
Incremental Aggregated Riemannian Gradient Method for Distributed PCA

Xiaolu Wang∗ Yuchen Jiao† Hoi-To Wai∗ Yuantao Gu†
∗Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong

†Department of Electronic Engineering, Tsinghua University

Abstract

We consider the problem of distributed principal
component analysis (PCA) where the data sam-
ples are dispersed across different agents. De-
spite the rich literature on this problem under
various specific settings, there is still a lack of
efficient algorithms that are amenable to decen-
tralized and asynchronous implementations. In
this paper, we extend the incremental aggregated
gradient (IAG) method in convex optimization
to the nonconvex PCA problems based on an
Riemannian gradient-type method named IARG-
PCA. The IARG-PCA method admits low per-
iteration computational and communication cost
and can be readily implemented in a decentral-
ized and asynchronous manner. Moreover, we
show that the IARG-PCA method converges lin-
early to the leading eigenvector of the sample
covariance of the whole dataset with a constant
step size. The iteration complexity coincides
with the best-known result of the IAG method
in terms of the linear dependence on the num-
ber of agents. Meanwhile, the communication
complexity is much lower than the state-of-the-
art decentralized PCA algorithms if the eigengap
of the sample covariance is moderate. Numer-
ical experiments on synthetic and real datasets
show that our IARG-PCA method exhibits sub-
stantially lower communication cost and com-
parable computational cost compared with other
existing algorithms.

1 INTRODUCTION

Principal component analysis (PCA) is one of the most
fundamental and long-standing problems in data analy-

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

sis (Hotelling, 1933), which aims to identify a direc-
tion of a line that preserves the maximal variance of the
dataset. Specifically, suppose that there are n data samples
x1, . . . ,xn ∈ Rd, which are assumed to be mean-centered
without loss of generality, i.e., 1

n

∑n
i=1 xi = 0. The PCA

can be formulated as the following nonconvex optimization
problem:

min
w∈Sd−1

{
F(w) := −w>Aw

}
, (1)

where Sd−1 := {w ∈ Rd : ‖w‖2 = 1} is the unit sphere
and A := (1/n)

∑n
i=1 xix

>
i is the sample covariance ma-

trix. Due to the constant prevalence and significance of
this problem in computer vision (Ma and Yuan, 2019), data
clustering (Liu and Tan, 2019), neural science (Cunning-
ham and Yu, 2014), genomics (Dorrity et al., 2020), large-
scale climate modeling (Gittens et al., 2016), etc., there has
been a large body of literature that tackles it under various
specific settings (see Section 1.2 for detailed discussion).

In this work, we are interested in the setting where the
data samples {x1, . . . ,xn} are dispersed across differ-
ent agents. Specifically, suppose that there are N agents
{1, . . . , N} and the agent i stores ni local data samples
represented by matrix Xi := {x1

i , . . . ,x
ni
i } ∈ Rd×ni .

Let n :=
∑N
i=1 ni, we consider Problem (1) with A =

(1/n)
∑N
i=1XiX

>
i . This setting is motivated by a wide

range of real-world scenarios, where the data are acquired
by multiple nodes, e.g., CPU cores, computing clusters,
wireless sensors, and wearable devices, that are inter-
connected by networks (Assran et al., 2020). In prac-
tice, transmitting large volumes of data and process the
whole dataset using a single agent can be exceedingly
time/energy-consuming. This necessitates the development
of efficient distributed algorithms for solving Problem (1).
In large-scale distributed PCA, common algorithms require
synchronization of the entire network after every round of
communication of all agents, which will cause significant
delay of the distributed systems in the presence of strag-
gling nodes (Li et al., 2021).

1.1 Our Contributions

To address the aforementioned concerns, we propose the
incremental aggregated Riemannian gradient method for

Incremental Aggregated Riemannian Gradient Method for Distributed PCA

distributed PCA, which is referred to as IARG-PCA. We
summarize the main contributions as follows:

• Our IARG-PCA method captures the manifold-
constrained structure in Problem (1) by aggregating the
outdated Riemannian gradient information stored by
different agents in an incremental fashion. This extends
the incremental aggregated gradient (IAG)-type methods
(Blatt et al., 2007; Gurbuzbalaban et al., 2017; Vanli
et al., 2018; Wai et al., 2018, 2020) for unconstrained
convex optimization problems. On the computational
side, the IARG-PCA method visits only one agent in
each iteration and thus admits low per-iteration computa-
tional cost. On the communication side, the IARG-PCA
method visits the agents according to a Hamiltonian
walk1 on the network and thus uses only one link in
the network to transmit O(d) amount of data after each
update. Since there is not a master agent that dominates
all other agents and no synchronization is required in
each round of communication, the IARG-PCA method
is intrinsically decentralized and asynchronous and thus
greatly alleviates the straggler’s effect.
• The IARG-PCA method departs from the popular vari-

ance reduction approach for PCA such as (Garber et al.,
2016; Shamir, 2015). Instead, it is built upon the IAG
technique under a novel context of concave minimization
with a manifold (non-convex) constraint. Note that exist-
ing convergence analyses of the IAG method for uncon-
strained strongly convex problems are no longer applica-
ble to IARG-PCA. Specifically, we treat the IARG-PCA
method as an inexact version of the Riemannian gra-
dient descent (RGD) method with simultaneous multi-
plicative and additive perturbations. By carefully bound-
ing the error terms that is shown to decrease to 0,
we establish the linear convergence rate of IARG-PCA
with O

(
N
∆2 log

(
1
ε

))
iteration complexity to obtain an

ε-suboptimal solution to Problem (1), where ∆ is the
eigengap (i.e., the difference between the two largest
eigenvalues) of A. This complexity matches the best-
known convergence rate of the IAG method in terms of
the linear dependence on N and is comparable to the
variance-reduced methods such as (Garber et al., 2016;
Shamir, 2015). Since onlyO(d) data should be transmit-
ted across the network (as only one edge is used) after
each iteration, the communication complexity of IARG-
PCA is also O

(
N
∆2 log

(
1
ε

))
. The communication com-

plexity of IARG-PCA is substantially better than other
state-of-the-art decentralized algorithms for PCA.

1.2 Related Works
In this subsection, we review several closely related lines
of research on PCA and discuss their connections with our
proposed approach.

1A Hamiltonian walk on a connected network is a closed walk
of minimal length which visits every node of a network (and may
visit each node and link more than once).

Batch Algorithms for PCA: Since the optimal solution
to Problem (1) is the eigenvector (up to a sign) associated
with the largest eigenvalue of A, one can invoke common
numerical algebra algorithms, e.g., the power method and
the Lanczos method (Golub and Van Loan, 2013), to solve
it. Recently, there has been particular interests to solve
Problem (1) using the RGD method (Absil et al., 2009).
The convergence rate of RGD when solving Problem (1) is
shown to be O

(
1

∆2 log
(

1
ε

))
by Xu et al. (2018b) and later

improved to be O
(

1
∆ log

(
1
ε

))
by Ding et al. (2020); Xu

and Li (2021), which coincides with the rate of the power
method. A major deficiency of batch algorithms is that they
require full data pass in every iteration, which can result in
slow initial improvement for large datasets (Bottou et al.,
2018). By contrast, our IARG-PCA can be viewed as an
approximate version of the RGD method, which requires
considerably lower per-iteration cost by sacrificing the ex-
actness of the first-order information.

Incremental Algorithms for PCA: The original incre-
mental algorithms (including stochastic algorithms) for
PCA can be traced back to the seminal Krasulina’s method
(Krasulina, 1969) and the Oja’s method (Oja, 1982). Both
methods take data points in an incremental fashion and
are shown to converge at a sublinear rate of O

(
1

∆2ε

)
with diminishing step sizes in the online setting (Balsub-
ramani et al., 2013; Jain et al., 2016). Analogous to our
IARG-PCA method, the Krasulina’s and Oja’s methods
can also be implemented in a distributed manner by tak-
ing the data samples according to a Hamiltonian walk
on the network. Since only one link is used at a time
for data transmission, with the communication complex-
ity being O

(
1

∆2ε

)
. If the data points are randomly sam-

pled in each step, the Krasulina’s and Oja’s methods will
exhibit high-variance stochastic gradients. As a rem-
edy, there are a collection of works that employ the vari-
ance reduction technique in convex optimization (John-
son and Zhang, 2013) to solve Problem (1), including the
VR-PCA (Shamir, 2015), shift-and-invert preconditioning-
based power method (SIP-PM) (Garber et al., 2016), VR
Power+M (Xu et al., 2018a), and VR Power (Kim and
Klabjan, 2020). These variance-reduced algorithms require
similar O

((
N + 1

∆2

)
polylog

(
1
ε

))
iteration complexity.

However, the stochastic PCA algorithms are not amenable
to distributed implementations. Table 1 compares these
methods against IARG-PCA and a more detailed discus-
sion will be provided in Section 2.1.

Distributed Algorithms for PCA: Although there have
been a host of works on distributed PCA, most recent
works are based on the centralized master-slave frame-
work (Alimisis et al., 2021; Grammenos et al., 2020;
Huang and Pan, 2020; Li et al., 2021; Wu et al., 2018).
The most related decentralized counterparts of our IARG-
PCA include DePM (Wai et al., 2017), S-DOT (Gang
et al., 2021), DRGTA (Chen et al., 2021), and DeEPCA

Xiaolu Wang∗, Yuchen Jiao†, Hoi-To Wai∗, Yuantao Gu†

Table 1: Total runtime of state-of-the-art incremental algorithms for the PCA problem (1). Note that ∆ is the eigengap
(i.e., difference between the two largest eigenvalues) ofA.

