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Abstract

Variational Inference (VI) is an attractive alter-
native to Markov Chain Monte Carlo (MCMC)
due to its computational efficiency in the case of
large datasets and/or complex models with high-
dimensional parameters. However, evaluating the
accuracy of variational approximations remains a
challenge. Existing methods characterize the qual-
ity of the whole variational distribution, which
is almost always poor in realistic applications,
even if specific posterior functionals such as the
component-wise means or variances are accurate.
Hence, these diagnostics are of practical value
only in limited circumstances. To address this is-
sue, we propose the TArgeted Diagnostic for Dis-
tribution Approximation Accuracy (TADDAA),
which uses many short parallel MCMC chains to
obtain lower bounds on the error of each posterior
functional of interest. We also develop a reliabil-
ity check for TADDAA to determine when the
lower bounds should not be trusted. Numerical
experiments validate the practical utility and com-
putational efficiency of our approach on a range
of synthetic distributions and real-data examples,
including sparse logistic regression and Bayesian
neural network models.

1 INTRODUCTION

Bayesian inference is widely used due to its flexibility to
handle arbitrary models, the desirable decision-theoretic
properties of the provided point estimates, and its coherent
uncertainty quantification (Robert et al., 2007). However,
posterior point estimates and uncertainties usually cannot
be calculated analytically, so in practice users of Bayesian
methods rely on approximation algorithms. Variational in-
ference (VI) has become an increasingly popular alternative
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to Markov chain Monte Carlo (MCMC) due to its computa-
tional efficiency and the availability of black-box versions
that can be applied to nearly arbitrary models (Jordan et al.,
1999; Wainwright et al., 2008; Hoffman et al., 2013; Kingma
and Welling, 2013; Blei et al., 2017; Kucukelbir et al., 2017;
Agrawal et al., 2020).

The computational efficiency of variational inference arises
from optimizing a divergence between the exact posterior
and a distribution constrained to a tractable approximating
family. The trade-off is that even the optimal distribution
within this family may be a poor approximation to the poste-
rior, so in general there is no guarantee that variational point
estimates and uncertainties will be accurate. Therefore, it is
important to develop diagnostic methods that quantify the
error introduced by using a variational approximation. How-
ever, existing diagnostic methods either lack interpretabil-
ity (Gorham and Mackey, 2017, 2015; Wada and Fujisaki,
2015; Chee and Toulis, 2018; Burda et al., 2015; Domke
and Sheldon, 2018), or do not provide useful information
when the parameter space is high-dimensional (Yao et al.,
2018; Xing et al., 2020; Huggins et al., 2020). For example,
Yao et al. (2018) propose using Pareto smoothed impor-
tance sampling (PSIS) k, which essentially quantifies how
effective the approximation is as a proposal distribution for
importance sampling — not whether it will provide good
approximations to specific quantities of interest. The ker-
nel Stein discrepancy (KSD; Gorham and Mackey, 2017,
2015) can be used to evaluate the discrepancy between the
approximate and the true distribution but its value is not
readily interpretable and depends on a distant dissipativ-
ity condition that is not always easy to verify in practice.
VI quality can also be accessed by monitoring the running
average of changes in the estimated objective, which is usu-
ally the evidence lower bound (ELBO) (Wada and Fujisaki,
2015; Chee and Toulis, 2018; Burda et al., 2015; Domke and
Sheldon, 2018). However, like the KSD, the ELBO lacks
interpretability because it includes an unknown constant
offset (the marginal likelihood), which is hard to estimate
well unless the approximation is very accurate. Moreover,
all these methods attempt to characterize the accuracy of
the full variational distribution, which in practice is usually
poor even if specific summaries such as posterior means,
variances, or credible intervals are accurate. Therefore, in
practice, they provide limited useful diagnostic information
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in the types of complex models where variational methods
offer the greatest computational savings.

In this paper, we propose a diagnostic that is applicable to
high-dimensional parameter spaces and can provide lower
bounds on the error of specific posterior summaries, includ-
ing marginal means and covariances. Our approach is to
run many short MCMC chains with stationary distribution
equal to the posterior . These chains are initialized with
independent samples from a posterior approximation 7 (%),
which, after T iterations, results in an improved empiri-
cal distribution 7#(T) that is closer to 7. If #(9) is a poor
approximation to 7, then the improved distribution 7(7)
obtained using MCMC can be significantly different from
ﬁ'(o); otherwise, the distribution will not shift. Thus, we can
obtain lower bounds on the error of a posterior summary
by computing confidence intervals for how much that sum-
mary differs under #(?) and #(™). Our approach might fail
to provide meaningful results, however, if the Markov ker-
nel used mixes poorly. To ameliorate this issue, we jointly
adapt the Markov chains at each iteration. We show that
if the number of chains is large, they remain essentially
independent despite the joint adaptation procedure; hence,
our confidence intervals remain valid. We also propose a
simple correlation-based check that can detect poorly mix-
ing chains, and hence warn the user against trusting the
diagnostic. Numerical experiments validate the practical
utility and computational efficiency of our approach on a
range of synthetic distributions and real-data examples.'

2 PRELIMINARIES

Modern Bayesian statistics relies heavily on models with
difficult-to-compute posterior distributions, and hence re-
quires general-purpose algorithms to approximate expec-
tations with respect to those distributions. Throughout we
abuse notation and use 7 to denote the posterior distribution
and the corresponding density.

Markov Chain Monte Carlo. Markov chain Monte Carlo
(MCMC) sampling methods provide a general-purpose
framework for obtaining samples that are asymptotically
exact (in runtime). To construct a Markov kernel with the
desired stationary distribution, a standard approach is to
correct an arbitrary proposal kernel using the Metropolis—
Hastings (MH) accept-reject procedure (Metropolis et al.,
1953). For z € RY, let Qy(z,dy) denote the proposal
kernel parameterized by v with current state = and corre-
sponding density g, (x,y). A proposed state Y ~ Qy(z, -)
is accepted with probability

a<x,y>:mm{1,W}.

m(2)qy(z,Y)
'A Python implementation of TADDAA and code to repro-

duce all of our experiments is available at https://github.com/
TARPS-group/TADDAA.

The Metropolis—Hastings Markov transition kernel is there-
fore given by

Py(z,dy) = oz, y)Qu (z, dy) + 7y ()3, (dy),

where 7y (z) == 1 — [ a(z,y)Qy(x,dy) is the rejection
probability and §,, is a Dirac measure at x.

Variational Inference. Variational inference (VI) pro-
vides a potentially faster alternative to MCMC when models
are complex and/or the dataset size is large (Blei et al., 2017).
Variational inference aims to minimize some measure of
discrepancy D, (+) over a tractable family Q of potential
approximating distributions (Wainwright et al., 2008), re-
sulting in a posterior approximation given by

7 =argminD, ().
§eQ

We will focus on the Kullback—Leibler (KL) divergence

Do) = KL( | )= [ log (jf) a

as the discrepancy since it is the most widely used: the un-
known marginal likelihood does not affect the optimization,
computing gradients requires estimating expectations only
with respect to distribution within a tractable family O, and
optimization is relatively stable (Blei et al., 2017).

Alternative Non-exact Approximation Methods. While
our experiments focus on variational inference, numerous
other non-exact posterior approximation methods are widely
used in practice such as expectation-propagation (Minka,
2001; Bishop, 2006), the Laplace approximation (Gelman
et al., 1995; Bishop, 2006), and the iterated nested Laplace
approximation (Rue et al., 2009; Gomez-Rubio, 2020). Our
diagnostic applies equally well to all of these methods.

3 AN MCMC-BASED ACCURACY
DIAGNOSTIC

Suppose we have an approximation 7(°) to the posterior
density 7. Given a sample X (*) ~ #(®) we could improve
it by applying a Markov kernel Py (x,dy) with invariant
distribution 7, resulting in a sample X (1) ~ Py (X .)
with a distribution 7(!) that is typically closer to 7 than 7 (%)
if 7(%) = 7. Continuing to run the Markov chain for 7 total
steps results in a sample X (7) with distribution #(7) that,
when 7#(%) is a poor approximation to 7, can be substantially
closer to 7; see Fig. 1 for an illustration. More specifically,
consider some posterior functional of interest such as a
mean or variance, which we generically denote by F. For
example, F(7) = [ @;m(dz) would be the mean of the ith
component. If the initial approximation error £(9) (F) :=
F (7)) — F(n) is large, then a well-chosen Markov kernel
will result in the improved approximation error &(7) (F):=
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Figure 1: A cartoon plot for MCMC-based accuracy diag-
nostic. Even if the Markov chains do not reach the stationary
distribution, they can provide a lower bound on error in the
posterior approximation.

