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Abstract

We investigate the properties of random feature
ridge regression (RFRR) given by a two-layer
neural network with random Gaussian initializa-
tion. We study the non-asymptotic behaviors of
the RFRR with nearly orthogonal deterministic
unit-length input data vectors in the overparame-
terized regime, where the width of the first layer
is much larger than the sample size. Our anal-
ysis shows high-probability non-asymptotic con-
centration results for the training errors, cross-
validations, and generalization errors of RFRR
centered around their respective values for a ker-
nel ridge regression (KRR). This KRR is derived
from an expected kernel generated by a nonlin-
ear random feature map. We then approximate
the performance of the KRR by a polynomial ker-
nel matrix obtained from the Hermite polynomial
expansion of the activation function, whose de-
gree only depends on the orthogonality among
different data points. This polynomial kernel de-
termines the asymptotic behavior of the RFRR
and the KRR. Our results hold for a wide vari-
ety of activation functions and input data sets that
exhibit nearly orthogonal properties. Based on
these approximations, we obtain a lower bound
for the generalization error of the RFRR for a
nonlinear student-teacher model.

1 INTRODUCTION

Random feature regression is closely linked to deep learn-
ing theory as a linear model with respect to random fea-
tures. Training the output layer weight with ridge regres-
sion for a neural network with random first-layer weight
is equivalent to a random feature ridge regression model
(RFRR) (Rahimi and Recht, 2007; Cho and Saul, 2009;
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Daniely et al., 2016; Poole et al., 2016; Schoenholz et al.,
2017; Lee et al., 2018; Matthews et al., 2018). The con-
jugate kernel (CK), whose spectrum has been exploited to
study the generalization of random feature regression (Mei
et al., 2022), is the Gram matrix of the output of the last hid-
den layer on the training dataset. The performances (e.g.,
prediction risk) have been studied by Rahimi and Recht
(2007, 2008); Rudi and Rosasco (2017); Mei and Monta-
nari (2019); Mei et al. (2022); Ghorbani et al. (2021). As
the width of the neural network increases to infinity, we
expect the empirical CK concentrates around its expecta-
tion, analogously to the neural tangent kernel (NTK) the-
ory from Jacot et al. (2018). In this overparameterized (or
ultra-wide (Arora et al., 2019)) regime, RFRR is asymptot-
ically equivalent to a kernel ridge regression (KRR) model.

In this paper, we focus on the random CK generated by a
two-layer fully-connected neural network at random initial-
ization f : Rd×n → Rn such that

f(X) :=
1√
N

θ⊤σ (WX) , (1.1)

where X ∈ Rd×n is the input data matrix, W ∈ RN×d is
the weight matrix for the first layer, θ ∈ RN is the second
layer weight, and σ is a nonlinear activation function. Here
d is the feature dimension, n is the sample size of the input
data, and N is the width of the first layer.

This work focuses on the behavior of the two-layer network
under the random initialization of W with sufficiently large
width N . We will always view the input data X as a deter-
ministic matrix (independent of the random weights in W )
with certain assumptions. We fix the random matrix W
and only train the second layer θ via training data X . This
procedure is the same as the linear regression of random
feature vectors {σ(Wxi) ∈ RN , i ∈ [n]}. The empirical
CK matrix is defined by

KN :=
1

N
σ (WX)

⊤
σ (WX) ∈ Rn×n. (1.2)

We will show that this random CK matrix will be concen-
trated around its expected n× n kernel matrix

K := EKN = Ew[σ(w⊤X)⊤σ(w⊤X)], (1.3)

under the spectral norm when width N is sufficiently large,
where w is the standard normal random vector in Rd.
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Random feature regression has already attracted as a ran-
dom approximation of the reproducing kernel Hilbert space
(RKHS) defined by population kernel function K : Rd ×
Rd → R such that

K(x1,x2) := Ew[σ(⟨w,x1⟩)σ(⟨w,x2⟩)], (1.4)

when width N is sufficiently large (Rahimi and Recht,
2007; Bach, 2013; Rudi and Rosasco, 2017; Bach, 2017;
Mei et al., 2022). By an abuse of notation, we use K to
represent both the n× n kernel matrix K(X,X) depend-
ing on dataset X and the kernel function in (1.4). Denote
the output of the first layer by

Φ := σ(WX) ∈ RN×n. (1.5)

Observe that the rows of the matrix Φ are independent and
identically distributed since only W is random and X is
deterministic. Let the i-th row of Φ be ϕ⊤

i = σ(wiX)
for 1 ≤ i ≤ N , where we denote wi ∈ Rd as the i-th
row of weight W . Then, CK can be written as KN =
1
N

∑N
i=1 ϕiϕ

⊤
i , which is a sum of N independent rank-

one random matrices in Rn×n. The second moment of any
row ϕi is given by (1.3).

Most of the recent results considered the RFRR with the
data points X independently drawn from a specific high-
dimensional distribution, e.g., uniform measure on the hy-
percube or the unit sphere (Misiakiewicz, 2022; Hu and
Lu, 2022a; Xiao and Pennington, 2022; Ghorbani et al.,
2021) or under the hypercontractivity assumption from
(Mei et al., 2022). The analysis of this RFRR usually
requires strong assumptions on the data distribution and
specific orthogonal polynomial expansions with respect to
the distribution. In practice, real-world data cannot satisfy
these ideal assumptions, or it is hard to verify them. In
this paper, we consider a general deterministic dataset for
RFRR. Inspired by Du et al. (2019); Fan and Wang (2020);
Wang and Zhu (2021); Donhauser et al. (2021), we point
out that the inner products among different unit-length data
points, namely the degree of the orthogonality, play an im-
portant role in the performances of the RFRR. More pre-
cisely, it affects how many degrees of the polynomial this
RFRR can consistently learn from the teacher models. The
expected kernel model can be truncated as a polynomial
inner-product kernel based on this approximate orthogo-
nality of the data points. Combing the concentration of
RFRR and this polynomial truncation, we can obtain a
lower bound of the generalization error (out-of-sample pre-
diction risk) for RFRR induced by an ultra-wide neural net-
work (N ≫ n). Since we consider a general distribution-
free dataset, we can also analyze cross-validations of RFRR
approximated by corresponding cross-validations of the
KRR. Our assumptions on the dataset are verifiable even
for real-world datasets, and our theory exhibits new ingre-
dients to the study of neural networks with general real-
world datasets (Liao and Couillet, 2018; Goldt et al., 2022;
Wei et al., 2022).

1.1 Our Contributions

We prove a sequence of sharp concentrations for RFRR
around its expected KRR for a general distribution-free
dataset satisfying an ℓ-orthonormal property (see Assump-
tion 2.3). As long as the width N of the neural net-
work is much larger than sample size n, we can use a
KRR to approximate RFRR in terms of in-sample pre-
diction risks, cross-validations, and out-of-sample predic-
tion risks. With a qualitative control of the approxi-
mate orthogonality among different data points measured
by
∥∥∥(X⊤X)⊙(ℓ+1) − Id

∥∥∥
F

, we can further approximate
this KRR by a truncated polynomial inner-product KRR.
Meanwhile, we reveal that both RFRR and its correspond-
ing KRR can only consistently learn a polynomial teacher
model with a degree at most ℓ. To the best of our knowl-
edge, this is the first work making a connection between
the lower bound of the generalization errors of RFRR and
KRR, and the orthogonality of deterministic data points.
Our main results are stated in Section 2 and proved in Ap-
pendix C. The empirical simulations on both synthetic and
real-world datasets are presented in Section 3.

