in (4.5)
on the server to obtain Vt+1 and Rt+1 after receiving
{PΩi∗

(
(Ŷt

m∗)
⊤ − Y⊤

m∗
)
}i∈[m] and {Ut

i∗}i∈[m] from all
users.

Privacy leakage. We can see from (4.4) that the local up-
date of each user depends on the sensitive information of
other users only through the parameters Vt and Rt. There-
fore, we can achieve the joint RDP of the aforementioned
local and global updates if the server can make Vt and Rt

private during the global update in (4.5), provided that each
user does not make its own recommendation and the local
model public. We compute Vt and Rt using information
from all users, which makes them noise tolerant. Therefore,
we can add sufficient random noise to make them private
without downgrading the accuracy of the recommendations.
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Algorithm 1 Differentially Private Low-rank Matrix Completion via Matrix Factorization (DPLMC)

input Initialization U0, Ṽ0, iteration number T , step size η, projection parameters α1, α2, G
1: for t = 0, 1, . . . , T − 1 do
2: if t = 0 then
3: Communicate (receive)

(
PΩi∗(Ŷ

0
i∗ −Yi∗)

)
to the server, where Ŷ0

i∗ = Ṽ0U0
i∗, i ∈ [m]

4: end if
5: on server do
6: Compute Ut =

[
(Ut

1∗)
⊤; . . . ; (Ut

m∗)
⊤] and PΩ

(
Ŷt − Y

)
=

[
PΩ1∗

(
(Ŷt

1∗)
⊤ − Y⊤

1∗
)
; . . . ;PΩm∗

(
(Ŷt

m∗)
⊤ −

Y⊤
m∗

)]
7: Projection: PΩ

(
Ŷt −Y

)
= PCY

(PΩ

(
Ŷt −Y

)
), where CY = {A ∈ Rm×n

∣∣ ∥A∥2,∞ ≤ G}
8: Obtain private R: R̃t =

∑m
i=1 U

t
i∗(U

t
i∗)

⊤ − (Ṽt)⊤Ṽt + N1, where N1 ∈ Rr×r is a symmetric matrix with
elements in the upper triangle being i.i.d. N(0, ν21)

9: Obtain private V: Ṽt+1 = Ṽt − (η/p)
(
PΩ

(
Ŷt −Y

)⊤
Ut +N2

)
+ (η/2)ṼtR̃t, where N2 ∈ Rn×r is a matrix

with elements being i.i.d. N(0, ν22)

10: Projection: Ṽt+1 = PCV
(Ṽt+1), where CV = {A ∈ Rn×r

∣∣ ∥A∥2,∞ ≤ α2}
11: end on server
12: Communicate (send) (Ṽt+1, R̃t) to all users i ∈ [m]
13: on user i ∈ [m] do
14: Update: (Ut+1

i∗ )⊤ = (Ut
i∗)

⊤ − η
pPΩi∗

(
(Ŷt

i∗)
⊤ −Y⊤

i∗
)
Ṽt − η

2 (U
t
i∗)

⊤R̃t

15: Projection: Ut+1
i∗ = PCU

(Ut+1
i∗ ), CU = {A ∈ Rm×r

∣∣ ∥A∥2,∞ ≤ α1}
16: Obtain own recommendations: Ŷt+1

i∗ = Ṽt+1Ut+1
i∗

17: Communicate (receive)
(
PΩi∗(Ŷ

t+1
i∗ −Yi∗),U

t+1
i∗

)
to the server

18: end on user
19: end for

On the other hand, we assume a trusted server in our setting,
as is common in the literature (Jain et al., 2018; Chien et al.,
2021). Therefore, there is no need to add random noise
to make {PΩi∗

(
(Ŷt

m∗)
⊤ − Y⊤

m∗
)
}i∈[m] and {Ut

i∗}i∈[m]

private. This will again improve the accuracy of our recom-
mendations.

4.1 Differentially Private Algorithm

Algorithm 1 details the proposed Differentially Private Low-
rank Matrix Factorization (DPLMC) method for solving
the noisy matrix completion problem with joint RDP based
on the server and user computation framework. At the
t-th iteration, the DPLMC method requires one round of
communication, i.e., one back and forth communication
between the server and m users. The server first obtains Rt

using {Ut
i∗}mi=1 received from all users and then updates

Vt+1 according to (4.5). To make Rt,Vt+1 private, we
use the Gaussian mechanism (lines 8 and 9 in Algorithm 1).
Finally, the server broadcasts the private parameters Ṽt+1

and R̃t to all users. After receiving Ṽt+1 and R̃t, each
user i ∈ [m] updates its own embedding vector according
to the local update rule in (4.4) and then generates its own
recommendations (lines 14 and 16 in Algorithm 1).

Algorithm 1 uses the projection step (lines 7, 10, 15 in Algo-
rithm 1) for two reasons: (1) the produced estimator satisfies
the incoherence constraint (projections in lines 10 and 15),

which is crucial for successful recovery and a linear conver-
gence rate; (2) it helps us determine the magnitude of the
random noise needed to achieve the joint RDP (projections
in lines 7 and 15). Note that these projections can be easily
and efficiently implemented using the clipping technique
(Abadi et al., 2016).

Compared to DPALS, our method is more efficient since it
does do not require inverting a matrix and projecting onto
the cone of positive semidefinite matrices.

4.2 Initialization

In practice, random initialization is often sufficient for Algo-
rithm 1 to produce good estimators. This has been observed
previously in the non-private setting (Bhojanapalli et al.,
2016; Chen et al., 2019). However, to guarantee a linear con-
vergence rate and achieve strong utility guarantees, a good
initialization is necessary for Algorithm 1. Algorithm 2
provides such an initial estimator and is motivated by the
private singular value decomposition (Dwork et al., 2014;
Jain et al., 2018). This algorithm also follows the server
and user computation model. The server first computes the
covariance matrix A = τ2

∑m
i=1 Yi∗Y

⊤
i∗/p

2 using obser-
vations from all users. It then obtains a private top-r singular
vector V0 and singular value matrix Σ1/2 of A (see line 4
in Algorithm 2). Differential privacy is achieved in this step
using the Gaussian mechanism (Dwork et al., 2014). The
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server then broadcasts the private matrices V0 and Σ1/2

to the users. Finally, each user i ∈ [m] constructs its own
initial estimator U0

i∗ (see line 10 in Algorithm 2) based on
its own observations and the matrices V0 and Σ1/2. Since
the initialization of each user depends on other users only
through the matrices V0,Σ1/2 that were constructed on the
server in a differentially private way, Algorithm 2 satisfies
the joint DP. Similar to Algorithm 1, we use the projection
step (see line 1 in Algorithm 2) to determine the magnitude
of random noise needed to achieve joint DP. Note that we
can also use Algorithm 2 as an initialization scheme for
DPALS (Chien et al., 2021) to satisfy its specific initializa-
tion requirement in their utility guarantees.