Distributed? Total Runtime Convergence

VR-PCA (Shamir, 2015) 7 O
(
d
(
N + 1

∆2

)
log

(
1
ε

))
Local, in Expectation

SIP-PM (Garber et al., 2016) 7 O
(
d
(
N + 1

∆2

)
polylog

(
1
ε

))
Global, in Expectation

VR Power+M (Xu et al., 2018a) 7 O
(
d
(
N +

√
d

∆2

)
log

(
1
ε

))
Local, in Expectation

VR Power (Kim and Klabjan, 2020) 7 O
(
d
(
N + 1

∆2

)
log

(
1
ε

))
Global, in Expectation

Krasulina/Oja (Balsubramani et al., 2013) 3 O
(

d
∆2ε

)
Local, in Expectation & w.h.p.

IARG-PCA 3 O
(
dN
∆2 log

(
1
ε

))
Local, Deterministic

Table 2: Communication complexity of decentralized algorithms for PCA under common types of networks. The complex-
ity of Krasulina’s and Oja’s methods is established in the online setting, where σ2 is the variance of the gradient estimators.
Note that under mild assumptions σ2 is proportional to N in the offline setting. The complexity of DeEPCA is obtained
by the second largest eigenvalues of the normalized Laplacian matrices of the networks (see Spielman (2015)).

Asynchronous? Ring Erdős–Rényi Complete Dumbbell

DeEPCA 7 O
(
N2

∆
log

(
1
ε

))
O

(
N log2(N)

∆
log

(
1
ε

))
O

(
N2

∆
log

(
1
ε

))
O

(
N3

∆
log

(
1
ε

))
Krasulina’s and Oja’s 3 O

(
σ2

∆2ε

)
IARG-PCA 3 O

(
N
∆2 log

(
1
ε

))
(Ye and Zhang, 2021), which are all based on the con-
sensus mechanism and thus the global synchronization is
implicitly needed. Among them, DRGTA is applicable
to the PCA problem but initially designed for the gen-
eral manifold optimization problems, thus only a sublin-
ear convergence rate is given. DeEPCA achieves the best-

known O
(

|E|√
1−λ2(W)

1
∆ log

(
1
ε

))
communication com-

plexity for decentralized PCA, where |E| denotes the num-
ber of links in the network and λ2(W) is the second largest
eigenvalue of the weight matrix W associated with the
network. Since |E| ≥ N − 1 for connect networks and√

1− λ2(W) ≤ 1, the communication complexity of
DeEPCA cannot be better than that of IARG-PCA in terms
of the dependence on N . We summarize the communi-
cation complexity of DeEPCA and IARG-PCA under dif-
ferent common types of networks in Table 2. As we can
see, IARG-PCA not only is amenable to asynchronous im-
plementation that is independent of the network topology,
but also can be substantially more communication-efficient
than DeEPCA if the eigengap ∆ is not significantly small.

2 ALGORITHM DEVELOPMENT

In this section, we first develop the IARG-PCA method in
the sequential update setting and then discuss its decentral-
ized implementation.

Suppose that all the data blocks X1, . . . ,XN are assem-
bled in a single agent. Since Problem (1) possesses a unit-
sphere manifold constraint, one may apply the following
RGD method (Absil et al., 2009; Ding et al., 2020; Xu and
Li, 2021) to solve it:

wt+1 =
wt − η gradF(wt)

‖wt − η gradF(wt)‖2
for t ∈ N, (2)

where the Riemannian gradient of F at wt ∈ Sd−1 is

gradF(wt) := − 1

n

N∑
i=1

(
I −wt(wt)>

)
XiX

>
i w

t

However, computing the Riemannian gradient gradF(wt)
involves the whole dataset, which makes the RGD method
to suffer fromO(dn) per-iteration computational cost. Fur-
thermore, the algorithm is not suitable for distributed im-
plementations as the data blocks X1, . . . ,XN will be
stored at different agents. By contrast, the Krasulina’s
method (Krasulina, 1969) and the Oja’s method (Oja, 1982)
take one data block Xj for some j ∈ [N] in iteration t
(t ≥ 0):

(Krasulina) wt+1 = wt + ηt

(
XjX

>
j −

‖X>j wt‖22
‖wt‖2

)
wt,

(Oja) wt+1 =
wt + ηtXjX

>
j w

t

‖wt + ηtXjX>j w
t‖2

.

Incremental Aggregated Riemannian Gradient Method for Distributed PCA

These update rules result in a reduced O(dmaxi∈[N] ni)
per-iteration computational cost. However, the Krasulina’s
and Oja’s methods are intrinsically stochastic gradient de-
scent (SGD)-type methods (Bottou et al., 2018), which
only have sublinear convergence rates with ηt = O(1/t)
(Balsubramani et al., 2013; Jain et al., 2016) (see Table 1).

To develop an algorithm that exhibits both low per-iteration
computational cost and fast convergence rate, we propose
the IARG-PCA method. Specifically, in iteration t (t ≥ 0),
we approximate the Riemannian gradient gradF(wt) by

gt := − 1

n

N∑
i=1

zi(w
τi(t)), (3)

where zi(w) := −
(
I −ww>

)
XiX

>
i w (referred to as

the i-th component Riemannian gradient at point w ∈
Sd−1) and τi(t) is the most recent iteration count at which
the data block Xi is used in gt. Then, the IARG-PCA
method proceeds with the following update:

wt+1 =
wt − ηgt

‖wt − ηgt‖2
. (4)

Compared with the original RGD iteration (2), the IARG-
PCA iteration (4) uses an inexact version of the Riemma-
nian gradient, which aggregates the information that has
been computed in the previous iterations.

To control the inexactness of gt, we shall ensure that each
data block is sampled at least once every T iterations for
some T ≥ 0, i.e., (t − T)+ ≤ τi(t) ≤ t for all i ∈ [N].
For example, in the sequential update setting, this can be
satisfied if the data blocks are processed one by one in a
cyclic order with τi(0) = 0 for all i ∈ [N]. This means that
T = N and

τi(t) =

{
t if i = (t− 1 mod N) + 1,

τi(t− 1) otherwise,

for i ∈ [N] and t ∈ N+. Under the cyclic sampling
scheme, we observe that τj(t) = t for some j ∈ [N]. Then,
to facilitate the efficient implementation of IARG-PCA, we
rewrite (3) in a recursive form:

gt = gt−1 +
1

n
zj(w

τj(t−1))− 1

n
zj(w

t), (5)

which results in O(dni) per-iteration computational cost
incurred by evaluating zj(wt). Since each zi(wτi(t)) takes
O(dni) memory for i ∈ [N], the IARG-PCA method needs
to keep O(nd) memory to store all the N (outdated) com-
ponent Riemannian gradients.

Lastly, we compare our IARG-PCA method with the VR-
PCA (Shamir, 2015) and MASAGA (Babanezhad et al.,
2018) methods that extend the variance reduction tech-
niques in SVRG (Johnson and Zhang, 2013) and SAGA

(Defazio et al., 2014) to PCA and general manifold opti-
mization problems, respectively. Specifically, the VR-PCA
update formulas in iteration t are

w̃t+1 = wt + η
(
XiX

>
i (wt − w̄s) + us

)
,

wt+1 = w̃t+1/‖w̃t+1‖2,

where w̄s is updated once every epoch (O(N) iterations)
and us−1 = 1

n

∑n
j=1XjX

>
j w̄

s−1 is evaluated based on
full data pass. The update rule in the t-th iteration of
MASAGA takes the following form for solving Problem
(1):

gt = zi(w
t)− Tw0

(
T
wτj(t−1)

(
zj(w

τj(t−1))
)
− µt

)
,

wt+1 = Expwt(−ηgt),

where µt = 1
n

∑n
i=1 Twτi(t)

(
zi(w

τi(t))
)
, and Tw and

Expw are the parallel transport and exponential map de-
fined as Tw(z) := −w sin(‖z‖2) + z

‖z‖2 cos(‖z‖2) and
Expw(z) := w cos(‖z‖2) + z

‖z‖2 sin(‖z‖2) forw ∈ Sd−1

and z ∈ Rd, respectively. Analogous to our IARG-PCA,
MASAGA also needs to keep O(nd) memory. However,
both methods require to take data samples uniformly at ran-
dom, which make them not amenable to distributed imple-
mentations and are thus essentially different from our de-
terministic and distributed IARG-PCA method.

2.1 Distributed Implementation

Equipped with above development, we describe the dis-
tributed implementation of the IARG-PCA method, where
the data blocks are hold by N interconnected agents. The
agent i maintains the latest component Riemannian gradi-
ent zi(wτi(t)) and perform update (5) once it receives wt

and gt−1 from one of its neighborhoods. Thus, the overall
memory requirement of the IARG-PCA method is shared
byN different agents. The agents are visited based on a de-
terministic order. For a ring network, the algorithm visits
the agents cyclically and thus T = N . For a general con-
nected network, the algorithm visits the agents following a
Hamiltonian walk and thus T ∈ [N, 2N − 2]2. IARG-PCA
treats every agent equally and does not require a central
agent to dominate the other agents. Besides, no global syn-
chronization of the whole network is needed in each round
of communication. As it turns out, IARG-PCA is intrinsi-
cally a deterministic, decentralized, and asynchronous al-
gorithm.

A formal description of the distributed implementation of
the IARG-PCA method is presented as Algorithm 1. In
each iteration, the IARG-PCA method incursO(dni) com-
putational cost (Line 4–8) and O(d) communication cost
(Line 9). Indeed, the Krasulina’s and Oja’s methods can

2The length of a Hamiltonian walk on a connected network
lies in the interval [N, 2N − 2] (Punnim et al., 2007).