1.2 Related Work

Nonlinear Random Matrix Theory When N ≍ n, the
concentration of the CK matrix around its expectation fails,
and the limiting spectrum of the CK with random input
dataset has been investigated by Pennington and Worah
(2017); Benigni and Péché (2021); Louart et al. (2018);
Benigni and Péché (2022); whereas Fan and Wang (2020)
studied the spectrum of the CK with similar but stronger
assumptions compared to ours on input data and activation
functions, and obtained a deformed Marchenko-Pastur dis-
tribution (Fan and Wang, 2020). As an application, when
N ≍ n, the behavior of RFRR is determined by the limit-
ing spectra of the CK (Gerace et al., 2020; Mei and Monta-
nari, 2019; Adlam and Pennington, 2020; Chouard, 2022).
Specifically, Louart et al. (2018); Liao et al. (2020); Hu and
Lu (2022b); Chouard (2022) studied the training error and
empirical test error of RFRR in the proportional limit.
Concentrations of RFRR Rudi and Rosasco (2017)
proved the approximation of RFRR when the sample size
n and the number of neurons (width) N satisfy N ≍√
n log n. This condition only considered fixed d with i.i.d.

data. Moreover, Louart et al. (2018); Wang and Zhu (2021)
considered similar concentrations of RFRR for more gen-
eral datasets. The concentration of random Fourier feature
matrices was considered by Chen et al. (2022). The sharp
analysis of RFRR (Mei et al., 2022, Theorem 1) gave the
precise asymptotic behavior of RFRR and only required
N ≫ n. Our results are consistent with their results on
the training errors but relax the assumption on the dataset.
Rotational Invariant Kernels The expected CK and
NTK are rotational invariant kernels (Liang et al., 2020),
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whence the kernel theory plays a crucial role in analyzing
ultra-wide neural networks. In general, the spectra of ro-
tational invariant kernels have been analyzed by El Karoui
(2010); Liao and Couillet (2019); Ali et al. (2021) when
n ≍ d and such results have been applied in the study of
kernel ridge regression in Bartlett et al. (2021); Sahraee-
Ardakan et al. (2022). Liao and Couillet (2018, 2019) stud-
ied the inner-product kernel induced by random features in
the proportional limit, where they can further decompose
the expected kernel and extract the useful structure from
the data. When n ≍ dk, for k ∈ N, the performance
of inner-product kernel with data uniformly drawn from
the unit sphere has been recently studied by Misiakiewicz
(2022); Hu and Lu (2022a); Lu and Yau (2022); Xiao and
Pennington (2022).
Cross-validations in High Dimensions There is a line
of research on cross-validations (Liu and Dobriban, 2019;
Jacot et al., 2020b; Miolane and Montanari, 2021; Xu et al.,
2021; Hastie et al., 2022; Meanti et al., 2022) for ridge
regressions. In high dimensional linear ridge regressions,
Hastie et al. (2022) shows precise asymptotic behaviors of
cross-validations as n/d → γ ∈ (0,∞). Cross-validations
help us to tune the hyperparameters and approximate the
generalization error of the model (Jacot et al., 2020b; Wei
et al., 2022). Most of the above works only focus on linear
regression, while our work considers the cross-validations
of both nonlinear RFRR and KRR on general datasets.

2 MAIN RESULTS

Notations We use tr(A) = 1
n

∑
i Aii as the normalized

trace of a matrix A ∈ Rn×n and Tr(A) =
∑

i Aii. Denote
vectors by lowercase boldface. ∥A∥ is the spectral norm
for any matrix A, ∥A∥F denotes the Frobenius norm, and
∥x∥ is the ℓ2-norm of any vector x. Denote A ⊙ B as
the Hadamard product of two matrices A,B of the same
size defined by (A ⊙ B)ij = AijBij , and A⊙k is the k-
th Hadamard product of A with itself. Let Ew[·] be the
expectation with respect to the random vector w.

2.1 Model Assumptions

Before stating our main results, we list the following as-
sumptions for the random weights W , the activation func-
tion σ, and input data X .

Assumption 2.1. The entries of weight matrix W ∈
RN×d are i.i.d. standard normal random variables N (0, 1).

Let hk be the k-th normalized Hermite polynomial and
ζk(σ) be the k-th Hermite coefficient for nonlinear func-
tion σ. For more details, see Definition B.1.

Assumption 2.2. Assume σ(x) ∈ L4(R,Γ), where we
denote the standard Gaussian measure denoted by Γ.
Define the L2(Γ) and L4(Γ)-norm of σ by ∥σ∥2 =
(E[σ2(ξ)])1/2, ∥σ∥4 = (E[σ4(ξ)])1/4, where ξ ∼ N (0, 1).

In particular, Assumption 2.2 covers many commonly used
activation functions, including sigmoid, tanh, ReLU, and
leaky ReLU. This is a more general condition compared to
previous works by Montanari and Zhong (2022); Wang and
Zhu (2021) which assume that σ is Lipschitz or has a poly-
nomial growth rate, and Assumption 2.2 is actually suffi-
cient for the concentrations of training and generalization
errors for RFRR.

We consider a sequence of Xn ∈ Rdn×n with growing dn
as n → ∞, where all Xn satisfy the following assump-
tion. Below we drop the dependence on n for the ease of
notations. We treat X as a deterministic matrix under the
following asymptotic condition.

Assumption 2.3 (ℓ-orthonormal dataset). Suppose that the
input data X ∈ Rd×n satisfies ∥xi∥ = 1,∀i ∈ [n]. Let
ℓ ∈ N be the smallest integer such that

lim
n→∞

∥∥∥(X⊤X)⊙(ℓ+1) − Id
∥∥∥
F
= 0. (2.1)

We further assume σ2
>ℓ := ∥σ∥22 −

∑ℓ
k=1 ζ

2
k(σ) > 0.

Different from previous work that requires an upper bound
on the maximal angle εn := maxi ̸=j |⟨xi,xj⟩| (Fan and
Wang, 2020; Wang and Zhu, 2021; Nguyen and Mondelli,
2020; Hu et al., 2020; Frei et al., 2022), our relaxed Con-
dition (2.1) measures how data points separate from each
other on average. In particular,∥∥∥(X⊤X)⊙(ℓ+1) − Id

∥∥∥
F
≤ nεℓ+1

n , (2.2)

whence (2.1) holds if nεℓ+1
n → 0. Here, feature dimension

d of the data is implicitly governed by (2.1). In a word,
degree ℓ in (2.2) exhibits the average degree of the orthog-
onality among different data points.