Algorithm 2 Differentially Private Initialization for
DPLMC
input Parameters G, τ

1: Projection: Y = PCY

(
Y), where CY = {A ∈

Rm×n
∣∣ ∥A∥2,∞ ≤ G}

2: Communicate (receive) Yi∗ to the server for i ∈ [m]
3: on server do
4: Obtain private covariance matrix: A =

τ2
∑m

i=1 Yi∗Y
⊤
i∗/p

2 +N0, where N0 ∈ Rn×n is a
symmetric matrix with elements in the upper triangle
following i.i.d. N(0, ν20)

5: Obtain (V0,Σ) by performing the rank r singular
value decomposition of A

6: Let Ṽ0 = V0Σ1/2

7: end on server
8: Communicate (sends) (τV0Σ−1/2/p) to all users i ∈

[m]
9: on user i ∈ [m] do

10: Obtain U0⊤
i∗ = τY⊤

i∗V
0Σ−1/2/p

11: end on user

5 MAIN RESULTS

We establish privacy and utility guarantees for the DPLMC
method as well as the estimation error of our initialization
method.

5.1 Privacy Guarantee

DPLMC can achieve the following privacy guarantee.

Theorem 5.1. Algorithm 1 satisfies (γ, ρ1 + ρ2)-joint RDP
with ρ1 = 2Tγα4

1/ν
2
1 and ρ2 = 4TγG2α2

1/ν
2
2 . Further-

more, for any ϵ > 0 and δ ∈ (0, 1), it satisfies (ϵ, δ)-
joint DP if ν1 = α2

1

√
8T (log(1/δ) + ϵ)/(

√
ωϵ) and ν2 =

4α1G
√
T (log(1/δ) + ϵ)/(

√
1− ωϵ) with ω ∈ (0, 1).

The variance of the random noise in Algorithm 1 is deter-
mined by the parameters α1 and G, as shown in Theorem
5.1. In practice, the clipping technique can be used to com-
pute projections (Abadi et al., 2016). Additionally, the

weight parameter ω in ν1 and ν2 determines how the privacy
budget ϵ is allocated to the private mechanisms in lines 7
and 9 of Algorithm 1.

The above result does not take into account the potential
privacy cost of the initialization. However, in practice, we
can always use random initialization without incurring any
privacy cost to obtain a reasonable estimate. Alternatively,
we can use the private initialization provided in Algorithm
2 and allocate the privacy budget to both the initialization
and the main algorithm.

In DPALS (Chien et al., 2021), the resampling (sample split-
ting) step is used to limit the number of items observed
per user to achieve joint DP. However, instead of discard-
ing potentially valuable observations, we propose using a
projection-based method to achieve the private guarantees,
which is related to the idea of gradient clipping used in dif-
ferentially private stochastic gradient descent (Abadi et al.,
2016).

5.2 Utility Guarantee

We establish the following utility guarantee and linear con-
vergence for the DPLMC method.

Theorem 5.2. Consider the noisy matrix completion prob-
lem under the uniform sampling model in (3.1), where the
matrix X∗ has rank r and satisfies the incoherence con-
dition (3.2) and the noise Eij is i.i.d. Normal zero mean
with variance ν2/(mn). There exist constants {ci}7i=1

such that for any δ ∈ (0, 1) and privacy budget ϵ, if
η = c1/σ1, ν1 = α2

1

√
8T (log(1/δ) + ϵ)/(

√
ωϵ), ν2 =

4Gα1

√
T (log(1/δ) + ϵ)/(

√
1− ωϵ), G = 2α1α2K,

where K is the largest number of observations per user,
ω = 1/(1 + K/p2), α1 =

√
βrσ1/m, α2 =

√
βrσ1/n,

T = c2 log
(
mϵ/(βσ1)

)
, m ≥ n, the number of obser-

vations |Ω| ≥ c3r
2m logm, and the initialization X0 =

U0Ṽ0⊤ satisfies ∥X0 −X∗∥F ≤ c4σr, then with probabil-
ity at least 1− c5/m we have

∥XT −X∗∥2F ≤ c6
(rσ2

1ν
2 + r2β2σ2

1σr)m logm

σr|Ω|

+ c7
β3σ5

1r
4n2 log(1/δ) log3 m

σr|Ω|mϵ2
,

where XT = UT (ṼT )⊤.

The utility guarantee for the DPLMC method consists of
two terms. The first term O

(
r2m logm/|Ω|

)
corresponds to

the statistical error for noisy matrix completion and is near
optimal. The minimax lower bound is O(rm logm/|Ω|)
(Negahban and Wainwright, 2012; Koltchinskii et al., 2011).
The second term Õ

(
r4n2/(m|Ω|ϵ2)

)
is the dominant term

and denotes the error introduced by the private mechanism
(lines 8 and 9 in Algorithm 1). Furthermore, the sam-
ple complexity of the DPLMC method is O(r2m logm),
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which matches the best known sample complexity of ma-
trix completion using matrix factorization in the non-
private setting (Zheng and Lafferty, 2016; Wang et al.,
2017). Compared to the best known sample complexity
of O(r6m log3 m) obtained for matrix completion under
the joint DP (Chien et al., 2021), the DPLMC method re-
duces the sample complexity requirement by a factor of
O(r2 log2 m). Furthermore, DPLMC achieves the utility
guarantee of Õ(r4n2/(|Ω|mϵ2)), which is better by a fac-
tor of Õ(r) than the utility guarantee Õ(r5n2/(|Ω|mϵ2)),
provided in Chien et al. (2021). Note that we aim to provide
a user-level privacy guarantee, and thus it is reasonable to
require more users to obtain good utility guarantees (as the
sensitivity is determined by the number of users).

5.3 Initialization

The utility guarantee provided in Theorem 5.1 requires that
the initialization satisfies ∥U0Ṽ0⊤ −X∗∥F ≤ c4σr. The
following theorem shows that Algorithm 2 can output pri-
vate U0, Ṽ0 that satisfy this condition.
Theorem 5.3. For any δ ∈ (0, 1) and privacy bud-
get ϵ, Algorithm 2 satisfies the (ϵ, δ)-joint DP if ν0 =
4G2τ2

√
log(1/δ)/(p2ϵ). Furthermore, under the con-

ditions of Theorem 5.2, there exist absolute constants
{ci}4i=1, such that if G2 = Kα2

1α
2
2, where K is the

largest number of observations per user, τ ≥ c1(1 −
σ2
r/4∥X∗∥2F ), and the number of observations |Ω| ≥

c2 max{r2m logm, r5/2n3/2 logm}, then with probability
at least 1− c3/m, we have ∥U0Ṽ

⊤
0 −X∗∥F ≤ c4σr.

When the number of observations |Ω| ≥ Õ(r5/2n3/2), Al-
gorithm 2 outputs an initial estimate that satisfies the con-
ditions of Theorem 5.1. Furthermore, if m ≥ Õ(r1/2n3/2),
Algorithm 2 only requires |Ω| ≥ Õ(r2m), which matches
the sample complexity requirement in Theorem 5.2. Note
that Algorithm 2 can reduce to the initialization proce-
dure, i.e., Analyze Gauss (Dwork et al., 2014), used in
DPALS if we choose τ = 1 and output V0 (line 5 in
Algorithm 2) as its initialization estimate. However, to
achieve its specific initialization requirement, DPALS needs
|Ω| ≥ max{Õ(r6m), Õ(r4n3/2)}, which is worse than our
sample complexity requirement. We also notice that Algo-
rithm 2 needs the additional requirement on the number of
users, i.e., m ≥ Õ(r1/2n3/2), compared with the require-
ment in our utility guarantee. Therefore, it would be an
interesting future research direction to develop a new initial-
ization method to improve or even remove the requirement
on m without stringent assumptions on the observed data.