Xiaolu Wang∗, Yuchen Jiao†, Hoi-To Wai∗, Yuantao Gu†

Algorithm 1 IARG-PCA

1: Input: Choose initial iterate w0 and step size η. Let
g0 = 0, τi(0) = 0 and zi(w0) = 0 for all i ∈ [N].

2: for t = 1, 2, . . . do
3: Set τj(t)(t) ← t and τi(t) ← τi(t − 1) for all agent

i 6= j(t) (visit agent j(t))
4: Set b←X>j(t)w

t

5: Set zj(t)(wt)←Xj(t)b− ‖b‖
2
2w

t

6: Set gt ← gt−1 + 1
nzj(t)(w

τj(t)(t−1))− 1
nzj(t)(w

t)
7: Set w̃t+1 ← wt − ηgt
8: Set wt+1 ← w̃t+1/‖w̃t+1‖2
9: Transmit wt+1 and gt to agent j(t+ 1)

10: end for

be implemented in the same manner, while only wt+1

should be transmitted after the computation phase. This
yields the same per-iteration computational and communi-
cation cost as the IARG-PCA method. On the other hand,
other stochastic PCA algorithms listed in Table 1 are not
amenable to distributed implementations, since the vari-
ance reduction technique they use require full data pass
every a particular number of iterations and uniformly sam-
pling from whole dataset is also troublesome in the dis-
tributed setting.

In a nutshell, the algorithmic idea of the IARG-PCA
method resembles but differs from that of the IAG-type
methods for distributed convex optimization problems
(Blatt et al., 2007; Gurbuzbalaban et al., 2017; Vanli et al.,
2018; Wai et al., 2018, 2020). Different from the previous
works that focus on unconstrained optimization in the Eu-
clidean domain, the IARG-PCA method computes the Rie-
mannian gradient and require a retraction operation (i.e.,
normalization in our setting (Absil et al., 2009)) in each it-
eration. As will be clear later in our theoretical analysis,
this is crucial to make the gradient aggregation technique
work on Riemannian manifolds.

Remark 1. In practical implementations of IARG-PCA (as
well as all other IAG-type methods), an agent is activated
if it receives the “token” sent from its neighbor. However,
the algorithm may break down if the token is lost. Although
the specific communication protocols is beyond the scope of
this paper, we provide a naive solution to this problem: The
receiver will send an “acknowledgement” message back to
the sender once it receive the token, and the sender will
resend the token if it does not receive the acknowledgement.

3 MAIN RESULTS

To present the main theoretical results, we introduce the
following standing assumptions:

Assumption 1. There exists a constant R > 0 such that
max1≤i≤N

{
max1≤j≤ni ‖x

j
i‖22
}
≤ R.

Assumption 2. The matrix A admits the eigendecompo-
sition A = V ΛV >, with the orthonormal matrix V :=
(v1, . . . ,vd) ∈ Rd×d and Λ := Diag(λ1, . . . , λd) such
that λ1 > λ2 ≥ · · · ≥ λd.
Assumption 3. There exists a constant T ≥ 0 such that for
all i ∈ [N] and t ∈ N, (t− T)+ ≤ τi(t) ≤ t.

Assumption 1 gives the upper bound on the norm of the
data samples. In Assumption 2, the eigengap of the sample
covariance is required to be positive. Notice that λ1 ≤ R2.
Moreover, all agents should be visited in the past T itera-
tions by Assumption 3, which can be satisfied if the agent
activation order {j(1), j(2), . . . } in Algorithm 1 induces a
Hamiltonian walk on the network.

The suboptimality of the iterate wt in Algorithm 1 is mea-
sured by Et := 1− 〈wt,v1〉2 for t ∈ N. Then, we formally
present the main theorem of this paper as follows:

Theorem 1. Suppose that Assumptions 1, 2, and 3
hold. Let η̄ := min

{
1

2λ1
, 1√

6C1
, ∆

24
√

2C1
, 24∆
C2(T+1) ,

47
∆

}
,

where ∆ := λ1 − λ2, C1 := 192
√

2R2, and C2 :=

9216
√

2R
(

32R+ ∆
12
√

2

)
. If Algorithm 1 is initialized

with w0 satisfying 〈w0,v1〉 ≥
√

2
2 and step size satisfying

0 < η ≤ η̄, then it holds for all t ≥ 1 that 〈wt,v1〉 ≥
√

2
2

and

√
Et ≤

(
1− ∆

48
η

)t√
E0. (6)

As indicated by Theorem 1, the IARG-PCA method re-
quires at most O

(
T

∆2 log
(

1
ε

))
iterations to obtain a sub-

optimal solution satisfying 〈wt,v1〉 ≥ 1− ε for ε ∈ (0, 1].
Since T = O(N) for connected networks, the iteration
complexity and communication complexity of IARG-PCA
are both O

(
N
∆2 log

(
1
ε

))
.

We notice that the error bound in Theorem 1 is determinis-
tic which differs from those in existing works such as (Bal-
subramani et al., 2013; Jain et al., 2016; Shamir, 2015). In
contrast, the latter demonstrated the convergence of PCA
algorithms in expectation or with high probability. The dif-
ference is due to the considerably weaker Assumption 3
required by Theorem 1 which bounds the delays determin-
istically. Meanwhile, prior works require unbiased (Rie-
mannian) gradient estimates which may not be satisfied by
IARG-PCA under the said assumptions.

Remark 2. The linear convergence in Theorem 1 is based
on a proper initial point. Indeed, the constant

√
2/2 is ar-

tificial for the conciseness of the proof. The global con-
vergence with arbitrary initial points can be guaranteed
(with high probability) by properly modifying our analy-
sis. Specifically, for any initial point satisfying 〈w0,v1〉2 ≥
1 − κ (resp. 〈w0,v1〉2 ≤ κ − 1) for some κ > 0, IARG-
PCA will converge to v1 (resp. −v1) with a constant step

Incremental Aggregated Riemannian Gradient Method for Distributed PCA

size depending on κ and thus the linear convergence is pre-
served. The precise arguments will be similar to those in
(Shamir, 2016, Theorem 2) and we omit it here.

4 PROOF OF THEOREM 1

In this section, we present the main steps in the proof of
Theorem 1. We notice that a challenge in showing the con-
vergence of IARG-PCA lies with the biased Riemannian
gradients employed. To get over this, we treat the IARG-
PCA method as a RGD method that carries errors, where
the original linearly convergent term is perturbed by a mul-
tiplicative factor and an additive term. By carefully con-
trolling the error terms that decrease to 0, we show that
both the multiplicative and additive errors can be properly
bounded and thus the linear convergence is guaranteed.

Specifically, to prove Theorem 1, it suffices to establish
(6) using induction. The base case holds trivially since
〈w0,v1〉 ≥

√
2/2 and thus E0 = 1 − 〈w0,v1〉2 ≤ 1/2.

Suppose that t ≥ 0 and it holds for all τ = 0, . . . , t that

〈wτ ,v1〉 ≥
√

2

2
and

√
Eτ ≤

(
1− ∆

48
η

)τ√
E0. (7)

We will further show in this section that

〈wt+1,v1〉 ≥
√

2

2
and

√
Et+1 ≤

(
1− ∆

48
η

)t+1√
E0. (8)

We write the intermediate iterate w̃t+1 in Algorithm 1 as

w̃t+1 = wt − ηgt

= (I + ηA− ηwt(wt)>A)wt + ηet, (9)

where the first term is the same as the RGD update rule (2)
(without normalization) and

et := gradF(wt)− gt (10)

is the error term incurred by the gradient aggregation tech-
nique. Then, we have 〈w̃t+1,v`〉 = at` + ζt` , where at` :=(
1 + λ`η − η(wt)>Awt

)
〈wt,v`〉 and ζt` := η 〈et,v`〉

for ` ∈ [d]. Hence, it follows that

Et+1 = 1− 〈wt+1,v1〉2 = 1− 〈w̃
t+1,v1〉2

‖w̃t+1‖22

=

∑d
`=2〈w̃t+1,v`〉2∑d
`=1〈w̃t+1,v`〉2

=

∑d
`=2 (at` + ζt`)

2∑d
`=1 (at` + ζt`)

2
. (11)

Then, taking square root for both sides of (11) and using the

triangle inequality
√∑d

`=2 (at` + ζt`)
2 ≤

√∑d
`=2(at`)

2 +√∑d
`=2 (ζt`)

2 yield

√
Et+1≤

√√√√ ∑d
`=2(at`)

2∑d
`=1 (at` + ζt`)

2
+

√√√√ ∑d
`=2 (ζt`)

2∑d
`=1 (at` + ζt`)

2
. (12)

Besides, using the inequality (x+ y)2 ≥ 1
1+βx

2− 1
β y

2 for
all x, y ∈ R and β > 0, we have

d∑
`=1

(
at` + ζt`

)2 ≥ 1

1 + β

d∑
`=1

(at`)
2 − 1

β

d∑
`=1

(
ζt`
)2

=

d∑
`=1

(at`)
2

(
1

1 + β
− 1

β

∑d
`=1 (ζt`)

2∑d
`=1(at`)

2

)
(13)

for all β > 0. Plugging (13) back into the first term of (12),
it holds for all β > 0 that

√
Et+1 ≤

√√√√√∑d
`=2(at`)

2∑d
`=1(at`)

2

1

1
1+β −

1
β

∑d
`=1(ζt`)

2∑d
`=1(at`)

2

+

√√√√ ∑d
`=2 (ζt`)

2∑d
`=1 (at` + ζt`)

2
. (14)

In (14),
∑d
`=2(at`)

2∑d
`=1(at`)

2 is determined by the full Riemannian

gradient at wt, which is expected to converge linearly in

the noiseless case. The terms 1
1+β −

1
β

∑d
`=1(ζ

t
`)

2∑d
`=1(at`)

2 and∑d
`=2(ζ

t
`)

2∑d
`=1(at`+ζt`)

2 are respectively multiplicative and additive

perturbations incurred by the error et. Subsequently, we
will bound them individually.