F(#™M) — F(r) being substantially smaller. In this case,
| F(#(0)) — F(#(T))| measures the decrease in the initial
approximation error, and hence provides a lower bound on
|e(®)(F)|. Tf, on the other hand, the initial approximation
error is small, then |F(7#(?)) — F(7#(T))| should remain
small as well.

While in principle the just-described approach is appeal-
ing, there are two immediate problems. First, we do not
have direct access to #(T). Second, Py(x,dy) may not
be particularly efficient unless the proposal parameter 1)
is well-chosen — which is nearly impossible to do a pri-
ori. To address both of these problems, we propose to
run N Markov chains in parallel and, following standard
MCMC practice, adapt the proposal parameter at each
iteration (Andrieu and Thoms, 2008). Denote the state
of the jth chain after iteration ¢ by X J@ and the pro-
posal parameter used at iteration t by ¥~V We write
Xft])\, = (XJ@)?’:I and similarly for X;l:t), Xl(:lj\f), and
other quantities. In the case of a Metropolis—Hastings ker-
nel, at iteration ¢, for each j € {1,..., N}, we generate
proposals Yj(tﬂ) ~ Q) (Xj(vt)7 -), then accept or reject the

proposal to obtain X j(-tﬂ). Next, we can use inter-chain

adaptation (INCA; Craiu et al., 2009), which uses all the
samples available up to the current time to update the pro-
posal parameter to ¢y(+1) = H (yp(1:t), x (HIFD) y (LD
We call H the adaptation function.

Finally, we can use the N samples from iteration 7'
to construct a (1 — «)-confidence interval (¢z,ux) for
F(#©) — F(#(™), and hence a high-confidence lower
bound on | F(#(®))— F ()|, if the following condition holds:

Condition 1. The map t — | (F)| is non-increasing and
the sign of €®)(F) does not depend on t.

Algorithm 1 TADDAA

Input: log density of the target 7,
approximating distribution 7 (),
functional of interest F,
proposal kernel Q. (z, dy) [Section 3.1],
initial proposal parameter 1(°) [Section 3.1],
number of Markov chains N [Eq. (6)],
number of iterations 7" [Eq. (7) or (8)]

X~ 7O forj=1,...,N
2:. fort =0 to T —1do
3: forj=1 to Ndo
4: Yj(tH) ~ Q) (Xj('t)7 )

t t t

5: a;):a(Xj()J/j())
6 (D) _ Yj(t), with probability O‘S‘t)

' J X J(t), with probability 1 — a§t)
7: end for e .
8 Pt = H(pt0, XYY vTTY) (g (5))

9: end for
10: Use 7#(@ (or Xl(:l])v) and XfT]\), to compute a (1 — a)-
confidence interval ({5, uz) for F(7(0)) — F(7(T))
11: Compute correlation check p2,,_ (T)) to verify reliability
of the diagnostic [Section 3.4]
12: return By as defined in Eq. (1) and p2,, (T)

Under Condition 1, with probability 1 — «,
sOF) z |FED) = FED)]

0 iff]: S 0 S ur
min(|¢x|,|ur|) otherwise (1)

=1 {O ¢ (f];U]:)} X mln(|f}‘|7 |U]:|)
= B]:.

Algorithm 1 summarizes the key steps of our proposed 7Ar-
geted Diagnostic for Distribution Approximation Accuracy
(TADDAA) for computing the error lower bound Br. Ref-
erences to specific implementation recommendations (all
described and justified in detail below) are in magenta.

Remark 3.1. While in general we expect Condition I to
hold, it is possible that it could be violated for target distribu-
tions with complex geometries. Although we only consider
reversible Markov kernels, it is plausible that non-reversible
Markov kernels could also lead to violations. N

We will construct confidence intervals under the following
condition.
Condition 2. The elements of XI(TA), are identically dis-

tributed, have finite second moments, and are pairwise inde-
pendent.

We will focus on diagnosing the accuracy of means, vari-
ances, and quantiles. But TADDAA can be straight-
forwardly applied to other functionals of interest. For
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t € {0,...,T}, define the mean vector u) =

R ,ufit))T := Ex.+®»(X), and marginal standard

deviations ogt) i=stdevy s (X;) fori=1,...,d.

Marginal mean. For the mean functional Fi_, (7) :=

pi(m) := [ x; w(dz), under Condition 2, a (1 — «) confi-
() _(0)

dence interval for ;" * — 1, is given by (Mendenhall et al.,
2012)
=(T) (0) 5"
T, o E—=tn-1(1—/2), 2
i My N N 1( / ) (2

() _
1 Zjvzl (xg? —z{)2 } /2 is the sample standard de-
viation, and ¢ y_1(q) is the ¢ quantile of a ¢ distribution with
N — 1 degrees of freedom.

(T N (D).
where .1‘5 ) = + 2ie .1‘§ i) is the sample mean, s

variance. For the variance functional
:= Varx.r(X;), under Condition 2, a

Marginal
Fia(m) 1= 07
1 — a) confidence interval for 21og(c'? /0" is given
( g(o; /o, g

by (Mendenhall et al., 2012)
(N—1)s{") (N—1)sD
[log ((050))2X?V_1(1—a/2) o |\ T )|

3)

where x3,_;(g) is the ¢ quantile of a x? distribution with
N — 1 degrees of freedom.

Marginal quantile. For the p-quantile functional

Fi(m) = Q) () :=inf{qg € R: Pxr(X; < q) > p}, 4

under Condition 2, a (1 — «) confidence interval for
QL(#™)) — Qi (7(©) is given by (Hahn and Meeker, 2011)

(T) i (~(0 (T) i 1 ~(0
[X(l),i — QA ), Xy, — Q)|
(1) AP

where X(l)ﬂ. < X(2)71. <
statistics of the samples Xg\),, | = B(a/2,N,p), u =

B(l1—«/2,N,p)+1,and B(q, N, p) is the ¢ quantile of a
binomial distribution with parameters N and p.

< X ((f,))l are the order

While we have now described the key components of TAD-
DAA, a practical and reliable implementation requires ad-
dressing a number of issues:

1. Proposal kernel and adaptation scheme. The choice
of MCMC proposal kernel and adaptation function
H can have a dramatic effect on sampling efficiency
and thus the accuracy of TADDAA. We propose to
use gradient-based proposals that scale well to high-
dimensional problems and focus on adapting the step
size parameter of these algorithms. (Section 3.1)

2. Inter-chain dependence. INCA introduces depen-
dence between the Markov chains, which could invali-
date the confidence intervals. However, we show that
the samples from the Markov chains at any fixed iter-
ation satisfy a propagation-of-chaos property, which
implies that the chains are asymptotically independent
(in the limit N — ©0), so an asymptotic version of
Condition 2 still holds. (Section 3.2)

3. Choice of T"and N. The length of each Markov chain
T and the number of Markov chains /N must be cho-
sen such that the diagnostic is computationally effi-
cient while still (i) having T' large enough that the
improved approximation 7#(7) becomes sufficiently dif-
ferent from the initial approximation 7(®) and (ii) hav-
ing NN large enough that the confidence intervals are
sufficiently small to provide meaningful diagnostic in-
formation. (Section 3.3)

4. Checking the reliability of the diagnostic. Since it is
possible the proposal kernel will be inefficient despite
adaptation, we propose a correlation-based reliability
check for our diagnostic. (Section 3.4)

3.1 Markov Kernels and Adaptation

We consider four possible Markov kernels: random
walk Metropolis—Hastings (RWMH), Metropolis-adjusted
Langevin algorithm (MALA), the Barker algorithm
(Barker), and Hamiltonian Monte Carlo (HMC), which we
describe in detail in Appendix A. All four kernels rely on
a step-size parameter h. The latter three algorithms exploit
gradient information about log 7, and thus have superior
efficiency when d is large. High-dimensional sampling
efficiency can be formalized using the theory of optimal
scaling (Roberts and Rosenthal, 2001). To guarantee sam-
pling efficiency and obtain well-behaved limiting behavior,
optimal scaling results show that step size h needs to scale
as ©(d~7), which results in a mixing time (i.e., number
of iterations to obtain an effectively independent sample)
of ©(d”). Hence, the smaller ~y is the more efficient the
kernel. The values of ~y for the kernels we consider are 1 for
RWMH (Gelman et al., 1997), 1/3 for MALA (Roberts and
Rosenthal, 1998), 1/3 for Barker (Livingstone and Zanella,
2022), and 1/4 for HMC (Beskos et al., 2013). Optimal scal-
ing theory also provides the optimal asymptotic acceptance
rates (c,) for each kernel, which are 0.234 for RWMH, 0.4
for Barker, 0.574 for MALA, and 0.651 for HMC. While
HMC has the best scaling with v = 1/4, the efficiency of
Barker is more robust to the precise step size (and hence
precise acceptance rate) (Livingstone and Zanella, 2022),
which makes it attractive for our use-case where it may not
be possible to obtain the optimal step size since adaptation
occurs over a relatively small number of iterations 7.