6 NUMERICAL EXPERIMENTS

In this section, we conduct experiments on synthetic data to
evaluate the performance of our proposed method, DPLMC.
We compare DPLMC with the state-of-the-art approach

DPALS (Chien et al., 2021), since it has been shown to out-
perform other existing baselines such as DPFW (Jain et al.,
2018) and Private SVD (McSherry and Mironov, 2009). For
both DPALS and DPLMC, we evaluate their performances
with both random initialization and the initialization proce-
dure in Algorithm 2.

Synthetic data. We generate the underlying low-rank
matrix X∗ ∈ Rm×n as X∗ = U∗V∗⊤, where each
element of U∗ ∈ Rm×r and V∗ ∈ Rn×r follows
i.i.d. standard Gaussian distribution. In this problem,
we fix n = 100, r = 5, and choose m from the set
{5000, 10000, 15000}. In addition, we scale U∗ and V∗

so that max{∥U∗∥2,∞, ∥V∗∥2,∞} ≤ 2. The observed data
matrix is generated according to the uniform observation
model (3.1), where Eij is set to 0 in the noiseless case and
Eij follows an i.i.d. centered Gaussian distribution with
variance ν2 = 1.0 in the noisy case. We split the fully
observed matrix into two datasets: one for training and eval-
uation, and the other for validation. The validation dataset
is used to tune parameters for different algorithms. For the
other dataset, we use a fraction of observations (the number
of observations is set to |Ω| = rm logm) to run different
algorithms to estimate the underlying matrix, and then we
compute the estimation error using the unobserved data in
this dataset.

Parameters and privacy tracking. For both DPALS and
DPLMC, we choose hyper-parameters on the validation
set according to the requirements of their theoretical guar-
antees. Specifically, for DPALS, we choose the number
of iterations T from {1, . . . , 5}, set the row clipping and
entry clipping parameters to 2 and 4, respectively, and
choose the maximum number of ratings per user from
the sequence of values {30, 31, . . . , 60}. For DPLMC, we
choose the iteration number T from the sequence of values
{10, 15, . . . , 60} and the step size is chosen from the grid
{0.05, 0.1, . . . , 0.3}. We choose the projection parameters
α1 and α2 from {2, 3, . . . , 6} and set G = α1α2. We set
the privacy parameter δ = 10−5 and choose the privacy bud-
get ϵ from {2, 5, 10, 20} following previous work (Chien
et al., 2021). For both methods, we keep track of the pri-
vacy guarantee using RDP and then translate the joint RDP
to the standard (ϵ, δ)-joint DP. When using Algorithm 2
to generate the initial estimators, we allocate the privacy
budget ϵinit = 1 for this step when we have a total privacy
budget ϵ ∈ {5, 10, 20}. For a total privacy budget ϵ = 2,
we allocate the privacy budget ϵinit = 0.2 for the private
initialization step.

Evaluation. We evaluate the performance of different
methods using the squared averaged Frobenius norm error
∥X̂−X∗∥2F /(mn), where X̂ is the output of the algorithm.
In addition, to evaluate the improvements of our method,
we generate synthetic data following the same procedure as
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Figure 1: Numerical results for DPALS and DPLMC on synthetic data with different numbers of users m in the noisy case
are presented. We evaluate the Frobenius norm error versus the privacy budget using both random initialization and private
initialization. For private initialization, we use Algorithm 2 with a privacy budget of 1 for ϵ ∈ {5, 10, 20} and a privacy
budget of 0.2 for ϵ = 2. The results are shown in Figure (a) for the Frobenius norm error versus the privacy budget using
random initialization and in Figure (b) for the Frobenius norm error versus the privacy budget using private initialization.
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Figure 2: Numerical results for DPALS and DPLMC on synthetic data with different numbers of users m in the noisy case
are presented. We evaluate the Frobenius norm error versus the privacy budget using both random initialization and private
initialization. For private initialization, we use Algorithm 2 with a privacy budget of 1 for ϵ ∈ {5, 10, 20} and a privacy
budget of 0.2 for ϵ = 2. The results are shown in Figure (a) for the Frobenius norm error versus the privacy budget using
random initialization and in Figure (b) for the Frobenius norm error versus the privacy budget using private initialization.

before, but varying r ∈ {3, 5, 7}. All results are averaged
over 10 trials.

Results. We can observe from Figures 1 and 2 that the
Frobenius norm error of DPLMC decreases as the number
of users increases. This is consistent with the utility guaran-
tees established in Theorem 5.2. More importantly, DPLMC
consistently outperforms DPALS in both noisy and noise-
less settings across different numbers of users and privacy
parameters. Specifically, in the noisy setting, DPLMC sig-
nificantly outperforms DPALS when we have small privacy
budgets and fewer users. In the noiseless setting, both meth-
ods can produce accurate estimators when we have large
privacy budgets with private initialization. These results
demonstrate the superiority of our proposed method. Fur-

thermore, the results show that the proposed initialization
algorithm is very helpful for both algorithms to find good
estimators, especially when we have small privacy budgets.
Figure 3 shows that the utility gap between DPLMC and
DPALS increases with increasing rank r, which is consistent
with our main results.

7 CONCLUSION AND FUTURE WORK

This paper addresses the problem of privacy-preserving
matrix completion, and presents a new algorithm, DPLMC,
which is based on low-rank matrix factorization, projected
gradient descent, and a server and user computation model.
DPLMC satisfies joint RDP, achieves a linear convergence
rate, and improves utility guarantees of existing methods.
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Figure 3: Frobenius norm error for DPALS and DPLMC on
synthetic data as the rank of X∗ varies. We consider two
settings with noisy observations: 1) m = 15000, ϵ = 5, and
2) m = 10000, ϵ = 10.

Empirical results demonstrate the superiority of our method
over the state-of-the-art approach.

Our results rely on a reasonable initial estimate, which
can be obtained using the proposed initialization procedure.
However, this method makes strong assumptions about the
number of users. Therefore, it would be interesting to de-
velop a better initialization approach without any additional
assumptions.

While our paper focuses on the uniform observation model,
it is important to note that real-world datasets may not ad-
here to this model. As a result, exploring how different
observation models could impact the trade-offs between pri-
vacy and utility, both theoretically and practically, would be
an interesting avenue for future research.

In this paper, we adopt joint (Rényi) differential privacy,
which is suitable for personalized recommendations. How-
ever, in many real-world scenarios, the participation of a
user may not be sensitive information, while each data
record owned by the user may be very sensitive, and we
may want to ensure that this data record is private to other
users. In such cases, it may be worth considering other
privacy notions, such as federated DP (Zheng et al., 2021),
and developing corresponding private methods to explore
their privacy and utility trade-offs.
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I. Mironov. Rényi differential privacy. In IEEE Computer
Security Foundations Symposium, 2017.

A. Narayanan and V. Shmatikov. Myths and fallacies of”
personally identifiable information”. Communications of
the ACM, 53(6):24–26, 2010.

S. N. Negahban and M. J. Wainwright. Restricted strong con-
vexity and weighted matrix completion: Optimal bounds
with noise. Journal of Machine Learning Research, 13:
1665–1697, 2012.

D. Park, A. Kyrillidis, C. Caramanis, and S. Sanghavi. Find-
ing low-rank solutions via nonconvex matrix factoriza-
tion, efficiently and provably. SIAM Journal on Imaging
Sciences, 11(4):2165–2204, 2018.