4.1 Bounding the Riemannian Gradient Term

Lemma 1. Suppose that Assumption 2 holds. If 〈wt,v1〉 ≥√
2/2 and η < 1/(2λ1), then it holds for all t ∈ N that∑d

`=2(at`)
2∑d

`=1(at`)
2
≤
(

1− ∆

6
η

)
Et. (15)

The proof is provided in Appendix A.2. Lemma 1 indicates
that the Riemannian gradient term

∑d
`=2(at`)

2∑d
`=1(at`)

2 improves the
suboptimality measure by a constant factor for sufficiently
small η.

Remark 3. Note that if T = 0 (i.e., τi(t) = t for all
i ∈ [N]), then the IARG-PCA method reduces to the RGD
method since ζt` = η〈et,v`〉 = 0. In this case, the se-
quence {Et}t∈N satisfies

Et+1 ≤
(

1− ∆η

6

)
Et, (16)

which indicates that the RGD method converges Q-linearly
provided that η < min{6/∆, 1/(2λ1)}. This gives itera-
tion complexity of orderO

(
1
∆ log

(
1
ε

))
, which matches the

best-known results given by Ding et al. (2020); Xu and Li
(2021).3 It could be of independent interest that the proof
of Lemma 1 appears to be neater than the previous ones.

3Indeed, the state-of-the-art result in Xu and Li (2021) shows

Xiaolu Wang∗, Yuchen Jiao†, Hoi-To Wai∗, Yuantao Gu†

4.2 Bounding the Perturbation Terms

We then upper bound the multiplicative and additive per-
turbations in (14). As a preparation, we bound ‖et‖2 in the
following lemma.

Lemma 2. Suppose that Assumptions 1 and 3 hold. If η ≤
1/(2R), then it holds for all t ∈ N that

‖et‖2 ≤ 16Rη

t−1∑
s=(t−T)+

‖gs‖2, (17)

≤ C1Tη max
(t−2T)+≤j≤t

√
Ej , (18)

where C1 is the same constant as in Theorem 1.

The proof is deferred to Appendix A.3. Lemma 2 gives two
useful upper bounds on et. The tighter bound (17) will be
used to establish final recurrence relation while the bound
(18) will be used to control the perturbation terms.

Remark 4. The proof of Lemma 2 crucially relies on the
fact that ‖ gradF(ws)‖2 ≤ O

(√
Es
)
, which leads to an

upper bound on the error norm ‖et‖2 that diminishes to 0.
This property theoretically motivates the use of Riemanna-
ian gradients in our approach as oppose to the Euclidean
ones, which is one of the distinct features of our IARG-PCA
method compared to the IAG-type methods.

Equipped with Lemma 2, we obtain the following lemma
that bounds the multiplicative and additive perturbations in-
curred by et.

Lemma 3. Suppose that Assumptions 1 and 3 hold. If η ≤
min{1/(2R), 1/(2λ1), 1/

√
6C1}, then it holds for all t ∈

N and β > 0 that

1

1 + β
− 1

β

∑d
`=1 (ζt`)

2∑d
`=1(at`)

2
≥ 1− β − 2C2

1T
2

β
η4, (19)∑d

`=2 (ζt`)
2∑d

`=1 (at` + ζt`)
2
≤ 4η2‖et‖22, (20)

where C1 is the same constant as in Theorem 1.

4.3 Solving the Recurrence Relation

Armed with (14) and Lemmas 1–3, we can obtain the fol-
lowing recurrence relation of the sequence {

√
Et}t∈N.

Lemma 4. Suppose that Assumptions 1–3 hold. If η ≤
min

{
1/(2λ1), 1/

√
6C1,∆/(24

√
2C1)

}
, then it holds for

that the iteration complexity of the RGD method for PCA is
O

(
1

max{∆,ε} log
(

1
ε

))
, which is the same as ours in the high-

precision regime where ∆ > ε.

2 4 6 8 10

10
3

10
-20

10
-10

10
0

Krasulina

Oja

DeEPCA

IARG-PCA

(a) Ring

2 4 6 8 10

10
3

10
-20

10
-10

10
0

Krasulina

Oja

DeEPCA

IARG-PCA

(b) Erdős–Rényi

Figure 1: Decentralized PCA on synthetic data.

2 4 6 8 10

10
3

10
-10

10
0

Krasulina

Oja

DeEPCA

IARG-PCA

(a) Ring (a9a)

2 4 6 8 10

10
3

10
-15

10
-10

10
-5

10
0

10
5

Krasulina

Oja

DeEPCA

IARG-PCA

(b) Erdős–Rényi (w8a)

2 4 6 8 10

10
3

10
-15

10
-10

10
-5

10
0

10
5

Krasulina

Oja

DeEPCA

IARG-PCA

(c) Ring (w8a)

2 4 6 8 10

10
3

10
-20

10
-10

10
0

Krasulina

Oja

DeEPCA

IARG-PCA

(d) Erdős–Rényi (a9a)

Figure 2: Decentralized PCA on a9a and w8a datasets.

all t ∈ N that√
Et+1 ≤

(
1− ∆

48
η

)√
Et −

∆

192
√

2R
η‖gt‖2

+

(
32R+

∆

12
√

2

)
η2

t∑
s=(t−T)+

‖gs‖2. (21)

The proof of Lemma 4 is given in Appendix A.5. Equipped
with Lemma 4, it suffices to apply (Aytekin et al., 2016,
Lemma 1) to solve the recurrence (21), which leads the iter-
ation complexity to scale linearly with the delay T . Indeed,
the perturbation terms in (21) represented by sequence
{‖gt‖2}t∈N do not disrupt the exponential decrease of the
system

√
Et+1 ≤

(
1− ∆

48η
)√
Et. The detailed derivation

that completes the proof of Theorem 1 is deferred to Ap-
pendix A.6.

5 EXPERIMENTS

In this section, we test the numerical performance of our
IARG-PCA method on both synthetic and real datasets and
compare it with that of the state-of-the-art distributed PCA
algorithms and incremental PCA algorithms, respectively.
For each experiment on synthetic data, we independently
generate n data points according to the spiked model for

Incremental Aggregated Riemannian Gradient Method for Distributed PCA

0.5 1 1.5 2

Communication Cost 10
3

10
-15

10
-10

10
-5

10
0

10
5

Krasulina

Oja

DeEPCA

DBPI

IARG-PCA

(a) Ring (CIFAR-10)

5 10 15 20

Communication Cost 10
3

10
-20

10
-10

10
0

Krasulina

Oja

DeEPCA

DBPI

IARG-PCA

(b) Erdős–Rényi (CIFAR-10)

0 0.2 0.4 0.6

Iteration Number 10
3

10
-10

10
-5

10
0

Krasulina

Oja

DeEPCA

DBPI

IARG-PCA

(c) Ring (CIFAR-10)

0 0.5 1 1.5

Iteration Number 10
3

10
-10

10
-5

10
0

Krasulina

Oja

DeEPCA

DBPI

IARG-PCA

(d) Erdős–Rényi (CIFAR-10)

Figure 3: Decentralized PCA on CIFAR-10 dataset.

20 30 40 50 60 70 80 90 100

0

1000

2000

3000

4000

5000

6000

Figure 4: Dependence of communication cost on N .

PCA (Johnstone, 2001): xi = riw
∗ + εi for i = 1, . . . , n,

wherew∗ ∈ Rd is a random vector uniformly sampled over
the unit sphere Sd−1, ri ∼ N (0, 1), and εi is the noise vec-
tor composed of i.i.d. N (0, σ2) entries with σ > 0 being
the noise level. For the real-data experiments, we use the
datasets from the LIBSVM library (Chang and Lin, 2011).
Our code is available at https://github.com/xwangcu/iarg-
pca.

5.1 Numerical Results of Distributed PCA

In this subsection, we focus on the performance of IARG-
PCA in the distributed setting and compare it with the state-
of-the-art decentralized PCA algorithm, i.e., DeEPCA (Ye
and Zhang, 2021). We also implement the Krasulina’s
and Oja’s methods in a distributed manner as baselines.
We compare their performance in terms of communication
cost on two common types of networks, namely the ring
network and the Erdős–Rényi network (with connectivity
probability p = 0.5). The weight matrix associated with
network is defined as W = I–L/maxi∈[N]Di, where Di

denotes the degree of agent i and L is the Laplacian ma-

0 5 10 15 20
10

-10

10
-5

10
0

(a) σ = 0.1

0 10 20 30 40

10
-10

10
-5

10
0

Krasulina

Oja

VR-PCA

VR Power+M

VR Power

IARG-PCA

(b) σ = 1

0 5 10 15 20

10
-10

10
-5

10
0

Krasulina

Oja

VR-PCA

VR Power+M

VR Power

IARG-PCA

(c) σ = 0.5

2 4 6 8 10

10
-6

10
-4

10
-2

10
0

Krasulina

Oja

VR-PCA

VR Power+M

VR Power

IARG-PCA

(d) σ = 1

Figure 5: Incremental PCA on synthetic data (first row:
n = 5000, d = 100; second row: n = 50000, d = 1000).

trix of the network. Then, we have λ2(W) = 0.99 for the
ring network and λ2(W) = 0.70 for the Erdős–Rényi net-
work. We define the communication cost as the number of
d-dimensional vectors transmitted on the networks.