We can also verify Assumption 2.3 for a random dataset.
For example, if {xi}i∈[n] are i.i.d. uniformly distributed on

Sd−1 and n = Θ(dα) for α ∈ R+, then εn = O
(

log1/2 n
d1/2

)
with high probability (see, for example, Vershynin (2018)),
and we can take ℓ = 2⌊α⌋ and condition on the high prob-
ability event to make X deterministic. A similar argument
is also applied by Donhauser et al. (2021), where the distri-
bution of random data can have some covariance structure.

2.2 Power Expansion of the Expected Kernel

For any two unit-length column vectors xα,xβ in X , and
any two Hermite polynomials hj , hk, we have (Nguyen and
Mondelli, 2020, Lemma D.2)

Ew[hj(⟨w,xα⟩)hk(⟨w,xβ⟩)] = δjk⟨xα,xβ⟩k. (2.3)

This relation also appears in Oymak and Soltanolkotabi
(2020), which directly gives the following power ex-
pansion of the expected kernel K in (1.3): K =
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∑∞
k=0 ζ

2
k(σ)

(
X⊤X

)⊙k

. Hence, the kernel function K

defined in (1.4) is an inner-product kernel. In a concur-
rent work by Murray et al. (2022), the same power series
expansion was applied to the NTK.

In high-dimensional statistics, invariant kernels can be
approximated by some simpler models. For instance,
El Karoui (2010) proved that the inner-product random ker-
nel matrices with a random dataset could be approximated
by a linear random matrix model when d ≍ n. The proof
by El Karoui (2010) utilized the Taylor approximation of
the nonlinear function. In this work, beyond the first-order
approximation in El Karoui (2010), we define a degree-ℓ
polynomial inner-product kernel by

Kℓ :=

ℓ∑
k=0

ζ2k(σ)
(
X⊤X

)⊙k

+ σ2
>ℓ Id, (2.4)

Here σ2
>ℓ is an extra ridge parameter added to the poly-

nomial kernel
∑ℓ

k=0 ζ
2
k(σ)

(
X⊤X

)⊙k

. This extra ridge
can be viewed as an implicit regularization, especially for
the minimum-norm interpolators (Liang et al., 2020; Jacot
et al., 2020a; Bartlett et al., 2021).

Assumption 2.3 implies that the off-diagonal entries of(
X⊤X

)⊙k

become negligible when the power k is suf-
ficiently large. Hence, we can truncate K and employ Kℓ

as an approximation of K as follows.

Proposition 2.4. Under Assumptions 2.2 and 2.3, let
n0 be the smallest integer such that for all n ≥ n0,
maxi̸=j

∣∣x⊤
i xj

∣∣ ≤ 1/
√
2 and∥∥∥(X⊤X)⊙(ℓ+1) − Id

∥∥∥
F
≤

σ2
>ℓ

4∥σ∥24
. (2.5)

We have for all n ≥ n0, λmin(K) ≥ λ0 := 1
2σ

2
>ℓ, and

∥Kℓ −K∥ ≤
√
2∥σ∥24

∥∥∥∥(X⊤X
)⊙ℓ+1

− Id

∥∥∥∥
F

≤
σ2
>ℓ

2
√
2
. (2.6)

Remark 2.5 (Comparison to previous work with random
dataset). (2.6) is proved by using the inequality ∥Kℓ −
K∥ ≤ ∥Kℓ −K∥F and performing an entry-wise expan-
sion of (Kℓ −K). Such a Hermite polynomial expansion
approach might not be optimal if we know the exact dis-
tribution of the random dataset. Previous work from Ghor-
bani et al. (2021); Mei et al. (2022); Montanari and Zhong
(2022); Hu and Lu (2022a) assumed random datasets and
random weights with specific distributions. The authors
obtained better approximation error bounds using a har-
monic analysis approach, where the activation functions
and the kernel K were expanded in terms of an orthogo-
nal basis with respect to the distribution of random X and

W . In many examples, these two distributions are assumed
to be the same, which provides a convenient way to expand
and approximate K with some degree-ℓ polynomial kernel.
Since we do not have any specific data distribution assump-
tion, such an approach cannot be applied to deterministic
datasets.
Remark 2.6 (Optimality). In fact, under our Assumption
2.3, the bound (2.6) is tight up to a constant factor. For
example, let σ(x) =

∑ℓ+1
k=0 ζk(σ)hk(x) be an order-(ℓ+1)

polynomial with ζℓ+1(σ) ̸= 0. Assume |⟨xi,xj⟩| = ε for
all i ̸= j and ℓ is an odd integer. Then

∥Kℓ −K∥ = ξ2ℓ+1(σ)

∥∥∥∥(X⊤X
)⊙(ℓ+1)

− Id

∥∥∥∥
≥ ξ2ℓ+1(σ)ε

ℓ+1(n− 1)

≥ 1

2
ξ2ℓ+1(σ)

∥∥∥∥(X⊤X
)⊙(ℓ+1)

− Id

∥∥∥∥
F

.

Proposition 2.4 can be viewed as an extension of
(El Karoui, 2010, Theorem 2.1) and (Donhauser et al.,
2021, Lemma C.7) for a specific inner-product kernel K
induced from the random CK with Gaussian weights, al-
though El Karoui (2010) and Donhauser et al. (2021) con-
sidered general rotational invariant random kernels. Our
result reveals that we can simply employ such a truncated
kernel to approximate the nonlinear kernel because of the
ℓ-orthonormal property in Assumption 2.3. In the proof of
Donhauser et al. (2021), the authors verified that such prop-
erty holds for random data with high probability. The same
form of K has also been studied by Liang et al. (2020) for
the ridgeless regression on some random data X under the
polynomial regime (n ≍ dα). Under a stronger regularity
assumption on the kernel function, the authors first applied
Taylor expansion to get truncated kernel Kℓ, then took the
Gram-Schmidt process to obtain an orthogonal polynomial
basis, which implied a sharper bound on the generalization
error for random datasets.

2.3 Concentrations of the RFRR When N ≫ n

We first consider a two-layer neural network at random ini-
tialization defined in (1.1) and estimate the performance of
random feature ridge regression in the ultra-high dimen-
sional limit where N ≫ n. We focus on the linear regres-
sion with respect to θ ∈ RN for predictors of the form
fθ(X) := 1√

N
θ⊤σ (WX), with training data X ∈ Rd×n

and training labels y ∈ Rn. The loss function of the ridge
regression with a ridge parameter λ ≥ 0 is defined by

L(θ) :=
1

n
∥fθ(X)⊤ − y∥2 + λ

n
∥θ∥2. (2.7)

The minimizer of (2.7) denoted by θ̂ := argminθ L(θ) has

an explicit expression θ̂ = 1√
N
Φ
(

1
NΦ⊤Φ+ λ Id

)−1

y,
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where Φ is defined in (1.5). The optimal predictor for this
RFRR with respect to the loss function in (2.7) is given by

f̂
(RF)
λ (x) :=

1√
N

θ̂⊤σ (Wx) , (2.8)

where we define an empirical kernel KN (·, ·) : Rd ×
Rd → R as KN (x, z) := 1

N σ(Wx)⊤σ(Wz), and
the n-dimension row vector is given by KN (x,X) =
[KN (x,x1), . . . ,KN (x,xn)].