We adapt the step size so that the acceptance rate approaches
the optimal asymptotic acceptance rate &, (Andrieu and
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Thoms, 2008). Let a® := N-! Zj.v:l a§-t) denote the
average acceptance probability at iteration . Letting () =
log (") be the log of the step size, the adaptation function
is given by

H@ X viw) 5)

_ ® 1

T Vi+1
Compared with running many parallel chains independent of
each other, using a joint adaptation scheme improves adap-
tion speed and ensures the samples at each iteration follow
the same distribution (Rosenthal, 2000; Solonen et al., 2012).
The sequence of proposal parameters (w(t))fio converge
under the standard Robbins—Monro conditions (see Andrieu
and Thoms (2008, Section 4) for a related discussion). In
order to prove convergence to the stationary distribution of
the resulting Markov chain, one needs to verify an addi-
tional assumption, such as uniform ergodicity Roberts and
Rosenthal (2007, Theorem 1) or one of the weaker sufficient
conditions proposed, for instance in Atchadé and Rosenthal
(2005, Assumption 3.1) or Green et al. (2015, Section 2.4).

(@ —a,).

Following Roberts and Rosenthal (1998), we initialize the
step sizes to h(®) = 2.42/d for RWMH, and h(®) =
2.42/d"/3 for MALA and Barker, and h(®) = 2.42/d'/*
for HMC. All of the Markov kernels we consider can make
use of a pre-conditioning matrix, which is beneficial when
components have different scales (Roy and Zhang, 2022;
Stramer and Roberts, 2007). While it is possible to adapt
the pre-conditioning matrix in addition to the step size in
practice we found it sufficed to keep the pre-conditioning
matrix fixed and equal to the covariance of 7#(?). If the co-
variance is not available in closed form we use the sample

covariance of the samples X £01)V

3.2 Asymptotic Independence of Adapted Markov
Chains

Due to the use of adaptation, the Markov chains X ftj)v are

not independent once ¢ > 1, so the final samples X fj;\)[ vio-
late the independence requirement of Condition 2. However,
we can instead ensure that the Markov chains are asymptoti-

cally independent in the following sense:

Definition 3.2. Let XN,I:N = (XN,17 R 7XN,N) de-
note a random vector. The sequence of random vectors
{Xn~n1:N}F_, is D-chaotic if, for any v € N and any
bounded continuous real-valued functions g1, g2, - - - , Gr

Jim Ex, {ng,- (XNJ;)} = H/gi(x)ﬁ(dx)-

In particular, we show that the Markov chains are chaotic
after any fixed number of iterations.

Theorem 3.3. Under Assumption 3.4 (given below), for any
t € N, there exists a probability distribution 7" such that

the sequence {X 1(tz)v}?:1 is v®)-chaotic.

The proof can be found in Appendix B. Crucially, the asymp-
totics we require for Theorem 3.3 are in the number of
Markov chains N, not the number of iterations 7". Thus, for
any fixed T', Condition 2 holds asymptotically in N.

To write our assumptions, note that if we treat the proposed
states Y1(:t12/ as additional random variables, we can write the

MCMC update as
(t+1) 1 (+1) (1) (1) 5
(Xj 7Yj )NT(X]' ij ,hN,',')

for an appropriate Markov kernel T'(x,y, h,dz’,dy’),
where £ is the step size.

Assumption 3.4. (a) The proposal probability density
an(y, x) is continuous with respect to (z,y, h).

(b) The target distribution has a continuous probability
density function m(-).

(c) Samples generated from the Markov transition ker-
nel T(x,y,h,-,) satisfy IE||XJ(-t)||2 < oo and
I[‘EHY]-(t)H2 < oo foranyt € N.

These conditions are all quite mild. All of the proposals
used in our experiments satisfy Assumption 3.4.(a). As-
sumption 3.4.(b) is required to use all three gradient-based
proposals (MALA, Barker, and HMC). Assumption 3.4.(c)
just requires that for any fixed time ¢ € N, the generated
samples have finite second moment.

Remark 3.5. Theorem 3.3 could be generalized to targets
with discrete components if the proposal distribution is ab-
solutely continuous with respect to an appropriate reference
measure and the topology of the space on which the target is
defined respects the discrete and continuous components of
the target. (For example, if the target distribution is defined
on R and has an atom at zero, then {0} should be an open
set.) In that case, Definition 3.2 would need to be adapted in
order to account for the change in the underlying topology,
and so will the details of the proof of Theorem 3.3. N

3.3 Length and Number of Markov Chains

Having established the validity of Algorithm 1, we now
turn to the question of how to ensure the computational cost
is not prohibitive and the diagnostic is accurate. Given a
target distribution and Markov kernel, the computational
cost is determined by the number of Markov chains [V and
iterations 7'. We address each in turn.

Number of Markov Chains. The number of Markov
chains must be sufficiently large that the confidence in-
tervals are small enough to detect meaningful errors. Our



A Targeted Accuracy Diagnostic for Variational Approximations

approach is to choose N to be the smallest value that sat-
isfies the user’s tolerance level for the margin of error. In
the case of mean estimation, it follows from Eq. (2) that the
error for estimating NgT) is given by t y_1(a/2) ng) /VN'.
Similarly, the log variance error can also be determined by
Eq. (3). For the mean we use the relative error normalized
by the standard deviation, as this accounts for the relevant
scale of the error. Hence, if the user’s tolerance iS dypean fOr
relative mean error and d,,, for log variance error?, then the
required sample size (number of Markov chains) is

N = max (Nmean, Nvariance) ) (©)
where

Npean := min {n eN: % < 5mean} ,

. 2 (1—a/2
Nyasiance := min {n eN: 10g (%) < 6var} .

Number of Iterations. The number of iterations has to
be large enough that the improved distribution 7(7) is suf-
ficiently different from a poor approximating distribution
7). As discussed earlier, the theory of optimal scaling
shows that the Markov chain requires ©(d”) iterations to
mix. Thus, we propose to scale 7" with respect to dimension
d in the same manner. For RWMH?, MALA, and Barker,
we take

T = |ed"?], ©)
while for HMC we take
T = |cd'/*/L], (8)

where L is the number of leapfrog steps in HMC. Scaling
by L is necessary for HMC to ensure 7" accounts for the L
gradient evaluations required per iteration. All other meth-
ods require O or 1 gradient evaluation per iteration. Based
on numerical results we suggest ¢ = 50. In Appendix C.1,
we also run ablation studies on how the diagnostic result
(several types of lower bound) would change with 7', which
shows that Eq. (7) and Eq. (8) are reasonable.

The results of Bhatia et al. (2022) suggest our choice of T’
will ensure the cost of TADDAA will not be too large com-
pared to the cost of using black-box variational inference
algorithms. Specifically, Bhatia et al. (2022, Theorem 1)
shows that the number of gradient evaluations of stochas-
tic optimization needed to obtain a constant optimization
error scales as d'/3. Hence, the computational cost (as mea-
sured by number of gradient evaluations) is ©(d'/3) for VI,
©(d"/?) for MALA and Barker, and ©(d'/*) for HMC. We
verify the cost of TADDAA is not prohibitive in practice in
our numerical experiments.

“The width of the quantile confidence interval is sample depen-
dent, so we do not set a tolerance level for the quantile error.

3Based on optimal scaling behavior of RWMH, Eq. (7) may not
be large enough to guarantee significant change in the distribution.
So, we do not recommend RWMH.