J. D. M. Rennie and N. Srebro. Fast maximum margin
matrix factorization for collaborative prediction. In Inter-
national Conference on Machine Learning, 2005.

A. Rohde, A. B. Tsybakov, et al. Estimation of high-
dimensional low-rank matrices. The Annals of Statistics,
39(2):887–930, 2011.

S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, and
B. Recht. Low-rank solutions of linear matrix equations
via procrustes flow. In International Conference on Ma-
chine Learning, 2016.

R. Vershynin. High-dimensional probability: An introduc-
tion with applications in data science, volume 47. Cam-
bridge University Press, 2018.

L. Wang, X. Zhang, and Q. Gu. A unified variance reduction-
based framework for nonconvex low-rank matrix recovery.
In International Conference on Machine Learning, 2017.

Z. Wang, S. Zheng, Y. Ye, and S. Boyd. Further relaxations
of the semidefinite programming approach to sensor net-
work localization. SIAM Journal on Optimization, 19(2):
655–673, 2008.

Q. Zheng and J. Lafferty. Convergence analysis for rectangu-
lar matrix completion using burer-monteiro factorization
and gradient descent. arXiv preprint arXiv:1605.07051,
2016.

Q. Zheng, S. Chen, Q. Long, and W. J. Su. Federated
f-differential privacy. In International Conference on
Artificial Intelligence and Statistics, 2021.

Y. Zhou, S. Wu, and A. Banerjee. Bypassing the ambient
dimension: Private {sgd} with gradient subspace identifi-
cation. In International Conference on Learning Repre-
sentations, 2021.



Lingxiao Wang, Boxin Zhao, Mladen Kolar

A Proof of Theorem 5.1

We provide the privacy guarantee for Algorithm 1.To ensure Algorithm 1 satisfies joint RDP, it suffices to show that the
computation of R̃t and Ṽt+1 satisfy RDP for t = 0, . . . , T − 1. Then we can use the composition result to obtain the overall
RDP.

To provide the privacy guarantee, we need the following lemmas, which have been established in Mironov (2017).
Lemma A.1. Given a function q : Sn → R, the Gaussian Mechanism M = q(S) + u, where u ∼ N(0, ν2I), satisfies
(γ, γ∆2(q)/(2ν2))-RDP.
Lemma A.2. If k randomized mechanisms Mi : Sn → R for i ∈ [k], satisfy (γ, ρi)-RDP, then their composition(
M1(S), . . . ,Mk(S)

)
satisfies (γ,

∑k
i=1 ρi)-RDP. Moreover, the input of the i-th mechanism can be based on the outputs

of previous (i− 1) mechanisms.

We can use the following lemma, proposed in Mironov (2017), to translate the RDP guarantee to the (ϵ, δ)-DP.
Lemma A.3. If a randomized mechanism M : Sn → R satisfies (γ, ρ)-RDP, then M satisfies (ρ+log(1/δ)/(γ−1), δ)-DP
for all δ ∈ (0, 1).

Given these lemmas, we are ready to provide the privacy guarantee of our proposed method.

We first show that in each iteration t = 0, . . . , T − 1, R̃t and Ṽt+1 satisfy RDP. Recall that we have

Rt =

m∑
i=1

Ut
i∗(U

t
i∗)

⊤ − (Ṽt)⊤Ṽt.

Therefore, we have the following sensitivity

∆(Rt) =
∥∥Ut

j∗(U
t
j∗)

⊤ −Ut
j′∗(U

t
j′∗)

⊤∥∥
F

≤
∥∥Ut

j∗(U
t
j∗)

⊤∥F +
∥∥Ut

j′∗(U
t
j′∗)

⊤∥∥
F

≤ 2α2
1,

where the last inequality is due to the projection step, i.e., line 15 in Algorithm 1. Therefore, according to Lemma A.1,
we need to add a random Gaussian matrix (symmetric) N1 ∈ Rr×r with each element (in the upper triangle) following
i.i.d. N(0, ν21). As a result, R̃t satisfies (γ, 2γα4

1/ν
2
1)-RDP.

On the other hand, we have

Vt+1 = Ṽt − (η/p)PΩ

(
Ŷt −Y

)⊤
Ut + (η/2)ṼtR̃t.

To make Vt+1 private, we only need to consider the term qv = PΩ

(
Ŷt −Y

)⊤
Ut, and thus we have (q′v is computed as qv

but with the j-th user’s data being different)

qv − q′v =


PΩ1∗

(
(Ŷt

1∗)
⊤ −Y⊤

1∗
)

. . .
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(Ut

m∗)
⊤



+


PΩ1∗

(
(Ŷt

1∗)
⊤ −Y⊤

1∗
)

. . .

PΩj′∗

(
(Ŷt

j′∗)
⊤ −Y⊤

j′∗
)

. . .

PΩm∗

(
(Ŷt

m∗)
⊤ −Y⊤

m∗
)


⊤ 

(Ut
1∗)

⊤

. . .
(Ut

j∗)
⊤

. . .
(Ut

m∗)
⊤

−


PΩ1∗

(
(Ŷt

1∗)
⊤ −Y⊤

1∗
)

. . .

PΩj∗

(
(Ŷt

j′∗)
⊤ −Y⊤

j′∗
)

. . .

PΩm∗

(
(Ŷt

m∗)
⊤ −Y⊤

m∗
)


⊤ 

(Ut
1∗)

⊤

. . .
(Ut

j′∗)
⊤

. . .
(Ut

m∗)
⊤

 .
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Hence, we can get the following sensitivity

∆(qv) ≤

∥∥∥∥∥∥∥∥∥∥∥




PΩ1∗

(
(Ŷt

1∗)
⊤ −Y⊤

1∗
)

. . .

PΩj∗

(
(Ŷt

j∗)
⊤ −Y⊤

j∗
)

. . .

PΩm∗

(
(Ŷt

m∗)
⊤ −Y⊤

m∗
)


⊤

−


PΩ1∗

(
(Ŷt

1∗)
⊤ −Y⊤

1∗
)

. . .

PΩj′∗

(
(Ŷt

j′∗)
⊤ −Y⊤

j′∗
)

. . .

PΩm∗

(
(Ŷt

m∗)
⊤ −Y⊤

m∗
)


⊤


(Ut

1∗)
⊤

. . .
(Ut

j∗)
⊤

. . .
(Ut

m∗)
⊤


∥∥∥∥∥∥∥∥∥∥∥
F

+

∥∥∥∥∥∥∥∥∥∥∥


PΩ1∗

(
(Ŷt

1∗)
⊤ −Y⊤

1∗
)

. . .

PΩj′∗

(
(Ŷt

j′∗)
⊤ −Y⊤

j′∗
)

. . .