Analogously, consider any kernel function K(·, ·) : Rd ×
Rd → R defined in (1.4). Similar to (2.8), the optimal
kernel predictor with ridge parameter λ for kernel ridge re-
gression is given by

f̂
(K)
λ (x) := K(x,X)(K + λ Id)−1y. (2.9)

See Rahimi and Recht (2007); Avron et al. (2017); Liang
and Rakhlin (2020); Jacot et al. (2020a); Liu et al. (2021);
Bartlett et al. (2021) for additional descriptions about KRR.

We compare the behavior of the two different predictors
f̂
(RF)
λ (x) in (2.8) and f̂

(K)
λ (x) in (2.9) with the kernel K

defined in (1.4). As N is sufficiently large, the empir-
ical kernel KN defined in (1.2) will concentrate around
its expectation (1.4). From (2.8) and (2.9), the predic-
tors of RFRR and KRR are determined by KN and K,
respectively. Therefore, our concentration inequality will
help us conclude that the performances of these two pre-
dictors are also close to each other as long as the width
N is sufficiently larger than sample size n. In the fol-
lowing subsections, we will show that the training error,
cross-validations, and generalization error of RFRR can be
approximated by the corresponding quantities of KRR de-
fined in (2.9) when N is sufficiently large.

2.3.1 Training Error Approximation

Denote the optimal predictors for the random feature and
kernel ridge regressions on the training data X with the
ridge parameter λ ≥ 0 by

f̂
(RF)
λ (X) :=

(
f̂
(RF)
λ (x1), . . . , f̂

(RF)
λ (xn)

)⊤
,

f̂
(K)
λ (X) :=

(
f̂
(K)
λ (x1), . . . , f̂

(K)
λ (xn)

)⊤
,

respectively. We first compare the training errors for these
two predictors. Let the training errors (empirical risks) of
these two predictors be

E
(K,λ)
train =

1

n
∥f̂ (K)

λ (X)− y∥22, (2.10)

E
(RF,λ)
train =

1

n
∥f̂ (RF)

λ (X)− y∥22. (2.11)

With high probability, the training error of a random feature
model and the corresponding kernel model with the same
ridge parameter λ can be approximated as follows.

Theorem 2.7 (Training error approximation). Suppose that
Assumptions 2.1, 2.2, and 2.3 hold. Then, with probability
at least 1−N−2, for any λ ≥ 0, N/ log2(N) > C1n, and
n ≥ n0, ∣∣∣E(RF,λ)

train − E
(K,λ)
train

∣∣∣ ≤ C2λ
2 logN∥y∥2√

nN
, (2.12)

where C1 and C2 are positive constants depending only on
∥σ∥4 and λ0.

Our bound (2.12) provides a non-asymptotic estimate on
the training error approximation, including the case when
λ = 0. From (2.12), assuming yi = O(1) for all i ∈ [n],
we can conclude that the training error (2.10) concentrates
around (2.11) as long as N/ log2(N) ≫ n. This result
does not rely on the distribution of the data X and how we
generate the labels y.

The random matrix tool we employ to prove Theorem 2.7
is a normalized kernel matrix concentration inequality
(Proposition C.1 in Appendix C.2). In contrast to other ker-
nel random matrix concentration results with deterministic
X in Louart et al. (2018); Wang and Zhu (2021), a crucial
property of our concentration inequality is that it does not
depend on ∥X∥, which guarantees an o(1) approximation
error in (2.12) as long as N/ log2(N) ≫ n.

2.3.2 Cross-validations Approximation

In the overparameterized regime, the training error approx-
imation in Theorem 2.7 does not directly imply a good ap-
proximation of the generalization, but the above analysis of
training errors assists us in getting similar approximations
on cross-validations of RFRR. Cross-validation (CV) is a
common method of model selection and parameter tuning
in practice. Especially when practitioners have no access
to the data distributions, one can employ CV to approx-
imate the generalization errors of the model (Patil et al.,
2022; Jacot et al., 2020b). For more background on cross-
validations, we further refer to Arlot and Celisse (2010).

In this subsection, we focus on leave-one-out cross-
validation (LOOCV) and generalized cross-validation
(GCV) for the predictors f̂ (RF)

λ and f̂
(K)
λ . Following Hastie

et al. (2009), LOOCV is defined by

CV(K,λ)
n :=

1

n

n∑
i=1

(yi − f̂
(K)
λ,−i(xi))

2,

CV(RF,λ)
n :=

1

n

n∑
i=1

(yi − f̂
(RF)
λ,−i(xi))

2,

(2.13)

where f̂
(K)
λ,−i and f̂

(RF)
λ,−i are KRR and RFRR estimators, re-

spectively, on training data set X with the data point xi

removed. For simplicity, denote Kλ = K + λ Id and
KN,λ = KN + λ Id. With Schur complement, we can
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obtain the “shortcut” formulae for LOOCV as

CV(K,λ)
n =

1

n
y⊤K−1

λ D−2K−1
λ y, (2.14)

CV (RF,λ)
n =

1

n
y⊤K−1

N,λD
−2
N K−1

N,λy, (2.15)

where D and DN are diagonal matrices with diagonals
[D]ii = [K−1

λ ]ii and [DN ]ii = [K−1
N,λ]ii, for i ∈ [n]

respectively. The derivations of (2.14) and (2.15) are given
in Lemma C.5 of Appendix C.4.

Under certain assumptions, we expect [D]ii and [DN ]ii
to concentrate around trK−1

λ and trK−1
N,λ respectively.

Therefore, as an approximation of LOOCV, we define GCV

GCV(K,λ)
n :=

(
λ tr(K + λ Id)−1

)−2
E

(K,λ)
train ,

GCV(RF,λ)
n :=

(
λ tr(KN + λ Id)−1

)−2
E

(RF,λ)
train .

(2.16)

For linear ridge regression models (Hastie et al., 2022),
the such approximation is done by applying random ma-
trix theory to replace Dii with trK−1

λ and [DN ]ii with
trK−1

N,λ in (2.14) and (2.15), respectively.

Since these cross-validation estimators are determined by
training errors, with Theorem 2.7, we obtain the concentra-
tions of LOOCV and GCV. Theorem 2.8 reveals that under
the ultra-wide regime, i.e., N/ log2 N ≫ n, GCV and CV
estimators of RFRR are close to the corresponding cross-
validations of KRR, respectively.
Theorem 2.8 (LOOCV and GCV approximations). Under
the same assumptions as Theorem 2.7, with probability at
least 1−N−2, for any λ ≥ 0, when N/ log2(N) ≥ C(1+
λ2)n and n ≥ n0,∣∣∣GCV(K,λ)

n − GCV(RF,λ)
n

∣∣∣ ≤c(1 + λ4) logN ∥y∥2√
nN

(2.17)∣∣∣CV(K,λ)
n − CV(RF,λ)

n

∣∣∣ ≤c(1 + λ4) logN∥y∥2√
nN

(2.18)

where C, c > 0 are constants depending only on σ.