Remark 3.6. TADDAA is essentially running MCMC only
for a burn-in period. Crucially, the diagnostic remains valid
and useful even if the chains remain far from stationarity
as long as #T) is closer to stationarity (i.e., it improves the
approximating distribution () somewhat). In challenging
scenarios where moving closer to stationarity is hard even
with best practices (e.g., INCA and preconditioning), the
TADDAA error lower bounds can be close to zero, leading
to uninformative diagnostic results. See Section 4.3 for a
concrete example. We note also that there is a large litera-
ture studying the convergence rates of MCMC algorithms
(Brooks et al., 2011; Roberts and Rosenthal, 2004). <

3.4 A Reliability Check for the Diagnostic

The reliability of TADDAA depends on the mixing behavior
of the Markov chains:

* If the Markov chains are mixing well, we expect the
diagnostic results can be trusted.

* If the Markov chains are not mixing well, diagnosis of
a poor approximation can still be trusted but diagnosis
of a good approximation may not be reliable. In the
latter case, we should consider increasing the length
of Markov chains or otherwise improving the Markov
kernel.

The usual approach to checking MCMC mixing is some
version of the R diagnostic (Gelman and Rubin, 1992; Vats
:gld Knudson, 2021; Vehtari et al., 2021). However, using
R requires a sufficiently large effective sample size for each
Markov chain, which is not satisfied for the short Markov
chains used in TADDAA. Instead, we propose to leverage
the fact that we have many nearly independent chains to
compute the correlation between the initial and final values
of each chain. If the chains are mixing, then this correlation
will be close to zero. Specifically we propose to use the
worst-case correlation coefficient p2 , (T) := max; p?(T),
where

T = et X OO )
i o N 1 N 1.
VEN (XD a2 (SN xD T2

If p2 .. (T) is close to O (we use a cutoff of 0.1), then the
check passes; otherwise, the check fails. In addition to
examining the value of p2,, (T), we can also examine plots
of t versus p2,, (t) and t versus p?(t) to gain insight into,
how quickly mixing is occurring, respectively, overall and
for specific coordinates.

4 EXPERIMENTS

We now validate the efficacy and computational efficiency
of TADDAA and the correlation-based reliability check. In
our experiments, the number of Markov chains is N = 386,
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Figure 2: Diagnostics for mean-field VI approximation
to correlated Gaussian targets, where TADDAA uses the
Barker proposal. Here 11; and o denote, respectively, the
mean and variance of X;.
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Figure 3: Reliability checks for TADDAA using Barker
applied to the mean-field VI approximation to correlated
Gaussian targets.

which corresponds to the tolerance level dye,y = 0.1 and
bvar = 0.15. While we often present results for all four
kernels discussed in Section 3.1 (RWMH, MALA, Barker,
and HMC), we generally recommend using Barker because
it has the efficiency of gradient-based kernels but is less
sensitive to parameter tuning than MALA and HMC. For
variational inference, we use the default settings of the bbvi
function in the VIABEL package (Welandawe et al., 2022),
which used a mean-field Gaussian approximation family.
We set the maximum number of iterations to 200,000 but the
optimization can terminate early if convergence is reached.
We compare TADDAA to the k diagnostic proposed in Yao
et al. (2018) and the Wasserstein-based mean and variance
upper bounds proposed in Huggins et al. (2020).

4.1 Gaussian Model With Correlated Coordinates

We first investigate the performance of TADDAA in a high-
dimensional setting where the variational mean-field approx-
imation has correct mean but incorrect variance estimates,
which is a common situation in practice. Specifically, we use
a correlated Gaussian target 7 = N (i1, ©), where 1 € R,
Y = af, and X;; = pojo; for i # j. We introduce cor-
relation by setting p = 0.7 and variance heterogeneity by
setting 07 = 10 and 07 = 1 fori = 2,3, ..., d.

5 10 15 20 25 30 ' 5 10 15 20 25 30
Dimension Dimension

T 5 10 15 20 25 % ' 5 10 15 20 25 30
Dimension Dimension

Figure 4: Diagnostics for Neal-funnel shape model, where

TADDAA uses the Barker proposal. Here 11; and o7 denote,

respectively, the mean and variance of X;.

Fig. 2 shows that the lower bounds Byean and Byyriance Te-
main valid and useful even when d and k are large: TAD-
DAA correctly captures that the mean estimates are accurate
but the variance estimates are inaccurate. From Fig. 3, we
can see that the Barker chains mix well in all cases. Figure 2
also provides a comparison to k and the Wasserstein-based
upper bounds proposed in Huggins et al. (2020, Theorem
3.4). The k result suggests that the VI approximation is not
reliable for almost any dimension (since k> 0.7). But if the
functional of interest is the mean, VI should be considered
reliable. Similarly, the Wasserstein upper bounds are too
conservative by a factor of 10-1,000, incorrectly suggesting
the VI approximation is extremely inaccurate. Moreover,
the upper bounds are unavailable once k>07 (Huggins
et al., 2020). Overall, TADDAA provides much more pre-
cise and actionable information about the approximation
quality than the other diagnostics.

4.2 Neal-Funnel Shape Model

Next, we consider a more challenging target with a more
complex geometry: Neal’s funnel distribution (Neal, 2003),
which is similar to the geometries encountered in hierar-
chical models. For x = (x1,...,24) € RY, let 0 :=
exp(z1). The funnel distribution is given by w(z) =
Nz | 0, )T Mz | 0,0). Hence, if X ~ ,
then Var(X;) = exp(1/2) for i € {2,...,d}. Since
Xo, ..., X areidentically distributed, we focus on the accu-
racy of the mean-field VI approximations to the distributions
of X7 and Xos.

Figure 4 shows that the lower bounds constructed using
Barker are quite precise and do not degrade as the dimension
increases. (See Appendix C.2 for results for quantiles.)
Moreover the reliability check passes for all d (Fig. 13 in
Appendix C.2). The k diagnostic, however, is noisy and
provides little insight. The Wasserstein-based mean and
covariance upper bounds are orders-of-magnitude too large
and unavailable for most d > 10 because k > 0.7.
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Figure 5: Diagnostics for logistic regression model on candy
power ranking dataset for component 35 and 31;. Here
w; and o; denote, respectively, the mean and variance of
B;. To improve interpretability, we show the relative mean
error (,ugt) — 1;)/0; and log variance error 2 loglo(ai(t)) -
2logy(o;). (Recall that p; and o; are the ith component
mean and standard deviation of the target 7.) The lengths
of the gold lines give the corresponding relative mean and
log variance error lower bounds.

4.3 Logistic Regression Model on Candy Power
Ranking Dataset

Next, we validate TADDAA on a real-world dataset*: each
observation (z,,y,) represents a different kind of candy,
where z, € R!! are the features, and y,, = 1 if the candy
is chocolate and 0 otherwise. We use a logistic regression
model with y,, ~ Bern(logit ' (87 z,)) and 3; ~ N(0,I).

Focusing on Barker, Fig. 5 shows that for 35, the lower
bound of the mean error is small but non-zero due to the fact
that the variance is dramatically underestimated, leading
to inefficient preconditioning (adaptive preconditioning did
not significantly improve the lower bound). On the other
hand, the variance error lower bound, while not tight, shows
that the variance estimate is orders-of-magnitude too small.
For (311, where the variance is not so poorly estimated, both
mean and variance lower bounds are very accurate. TAD-
DAA uses about 2% as many gradient evaluations as the VI
optimization (4.3 x 10* versus 2 x 10%), validating the com-
putational efficiency of our approach. Figure 6 demonstrates
the usefulness of the reliability checks, which correctly show
that HMC chains fail to mix (due to a smaller number of

4https ://www.kaggle.com/datasets/fivethirtyeight/
the-ultimate-halloween-candy-power—-ranking
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Figure 6: Reliability checks on TADDAA using different
kernels applied to the mean-field VI approximation to logis-
tic regression for candy classification.

iterations), while the chains for other kernels mix well.