PΩm∗

(
(Ŷt

m∗)
⊤ −Y⊤

m∗
)


⊤ 


(Ut

1∗)
⊤

. . .
(Ut

j∗)
⊤

. . .
(Ut

m∗)
⊤

−


(Ut

1∗)
⊤

. . .
(Ut

j′∗)
⊤

. . .
(Ut

m∗)
⊤



∥∥∥∥∥∥∥∥∥∥∥
F

≤
∥∥∥∥(PΩj∗

(
(Ŷt

j∗)
⊤ −Y⊤

j∗
)
− PΩj′∗

(
(Ŷt

j′∗)
⊤ −Y⊤

j′∗
))⊤

(Ut
j∗)

⊤
∥∥∥∥
F

+

∥∥∥∥(PΩj′∗

(
(Ŷt

j′∗)
⊤ −Y⊤

j′∗
))⊤

(Ut
j∗ −Ut

j′∗)
⊤
∥∥∥∥
F

≤ 4Gα1,

where the last inequality comes from the projection step, i.e., line 7 in Algorithm 1 and Ut belongs to C1. Therefore,
according to Lemma A.1, we need to add random Gaussian matrix N2 ∈ Rn×r with each element following i.i.d. N(0, ν22).
As a result, Ṽt+1 satisfies (γ, 4γG2α2

1/ν
2
2)-RDP.

Therefore, by Lemma A.2, we have that after T iterations, Algorithm 1 satisfy
(
γ, 2Tγ(2G2α2

1/ν
2
2 + α4

1/ν
2
1)
)
-RDP, which

implies that Algorithm 1 satisfy
(
γ, ρ1 + ρ2

)
-joint RDP, where ρ2 = 4TγG2α2

1/ν
2
2 and ρ1 = 2Tγα4

1/ν
2
1 .

Next, we translate the joint-RDP to joint-DP according to Lemma A.3. According to the definition of ρ1 and ρ2, let
ρ1 + ρ2 = γρ and ρ1 = ωγρ, ρ2 = (1 − ω)γρ for some ω ∈ (0, 1). According to Lemma A.3, Algorithm 1 satisfies
(ϵ, δ)-joint DP with ϵ = γρ + log(1/δ)/(γ − 1). Therefore, we can choose γ = 1 +

√
log(1/δ)/ρ to get the smallest

ϵ = ρ+ 2
√

log(1/δ)ρ. Thus, we can obtain ρ =
(√

log(1/δ) + ϵ−
√
log(1/δ)

)2
. As a result, we can obtain

ν1 =

√
2Tγα2

1√
ωγρ

=

√
2Tα2

1√
ω(

√
log(1/δ) + ϵ−

√
log(1/δ))

≤ α2
1√
ω

√
8T (log(1/δ) + ϵ)

ϵ
. (A.1)

Furthermore, we have

ν2 =

√
4TG2γα1√
(1− ω)γρ

≤ α1√
1− ω

√
16G2T (log(1/δ) + ϵ)

ϵ
. (A.2)

Therefore, if we choose ν1 = α2
1

√
8T (log(1/δ) + ϵ)/(

√
ωϵ) and ν2 = α1

√
16G2T (log(1/δ) + ϵ)/(

√
1− ωϵ), Algo-

rithm 1 satisfies (ϵ, δ)-joint DP.

B Proof of Theorem 5.2

Note that in the following discussion, we use Ṽ instead of V in (3.3) to denote that Ṽ is private. Furthermore, we have
∥PΩj∗

(
(Ŷt

j∗)
⊤ −Y⊤

j∗
)
∥2 ≤ 2Kα1α2 for all j ∈ [m], where K is the largest number of observations per user. Since we

choose G = 2Kα1α2, the projection step in line 7 will have no effect. According to Algorithm 1, the update rule can be
reformulated as follows:

Ut+1 = PC1

(
Ut − η

p
PΩ

(
Ut(Ṽt)⊤ −Y

)
Ṽt − η

2
Ut

(
(Ut)⊤Ut − (Ṽt)⊤Ṽt +N1

))
,

Ṽt+1 = PC2

(
Ṽt − η

p

(
PΩ

(
Ut(Ṽt)⊤ −Y

)⊤
Ut +N2

)
− η

2
Ṽt

(
(Ṽt)⊤Ṽt − (Ut)⊤Ut −N1

))
.
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Recall that

F (U, Ṽ) =
1

2p

∥∥PΩ

(
UṼ⊤ −Y

)∥∥2
F
+

1

8
∥U⊤U− Ṽ⊤Ṽ∥2F . (B.1)

Therefore, we can obtain
1

p
PΩ

(
Ut(Ṽt)⊤ −Y

)
Ṽt +

1

2
Ut

(
(Ut)⊤Ut − (Ṽt)⊤Ṽt +N1

)
= ∇UF (Ut, Ṽt) +

1

2
UtN1,

1

p

(
PΩ

(
Ut(Ṽt)⊤ −Y

)⊤
Ut +N2

)
− 1

2
Ṽt

(
(Ṽt)⊤Ṽt − (Ut)⊤Ut −N1

)
= ∇VF (Ut, Ṽt) +

1

p
N2 +

1

2
ṼtN1.

As a result, the update rule in Algorithm 1 is equivalent to:

Ut+1 = PC1

(
Ut − η∇UF (Ut, Ṽt)− (η/2)UtN1

)
= PC1

(
Ut − ηGt

U

)
,

Ṽt+1 = PC2

(
Ṽt − η∇VF (Ut, Ṽt)− (η/p)N2 − (η/2)ṼtN1

)
= PC2

(
Ṽt − ηGt

V

)
, (B.2)

where Gt
U = ∇UF (Ut, Ṽt)−UtN1/2 and Gt

V = ∇VF (Ut, Ṽt)−N2/p− ṼtN1/2.

Let L(UṼ⊤) = (1/2p)
∥∥PΩ

(
UṼ⊤ − Ỹ

)∥∥2
F

and Z = [U; Ṽ], we can rewrite the objective in (B.1) in terms of Z as
follows:

F̃ (Z) = F (U, Ṽ) = L(UṼ⊤) +
1

8
∥U⊤U− Ṽ⊤Ṽ∥2F . (B.3)

Therefore, according to the update rule in (B.2), we have the following corresponding gradient estimator (ignoring the
projection step) [

∇UL(UṼ⊤) + 1
2U(U⊤U− Ṽ⊤Ṽ) + 1

2UN1

∇VL(UṼ⊤) + 1
2Ṽ(U⊤U− Ṽ⊤Ṽ) + 1

2ṼN1 +
1
pN2

]
= ∇F̃ (Z) +

1

2
ZN1 +

1

p
Ñ2, (B.4)

where Ñ2 = [0;N2].

The following Lemma provides the local curvature condition for the function F̃ (Z) in (B.3), which has been established in
Wang et al. (2017) for nonconvex matrix completion. In the following discussion, we assume m ≥ n.
Lemma B.1 (Local Curvature Condition). For the objective function F̃ (Z) in (B.3), where Z = [U; Ṽ] ∈ R(m+n)×r,
U ∈ Rm×r and Ṽ ∈ Rn×r, let X = UṼ⊤, ∆ = X−X∗, there exists absolute constants {Ci}3i=1, if |Ω| ≥ C1rm logm,
and ∆ satisfies the following condition√

mn

r

∥∆∥∞,∞

∥∆∥F
· ∥∆∥∗
∥∆∥F

≤ 1

C2

√
|Ω|/(m logm), (B.5)

then the following inequality holds with probability at least 1− C3/d

⟨∇F̃ (Z),H⟩ ≥ µ

8
∥X−X∗∥2F +

µσr

10
∥H∥2F +

1

16
∥U⊤U− Ṽ⊤Ṽ∥2F

− 3L+ 1

8
∥H∥4F −

(
4r

µ
+

r

2L

)
· ∥∇L(X∗)∥22,

where µ = 42/43, L = 44/43, R = argminR̃∈Qr
∥Z−Z∗R̃∥F is the optimal rotation with respect to Z, and H = Z−Z∗R.