For synthetic data, we set d = 50, N = 50, and ni = 50
for all i ∈ [N]. For real-world datasets ‘a9a’ (d = 300
and n = 49749) (resp. ‘w8a’ (d = 123 and n = 32561)),
we equally assign 995 (resp. 650) data samples to agents
1, . . . , N − 1. The remaining data samples are assigned
to agent N . Figures 1 and 2 present how the suboptimal-
ity measure 1−〈wt,v1〉2 of different algorithms decreases
with the communication cost on synthetic and real datasets,
respectively. As we can see, the baseline Krasulina’s and
Oja’s methods convergence sublinearly. By contrast, the
IARG-PCA and DeEPCA methods exhibit linear rates of
convergence. It is noteworthy that IARG-PCA takes signif-
icantly fewer communication cost than DeEPCA to reach
certain high precision. This indicates that our IARG-PCA
method is substantially more communication-efficient than
other decentralized PCA algorithms.

We provide additional numerical results on the larger
CIFAR-10 dataset with n = 50000 and d = 3072 in Figure
3. The data samples are distributed in the same manner as
done for the ‘w8a’ and ‘a9a’ datasets. Moreover, we im-
plement the recently proposed distributed Banach-Picard
iteration (DBPI) (Andrade et al., 2023) that can also be ap-
plied to solve the PCA problem. We observe from Figures
3(a) and 3(b) that IARG-PCA achieves up to 10−15 preci-
sion with the least communication cost than all other algo-
rithms. However, Figures 3(c) and 3(d) show that IARG-
PCA converges slower than DeEPCA and DBPI. This is be-
cause the latter two algorithms requires consensus commu-
nication in each iteration, which facilitate the convergence

Xiaolu Wang∗, Yuchen Jiao†, Hoi-To Wai∗, Yuantao Gu†

0 5 10 15 20

10
-10

10
-5

10
0

(a) a1a

0 5 10 15 20

10
-10

10
-5

10
0

Krasulina

Oja

VR-PCA

VR Power+M

VR Power

IARG-PCA

(b) w1a

0 5 10 15 20
10

-15

10
-10

10
-5

10
0

Incremental Methods (CIFAR-10)

Krasulina

Oja

VR-PCA

VR Power+M

VR Power

IARG-PCA

(c) CIFAR-10

Figure 6: Incremental PCA on real datasets.

while bring huge communication cost in the meantime.

Moreover, we evaluate the expected communication cost
of the IARG-PCA and DeEPCA methods to reach 10−12

precision for different numbers of agents N . We conduct
experiments on synthetic data over ring networks. Figure
4 shows that the communication cost of DeEPCA scales
with O(N2) while IARG-PCA scales with O(N), which
verifies the theoretical results presented in Table 2. There-
fore, our IARG-PCA method exhibits high scalability and
thus enjoys low communication cost for large networks.

5.2 Numerical Results of Incremental PCA

Although our IARG-PCA method is developed for dis-
tributed environments, it can be implemented on a single
machine as discussed in Section 2. Thus, we report the con-
vergence performance of IARG-PCA together with some
representative incremental PCA algorithms, including the
Krasulina’s method (Krasulina, 1969), the Oja’s method
(Oja, 1982), VR-PCA (Shamir, 2015), VR-Power+M (Xu
et al., 2018a), and VR Power (Kim and Klabjan, 2020).
For the Krasulina’s and Oja’s methods, we adopt diminish-
ing step sizes ηt = θ/t and best tune the hyperparameter θ.
For VR-PCA, we set the epoch length and the step size as
the recommended values n and

√
n/
∑n
i=1 ‖xi‖22, respec-

tively. For VR Power+M method, we set its parameter β
as the optimal value λ2

2/4. For VR Power and IARG-PCA,
we best tune their constant step sizes. Lastly, all algorithms
take only one data sample in each iteration.

Figure 5 presents the convergence of 1−〈wt,v1〉2 on syn-
thetic data with n = 5000, d = 100 and n = 50000,
d = 1000. IARG-PCA is comparable with VR-Power+M
and inferior to VR-PCA and VR-Power if the noise level
is small (the eigengap is large), while becomes much faster
than VR-PCA and VR-Power+M if the noise is large (the
eigengap is small). This is because the iteration com-
plexity of all incremental algorithms is dominated by the
1/∆2 term if the eigengap ∆ is small (see Table 1), which
may lead to significant performance deterioration of the
stochastic PCA algorithms. By contrast, our IARG-PCA
appears to be more robust to the decrease of eigengap.

Figure 6 presents the results on two real datasets ‘a1a’
(d = 123, n = 1605) and ‘w1a’ (d = 300, n = 2477).
The performance of our IARG-PCA method is basically
comparable with that of the VR Power+M method. The
numerical results on synthetic and real data illustrate that
our IARG-PCA method is computationally efficient when
it runs on a single machine.

6 CONCLUSION & DISCUSSION

We have developed an efficient PCA algorithm that is
amenable to decentralized and asynchronous implemen-
tations. We have proved that the proposed IARG-PCA
method exhibits O

(
N
∆2 log

(
1
ε

))
iteration/communication

complexity. The effectiveness of our proposed method has
also been justified through numerical experiments.

We leave several interesting problems for future work. Al-
though the communication complexity of IARG-PCA can
be much better than that of the DeEPCA if the eigengap
∆ is not very small (see Table 2), it would be more favor-
able if we can improve it to O

(
N
∆ log

(
1
ε

))
. Nevertheless,

the 1/∆2 factor seems to be fundamental to incremental
PCA algorithms. This is evidenced in Table 1, where all
the state-of-the-art incremental PCA algorithms require the
total runtime to scale with O(1/∆2). Moreover, this paper
only focused on the one-dimensional PCA problem. Al-
though 1-PCA methods can be used to obtain other prin-
cipal components by repeatedly applying the well-known
deflation technique, it would be meaningful to extend our
algorithm to directly tackle the general k-PCA problem
(k > 1) with the Stiefel manifold constraint.

Acknowledgements

The work of X. Wang and H.-T. Wai was supported in part
by the HKRGC Project #24203520. The work of Y. Jiao
and Y. Gu was supported in part by the National Natural
Science Foundation of China under Grant U2230201 and
61971266, Grant from the Guoqiang Institute, Tsinghua
University, and in part by the Clinical Medicine Develop-
ment Fund of Tsinghua University.

Incremental Aggregated Riemannian Gradient Method for Distributed PCA

References

P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization
Algorithms on Matrix Manifolds. Princeton University
Press, 2009.

F. Alimisis, P. Davies, B. Vandereycken, and D. Alistarh.
Distributed principal component analysis with limited
communication. In Advances in Neural Information Pro-
cessing Systems 34, pages 2823–2834, 2021.

F. Andrade, M. A. Figueiredo, and J. ao Xavier. Distributed
Banach-Picard iteration: Application to distributed pa-
rameter estimation and PCA. IEEE Transactions on Sig-
nal Processing, 2023.

M. Assran, A. Aytekin, H. R. Feyzmahdavian, M. Johans-
son, and M. G. Rabbat. Advances in asynchronous par-
allel and distributed optimization. Proceedings of the
IEEE, 108(11):2013–2031, 2020.

A. Aytekin, H. R. Feyzmahdavian, and M. Johansson.
Analysis and implementation of an asynchronous op-
timization algorithm for the parameter server. arXiv
preprint arXiv:1610.05507, 2016.

R. Babanezhad, I. H. Laradji, A. Shafaei, and M. Schmidt.
MASAGA: A linearly-convergent stochastic first-order
method for optimization on manifolds. In Proceedings of
the 2018 Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pages 344–
359. Springer, 2018.

A. Balsubramani, S. Dasgupta, and Y. Freund. The fast
convergence of incremental PCA. 2013.

D. Blatt, A. O. Hero, and H. Gauchman. A convergent
incremental gradient method with a constant step size.
SIAM Journal on Optimization, 18(1):29–51, 2007.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization meth-
ods for large-scale machine learning. SIAM Review, 60
(2):223–311, 2018.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for sup-
port vector machines. ACM Transactions on Intelligent
Systems and Technology, 2(3):1–27, 2011.

S. Chen, A. Garcia, M. Hong, and S. Shahrampour. De-
centralized Riemannian gradient descent on the Stiefel
manifold. In Proceedings of the 38th International Con-
ference on Machine Learning, pages 1594–1605. PMLR,
2021.

J. P. Cunningham and B. M. Yu. Dimensionality reduction
for large-scale neural recordings. Nature Neuroscience,
17(11):1500–1509, 2014.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A
fast incremental gradient method with support for non-
strongly convex composite objectives. In Advances in
neural information processing systems 27, 2014.

Q. Ding, K. Zhou, and J. Cheng. Tight convergence rate
of gradient descent for eigenvalue computation. In Pro-
ceedings of the 29th International Joint Conferences on
Artificial Intelligence, pages 3276–3282, 2020.

M. W. Dorrity, L. M. Saunders, C. Queitsch, S. Fields, and
C. Trapnell. Dimensionality reduction by UMAP to vi-
sualize physical and genetic interactions. Nature Com-
munications, 11(1):1–6, 2020.