4.4 Cancer Classification Using a Horseshoe Prior

We now consider a more challenging, higher-dimensional
application to predicting leukemia using microarray data
with n = 71 observations and using 100 features chosen
according to their x? scores (Ray et al., 2020). We use a
logistic regression model with a sparsity-inducing horseshoe
prior (Piironen and Vehtari, 2017):

yl| B~ Bern(logit_l(Xﬁ))7

Bi | T, A ¢~ N(0,7203),

Aj ~CT(0,1), 7~ CT(0,70),
¢* ~ InvGam(2,8),

where y denotes the binary outcomes, X € R71*100 i5 the
features matrix, 7 > 0 and A > 0 are global and local
shrinkage parameters, and :\3 = 2X\3/(c* +7°)%). Hence,
for our data the parameter dimensionality is d = 203. We
would expect the VI approximation to be poor due to mul-
timodality of the model. Focusing on two representative
parameters, Fig. 7 shows that TADDAA using Barker cor-
rectly captures that the mean estimate for Ag; and variance
estimate for 3y are inaccurate. On the other hand, for the
accurate mean estimate for 3y and variance estimate for \g1,
the lower bounds are zero or close to zero. TADDAA uses
about 28% as many gradient evaluations as the VI optimiza-
tion (1.1 x 10° versus 4 x 10°). In addition, the reliability
checks shown in Fig. 8 correctly reflect the worse perfor-
mance of RWMH (due to d being larger) and HMC (due to
a smaller number of iterations).

4.5 Bayesian Neural Network on Candy Power
Ranking Dataset

Finally, we validate TADDAA on a Bayesian neural network
model, which is difficult for mean-field VI to approximate
accurately (Izmailov et al., 2021). We use the same dataset
described in Section 4.3, but now it is fitted with a two-layer
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Figure 7: Diagnostics for 8y and Ag; for cancer classifi-
cation using the horseshoe prior. See Fig. 5 for further
explanations.
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Figure 8: Reliability checks for TADDAA using different
kernels applied to horseshoes prior applied to mean-field
approximation for cancer classification.

Bayesian neural network with 5 units in each hidden layer:
yn ~ Bern (logitf1 (tanh (tanh(aTzn) -B) 7)),

where o € R?*, 8 € R%*5, v € RS, o ; ~ N(0,2),
Bi; ~ N(0,2) and v; ~ N(0,2). Hence, z = (v, 5,7)
and d = 85. To quantify the classification quality for the
Bayesian neural network, we can use the log loss (a.k.a.,
the cross-entropy loss) £(z) = —+ 2[:1 log p(yn | x).
Similar to the definitions for the marginal mean and median,
we can also use the mean and median of the log loss as the
evaluation functional . Figure 9 shows that TADDAA cor-
rectly captures that the inaccuracy of the VI approximation:
error lower bounds show that both the mean and median
of the log loss are overestimated by mean-field VI. TAD-
DAA uses about 12% as many gradient evaluations as the
VI optimization (8.4 x 10* versus 6.8 x 10%). The reliabil-
ity check in Fig. 15 confirms the superiority of Barker in
high-dimensional problems.
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Figure 9: Diagnostics of for Bayesian neural network model
on candy power ranking dataset for component. p and
Q(0.5) denote the mean and median for the cross-entropy
loss.

S CONCLUSION AND LIMITATIONS

Overall, our theory and experimental results show that TAD-
DAA provides an efficient evaluation tool for variational
inference, while also being applicable to other inexact poste-
rior approximation methods like (integrated nested) Laplace
approximations. TADDAA provides precise information
about specific functionals of interest such as means and
standard deviations, rather than a check on just the overall
quality of an approximation — which in practice is often quite
poor. However, there are a number of important limitations
that users must keep in mind when employing TADDAA.
While we have developed the correlation check to guard
against a poor diagnostic, the check can fail due to, e.g.,
multimodality. On the other hand, such failures are not
unique to our diagnostic and can affect, e.g., diagnostics for
MCMC too. One approach to guard against this possibility
is to run the VI optimization multiple times with diverse ini-
tializations, as is usually recommended for MCMC. Another
limitation is that TADDAA is not appropriate in settings
where it is only feasible to make a small number of passes
over the entire dataset, so a method like stochastic varia-
tional inference (Hoffman et al., 2013) is used. Finally, it
is possible that Condition 1 could be violated. Developing
checks against this failure mode is an important direction
for future work.

Acknowledgments

M. Kasprzak was support by the European Union’s Hori-
zon 2020 research and innovation programme under the
Marie Sktodowska-Curie grant agreement No. 101024264.
J. H. Huggins was partially supported by the National Insti-
tute of General Medical Sciences of the National Institutes
of Health under grant number ROIGM 144963 as part of the
Joint NSF/NIGMS Mathematical Biology Program. The
content is solely the responsibility of the authors and does
not necessarily represent the official views of the National
Institutes of Health.



A Targeted Accuracy Diagnostic for Variational Approximations

References

Agrawal, A., Sheldon, D. R., and Domke, J. (2020). Ad-
vances in black-box VI: Normalizing flows, importance
weighting, and optimization. Advances in Neural Infor-
mation Processing Systems, 33:17358-17369.

Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive
MCMC. Statistics and Computing, 18(4):343-373.

Atchadé, Y. F. and Rosenthal, J. S. (2005). On adap-
tive Markov chain Monte Carlo algorithms. Bernoulli,
11(5):815 — 828.

Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J.-M., and
Stuart, A. (2013). Optimal tuning of the hybrid Monte
Carlo algorithm. Bernoulli, 19(5A):1501-1534.

Bhatia, K., Kuang, N. L., Ma, Y.-A., and Wang, Y. (2022).
Statistical and Computational Trade-offs in Variational
Inference: A Case Study in Inferential Model Selection.
arXiv preprint arXiv:2207.11208.

Billingsley, P. (2013). Convergence of probability measures.
John Wiley & Sons.

Bishop, C. M. (2006). Pattern recognition and machine
learning, volume 4. Springer.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017).
Variational inference: A review for statisticians. Journal
of the American Statistical Association, 112(518):859—
8717.

Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (2011).
Handbook of Markov chain Monte Carlo. CRC press.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2015).
Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519.

Chee, J. and Toulis, P. (2018). Convergence diagnostics for
stochastic gradient descent with constant learning rate. In
International Conference on Artificial Intelligence and
Statistics, pages 1476-1485. PMLR.

Craiu, R. V., Rosenthal, J., and Yang, C. (2009). Learn
from thy neighbor: Parallel-chain and regional adaptive
MCMC. Journal of the American Statistical Association,
104(488):1454-1466.

Domke, J. and Sheldon, D. R. (2018). Importance weighting
and variational inference. Advances in Neural Informa-
tion Processing Systems, 31.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.
(1995). Bayesian data analysis. Chapman and Hall/CRC.

Gelman, A., Gilks, W. R., and Roberts, G. O. (1997).
Weak convergence and optimal scaling of random walk
Metropolis algorithms. The Annals of Applied Probabil-
ity, 7(1):110-120.

Gelman, A. and Rubin, D. B. (1992). Inference from it-
erative simulation using multiple sequences. Statistical
Science, pages 457-472.

Gomez-Rubio, V. (2020). Bayesian inference with INLA.
CRC Press.

Gorham, J. and Mackey, L. (2015). Measuring sample qual-
ity with Stein’s method. Advances in Neural Information
Processing Systems, 28.

Gorham, J. and Mackey, L. (2017). Measuring sample
quality with kernels. In International Conference on
Machine Learning, pages 1292-1301. PMLR.

Green, P. J., Latuszynski, K., Pereyra, M., and Robert, C. P.
(2015). Bayesian computation: a summary of the current
state, and samples backwards and forwards. Statistics
and Computing, 25(4):835-862.

Hahn, G. J. and Meeker, W. Q. (2011). Statistical intervals:
a guide for practitioners, volume 92. John Wiley & Sons.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
(2013). Stochastic Variational Inference. Journal of
Machine Learning Research, 14:1303—-1347.

Huggins, J., Kasprzak, M., Campbell, T., and Broderick,
T. (2020). Validated variational inference via practical
posterior error bounds. In International Conference on
Artificial Intelligence and Statistics, pages 1792-1802.
PMLR.

Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A.
G. G. (2021). What Are Bayesian Neural Network Pos-
teriors Really Like? In Proceedings of the 38th Inter-
national Conference on Machine Learning, volume 139

of Proceedings of Machine Learning Research, pages
4629-4640. PMLR.

Jordan, M. 1., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. (1999). An introduction to variational methods for
graphical models. Machine Learning, 37(2):183-233.

Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational Bayes. arXiv preprint arXiv:1312.6114.

Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., and
Blei, D. M. (2017). Automatic differentiation variational
inference. Journal of Machine Learning Research.

Livingstone, S. and Zanella, G. (2022). The Barker proposal:
Combining robustness and efficiency in gradient-based
MCMC. Journal of the Royal Statistical Society. Series
B, Statistical Methodology, 84(2):496.