Z∗ = [U∗;V∗], Qr denotes the set of r by r orthonormal matrices.

The second lemma provides the Local Smoothness Condition.
Lemma B.2 (Local Smoothness Condition). For the objective function F̃ (Z) in (B.3), where Z = [U; Ṽ] ∈ R(m+n)×r,
U ∈ Rm×r and Ṽ ∈ Rn×r, let X = UṼ⊤, ∆ = X − X∗, G = [GU ;GV ], where GU = ∇UF (U, Ṽ) − UN1/2,
GV = ∇VF

(
U, Ṽ)−N2/p− ṼN1/2. Under the same conditions on |Ω| and ∆ as in Lemma B.1, we have the following

inequality holds with probability at least 1− C/m

∥G∥2F ≤ 24L2∥X∗ −X∥2F ·
∥∥Z∥∥2

2
+ 12r

∥∥∇L(X∗)
∥∥2
2
·
∥∥Z∥∥2

2
+ 6

∥∥U⊤U− Ṽ⊤Ṽ
∥∥2
F
·
∥∥Z∥∥2

2

+ 2
∥∥Z∥∥2

2
·
∥∥N1

∥∥2
F
+

3

p2
∥∥N2

∥∥2
F
,

where L = 44/43 and C is an absolute constant.
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Given the local curvature and local smooth conditions, i.e., Lemma B.1 and Lemma B.2, we are ready to prove the main
result.

Let Zt = [Ut; Ṽt] and Rt = argminR∈Qr
∥Zt − Z∗R∥F as the optimal rotation with respect to Zt, where Qr denotes

the set of r by r orthonormal matrices. Denote Ht = Zt − Z∗Rt and Gt = [Gt
U ;G

t
V ]. By induction, for any t ≥ 0, we

assume Zt ∈ B(C4
√
σr). Therefore, we have

∥Ht+1∥2F ≤ ∥PC1
(Ut − ηGt

U )−U∗Rt∥2F + ∥PC2
(Ṽt − ηGt

V )−V∗Rt∥2F
≤ ∥Ut − ηGt

U −U∗Rt∥2F + ∥Ṽt − ηGt
V −V∗Rt∥2F

= ∥Ht∥2F − 2η⟨Gt,Ht⟩+ η2∥Gt∥2F

= ∥Ht∥2F − 2η⟨∇F̃ (Zt) +
1

2
ZtN1 +

1

p
N2,H

t⟩+ η2∥Gt∥2F , (B.6)

where the first inequality follows from the definition of Ht, the second inequality follows from the non-expansive property
of the projection PCi onto Ci and the fact that U∗ ∈ C1,V∗ ∈ C2, the second equality is due to (B.4). Suppose condition
(B.5) holds, and thus according to Lemma B.1, we have

⟨∇F̃ (Zt),Ht⟩ ≥ µ

8
∥Xt −X∗∥2F +

µσr

10
∥Ht∥2F +

1

16
∥(Ut)⊤Ut − (Ṽt)⊤Ṽt∥2F

− 3L+ 1

8
∥Ht∥4F −

(
4r

µ
+

r

2L

)
· ∥∇L(X∗)∥22. (B.7)

Furthermore, by Lemma B.2, we have

E∥Gt∥2F ≤ 24L2∥X∗ −Xt∥2F ·
∥∥Zt

∥∥2
2
+ 12r

∥∥∇L(X∗)
∥∥2
2
·
∥∥Zt

∥∥2
2
+ 6

∥∥(Ut)⊤Ut − (Ṽt)⊤Ṽt
∥∥2
F
·
∥∥Zt

∥∥2
2

+ 2
∥∥Zt

∥∥2
2
·
∥∥N1

∥∥2
F
+

3

p2
∥∥N2

∥∥2
F
. (B.8)

In addition, we have

⟨ZtN1 +
1

p
N2,H

t⟩ ≤ 10

µσr
∥ZtN1 +N2/p∥2F +

µσr

40
∥Ht∥2F

≤ 20

µσr
∥ZtN1∥2F +

20

µσrp2
∥N2∥2F +

µσr

40
∥Ht∥2F , (B.9)

where the first inequality comes from the Cauchy-Schwarz and Young’s inequalities. Note that for any Z ∈ B(√σr/4),
denote R as the optimal rotation with respect to Z, we have ∥Z∥2 ≤ ∥Z∗∥2 + ∥Z− Z∗R∥2 ≤ 2

√
σ1, and thus we have

∥Zt∥22 ≤ 4σ1. Therefore, combining (B.7), (B.8), and (B.9), we can get

− 2η⟨∇F̃ (Zt) +
1

2
ZtN1 +

1

p
N2,H

t⟩+ η2∥Gt∥2F

≤ −µη

4
∥Xt −X∗∥2F − ηµσr

5
∥Ht∥2F − η

8
∥(Ut)⊤Ut − (Ṽt)⊤Ṽt∥2F

+
η(3L+ 1)

4
∥Ht∥4F + η

(
8r

µ
+

r

L

)
· ∥∇L(X∗)∥22

+ 96η2σ1L
2∥X∗ −Xt∥2F + 48η2σ1r

∥∥∇L(X∗)
∥∥2
2

+ 24η2σ1

∥∥(Ut)⊤Ut − (Ṽt)⊤Ṽt
∥∥2
F

+

(
8η2σ1 +

160ησ1

µσr

)∥∥N1

∥∥2
F
+

(
3η2

p2
+

40η

µσrp2

)
E
∥∥N2

∥∥2
F
+

ηµσr

20
∥Ht∥2F

≤ −3ηµσr

20
∥Ht∥2F +

η(3L+ 1)

4
∥Ht∥4F + 20ηr∥∇L(X∗)∥22

+ 200ηκ
∥∥N1

∥∥2
F
+

50η

σrp2
∥∥N2

∥∥2
F
,
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where κ = σ1/σr, and the last inequality is due to the fact that η ≤ C1/σ1 with C1 ≤ min{µ/(128L2), 1/32}. Furthermore,
we have ∥Ht∥2F ≤ C2σr with C2 ≤ 2µ/(15L+ 5), and thus we have

− 2η⟨∇F̃ (Zt) +
1

2
ZtN1 +

1

p
N2,H

t⟩+ η2∥Gt∥2F

≤ −ηµσr

20
∥Ht∥2F + 20ηr∥∇L(X∗)∥22

+ 200ηκ
∥∥N1

∥∥2
F
+

50η

σrp2
∥∥N2

∥∥2
F
. (B.10)

Plugging (B.10) into (B.6), we can obtain

∥Ht+1∥2F ≤
(
1− ηµσr

20

)
∥Ht∥2F + 20ηr∥∇L(X∗)∥22

+ 200ηκ
∥∥N1

∥∥2
F
+

50η

σrp2
∥∥N2

∥∥2
F

=

(
1− ηµσr

20

)
∥Ht∥2F + 20ηε1 + 50ηε2,

where ε1 = r∥∇L(X∗)∥22 and ε2 = 4κ∥N1∥2F + ∥N2∥2F /(σrp
2). As long as we have

20ηε1 + 50ηε2 ≤ C3
ηµσr

20
, (B.11)

where C3 = min{1/16, C2}. Thus, we have

∥Ht+1∥2F ≤ C3σr,

which satisfies the induction requirement.