The LOOCV and GCV of the linear model have been ana-
lyzed by Liu and Dobriban (2019); Xu et al. (2021); Hastie
et al. (2022); Patil et al. (2022); Wei et al. (2022). As shown
by Hastie et al. (2022), the advantage of LOOCV and GCV
is that the optimal ridge parameter tuned by CV is asymp-
totically the same as the optimal ridge parameter in the
high dimensional case. Unlike the results mentioned above,
Theorem 2.8 does not require any assumption on data dis-
tribution, which opens the door to studying LOOCV and
GCV on more general datasets.

In Jacot et al. (2020b), GCV is also called Kernel Align-
ment Risk Estimator (KARE), and the authors verified that
GCV could be used to approximate the generalization er-
ror for KRR under a Gaussian universality hypothesis. In
addition, Wei et al. (2022) proved that GCV is a good ap-
proximation of the generalization error of the linear ridge

regression model when a local law for data distribution
holds. This may imply that GCV(K,λ)

n also asymptoti-
cally approaches the generalization error of KRR when
the deterministic matrix K(X,X) satisfies a local law
property. This suggests that the concentrations in Theo-
rem 2.8 could be useful in approximating the generaliza-
tion error of RFRR. Notably, Wei et al. (2022) considered
general datasets under an anisotropic local law hypothesis,
while our deterministic data only possesses some orthogo-
nal structures. The proof of Theorem 2.8 in Appendix C.4
opens a new avenue for analyzing LOOCV and GCV for
kernel regression (Patil et al., 2022). Following Wei et al.
(2022), as a future research direction, we also expect that
the GCV estimator of RFRR will converge to its general-
ization error under certain extra conditions.

2.3.3 Generalization Error Approximation

Different from the controls of in-sample prediction risks
and cross-validations in Sections 2.3.1 and 2.3.2, to investi-
gate the generalization error, we introduce further assump-
tions on the model and the target function under a student-
teacher model. The student-teacher model has been inves-
tigated in recent works (Gerace et al., 2020; Dhifallah and
Lu, 2020; Hu and Lu, 2022b; Goldt et al., 2020; Loureiro
et al., 2021; Lin and Dobriban, 2021; Damian et al., 2022;
Ba et al., 2022). Since all the data points xi are determin-
istic, our model is a fixed design rather than random design
(Hsu et al., 2012).

Denote an unknown teacher function by f∗ : Rd → R. The
training labels are generated by y = f∗(X) + ε, where
f∗(X) = (f∗(x1), . . . , f

∗(xn))
⊤, and ε ∼ N (0, σ2

ε Id).
We impose the following assumptions.
Assumption 2.9. Assume that the target function is a
nonlinear function with one neuron defined by f∗(x) =
τ(⟨β,x⟩), where the random vector β ∼ N (0, Idd) and
τ ∈ L4(R,Γ). Suppose that ζk(τ) ̸= 0 as long as
ζk(σ) ̸= 0, for 0 ≤ k ≤ ℓ. Training labels are given by
y = τ(X⊤β) + ε ∈ Rn.

In particular, such an assumption includes the case when σ
and τ are the same activation function.
Assumption 2.10. Suppose the test data x ∈ Rd satisfies
almost surely, ∥x∥ = 1 and

lim
n→∞

√
n
∥∥∥(X⊤x)⊙(ℓ+1)

∥∥∥
2
= 0. (2.19)

Assumption 2.10 of the test data x guarantees similar sta-
tistical behavior as the training data points in X , but we
do not impose any specific assumption on its distribution.
It is promising to utilize such assumption further to handle
statistical models with real-world data (Liao et al., 2020;
Seddik et al., 2020).

Assumption 2.10 holds with high probability in many
cases when x1, . . . ,xn are i.i.d. samples from some dis-
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tribution P: e.g. Unif(Sd−1) and Unif
(
{−1√

d
, +1√

d
}
)

with
n ≍ dα and ℓ = 2⌊α⌋; an arbitrary distribution such
that (2.19) holds almost surely through reject sampling
(Casella et al., 2004); or an empirical distribution µn̂ where
µn̂ = 1

n̂

∑n̂
i=1 δx̂i

, and x̂1, . . . , x̂n̂ are deterministic unit
vectors such that (2.19) holds for each x̂i, i ∈ [n̂].

For any predictor denoted by f̂ , define the generalization
error (also called test error) to be the following conditional
expectation

L(f̂) := E
[
|f̂(x)− f∗(x)|2

∣∣∣X] , (2.20)

where the expectation is taken over noise ε, test data x,
and signal β. Since the dataset X is deterministic in
our setting, the conditional expectation in (2.20) becomes
L(f̂) = E[|f̂(x)−f∗(x)|2]. Analogously to the linear case
from Ali et al. (2019), this turns out to be the Bayes risk for
out-of-sample predictors. Viewing β as a random signal in
the teacher model allows us to get a sharper bound of the
generalization error in Theorem 2.11 below.

Under Assumption 2.10, let n1 be the smallest integer such
that for all n ≥ n1,

sup
i∈[n]

|⟨x,xi⟩| ≤
1√
2
,
∥∥∥(X⊤x)⊙(ℓ+1)

∥∥∥
2
≤

σ2
>ℓ

4∥σ∥24
.

The following approximation holds for the test error be-
tween a random feature predictor and the corresponding
kernel predictor in ridge regressions.

Theorem 2.11 (Generalization error approximation). Sup-
pose Assumptions 2.1, 2.2, 2.9, and 2.10 hold. Then, with
probability at least 1 − log−1(N), for any N/ log2 N ≥
C1(1 + λ2)n, n ≥ max{n0, n1}, the difference between
test errors of RFRR and KRR satisfies∣∣∣L(f̂ (RF)

λ (x))− L(f̂ (K)
λ (x))

∣∣∣ ≤ C2(1 + λ) log(N)

√
n

N
,

(2.21)
for any λ ≥ 0, where constant C1 depends only on σ, and
positive constant C2 depends only on σ, τ and σε.

When the width N/ log2(N) ≫ n, the right-hand side
of (2.21) is vanishing. In other words, RFRR has the
same generalization error as KRR for ultra-wide neural net-
works. Notice that Theorem 2.11 covers the ridge-less re-
gression case when λ = 0.

2.4 Approximation of KRR by a Polynomial KRR

In this subsection, we study a polynomial kernel ridge re-
gression (PKRR) induced by the polynomial kernel Kℓ in
(2.4). We define an inner-product kernel by

Kℓ(x, z) :=

{
∥σ∥22, if x = z∑ℓ

k=0 ζ
2
k(σ)(x

⊤z)k, otherwise,

for any x, z ∈ Rd. The parameter ℓ defined by Assump-
tion 2.3, is determined by orthogonality among different
data points in the training set. In practice, it is hard to im-
plement the expected kernel K, whereas this truncated ker-
nel Kℓ with finite many parameters is a simpler model for
implementation and theoretical analysis. Similarly, with
(2.8) and (2.9), the predictor for kernel regression with re-
spect to Kℓ is denoted by

f̂
(ℓ)
λ (x) := Kℓ(x,X)(Kℓ + λ Id)−1y, (2.22)

where, by an abuse of notation, we use Kℓ to denote the
n×n polynomial kernel matrix Kℓ(X,X). For simplicity,
denote Kℓ,λ := Kℓ + λ Id for any λ ≥ 0.