Mendenhall, W., Beaver, R. J., and Beaver, B. M. (2012).
Introduction to probability and statistics. Cengage Learn-
ing.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H., and Teller, E. (1953). Equation of state
calculations by fast computing machines. The Journal of
Chemical Physics, 21(6):1087-1092.

Minka, T. P. (2001). Expectation propagation for approx-
imate Bayesian inference. In Uncertainty in Artificial
Intelligence.



Yu Wang, Mikolaj Kasprzak, Jonathan H. Huggins

Neal, R. (2011). MCMC using Hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo, pages 113—
162.

Neal, R. M. (2003). Slice sampling. The Annals of Statistics,
31(3):705-767.

Piironen, J. and Vehtari, A. (2017). Sparsity information
and regularization in the horseshoe and other shrinkage
priors. Electronic Journal of Statistics, 11(2):5018-5051.

Ray, S., Alshouiliy, K., Roy, A., AlGhamdi, A., and
Agrawal, D. P. (2020). Chi-Squared Based Feature Se-
lection for Stroke Prediction using AzureML. In 2020
Intermountain Engineering, Technology and Computing
(IETC), pages 1-6. IEEE.

Robert, C. P. et al. (2007). The Bayesian choice: from
decision-theoretic foundations to computational imple-
mentation, volume 2. Springer.

Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling
of discrete approximations to Langevin diffusions. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 60(1):255-268.

Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling
for various Metropolis-Hastings algorithms. Statistical
Science, 16(4):351 — 367.

Roberts, G. O. and Rosenthal, J. S. (2004). General state
space Markov chains and MCMC algorithms. Probability
Surveys, 1:20-71.

Roberts, G. O. and Rosenthal, J. S. (2007). Coupling and
Ergodicity of Adaptive Markov Chain Monte Carlo Algo-
rithms. Journal of Applied Probability, 44(2):458-475.

Roberts, G. O. and Tweedie, R. L. (1996). Exponential
convergence of Langevin distributions and their discrete
approximations. Bernoulli, pages 341-363.

Rosenthal, J. S. (2000). Parallel computing and Monte Carlo
algorithms. Far East Journal of Theoretical Statistics,
4(2):207-236.

Roy, V. and Zhang, L. (2022). Convergence of position-
dependent MALA with application to conditional simula-
tion in GLMMs. Journal of Computational and Graphical
Statistics, (just-accepted): 1-31.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate
Bayesian inference for latent Gaussian models by using
integrated nested Laplace approximations. Journal of the
Royal Statistical Society: Series B (Statistical Methodol-
ogy), 71(2):319 — 392.

Sirignano, J. and Spiliopoulos, K. (2020). Mean field anal-

ysis of neural networks: A law of large numbers. SIAM
Journal on Applied Mathematics, 80(2):725-752.

Solonen, A., Ollinaho, P., Laine, M., Haario, H., Tamminen,
J., and Jarvinen, H. (2012). Efficient MCMC for climate
model parameter estimation: Parallel adaptive chains and
early rejection. Bayesian Analysis, 7(3):715-736.

Stramer, O. and Roberts, G. O. (2007). On Bayesian analy-
sis of nonlinear continuous-time autoregression models.
Journal of Time Series Analysis, 28(5):744-762.

Sznitman, A.-S. (1991). Topics in propagation of chaos.
Springer.

Vats, D. and Knudson, C. (2021). Revisiting the gelman—
rubin diagnostic. Statistical Science, 36(4):518-529.

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and
Biirkner, P.-C. (2021). Rank-normalization, folding, and
localization: an improved R for assessing convergence of
MCMC (with discussion). Bayesian Analysis, 16(2):667—
718.

Wada, T. and Fujisaki, Y. (2015). A stopping rule for stochas-
tic approximation. Automatica, 60:1-6.

Wainwright, M. J., Jordan, M. I, et al. (2008). Graphical
models, exponential families, and variational inference.
Foundations and Trends® in Machine Learning, 1(1-2):1-
305.

Welandawe, M., Andersen, M. R., Vehtari, A., and Huggins,
J. H. (2022). Robust, Automated, and Accurate Black-
box Variational Inference. arXiv, arXiv:2203.15945
[stat. ML].

Xing, H., Nicholls, G., and Lee, J. K. (2020). Distortion
estimates for approximate Bayesian inference. In Con-

ference on Uncertainty in Artificial Intelligence, pages
1208-1217. PMLR.

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018).
Yes, but did it work?: Evaluating variational inference.
In International Conference on Machine Learning, pages
5581-5590. PMLR.



A Targeted Accuracy Diagnostic for Variational Approximations

Supplementary Materials for
A Targeted Accuracy Diagnostic for Variational Approximations

A METROPOLIS-HASTING KERNELS

We briefly summarize the kernels used in our experiments. Throughout this section let € R? denote the current state,
h € R, the step size, and G € R%*? a positive semi-definition preconditioning matrix.

Random Walk Metropolis The (pre-conditioned) random walk Metropolis (RWMH) Metropolis et al. (1953) with and
step size h has proposal kernel

Q™ (z,dy) = N(dy | z, hG).

Metropolis-adjusted Langevin Algorithm In the (pre-conditioned) Metropolis-adjusted Langevin algorithm (MALA)
(Roberts and Tweedie, 1996; Stramer and Roberts, 2007) has proposal kernel

Q" (. dy) = N <dy

h
T+ §GV log 7(x), hG> .

Barker Proposal Let C denote the Cholesky factor of G, set 72 = hG;, let u(+), be the probability density function
of N(0,72), and let ¢;(z) = (Vlogm(z) - CT);. For a proposal state y € R?, let 2, = ((CT)"L(y — 2));. The
(pre-conditioned) Barker proposal Livingstone and Zanella (2022) for the ith coordinate is

B N _ oM (yi — ) .
Qi (.73, dyl) =2 1+ 6—21101:(’»8) dyu
and the full Barker kernel QF is

d

Q% (. dy) = [[ Q7 (x.dys).

i=1

Hamiltonian Monte Carlo Hamiltonian Monte Carlo (HMC) (Neal, 2011) is defined on an extended state space with the
random momentum vector 7 "~ N (0, G), yielding the joint density

7(x,n) o exp {log(ﬂ(w)) - ;UTGU} :

HMC updates a new state using the leapfrog integrator, which proceeds according to the updates

n(t+ h/2) =n(t) + (h/2)V;logm (2(t))
x(t+h) = z(t) + hGn(t + h/2)
n(t+h) =n(t+h/2)+ (h/2)V1logn (z(t + h)).

Taking x(0) = x, the new proposal state is y = x(Lh) with n(0) ~ N (0, G).
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B PROOFS
For readability, we write the proposal kernel as K (x, h, dy) = Kiog 1 (2, dy), so
(t+1) (&) 3
X~ K (X8,

Or, equivalently,

(D) _ Y{",  with probability a!”
J X ,(t), with probability 1 — a(t)

J Jj o

with Yj(t) being the proposal state based on the proposal distribution @, ) (X J(t), -) and
N

o= (X", vV, 1Y)
(t) t) y-(®)
m (%) gy (")

®) 0 )
" (57 g (.57)

where gy, (z, -) is the probability density of Qp,(z, -) and hs\t[) is the step size at time t. If we treat the proposed states Yl(:tjz, as
additional random variables, we can write

:=min< 1,

(141) 4 (4) ) y®
(v ) (Y R )

for an appropriate Markov kernel T'(z,y, h,dz’, dy’). Now define the empirical distribution of N particles X J(.t) at tth
iteration as

o 1N

t

vy = — E (SX]@).
N3

(t))

Similarly, we can define the empirical distribution of N particles (X J(-t), Y;"’) at the ¢th iteration as

1 N
S
T 20 vy

i=1

0)

Taking the initial step size hSV as fixed, we can rewrite the tth step size hg\t,) update equation given in Eq. (5)) as

() _ 5 (1) 11 ooy
¢ -1 —1)  _
hy =hy exp n N;% — Qs
Letting h(?) = hg\(;)’ 70 = #0) and £ (dz, dy) = Q, o (7, dy)7(®) (dz), then we can recursively define h("), 7(*) and
N
£ by
_ _ 1 _ _
B0 o (1) o ( R, 1) _a*>7
P \/F<g( ),6°7)
QNS / K (x, h4D oD (de),
€0 = [ Ty 0D, €0 (da,dy),
where
(g(s -, RUT1),E070) =By yy g {9 <X7Y7 B(t_l)ﬂ

= /g (2, D) €070 (dz, dy)
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(t

Let P(.5) denote the set of probability measures on the measurable space (S, ). Let ng,) and II N) denote the probability

distributions of the respective empirical measures 51(\?) and 1/1(\?, S0 555’ € P(P(R%)) and Hg\t,) € P(P(R?xR%)) respectively.
We will make use of the following two results.