A. Gang, B. Xiang, and W. U. Bajwa. Distributed prin-
cipal subspace analysis for partitioned big data: Algo-
rithms, analysis, and implementation. IEEE Transac-
tions on Signal and Information Processing over Net-
works, 7:699–715, 2021.

D. Garber, E. Hazan, C. Jin, C. Musco, P. Netrapalli,
A. Sidford, et al. Faster eigenvector computation via
shift-and-invert preconditioning. In Proceedings of the
33rd International Conference on Machine Learning,
pages 2626–2634. PMLR, 2016.

A. Gittens, A. Devarakonda, E. Racah, M. Ringenburg,
L. Gerhardt, J. Kottalam, J. Liu, K. Maschhoff, S. Canon,
J. Chhugani, et al. Matrix factorizations at scale: A com-
parison of scientific data analytics in spark and C+MPI
using three case studies. In Proceedings of 2016 IEEE
International Conference on Big Data, pages 204–213.
IEEE, 2016.

G. H. Golub and C. F. Van Loan. Matrix Computations.
JHU Press, 2013.

A. Grammenos, R. Mendoza Smith, J. Crowcroft, and
C. Mascolo. Federated principal component analysis. In
Advances in Neural Information Processing Systems 33,
pages 6453–6464, 2020.

M. Gurbuzbalaban, A. Ozdaglar, and P. A. Parrilo. On the
convergence rate of incremental aggregated gradient al-
gorithms. SIAM Journal on Optimization, 27(2):1035–
1048, 2017.

H. Hotelling. Analysis of a complex of statistical variables
into principal components. Journal of Educational Psy-
chology, 24(6):417, 1933.

L.-K. Huang and S. Pan. Communication-efficient dis-
tributed PCA by Riemannian optimization. In Proceed-
ings of the 37th International Conference on Machine
Learning, pages 4465–4474. PMLR, 2020.

P. Jain, C. Jin, S. M. Kakade, P. Netrapalli, and A. Sidford.
Streaming PCA: Matching matrix bernstein and near-
optimal finite sample guarantees for Oja’s algorithm. In
Proceedings of the 29th Conference on Learning theory,
pages 1147–1164. PMLR, 2016.

R. Johnson and T. Zhang. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances
in Neural Information Processing Systems 26, 2013.

Xiaolu Wang∗, Yuchen Jiao†, Hoi-To Wai∗, Yuantao Gu†

I. M. Johnstone. On the distribution of the largest eigen-
value in principal components analysis. The Annals of
Statistics, 29(2):295–327, 2001.

C. Kim and D. Klabjan. Stochastic variance-reduced al-
gorithms for PCA with arbitrary mini-batch sizes. In
Proceedings of the 23rd International Conference on
Artificial Intelligence and Statistics, pages 4302–4312.
PMLR, 2020.

T. Krasulina. The method of stochastic approximation for
the determination of the least eigenvalue of a symmet-
rical matrix. USSR Computational Mathematics and
Mathematical Physics, 9(6):189–195, 1969.

X. Li, S. Wang, K. Chen, and Z. Zhang. Communication-
efficient distributed SVD via local power iterations. In
Proceedings of the 38th International Conference on
Machine Learning, pages 6504–6514. PMLR, 2021.

Z. Liu and V. Y. Tan. The informativeness of k-means for
learning mixture models. IEEE Transactions on Infor-
mation Theory, 65(11):7460–7479, 2019.

J. Ma and Y. Yuan. Dimension reduction of image deep
feature using PCA. Journal of Visual Communication
and Image Representation, 63:102578, 2019.

E. Oja. Simplified neuron model as a principal component
analyzer. Journal of Mathematical Biology, 15(3):267–
273, 1982.

N. Punnim, V. Saenpholphat, and S. Thaithae. Almost
Hamiltonian cubic graphs. International Journal of
Computer Science and Network Security, 7(1):83–86,
2007.

O. Shamir. A stochastic PCA and SVD algorithm with an
exponential convergence rate. In Proceedings of the 18th
International Conference on Machine Learning, pages
144–152. PMLR, 2015.

O. Shamir. Fast stochastic algorithms for SVD and PCA:
Convergence properties and convexity. In Proceedings of
the 33rd International Conference on Machine Learning,
pages 248–256. PMLR, 2016.

D. Spielman. Course Notes on Spectral Graph Theory.
2015. URL http://www.cs.yale.edu/homes/
spielman/561/.

N. D. Vanli, M. Gurbuzbalaban, and A. Ozdaglar. Global
convergence rate of proximal incremental aggregated
gradient methods. SIAM Journal on Optimization, 28
(2):1282–1300, 2018.

H.-T. Wai, A. Scaglione, J. Lafond, and E. Moulines. Fast
and privacy preserving distributed low-rank regression.
In Proceedings of the 2017 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, pages
4451–4455. IEEE, 2017.

H.-T. Wai, N. M. Freris, A. Nedic, and A. Scaglione.
SUCAG: Stochastic unbiased curvature-aided gradient

method for distributed optimization. In Proceedings of
the 2018 IEEE Conference on Decision and Control,
pages 1751–1756. IEEE, 2018.

H.-T. Wai, W. Shi, C. A. Uribe, A. Nedić, and A. Scaglione.
Accelerating incremental gradient optimization with cur-
vature information. Computational Optimization and
Applications, 76(2):347–380, 2020.

S. X. Wu, H.-T. Wai, L. Li, and A. Scaglione. A review of
distributed algorithms for principal component analysis.
Proceedings of the IEEE, 106(8):1321–1340, 2018.

P. Xu, B. He, C. De Sa, I. Mitliagkas, and C. Re. Accel-
erated stochastic power iteration. In Proceedings of the
21st International Conference on Artificial Intelligence
and Statistics, pages 58–67. PMLR, 2018a.

Z. Xu and P. Li. A comprehensively tight analysis of gradi-
ent descent for PCA. In Advances in Neural Information
Processing Systems 34, pages 21935–21946, 2021.

Z. Xu, X. Cao, and X. Gao. Convergence analysis of gradi-
ent descent for eigenvector computation. In Proceedings
of the 27th International Joint Conference on Artificial
Intelligence, pages 2933–2939, 2018b.

H. Ye and T. Zhang. DeEPCA: Decentralized exact PCA
with linear convergence rate. Journal of Machine Learn-
ing Research, 22(238):1–27, 2021.

http://www.cs.yale.edu/homes/spielman/561/
http://www.cs.yale.edu/homes/spielman/561/

Incremental Aggregated Riemannian Gradient Method for Distributed PCA

Appendix

A MISSING PROOFS

In this section, we provide the proofs that are missing in the main text. We use ‖ · ‖2 to denote either the `2-norm of a
vector or the spectral norm of a matrix.

A.1 Technical Lemmas

We introduce the following technical lemmas that will be used multiple times in our analysis.

Lemma 5. Suppose that Assumption 1 holds. Ifu,u′ ∈ Rd satisfy ‖u‖2 = ‖u′‖2 = 1 andB ∈ Rd×d satisfies ‖B‖2 ≤M
for some M > 0, then it holds that∥∥(I − uu>)Bu− (I − u′(u′)>)Bu′

∥∥
2
≤ 4M‖u− u′‖2.

Proof. We first note that∥∥uu>Bu− u′(u′)>Bu′∥∥
2

=
∥∥uu>B(u− u′) + uu>Bu′ − u′(u′)>Bu′

∥∥
2

=
∥∥uu>B(u− u′) + (u− u′)u>Bu′ + u′(u− u′)>Bu′

∥∥
2

≤ ‖uu>‖2‖B‖2 ‖u− u′‖2 + ‖u− u′‖2‖u‖2‖B‖2‖u′‖2 + ‖u′‖2‖u− u′‖2‖B‖2‖u′‖2
≤ 3M‖u− u′‖2,

where the second inequality is due to ‖u‖2 = ‖u′‖2 = 1, ‖uu>‖2 = ‖u‖22 = 1, and ‖B‖2 ≤M . This implies that∥∥(I − uu>)Bu− (I − u′(u′)>)Bu′
∥∥

2
≤ ‖B(u− u′)‖2 +

∥∥uu>Bu− u′(u′)>Bu′∥∥
2

≤ ‖B‖2‖u− u′‖2 +
∥∥uu>Bu− u′(u′)>Bu′∥∥

2

≤ 4M‖u− u′‖2,

as desired.

We then introduce the following lemma that will be used to bound the error norm ‖et‖2.

Lemma 6. Suppose that Assumption 1 holds and η < 1/(2R). Then, it holds that

‖wt+1 −wt‖2 ≤ 4η‖gt‖2.