Therefore, we can get

∥HT ∥2F ≤ ρT ∥H0∥2F +
C4

σr
ε1 +

C5

σr
ε2,

where ρ = 1− ηµσr/20, and C4, C5 are absolute constants.

In addition, according to the observation model in (3.1), each random noise noise Ejk follows i.i.d. Gaussian distribution
with variance ν2/(mn), thus according to Lemma C.4 in Wang et al. (2017), we have

ε1 ≤ C6
rν2m logm

|Ω|
, (B.12)

where C6 is an absolute constant. Recall that we have

ν1 =
α2
1√
ω

√
8T (log(1/δ) + ϵ)

ϵ
and ν2 =

α2
1α2√
1− ω

√
64KT (log(1/δ) + ϵ)

ϵ
.

Therefore, for ε2, by the definition of N1 and N2 and union bound, we have

ε2 = 4κ∥N1∥2F +
1

σrp2
∥N2∥2F

≤ 4κr2ν21 logm+
nr

σrp2
ν22 logm

≤ C7
β2σ2

1κr
4T log(1/δ) logm

ωm2ϵ2
+ C8β

3σ3
1

r4KT log(1/δ) logm

(1− ω)σrp2m2ϵ2
,

where the last inequality is due to the definition of ν1, ν2. Furthermore, under the uniform observation model, we have
K ≤ C8pn logm holds with probability at least 1− C9/m by union bound. In addition, we have ω = 1/(1 +K/p2) and
p = |Ω|/(mn). As a result, we can obtain

ε2 ≤ C9β
3σ3

1

r4n2T log(1/δ) log2 m

σrm|Ω|ϵ2
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and

∥HT ∥2F ≤ ρT ∥H0∥2F + C10
rν2m logm

σr|Ω|
+ C9β

3σ3
1

r4n2T log(1/δ) log2 m

σr|Ω|mϵ2
.

Choosing

T = O

(
log

(
m2ϵ2

β3r3κ2σ1 log
4 m log(1/δ)

))
,

we can obtain

∥HT ∥2F ≤ C10
rν2m logm

σr|Ω|
+ C11β

3σ3
1

r4n2 log(1/δ) log3 m

σr|Ω|mϵ2
.

Thus, according to Lemma E.2, we have

∥XT −X∗∥2F ≤ C12
rσ2

1ν
2m logm

σr|Ω|
+ C13β

3σ5
1

r4n2 log(1/δ) log3 m

σr|Ω|mϵ2
, (B.13)

where XT = UT ṼT . On the other hand, if condition (B.5) is violated, we have the following extra error term

∥∆∥2F ≤ C14

(√
d1d2∥∆∥∞

)
∥∆∥∗

√
m logm

|Ω|r

≤ 2C14α
√
2mn∥∆∥F

√
m logm

|Ω|
,

where α = βrσ1/
√
mn, which comes from the incoherence condition of low rank matrices X and X∗. Hence we can obtain

∥∆∥2F ≤ 8C14α
2m logm

p
≤ 8C14

β2r2σ2
1m logm

|Ω|
. (B.14)

As a result, plugging (B.14) into (B.13), we can obtain that

∥XT −X∗∥2F ≤ C15
(rσ2

1ν
2 + r2β2σ2

1σr)m logm

σr|Ω|
+ C13β

3σ5
1

r4n2 log(1/δ) log3 m

σr|Ω|mϵ2
(B.15)

holds with probability at least 1− C16/d, where {Ci}16i=1 are some constants.

C Proof of Theorem 5.3

We first establish the privacy guarantee. According to Algorithm 2, we have A = Z⊤Z+N0, where Z = τY/p, Y is the
observation matrix, τ is a tuning parameter, and p = |Ω|/(mn). Therefore, the sensitivity of Z⊤Z is 2τ2G2/p2. According
to Gaussian mechanism (Dwork et al., 2014; Bun and Steinke, 2016), if each element in the upper triangle (including the
diagonal) of N0 follows i.i.d. N(0, ν20) with ν0 = 4G2τ2

√
log(1/δ)/(p2ϵ), then performing the rank r SVD of A to obtain

Ṽ0 = V0Σ1/2, where V0 ∈ Rm×r and Σ ∈ Rr×r, satisfies (ϵ, δ)-DP. Furthermore, each user i ∈ [m] will obtain its
own initialization U0⊤

i∗ = τY⊤
i∗V

0Σ−1/2/p. Since V0,Σ satisfy (ϵ, δ)-DP and each user holds its own U0
i∗, Algorithm 2

satisfies (ϵ, δ)-joint DP.

Next, we will bound ∥U0Ṽ
⊤
0 − X∗∥F , where U0 = [U0⊤

1∗ ; . . . ;U
0⊤
m∗]. In the following discussion, we use {Ci}17i=1 to

denote absolute constants. According to the definition of U0, Ṽ0, we have

U0Ṽ
⊤
0 = ZV0Σ−1/2Σ1/2V0⊤ = ZV0V0⊤.

Let the rank r SVD of Z to be Ū ∈ Rm×r, Σ̄ ∈ Rr×r, V̄ ∈ Rn×r. Therefore, we can obtain

∥U0Ṽ
⊤
0 −X∗∥F = ∥ZV0V0⊤ −X∗∥F

≤ ∥ZV̄V̄⊤ −X∗∥F + ∥Z(V0V0⊤ − V̄V̄⊤)∥F
≤ ∥ŪΣ̄V̄⊤ −X∗∥F +

√
2r∥Z∥2 · ∥V0V0⊤ − V̄V̄⊤∥2

≤ 2
√

1− µτ∥X∗∥F + 2τ
√
3rε

+
τ
√
2r

p
∥PΩ(X

∗ +E)∥2 · ∥V0V0⊤ − V̄V̄⊤∥2, (C.1)
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where ε = ∥PΩ(E)/p∥2 ≤ C1ν
√
m logm/|Ω| by Lemma C.4 in Wang et al. (2017). According to Lemma A.3 in Jin et al.

(2016), we have the following holds with probability at least 1− C2/m,

∥PΩ(X
∗ +E)/p−X∗∥2 ≤ C3(σ1 + ν)

√
rm logm

|Ω|
. (C.2)

Let Y/p − X∗ = E0, according to (C.2), we have ∥E0∥2 ≤ σ2
r/(8σ1) as long as |Ω| ≥ C4(σ1 + ν)2σ2

1rm logm/σ4
r .

Recall that

Z⊤Z =
τ2

p2
Y⊤Y = τ2X∗⊤X∗ + τ2E1,

where E1 = E⊤
0 E0 +E⊤

0 X
∗ +X∗⊤E0. Hence, we can obtain that

∥E1∥2 ≤ ∥E0∥22 + 2∥E0∥2 · ∥X∗∥2 ≤ σ4
r

64σ2
1

+
σ2
r

4
≤ σ2

r

2
.