Theorem B.1. (Sznitman, 1991) {P](V?)} is ") -chaotic if and only if
PP o ()t L 5(m®)

in P(P(9)).
Theorem B.2. If X, X,, : Q — R? are random variables such that X,, 2 X, then f(Xn) L*1> f(X) forall f € Cy(RY).

B.1 Proof of Theorem 3.3

Theorem 3.3 will follow from a series of propositions and lemmas, which we prove in the subsequent subsections.

Proposition B.3. Under Assumption 3.4, if (X; (t= 1), Yl(:tN1 ) is €4~V -chaotic and h(t V2B B0=D), then (X 1( J)V, Yl(:tjz,) is
€M _chaotic.
Proposition B.4. Under Assumptions 3.4.(a) and 3.4.(b), if(Xff;,l), Yl(:tN1 ) is €4~V -chaotic and h(t D 2 =1 then
hY B R,

Note that { (0) Y(O))}i is £(9)_chaotic since the samples are i.i.d. and h = h(9 is fixed. By induction, it follows
from Proposmon B.3 and Proposition B.4 that for any t € N, {(X t) Y(t))}i is £®)-chaotic and A 2 A(®),

The following lemma implies that there is subsequence {Hgv? }; that weakly converges.

Lemma B.5. Under Assumption 3.4.(c), for any fixedt € N, {Hg\t,)} N IS tight and relatively compact.

) 2 pt=D) and {Hg\t,?}l is a convergent subsequence

Lemma B.6. Under Assumption 3.4, if X 1(:7,1) is Uy_1-chaotic, hs\tfl
of{Hg\t,) } v with limit TI®), then TI®) is a Dirac measure concentrated on 7).

)

Lemma B.7. Under assumptions and conditions of Lemma B.6, X {t  is 7O -chaotic.

0)

We also know that X ( -x is 7(9)-chaotic (due to the fact that the X ( 1)\/ are i.i.d.), and hY % h® for any ¢ € N. Hence, by
)

recursively using Lemma B.7, we conclude that X is V(*)-chaotlc forany t € N.

B.2 Proof of Proposition B.3

To prove Proposition B.3, we will first show that the probability distribution {E(t) } v of empirical measure {fj(\t,) } v is tight
and relatively compact, which guarantees that there exists convergent subsequence {Eg\t,? }1. Then we will prove that every
convergent subsequence {Es\? }1 has the same limit Z(*) that is a Dirac measure concentrated on £(*).

Lemma B.8. Under Assumption 3.4.(c), for any fixedt € N, {Eg\t,) Y is tight and relatively compact.
Lemma B.9. Under Assumption 3.4, suppose (Xl(fg,l), Yl(:tlgl)) is €4~V _chaotic and hgf,_l) L p(=1) Let {Eg\t,?}l be a

convergent subsequence of{"( )}N with limit =), Then 2 is a Dirac measure concentrated on £®).

The proofs of Lemma B.8 and B.9 are deferred to Appendix B.2.1 and B.2.2. Relative compactness of {" © } N~ implies
that there is subsequence {Z N) }1 which weakly converges. In this proof, with a slight abuse of notation, we use {H(t) N to

represent the convergent subsequence {Z N? }1. By Lemma B.8 and Lemma B.9, we have
t) d =
ey 5w,

Theorem B.1 guarantees that (X 1(?\,, (t) ) is €®-chaotic.
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B.2.1 Proof of Lemma B.8

The proof is similar to that of Lemma 2.2 in Sirignano and Spiliopoulos (2020). For a fixed ¢t € N, Ve > 0, we want to show
that there is a compact subset K of P(R% x R?) such that

supIE”{ ](5) ¢K] <e.
NEN
For each L > 0, define K1, = [~ L, L]?¢, and by Assumption 3.4.(c), there exists C such that
N
B[V )] < e[ (x573) 2 4
j=1
_p H (x1, Y.“))H > 1]

E[les )l

® ®
o[«

IN

IN

L
_¢
A
For L > 0, define the compact set
S 1
K; = (v (R2A\K (11 2) < ——— forall j € N ;.
L {l/ V( \ (L+])2) —‘L—i—j or all j }
Observe that
s (t)
Plel ¢ k) < Zp[f(t) (RN ) > ] E [ (R*\K(@1p2)]
L 2
= (L+9) L—i—] = 1/vVL+3j
<
_J; L+j VL¥+7 ~ ;L+33/2’

so limy_, P[g}é) ¢ K 1] = 0. Thus, the sequence (5%)) Nen s tight, which implies it is relatively compact.
B.2.2 Proof of Lemma B.9
For each f € Cy(R? x R?), define the map F : P(R? x R?) — R, by

() = |(£,6) - (£.€0)).

We would like to show that limy o E, | =0 [F'(&)] = 0. Together with the fact that subsequence {Eg\t,) } v converges in

distribution to Z(*), we would have Eeozm [F (€)] = 0. Then we can conclude that Z(*) is a Dirac measure concentrated on

£,
Letting (f,\) = + Z;y:1<f,T(X;t_l)7 Yj(t_l)7 R(t=1) . 1)), we have

Bz F©O] = B [F (60)]

s (re)~(re0)

=5 (1) - (180) + (19) - (1)

SE: (rew) = (£.67) } *EH@“ ~55)><f”5(t)>H’

We will prove that limpy o E£~:<t> [F(£)] = 0 by the following two lemmas:
=N
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Lemma B.10. Under the assumptions of Lemma B.9, we have

e (r0) - (r89) | -

Lemma B.11. Under the assumptions of Lemma B.9, we have

| V) - (1€9) ]| =
nggﬁlEH{f,N I 0
By Lemma B.10 and B.11, we have

lim E_ =(t) [F(&)} =0.

N—oo =N

Since F' is uniformly bounded, we have

lim E_ [F(§)] = Bz [F(§)] = 0.

N —o00

Since this holds true for any f € Cj(R? x R?), using the fact that F is nonnegative and by Theorem 5.1 from Billingsley
(2013), we have that = ( ) has a limit point that is a Dirac measure concentrated on £(*).

B.2.3 Proof of Lemma B.10

Let ]-"( ) be the o- algebra generated by Xlem) and Y( ™) ,fori=1,2,..., Nandm = 1,2, ...,t.
Note that

H< <t>> < J<$>>’|f1<vt—1>]

N
1
& ‘NZf(X](t),ifj(t)) <f, ( (t—1) Y(t 1) R ‘}-(f 1)
L j:1
- W Lo
<E ‘sz (Xj(t),y;(t)) - NZ<f,T(XJ(»t_l),Y—j(t_l)ahg\t]_l)v'v')>‘ “7:](5—1)
i j=1 =1
- ( ) (=1 5 ( ) - x (=1 (=1 (t—1)
t—1 t—1) 5 (t—1 t—1 t=1) 7(t—1) t—1
NZ YD Rl ) Z £T ( YD D ’I]—"
1 al () ® - (t=1) 3 (t=1) p(-1) (t-1)
¢ t t—1 t—1 t—1 t—1
NZ X Y ) NZ <X] 7Y;' ahN 7'7'))‘ ‘]:N
1 - (t-1) y(=1) p(t-1) N XDy =D
1 t—1 t=1) ,(t=1) t—1 t=1) pt— n..
R () S (e )|

]:1
Since f € (Rd X Rd), there exists M such that for any i = 1,2,... N, we have

Var | f(X, ) | FYV| < M < oo
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It follows that
E ’1if(X(t) v - 7% 7 (00, v 0, ‘|;(t 0
N i N
j=1 j=1
) ‘1sz:f (Xm Y“)) 1 if@((t) Y(t)) FED]| ) FED
- N J ) _7 9 ] N N
j=1 j=1

N 2

< El/2 %Zf(XJ(t)’YYJ(t)) 1E[Zf(x(t> Y(t) Faallra G
Jj=1 j=1

= Var!/? ! ZN:f (X(,t) Y‘(t)) Fa

M\ V2
< | — .
(¥)

The last inequality holds true because ( x® Y( )) are independent given F (=1, Therefore, we have

N
: X0y 1) 1) D) 1| _
B |53 (4007) = S (5 170 <o
AndE[ Ly 1f(X(t >) — LN (T (Xf”,}g“”,h%”,-,-))’ |]-‘](\f1)} is bounded due to the fact that

f € Cp(R? x RY), then by dominated convergence theorem, we have

1N N
g e |2 (650 50) = S (5 | <o

Note that
1 & 1 &
E ’ Z<fa T (X](‘t_l)a Y}(t_l)a hg\t[_l)a ) )> - N Z<fa T (Xj('t_l)a Y;‘(t_l)a iL(til)a %y >>‘
j=1

N
<;[ZEH<JC7 (Xt 1 Y(t 1 h(t n, ')>_<f,T(Xj(t_l)7}/;‘(t_l)vﬁ(t_1)"7'>>H

<fvT (Xyil)v le(til)7 h%71)7 Yy >> - <f7T (Xl(t71)7Y1(t71)a B(t_l)v %y )>H .