Based on Proposition 2.4, we show that the performances
of KRR with kernel K can be approached by the perfor-
mances of f̂

(ℓ)
λ . Denote the training error, the CV, GCV

and test error for Kℓ as E
(ℓ,λ)
train , CV(ℓ,λ)

n , GCV(ℓ,λ)
n , and

L(f̂ (ℓ)
λ (x)) respectively. By replacing K by Kℓ, we can

define these estimators of the PKRR similarly with (2.11),
(2.13), and (2.16). Denote X̃ = [X,x] ∈ Rd×(n+1) the
concatenation of training and test data points. Denote

∆ℓ =

∥∥∥∥(X⊤X
)⊙ℓ+1

− Id

∥∥∥∥
F

and ∆̃ℓ =

∥∥∥∥(X̃⊤X̃
)⊙ℓ+1

− Id

∥∥∥∥
F

. Under (2.1) and

(2.19), we have ∆ℓ, ∆̃ℓ = on(1).

Theorem 2.12. Suppose Assumptions 2.2 and 2.3 hold.
Then for n ≥ n0,∣∣∣E(ℓ,λ)

train − E
(K,λ)
train

∣∣∣ ≤C1λ
2∥y∥2

n
∆ℓ, (2.23)∣∣∣GCV(ℓ,λ)

n − GCV(K,λ)
n

∣∣∣ ≤C1(1 + λ4) ∥y∥2

n
∆ℓ, (2.24)∣∣∣CV(ℓ,λ)

n − CV(K,λ)
n

∣∣∣ ≤C1(1 + λ4) ∥y∥2

n
∆ℓ, (2.25)

where C1 > 0 depend only on σ. Furthermore, with As-
sumptions 2.9 and 2.10, for n ≥ max{n0, n1}, the gener-
alization errors of KRR and PKRR satisfy that∣∣∣L(f̂ (ℓ)

λ (x))− L(f̂ (K)
λ (x))

∣∣∣ ≤ C2(1 + λ)∆̃ℓ, (2.26)

for some constant C2 > 0 only depending on σ, τ, σε.

Based on the definition of ℓ in (2.3), if the training labels
satisfy ∥y∥2 = O(n), the left-hand sides of (2.23)-(2.26)
are all vanishing as n → ∞. Combing the concentra-
tion between RFRR and KRR in Section 2.3, we can now
conclude that, in terms of training/test errors and cross-
validations, the performance of the RFRR is close to the
performance of PKRR defined in (2.22) with high proba-
bility as long as N/ log2 N ≫ n and n → ∞. Therefore,
the behaviors of the RFRR generated by ultra-wide neural
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networks can be characterized by a much simpler PKRR
induced by the expected kernel K. For (2.26), we can actu-
ally verify the estimators f̂ (K)

λ (x) and f̂
(RF)
λ (x) are polyno-

mials of x with degree at most ℓ, which is analogous to the
second part of (Donhauser et al., 2021, Theorem C.2). Sim-
ilar results on neural tangent feature regression are proved
by Montanari and Zhong (2022) for uniform spherical dis-
tributed data. Due to this simplification, we can further
obtain a lower bound of the generalization error of RFRR
in the next subsection.

2.5 Polynomial Approximation Barrier for RFRR

The polynomial approximation barrier refers to the case
when an estimator f̂λ cannot learn any polynomial with
a degree larger than a certain threshold (Donhauser et al.,
2021). This phenomenon has been shown in both RFRR
and KRR (Mei and Montanari, 2019; Ghorbani et al., 2021;
Mei et al., 2022; Donhauser et al., 2021) under specific data
distribution assumptions, e.g., uniform distributions on the
unit sphere or hypercubes (or more general distributions
with hypercontractivity assumptions and proper eigenvalue
decays) and anisotropic distributions with covariance struc-
tures (Loureiro et al., 2021; Gerace et al., 2022).

Define P>ℓ : L2(R,Γ) → L2(R,Γ) as the projection
onto the span of Hermite polynomials defined in (B.1)
with degrees at least ℓ + 1. Specifically, recalling β ∼
N (0, Id) and ∥x∥ = 1, we can get (P>ℓf

∗) (x) =∑
k≥ℓ+1 ζk(τ)hk(β

⊤x), where ζk(τ) is defined by (B.2).
Denote

∥P>ℓf
∗∥22 = Ex,β (P>ℓf

∗(x))
2
=
∑

k≥ℓ+1

ζ2k(τ).

In the following theorem, we prove that the polyno-
mial approximation barrier for RFRR is related to the ℓ-
orthonormal properties of the training data. Theorem 2.7
and Theorem 2.11 verify that the RFRR achieves the same
errors as KRR, as long as N is sufficiently large. Mean-
while, Theorem 2.12 shows KRR can be further approx-
imated by a simpler polynomial kernel model, whose de-
gree ℓ is determined by the ℓ-orthonormal property in (2.3).
Combing these together, RFRR induced by an ultra-wide
neural network is asymptotically equivalent to an ℓ-degree
PKRR, which naturally implies that RFRR is unable to
learn any function with higher-degree terms consistently.

Theorem 2.13 (Lower bound of the generalization error
for RFRR). Under the assumptions of Theorem 2.11, with
probability at least 1− log−1(N), when N/ log2 N ≫ n,

L(f̂ (RF)
λ )

≥ ∥P>ℓf
∗∥22 + σ2

εEx

[
K⊤

m,ℓK
−2
λ,ℓKm,ℓ

]
− on(1)

≥ ∥P>ℓf
∗∥22 − on(1), (2.27)

where Km,ℓ := Kℓ(X,x),Kℓ,λ := λ Id+Kℓ(X,X).