Proof. We first upper bound ‖gt‖2 as

‖gt‖2 =

∥∥∥∥∥ 1

n

N∑
i=1

zi(w
τi(t))

∥∥∥∥∥
2

≤ 1

n

N∑
i=1

∥∥∥(I −wτi(t)(wτi(t))>
)
XiX

>
i w

τi(t)
∥∥∥

2

≤ 1

n

N∑
i=1

∥∥∥I −wτi(t)(wτi(t))>
∥∥∥

2

∥∥XiX
>
i

∥∥
2
‖wτi(t)‖2

≤ 1

n

N∑
i=1

niR = R, (22)

where the last inequality holds because
∥∥I −wτi(t)(wτi(t))>

∥∥
2

= 1,
∥∥XiX

>
i

∥∥
2
≤

∑ni
j=1 ‖x

j
i (x

j
i)
>‖2 =∑ni

j=1 ‖x
j
i‖22 ≤ niR by Assumption 1, and ‖wτi(t)‖22 = 1, the last equality is due to

∑N
i=1 ni = n. Then, it follows

that

‖wt+1 −wt‖2 =

∥∥∥∥ wt − ηgt

‖wt − ηgt‖2
−wt

∥∥∥∥
2

Xiaolu Wang∗, Yuchen Jiao†, Hoi-To Wai∗, Yuantao Gu†

=

∥∥∥∥(1

‖wt − ηgt‖2
− 1

)
wt +

ηgt

‖wt − ηgt‖2

∥∥∥∥
2

≤
(

1

‖wt − ηgt‖2
− 1

)
‖wt‖2 +

η‖gt‖2
‖wt − ηgt‖2

≤ 1

‖wt‖ − η‖gt‖2
− 1 +

η‖gt‖2
‖wt‖ − η‖gt‖2

=
2η‖gt‖2

1− η‖gt‖2
≤ 4η‖gt‖2,

where the last inequality holds because (22) and η ≤ 1/(2R) implies that 1/(1− η‖gt‖2) ≤ 2.

A.2 Proof of Lemma 1

Proof. By Assumption 2, we have
∑d
`=1〈wt,v`〉2 = wtV V >wt = ‖wt‖2 = 1, which implies that

d∑
`=2

〈wt,v`〉2 = 1− 〈wt,v1〉2 = Et.

This, together with the definition of at` for ` ∈ [d], gives

d∑
`=1

(at`)
2 =

(
1 + λ1η − η(wt)>Awt

)2 〈wt,v1〉2 +

d∑
`=2

(
1 + λ`η − η(wt)>Awt

)2 〈wt,v`〉2

≤
(
1 + λ1η − η(wt)>Awt

)2 〈wt,v1〉2 +
(
1 + λ2η − η(wt)>Awt

)2 d∑
`=2

〈wt,v`〉2

=
(
1 + λ1η − η(wt)>Awt

)2
(1− Et) +

(
1 + λ2η − η(wt)>Awt

)2 Et.
Therefore, we have

(at1)2∑d
`=1(at`)

2
≥

(
1 + λ1η − η(wt)>Awt

)2
(1− Et)

(1 + λ1η − η(wt)>Awt)
2

(1− Et) + (1 + λ2η − η(wt)>Awt)
2 Et

≥ 1− Et

1− Et +
(

1+λ2η−η(wt)>Awt

1+λ1η−η(wt)>Awt

)2

Et

≥ 1− Et
1− Et + 1+λ2η−η(wt)>Awt

1+λ1η−η(wt)>Awt Et
(23)

=
1− Et

1−
(

1− 1+λ2η−η(wt)>Awt

1+λ1η−η(wt)>Awt

)
Et
, (24)

where (23) holds because λ1 > λ2 implies that
(

1+λ2η−η(wt)>Awt

1+λ1η−η(wt)>Awt

)2

< 1+λ2η−η(wt)>Awt

1+λ1η−η(wt)>Awt < 1. Since(
1− 1+λ2η−η(wt)>Awt

1+λ1η−η(wt)>Awt

)
Et < 1, then applying inequality 1/(1− x) ≥ 1 + x for all x < 1 to (24) gives

(at1)2∑d
`=1(at`)

2
≥ (1− Et)

(
1 +

(
1− 1 + λ2η − η(wt)>Awt

1 + λ1η − η(wt)>Awt

)
Et
)

= (1− Et)
(

1 +
(λ1 − λ2)η

1 + λ1η − η(wt)>Awt
Et
)

= 1− Et +
(λ1 − λ2)η

1 + λ1η − η(wt)>Awt
Et −

(λ1 − λ2)η

1 + λ1η − η(wt)>Awt
E2
t . (25)

Since 0 ≤ (wt)>Awt ≤ λ1 due to the Courant-Fischer theorem, we have

1 ≤ 1 + ηλ1 − η(wt)>Awt ≤ 1 + ηλ1. (26)

Incremental Aggregated Riemannian Gradient Method for Distributed PCA

Combining (25) and (26) gives that∑d
`=2(at`)

2∑d
`=1(at`)

2
= 1− (at1)2∑d

`=1(at`)
2

≤ Et −
(λ1 − λ2)η

1 + λ1η − η(wt)>Awt
Et +

(λ1 − λ2)η

1 + λ1η − η(wt)>Awt
E2
t

≤ Et −
(λ1 − λ2)η

1 + λ1η
Et + (λ1 − λ2)ηE2

t

=

(
1− (λ1 − λ2)η

1 + λ1η
+ (λ1 − λ2)ηEt

)
Et

≤
(

1− 2(λ1 − λ2)η

3
+

(λ1 − λ2)η

2

)
Et (27)

=

(
1− ∆η

6

)
Et,

where (27) holds because Et = 1− 〈wt,v1〉2 ≤ 1/2 and 1 + λ1η ≤ 3/2 due to η < 1/(2λ1).

A.3 Proof of Lemma 2

Proof. We first note that

‖et‖2 = ‖ gradF(wt)− gt‖2

=

∥∥∥∥∥ 1

n

N∑
i=1

(
(I −wτi(t)(wτi(t))>)XiX

>
i w

τi(t) − (I −wt(wt)>)XiX
>
i w

t
)∥∥∥∥∥

2

≤ 1

n

N∑
i=1

∥∥∥(I −wτi(t)(wτi(t))>)XiX
>
i w

τi(t) − (I −wt(wt)>)XiX
>
i w

t
∥∥∥

2

≤ 4R

n

N∑
i=1

ni‖wτi(t) −wt‖2, (28)

where (28) follows from ‖XiX
>
i ‖2 ≤

∑ni
j=1 ‖x

j
i (x

j
i)
>‖2 = ni‖xji‖22 ≤ niR by Assumption 1 and then using Lemma 5.

Since wτi(t) −wt =
∑t−1
s=τi(t)

(ws+1 −ws), then repeatedly applying triangle inequality gives

‖et‖2 ≤
4R

n

N∑
i=1

ni

t−1∑
s=τi(t)

‖ws+1 −ws‖2

≤ 4R

n

N∑
i=1

ni

t−1∑
s=(t−T)+

‖ws+1 −ws‖2 (29)

≤ 4R

n

N∑
i=1

ni

t−1∑
s=(t−T)+

4η‖gs‖2 (30)

≤ 16Rη

t−1∑
s=(t−T)+

‖gs‖2, (31)

where (29) follows from Assumption 3, (30) is implied by η < 1/(2R) and Lemma 6, and (31) is due to
∑N
i=1 ni = n.

To proceed, we plug gt = gradF(wt) + et into (31) and using (28), we have

‖et‖2 ≤ 16Rη

t−1∑
s=(t−T)+

(‖ gradF(ws)‖2 + ‖es‖2)

Xiaolu Wang∗, Yuchen Jiao†, Hoi-To Wai∗, Yuantao Gu†

≤ 16Rη

t−1∑
s=(t−T)+

(
‖ gradF(ws)‖2 +

4R

n

N∑
i=1

ni‖wτi(s) −ws‖2

)
. (32)

Then, we need to upper bound the terms ‖ gradF(ws)‖2 and ‖wτi(s) − wt‖2 in (32). Since (I − v1v
>
1)Av1 = (I −

v1v
>
1)λ1v1 = 0 and ‖A‖2 = ‖ 1

n

∑N
i=1XiX

>
i ‖2 ≤ 1

n

∑N
i=1 niR = R by Assumption 1, then it holds for all s =

(t− T)+, . . . , t− 1 that

‖ gradF(ws)‖2 =
∥∥(I −ws(ws)>)Aws

∥∥
2

=
∥∥(I −ws(ws)>)Aws − (I − v1v

>
1)Av1

∥∥
2

≤ 4R‖ws − v1‖2 (33)

= 4R
√

2 (1− 〈ws,v1〉)

≤ 4
√

2R
√

1− 〈ws,v1〉2 (34)

= 4
√

2R
√
Es, (35)

where the (33) follows from Lemma 5 and (34) holds due to 〈wt,v1〉 ≤ 1. Moreover, it holds for all s = (t−T)+, . . . , t−1
that

‖wτi(s) −ws‖2 ≤ ‖wτi(s) − v1‖2 + ‖ws − v1‖2

=
√

2
(
1− 〈wτi(s),v1〉

)
+
√

2 (1− 〈ws,v1〉)

≤
√

2
(
1− 〈wτi(s),v1〉2

)
+
√

2 (1− 〈ws,v1〉2) (36)

=
√

2Eτi(s) +
√

2Es, (37)

where the (36) is due to 〈wτi(s),v1〉 ≤ 1 and 〈ws,v1〉 ≤ 1.

Plugging (35) and (37) back into (32) gives

‖et‖2 ≤ 16Rη

t−1∑
s=(t−T)+

(
4
√

2R
√
Es +

4
√

2R

n

N∑
i=1

ni

(√
Eτi(s) +

√
Es
))

≤ 64
√

2R2η

 t−1∑
s=(t−T)+

√
Es +

t−1∑
s=(t−T)+

1

n

N∑
i=1

ni

(√
Eτi(s) +

√
Es
)

≤ 64
√

2R2η

t−1∑
s=(t−T)+

(√
Es +

1

n

N∑
i=1

ni

(
max

1≤i≤n

√
Eτi(s) +

√
Es
))

≤ 64
√

2R2η

t−1∑
s=(t−T)+

(√
Es +

2

n

N∑
i=1

ni max
1≤i≤n

√
Eτi(s)

)

≤ 64
√

2R2η

t−1∑
s=(t−T)+

(√
Es + 2 max

(s−T)+≤j≤s

√
Ej
)

(38)

≤ 192
√

2R2η

t−1∑
s=(t−T)+

max
(s−T)+≤j≤s

√
Ej

≤ C1Tη max
(t−2T)+≤j≤t

√
Ej , (39)

where (38) is due to
∑N
i=1 ni = n and (39) holds by setting C1 := 192

√
2R2.