Therefore, by Weyl’s inequality, we can get λr(Z)− λr+1(Z) ≥ τ2σ2
r − τ2σ2

r/2 = τ2σ2
r/2. Furthermore, according to

Theorem 4.4.5 in Vershynin (2018), we have the following holds with probability at least 1− C5/m

∥N0∥2 ≤ C6ν0
√
n ≤ 4C6

τ2
√
nKα2

1α
2
2

√
log(1/δ)

p2ϵ
≤ 4C6

τ2n3/2r2β2σ2
1 logm

√
log(1/δ)

|Ω|ϵ
,

where the second inequality comes from the fact that G2 = Kα2
1α

2
2, the last inequality is due to the fact that K ≤ C7pn logm

with probability at least 1 − C8/m. Hence, if |Ω| ≥ C9r
2n3/2β2σ2

1 logm/(τ2σ2
r), we have ∥N0∥2 ≤ τ2σ2

r/4 ≤
2(λr(Z)− λr+1(Z)). Therefore, according to Theorem 6 in Dwork et al. (2014), we have

∥V0V0⊤ − V̄V̄⊤∥2 ≤ 2∥N0∥2
λr(Z)− λr+1(Z)

. (C.3)

Plugging the upper bound of ∥N0∥2 and the lower bound of λr(Z)− λr+1(Z) into (C.3), we can obtain

∥V0V0⊤ − V̄V̄⊤∥2 ≤ 4∥N0∥2
τ2σ2

r

≤ C10
n3/2r2β2σ2

1 logm
√

log(1/δ)

|Ω|σ2
rϵ

, (C.4)

Therefore, plugging the upper bound of ∥E0∥2 and the result in (C.4) into (C.1), we can get

∥U0Ṽ
⊤
0 −X∗∥F ≤ 2

√
1− µτ∥X∗∥F + C11τν

√
r logm

|Ω|
+ C12τ

n3/2r5/2β2σ3
1 logm

√
log(1/δ)

|Ω|σ2
rϵ

,

where the inequality is due to (C.2) that if we have |Ω| ≥ C13(1 + ν2)rm logm, we have

τ
√
2r

p
∥PΩ(X

∗ +E)∥2 ≤ 2τ
√
2r∥X∗∥2.

As a result, if we have τ ≥ C14(1 − σ2
r/4∥X∗∥2F ), |Ω| ≥ C15r

2ν2 logm/σ2
r and |Ω| ≥ C16κ

3r5/2n3/2 logm, where
κ = σ1/σr, we can obtain that ∥U0Ṽ

⊤
0 −X∗∥F ≤ C17σr.
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D Proof of Lemma B.2

According to the definition of G, we have

∥G∥2F =

∥∥∥∥∇UL(UṼ⊤) +
1

2
U(U⊤U− Ṽ⊤Ṽ) +

1

2
UN1

∥∥∥∥2
F

+

∥∥∥∥∇VL(UṼ⊤) +
1

2
Ṽ(U⊤U− Ṽ⊤Ṽ) +

1

2
ṼN1 +

1

p
N2

∥∥∥∥2
F

≤ 3

∥∥∥∥∇UL(UṼ⊤) +
1

2
U(U⊤U− Ṽ⊤Ṽ)

∥∥∥∥2
F

+ 3

∥∥∥∥∇VL(UṼ⊤) +
1

2
Ṽ(U⊤U− Ṽ⊤Ṽ)

∥∥∥∥2
F

+ 3

∥∥∥∥12UN1

∥∥∥∥2
F

+ 3

∥∥∥∥12ṼN1

∥∥∥∥2
F

+ 3

∥∥∥∥1pN2

∥∥∥∥2
F

≤ 6
∥∥∇UL(UṼ⊤)

∥∥2
F
+ 6

∥∥∇VL(UṼ⊤)
∥∥2
F
+ 3

∥∥U⊤U− Ṽ⊤Ṽ
∥∥2
F
·
(∥∥U∥∥2

2
+

∥∥Ṽ∥∥2
2

)
+

3

4

(∥∥U∥∥2
2
+
∥∥Ṽ∥∥2

2

)
·
∥∥N1

∥∥2
F
+

3

p2
∥∥N2

∥∥2
F

≤ 6
∥∥∇UL(UṼ⊤)

∥∥2
F
+ 6

∥∥∇VL(UṼ⊤)
∥∥2
F
+ 6

∥∥U⊤U− Ṽ⊤Ṽ
∥∥2
F
·
∥∥Z∥∥2

2

+ 2
∥∥Z∥∥2

2
·
∥∥N1

∥∥2
F
+

3

p2
∥∥N2

∥∥2
F
, (D.1)

where the first inequality comes from the facts that ∥A+B∥2F ≤ 2∥A∥2F + 2∥B∥2F and ∥AB∥F ≤ ∥A∥2 · ∥B∥F , and the
last inequality is due to the fact that max{∥U∥2, ∥Ṽ∥2} ≤ ∥Z∥2. In addition, we have∥∥∇UL(UṼ⊤)

∥∥2
F
+
∥∥∇VL(UṼ⊤)

∥∥2
F
=

∥∥∇L(X)Ṽ
∥∥2
F
+

∥∥∇L(X)⊤U
∥∥2
F

≤ 2
∥∥(∇L(X)−∇L(X∗)

)
Ṽ
∥∥2
F
+ 2r

∥∥∇L(X∗)
∥∥2
2
·
∥∥Ṽ∥∥2

2

+ 2
∥∥(∇L(X)−∇L(X∗)

)⊤
U
∥∥2
F
+ 2r

∥∥∇L(X∗)
∥∥2
2
·
∥∥U∥∥2

2

≤ 2L2∥X∗ −X∥2F ·
(∥∥Ṽ∥∥2

2
+
∥∥U∥∥2

2

)
+ 2r

∥∥∇L(X∗)
∥∥2
2
·
∥∥Z∥∥2

2

≤ 4L2∥X∗ −X∥2F ·
∥∥Z∥∥2

2
+ 2r

∥∥∇L(X∗)
∥∥2
2
·
∥∥Z∥∥2

2
, (D.2)

where the first equality is due to the definition of L, the second inequality is due to the restricted strong convexity and
smoothness conditions of L, which hold with probability at least 1−C/m for an absolute constant C and has been provided
given condition (B.5). Plugging (D.2) into (D.1), we can get

∥G∥2F ≤ 24L2∥X∗ −X∥2F ·
∥∥Z∥∥2

2
+ 12r

∥∥∇L(X∗)
∥∥2
2
·
∥∥Z∥∥2

2
+ 6

∥∥U⊤U− Ṽ⊤Ṽ
∥∥2
F
·
∥∥Z∥∥2

2

+ 2
∥∥Z∥∥2

2
·
∥∥N1

∥∥2
F
+

3

p2
∥∥N2

∥∥2
F
.

E Auxiliary Lemmas

Let d(Z,Z′) = minR∈Qr
∥Z− Z′R∥F , where Qr is the set of r-by-r orthonormal matrices. We use the following lemmas

in our proofs, which are provided in Tu et al. (2016).

Lemma E.1. For any matrices Z,Z′ ∈ R(d1+d2)×r, we have the following inequality

d2(Z,Z′) ≤ 1

2(
√
2− 1)σ2

r(Z
′)
∥ZZ⊤ − Z′Z′⊤∥2F .

Lemma E.2. For any matrices Z,Z′ ∈ R(d1+d2)×r, which satisfy d(Z,Z′) ≤ ∥Z′∥2/4, we have the following inequality

∥ZZ⊤ − Z′Z′⊤∥F ≤ 9

4
∥Z′∥2 · d(Z,Z′).