In Theorem 2.13, we specifically consider a test data point
with the ℓ-orthonormal property. This simplifies the teacher
model in Assumption 2.9 since f∗(x) has the same in dis-
tribution as τ(ξ) for ξ ∼ N (0, 1). Therefore, Theorem 2.13
reveals that RFRR predictor f̂ (RF)

λ cannot learn the higher
degree terms in the Hermite expansion of target function τ .
This threshold ℓ is determined by the ℓ-orthonormal prop-
erty of X in (2.3). The more orthogonal the data points in
X are, the lower degree of Hermite polynomials this RFRR
predictor can learn consistently.
Remark 2.14 (The variance term). The second term in the
first lower bound of (2.27) is related to the variance term
in the generalization error of PKRR. This term can be fur-
ther simplified based on some additional assumptions on
the data distribution. Specifically, (Liang et al., 2020, The-
orem 2) validated that for sub-Gaussian data,

TrK−1
ℓ,λEx[Kℓ(X,x)Kℓ(x,X)]K−1

ℓ,λ ≲
dα

n
+

n

dα+1

with high probability, when dα log d ≲ n ≲ dα+1. Hence,
this bound is vanishing in this polynomial regime (see also
(Bartlett et al., 2021, Secion 4)). In contrast, under the crit-
ical regime n ≍ dα, this variance term, in KRR of any
inner-product kernel for uniform spherical distribution, is
provably non-degenerate, determined by the Marchenko-
Pastur distribution, and may even result in a peak in the
prediction curve (Misiakiewicz, 2022; Hu and Lu, 2022a;
Xiao and Pennington, 2022).
Remark 2.15 (Comparison to previous work with random
dataset). The lower bounds in Theorem 2.13 exhibit the
limitation of the RFRR and KRR: (2.27) implies RFRR es-
timator cannot learn any higher degree polynomials. This
is useful when we aim to show that some estimator is supe-
rior to this RFRR estimator (Ba et al., 2022; Damian et al.,
2022). Compared with the results of Ghorbani et al. (2021);
Mei et al. (2022), our results cover more general training
datasets for RFRR, though it is not optimal in some spe-
cific circumstances (see Remark 2.5), and we only address
the single-neuron student-teacher model. Since we study
RFRR on a general dataset without any data distribution
assumptions, we cannot obtain a more precise characteri-
zation of the generalization error as the results by Mei et al.
(2022). On the other hand, Donhauser et al. (2021) exhib-
ited a lower bound ∥P>(2⌊2α⌋)f

∗∥22 on the generalization
error for kernel ridge regression with a general rotational
invariant kernel (which is ∥P>(2⌊α⌋)f

∗∥22 when data x has
unit length), where the dataset X ∈ Rd×n is random and
satisfies n ≍ dα. Under more general assumptions on the
dataset X , we obtain a similar lower bound ∥P>(2⌊α⌋)f

∗∥22
from (2.27) for both RFRR and its corresponding KRR.

3 SIMULATIONS

In Figure 1, we empirically verify the concentration bounds
we derived in Theorems 2.7, 2.8, 2.11 and 2.12 using i.i.d.
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(a) Training error (b) LOOCV error

(c) GCV error (d) Test error

Figure 1: Differences between KRR and RFRR with various
ridge parameters λ for (a) training errors, (b) LOOCV errors, (c)
GCV errors, and (d) generalization errors. Data X is i.i.d. sam-
pled from uniform distribution Unif(Sd−1) with d = n = 500
and training label noise σε = 0.6. We repeat each experiment
with 7 trials to average. The target function τ is Softplus.

random data X , where each data point is sampled from
Unif(Sd−1) with d = n = 500. As the width N increases,
we observe that the differences for training errors, LOOCV,
GCV, and generalization errors between RFFR and KRR
are all convergent with a rate of at least 1/

√
N . The activa-

tion function is a polynomial p(x) := h0(x) +
1√
6
h1(x) +

1
3h2(x)+

1
6h3(x)+

2
3h4(x)+

1
2h5(x). For KRR, we utilize

the polynomial KRR Kℓ defined by (2.4) with ℓ = 2 for an
approximation of the original K. Additional simulations
on the synthetic datasets are presented in Appendix A.

Analogously, we investigate the concentrations between
RFRR and KRR on real-world data in Figure 2. We ran-
domly select d = 800 features for each data vector and
n = 1000 data points in the CIFAR-10 dataset. After nor-
malizing the data points, we compare the performances of
RFRR and KRR induced by the activation function p(x).
We observe that our theoretical concentration bound 1/

√
N

derived from Section 2 is almost optimal in Figure 2. We
expect to further explore which real-world datasets will em-
pirically satisfy the ℓ-orthonormal property defined in As-
sumption 2.1 as a future direction.

4 CONCLUSION

In this paper, we studied the behavior of random feature
ridge regression in the overparameterized regime (N ≫ n)
with a deterministic dataset under an ℓ-orthonormal as-
sumption. In our analysis, we proposed refined matrix con-
centration inequalities with relaxed assumptions and a con-
venient Hermite polynomial expansion of the nonlinear ac-
tivation function. These approaches allow us to go beyond

(a) Training error (b) LOOCV error

(c) GCV error (d) Test error

Figure 2: Differences between KRR and RFRR with various
ridge parameters λ for (a) training errors, (b) LOOCV errors, (c)
GCV errors, and (d) generalization errors. Data points in X are
randomly selected from CIFAR-10 with d = 800, n = 1000
training samples, and without label noise. We repeat each experi-
ment with 5 trials. The target function τ is the ReLU function.

the linear regime (Wang and Zhu, 2021), leading us to study
any polynomial kernel approximation of RFRR and obtain
new results for general deterministic datasets.

Our analysis has highlighted the impact of the degree of
orthogonality among different input data points on the per-
formance of RFRR in terms of training and generalization
errors and cross-validation. In addition, Hermite polyno-
mial expansion of σ is a universal way to precisely ana-
lyze RFRR induced by any two-layer neural networks with
Gaussian random weights. As one-dimensional polynomi-
als, they are easier to implement in practice compared to
other orthogonal polynomial expansion approaches (Misi-
akiewicz, 2022; Hu and Lu, 2022a; Xiao and Pennington,
2022; Ghorbani et al., 2021; Mei et al., 2022) that de-
pend on both data and weight distributions for RFRR. We
anticipate that our approach can also be applied to ana-
lyze other random kernel matrices, including the empirical
NTK, from more general multi-layer neural networks with
general deterministic datasets.
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A ADDITIONAL SIMULATIONS

As a complementary, Figure 3 shows the convergence rates for the differences in training errors, LOOCV errors, GCV
errors, and generalization errors between RFRR and KRR. In this experiment, the data points are i.i.d. sampled from
Unif(Sd−1) with d = 500 and training samples n = 1000. The activation function is a degree-5 polynomial p(x) =
h0(x) +

1√
6
h1(x) +

1
3h2(x) +

1
6h3(x) +

2
3h4(x) +

1
2h5(x), where Hermite polynomials are defined in Definition B.1. As

an approximation of the kernel K generated by σ(x) = p(x), we can consider K2 defined by

K2 = 11⊤ +
1

6
X⊤X +

1

9
(X⊤X)⊙2 +

26

36
Id .

We employ this simple kernel K2 to compute the performances of KRR and compare them with the performances of
RFRR generated by σ and (1.2). In this simulation, we consider a teacher model defined by Assumption 2.9 where τ is the
Softplus function. Similarly with Figures 1 and 2, these results of the simulation match with our theorems in Section 2.

(a) Training error (b) LOOCV error

(c) GCV error (d) Test error

Figure 3: Differences between KRR and RFRR with various ridge parameters λ in terms of (a) training errors, (b) LOOCV errors, (c)
GCV errors, and (d) generalization errors. Here, data X is sampled from Unif(Sd−1) with d = 500, n = 1000 and training label noise
σε = 0.3. We repeat each experiment with 5 trials to average. The target function τ is Softplus function.