Incremental Aggregated Riemannian Gradient Method for Distributed PCA

A.4 Proof of Lemma 3

Proof. By (26), we have

d∑
`=1

(at`)
2 ≥ (at1)2 =

(
1 + λ1η − η(wt)>Awt

)2 〈wt,v1〉2 ≥ 〈wt,v1〉2 ≥
1

2
. (40)

Since η < 1/(2R), then using (18) in Lemma 2 and the fact that Eτ ≤ 1 for all τ = 0, . . . , t, we have

d∑
`=1

(
ζt`
)2

=

d∑
`=1

η2
〈
et,v`

〉2
= η2(et)>

(
d∑
`=1

v`v
>
`

)
et

= η2‖et‖22

≤ η2

(
C1Tη max

(t−2T)+≤j≤t

√
Ej
)2

≤ C2
1T

2η4 max
(t−2T)+≤j≤t

Ej

≤ C2
1T

2η4. (41)

Then, combining (40) and (41) gives

1

1 + β
− 1

β

∑d
`=1 (ζt`)

2∑d
`=1(at`)

2
≥ 1

1 + β
− 1

β
2C2

1T
2η4

≥ 1− β − 2C2
1T

2

β
η4,

where the second inequality is due to 1/(1 + β) ≥ 1− β for all β > 0. This proves (19).

Then, it suffices to upper bound
∑d
`=2 2at`ζ

t
` +

∑d
`=2 (ζt`)

2 and lower bound
∑d
`=1 (at` + ζt`)

2. By (26), we have

1− Et ≤ (at1)2 =
(
1 + λ1η − η(wt)>Awt

)2 〈wt,v1〉2 ≤ 1 + λ1η. (42)

Besides, it follows from (18) in Lemma 2 that

|ζt1| =
∣∣η 〈et,v1

〉∣∣ ≤ C1Tη
2 max

(t−2T)+≤j≤t

√
Ej . (43)

Combining the second inequality in (42) and (43) gives∣∣2at1ζt1∣∣ ≤ 2 (1 + λ1η) 〈wt,v1〉C1Tη
2 max

(t−2T)+≤j≤t

√
Ej

= 2C1 (1 + λ1η) η2
√

1− Et max
(t−2T)+≤j≤t

√
Ej . (44)

Combining the first inequality in (42) and (44), we have

d∑
`=1

(
at` + ζt`

)2 ≥ (at1)2 + 2at1ζ
t
1

≥ 1− Et − 2C1 (1 + λ1η) η2
√

1− Et max
(t−2T)+≤j≤t

√
Ej

≥ 1− Et − 3C1η
2
√

1− Ej max
(t−2T)+≤j≤t

√
Eit (45)

≥ 1− 1

2
− 3C1η

2

2
(46)

Xiaolu Wang∗, Yuchen Jiao†, Hoi-To Wai∗, Yuantao Gu†

≥ 1

4
, (47)

where (45) follows from η < 1/(2λ1) implies that 1 + λ1η ≤ 3/2, (46) follows from 0 ≤ E0, . . . , Et ≤ 1/2 by the
induction hypothesis (7), and (47) is implied by η < 1/

√
6C1. Moreover, we have

d∑
`=2

(
ζt`
)2 ≤ d∑

`=1

(
ζt`
)2

=

d∑
`=1

η2
〈
et,v`

〉2
= η2(et)>V V >et = η2‖et‖22. (48)

Combining (47) and (48), we obtain ∑d
`=2 (ζt`)

2∑d
`=1 (at` + ζt`)

2
≤ 4η2‖et‖22,

which proves (20).

A.5 Proof of Lemma 4

Proof. Since η < min{1/(2λ1), 1/
√

6C1}, then incorporating (15) in Lemma 1, and (19) and (20) in Lemma 3 into (14),
we obtain

√
Et+1 ≤

√√√√ 1− ∆
6 η

1− β − 2C2
1T

2

β η4

√
Et + 2η‖et‖2 (49)

for all β > 0. Taking β = αη for some α > 0 gives

√
Et+1 ≤

√√√√ 1− ∆
6 η

1− αη − 2C2
1T

2

α η3

√
Et + 2η‖et‖2. (50)

Besides, it holds for all α < λ1−λ2

12 that

η ≤ h(α) :=

√(
∆
12 − α

)
α

2C2
1T

2

⇐⇒ 1− ∆

6
η ≤ 1−

(
∆

12
+ α

)
η − 2C2

1T
2

α
η3

=⇒ 1− ∆

6
η ≤

(
1− αη − 2C2

1T
2

α
η3

)(
1− ∆

12
η

)
. (51)

It is easy to verify that

max
α>0

h(α) = h

(
∆

24

)
=

∆

24
√

2C1

.

Since η ≤ ∆
24
√

2C1
, then taking α = ∆

24 , it follows from (51) that

1− ∆
6 η

1− αη − 2C2
1T

2

α η3
≤ 1− ∆

12
η. (52)

Hence, plugging (52) back into (49) and using the fact that
√

1− x ≤ 1− x/2 for all x ≤ 1 give

√
Et+1 ≤

√
1− ∆

12
η ·
√
Et + 2η‖et‖2

≤
(

1− ∆

24
η

)√
Et + 2η‖et‖2

Incremental Aggregated Riemannian Gradient Method for Distributed PCA

=

(
1− ∆

48
η

)√
Et −

∆

48
η
√
Et + 2η‖et‖2. (53)

It follows from (35) and (10) that√
Et ≥

1

4
√

2R
‖ gradF(wt)‖2 =

1

4
√

2R
‖gt − et‖2 ≥

1

4
√

2R

(
‖gt‖2 − ‖et‖2

)
.

Plugging this back into (53) and using inequality (31) give√
Et+1 ≤

(
1− ∆

48
η

)√
Et −

∆

48
η

1

4
√

2R

(
‖gt‖2 − ‖et‖2

)
+ 2η‖et‖2

=

(
1− ∆

48
η

)√
Et −

∆

192
√

2R
η‖gt‖2 +

(
2 +

∆

192
√

2R

)
η‖et‖2

≤
(

1− ∆

48
η

)√
Et −

∆

192
√

2R
η‖gt‖2 +

(
32R+

∆

12
√

2

)
η2

t∑
s=(t−T)+

‖gs‖2, (54)

as desired.

A.6 Proof of Theorem 1

To prove Theorem 1, we use the following result provided in Aytekin et al. (2016) to solve the recurrence (21) of the
sequence {Et}t∈N in Lemma 4.

Lemma 7. Let {Vt}t∈N and {Wt}t∈N be sequences of non-negative real numbers satisfying

Vt+1 ≤ aVt − bWt + c

t∑
s=(t−T0)+

Ws, t ∈ N,

for some real numbers a ∈ (0, 1) and b, c ≥ 0 and some integer T0 ≥ 0. Assume that the following holds:

c

1− a
1− aT0+1

aT0
≤ b.

Then, Vt ≤ atV0 for all t ∈ N.

To apply Lemma 7, we let a = 1− ∆
48η, b = ∆

192
√

2R
η, and c =

(
32R+ ∆

12
√

2

)
η2. Then, we have

c

1− a
1− aT+1

aT
≤ b (55)

⇐⇒

(
32R+ ∆

12
√

2

)
η2

∆
48η

1−
(
1− ∆

48η
)T+1(

1− ∆
48η
)T ≤ ∆

192
√

2R
η

⇐⇒
1

(1− ∆
48η)

T+1 − 1

1
1− ∆

48η

≤ ∆2

9216
√

2R

1

32R+ ∆
12
√

2

⇐⇒ 1(
1− ∆

48η
)T+1

− 1 ≤ 1

1− ∆
48η

∆2

C2
, (56)

where C2 = 9216
√

2R
(

32R+ ∆
12
√

2

)
. Since (1 + x)α ≤ eαx ≤ 1 + 2αx for α ∈ R and x ≤ 1/α, then we have

1(
1− ∆

48η
)T+1

− 1 =

(
1 +

∆
48η

1− ∆
48η

)T+1

− 1

≤ 2(T + 1)
∆
48η

1− ∆
48η

.

Xiaolu Wang∗, Yuchen Jiao†, Hoi-To Wai∗, Yuantao Gu†

Hence, to let (56) hold, it suffices to let

2(T + 1)
∆
48η

1− ∆
48η
≤ 1

1− ∆
48η

∆2

C2

⇐⇒ η ≤ 24∆

C2(T + 1)
.

Since
√

6C1 > 2R, we have

η ≤ min

{
1

2λ1
,

1√
6C1

,
∆

24
√

2C1

,
24∆

C2(T + 1)
,

47

∆

}
= min

{
1

2R
,

1

2λ1
,

1√
6C1

,
∆

24
√

2C1

,
24∆

C2(T + 1)
,

47

∆

}
.

Thus, the recurrence (21) and condition (55) hold. Then, it follows from Lemma 7 that

√
Et+1 ≤

(
1− ∆

48
η

)t+1√
E0 ≤

√
E0 ≤

1√
2
,

which further implies that

〈wt+1,v1〉 =
√

1− Et+1 ≥
√

1− 1

2
=

√
2

2
.

This completes the proof of the induction step (8), and thus Theorem 1.