Since we know (X{t_l), Yl(t_l), hg\t[_l)) LS (Xl(t_l)7 Yl(t_l), (=1 and (f,T(z,vy,h,-,-)) is bounded and continuous
with respect to (z,y, h), thanks to Theorem B.2, we have

N—o00

N
. 1 1) (t—1)
lim E ‘ X(t 1) Y(t 1) ht 1) t ) Y h(t 1) . >‘ —0.
-t )
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B.2.4 Proof of Lemma B.11

Note that
E iiq T(X(tfl) y =D pt-1) .)> _ <f g(t)> ’
N & i ot " v

_ % ‘(f,T (X](t—l)’lfj(t—l)7ﬁ(t71)’ y >> _ <f7 g(t)> ’2]

+ %E [((f,T (Xi(tfl)’Yl_(t*l)’;ib(t—l)7 . )> _ <f7 g(t)>) ((f,T (Xj(_tfl)ﬂfj(t*l)’ﬁ(t—l), y )> _ <f, g(t)>)} _

The above expectation is taken with respect to (X (t—1) ,Y; +—1). For any fixed (X (¢ 1), Yie—1)

T (XY Ve, RO, /f (s1,82) T (X170 Va0, RO, dsy, ds )
:/f X(_tq)’s2 (1_g(Xj(tfl)’}/}(t*l)’h(t—l)))Qh(f b (x! D dss)
/f y =1 ( XDy D pe- 1)) Qe 1)( D, dsy).

By Assumption 3.4.(a) and 3.4.(b), it is bounded and continuous with respect to (X J(-t_l), Yj(t_l)). Then thanks to that fact
that (X, (t R Y(t R ) is £~V _chaotic, we have

]\;EnOOE K<f’ ( (t—1) Y(t D pt=1) _)> _ <f,g(t)>> <<f’T(Xj(t—1)7}/;(t—l)7fl(t—1)’.’_>> B <f7§_(t)>>]
- (/(f,T (51’52771@71)’ ; .)> _ <f7 5‘(t)> dg(tﬁ(dsl,dsQ))Q =0.

‘(f, ( (t— 1) (t-1) h(t 1) _7_>>_<f’£(t)>

"

Since f € Cy(R? x RY), we have E

2
] < 00. Therefore, we have

B.3 Proof of Proposition B.4

Recall that the step size update is

N
1 Za(t 1) G,
J

_ 1
hg\t,) = hg\t, D exp n

Z| = /\

j:l
N
_ =1 (t—=1) 1 (t—=1) 4 (t—1) _
=hy exp Zg X; Y AN —
j=1
Note that
1
t—1 t—1 t—1 T (t— =(t—
& 29TV R — (g, ), €0)
j=1
N N
NZ X(t 1) Y(t 1) h(t 1) Z X(t 1) Y(t 1) A ©)
j=1 =

Z\H

N
Z XDy D Dy (g, REDY, €D,
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The first term in Eq. (9) can be rewritten as

! ZN (t=1) -1 -1 1 < |

t—1 t—1 t—1 _ t . o

EPUCHRR AR SRS DMES D)
=E [Q(Xﬁt_l), Y RGTY) - g(x (Y v Y, ;‘l<t71>)] .

Since (X(t 2 Y(t 2 h(t 1)) (X(t 2 Yj(t_l), h(®=1)) and g is bounded and continuous, it follows from Theorem B.2
that

lim E ‘ g(X{ DY RY) Zg XDy Y e 1>)‘ —0. (10)

N—00

The second term of Eq. (9) can be rewritten as

Z XDy R) — (g ROTD), D) = (g, AT 0T = (g, RUTD), 07D,

Since (Xl(f;,l), Yl(:tgl)) is £~ _chaotic, by Theorem B.1 we have
gv ) 4 gtn),
By Assumptions 3.4.(a) and 3.4.(b), we have g(z,y, h(!~1)) is continuous with respect to (x, ), thus
(9(, RU),687Y) B (gl RUTY), €071). (1D

It follows from Eq. (10) and Eq. (11) that
LN
-1 -1 -1 T(t—1)\ F(t—
= 2TV AGTY) B (g (e, ROD),€07Y)
=1

and therefore hg\t,) AN

B.4 Proofs of Lemmas B.5 to B.7.

The proof of Lemma B.5 is similar to that of Lemma B.8; the proof of Lemma B.6 is similar to that of Lemma B.9; the
proof of Lemma B.7 is similar to that of Proposition B.3.

C ADDITIONAL RESULTS AND EXPERIMENTS

C.1 Ablation Study On T

In Section 3.3, we discussed how to choose length of Markov chains properly: Eq. (7) and Eq. (8) guarantee that we can
obtain efficient samples under different dimension d without too large computation cost. Now, we would like to explore how
the lower bounds would change under different number of iterations 7'.

Figures 10 to 12 display the evolution of several lower bounds for X; of Gaussian model (Section 4.1), X; of Neal-funnel
shape model (Section 4.2) and \g; of cancer classification using horseshoe prior (Section 4.4) respectively, which shows
that when p is large (greater than 0.1), the proposed lower bounds are quite underestimated. These results also confirm the
lowers bounds become nearly stationary at our proposed number of iterations 7'.

C.2 Additional Results for Neal-Funnel Shape Model

In Section 4.2, we validate TADDAA on Neal’s funnel distribution approximated by mean-field Gaussian VI. Fig. 13
provides reliability checks for the Neal’s funnel experiment Fig. 4.
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Lower bounds on X;

Reliability check on X3
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05| == T | i
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Figure 10: Ablation study for 7" on X of Gaussian model with correlated coordinates, d = 30.
Lower bounds on X3 Reliability check on X3
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Figure 11: Ablation study for T on X; of Neal-funnel shape model, d = 30.
Lower bounds on X; Reliability check on X3
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Figure 12: Ablation study for 7" on \g; of Neal-funnel shape model, d = 100.
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Figure 13: Reliability checks on TADDAA using Barker applied to the mean-field VI approximation to Neal’s funnel
distribution of varying dimensionality.

Next, we will validate the TADDAA on Neal’s funnel distribution approximated by mean-field t-distribution VI. The lower
bounds Biean and By, are computed according to Eq. (1) using functionals of interest (5 and F( ¢ defined based on
Eq. 4).

Fig. 14 shows that the median and tail quantile lower bounds constructed using Barker are quite precise and remain valid
when d and hatk are large. As we can see, k is large (k > 0.7) for almost any dimension, indicating VI approximation is not
reliable. But if we are only interested in whether median of X5, mean field t-distribution VI should be considered as reliable.

C.3 Reliability Check for Bayesian Neural Network

In Section 4.5, we validate TADDAA on Bayesian neural network approximated by mean-field Gaussian VI. The reliability
check is shown in Fig. 15: due to the fact that the variance is dramatically underestimated, only Barker chains pass the
reliability check, which is also consistent with the fact that Barker kernel provides the best lower bounds as displayed in
Fig. 9.
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, Diagnostics on X3 , Diagnostics on X
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Figure 14: Diagnostics for Neal-funnel shape model, where TADDAA uses the Barker proposal. 1(0.5) and Q1(0.9)
denote the median and 90%-quantile of X7, 2(0.5) and Q2(0.9) denote the median and 90%-quantile of X5.
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Figure 15: Reliability checks for TADDAA using different kernels applied to Bayesian neural network approximated by
mean-field Gaussian VI for candy power ranking dataset.
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