B ADDITIONAL NOTATIONS AND DEFINITIONS

We denote Id as the identity matrix. Let Kλ = K + λ Id where K is defined by (1.3) and λ ≥ 0 is the ridge parameter.
Denote KN,λ = KN + λ Id where KN is (1.2). Conventionally, let ∥·∥ be the ℓ2-norm for vectors and ℓ2 → ℓ2
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operator norm for matrices. Let ≼ be the Loewner order for positive semi-definite matrices. For any matrix A ∈ Rn×n,
[A]i,j denotes the (i, j) entry of A, and [A][i,:] denotes the i-th row of A for any i, j ∈ [n]. Recall that the constant
λ0 = 1

2σ
2
>ℓ > 0. In the following proofs in Appendix C, all the constants are universal and do not depend on n, d, and N .

The following normalized Hermite polynomials are necessary for expanding σ and approximating K by a polynomial
kernel in Section 2.2 under Gaussian distributions.

Definition B.1 (Normalized Hermite polynomial). The k-th normalized Hermite polynomial is given by

hk(x) =
1√
k!
(−1)kex

2/2 dk

dxk
e−x2/2. (B.1)

These polynomials {hk}∞k=0 form an orthogonal basis of L2(R,Γ), where Γ denotes the standard Gaussian distribution.
For any σ1, σ2 ∈ L2(R,Γ), the inner product, with respect to the standard Gaussian measure, is defined by

⟨σ1, σ2⟩Γ =

∫ ∞

−∞
σ1(x)σ2(x)

e−x2/2

√
2π

dx.

Based on the definition, every function σ ∈ L2(R,Γ) can be expanded as σ(x) =
∑∞

k=0 ζk(σ)hk(x), where ζk(σ) is the
k-th Hermite coefficient given by

ζk(σ) =

∫ ∞

−∞
σ(x)hk(x)

e−x2/2

√
2π

dx, (B.2)

and ∥σ∥22 =
∑∞

k=0 ζ
2
k(σ). Moreover, we have ⟨hk, hj⟩Γ = E[hk(ξ)hj(ξ)] = δj,k for any ξ ∼ N (0, 1) and k, j ∈ N. For

more properties of Hermite polynomials, see Oymak and Soltanolkotabi (2020); Nguyen and Mondelli (2020).

C PROOFS OF MAIN RESULTS IN SECTION 2

C.1 Proof of Proposition 2.4

By the Hermite polynomial expansion of σ, for i, j ∈ [n], we have

Kij = Ew[σ(w⊤
i xi)σ(w

⊤
i xj)] =

∞∑
k=0

ξ2k(σ)⟨xi,xj⟩k.

Thus, we can expand this kernel as

K =

∞∑
k=0

ξ2k(σ)
(
X⊤X

)⊙k

, K −Kℓ =

∞∑
k=ℓ+1

ξ2k(σ)

((
X⊤X

)⊙k

− Id

)
.

Then by Cauchy’s inequality, for n ≥ n0,

∥K −Kℓ∥2 ≤ ∥K −Kℓ∥2F =
∑
i ̸=j

( ∞∑
k=ℓ+1

ξ2k(σ)⟨xi,xj⟩k
)2

≤
∑
i ̸=j

( ∞∑
k=ℓ+1

ξ4k(σ)

)( ∞∑
k=ℓ+1

⟨xi,xj⟩2k
)

≤ ∥σ∥44
∑
i ̸=j

⟨xi,xj⟩2ℓ+2

1−max |⟨xi,xj⟩|2

≤ 2∥σ∥44
∥∥∥∥(X⊤X

)⊙ℓ+1

− Id

∥∥∥∥2
F

.

Therefore, from (2.5),

∥K −Kℓ∥ ≤
√
2∥σ∥24

∥∥∥∥(X⊤X
)⊙ℓ+1

− Id

∥∥∥∥
F

≤ 1

2
√
2
σ2
>ℓ.
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Since (
X⊤X

)⊙k

ij
= ⟨xi,xj⟩k = ⟨xi ⊗ · · · ⊗ xi,xj ⊗ · · · ⊗ xj⟩,

where xi ⊗ · · · ⊗ xi is the k-th tensor product of xi,
(
X⊤X

)⊙k

is positive semidefinite. Then

λmin(K) ≥ λmin(Kℓ)− ∥K −Kℓ∥ ≥ σ2
>ℓ −

1

2
√
2
σ2
>ℓ >

1

2
σ2
>ℓ ≡ λ0,

Notice that λ0 > 0 because σ2
>ℓ > 0 from Assumption 2.3.

C.2 Concentration Inequality for Normalized Random Kernel Matrices

Now we introduce the concentration inequality for KN in a normalized version, which is the cornerstone for proving
Theorem 2.7. Similar concentration results were also obtained in Theorem 3.2 of Montanari and Zhong (2022) for the
neural tangent kernel (NTK), where the data matrix X is assumed to be uniformly random, and the activation function
is assumed to have a polynomial growth rate, while we make no distribution assumption on X and only assume ∥σ∥4 is
finite. To consider a normalized version of the kernel matrices, we need to consider K−1

λ . Under Assumption 2.3, we use
Proposition 2.4 to make sure Kλ is invertible when λ = 0.

Proposition C.1 (Normalized random kernel matrix concentration). Suppose that σ ∈ L4(R,Γ). Then, under the same
assumptions of Theorem 2.7, there exists some positive constants C1, C2 > 0 depending on σ, such that for any N
satisfying N/ log2(N) > C1n and any λ ≥ 0, n ≥ n0, we have∥∥∥K− 1

2

λ (KN −K)K
− 1

2

λ

∥∥∥ ≤ C2 log(N)

√
n

N
, (C.1)

with probability at least 1−N−2, where Kλ = K + λ Id.

Proof. Denote σ̃(x) := σ(x)1|x|≤B , where B is a parameter to be decided later. Define

KN =
1

N

N∑
i=1

σ(w⊤
i X)⊤σ(w⊤

i X), K = Ew[σ(w⊤X)⊤σ(w⊤X)],

K̃N =
1

N

N∑
i=1

σ̃(w⊤
i X)⊤σ̃(w⊤

i X), K̃ = Ew[σ̃(w⊤X)⊤σ̃(w⊤X)].

For simplicity, we denote K̃λ := K̃ + λ Id. Define

Hi :=
1

N
K̃

−1/2
λ σ̃(w⊤

i X)⊤σ̃(w⊤
i X)K̃

−1/2
λ .

Notice that Proposition 2.4 implies that
∥∥K−1

λ

∥∥ ≤ λ−1
0 for λ ≥ 0. Firstly, based on the truncated function σ̃(x), we have

that for some universal constant c > 0,

P
(
KN ̸= K̃N

)
≤ P

(
max

i∈[N ],k∈[n]
|w⊤

i xk| > B

)
≤ NnP (|ξ| > B) ≤ cNn exp (−B2/2), (C.2)

where ξ ∼ N (0, 1). Define the event by Ai := {w : |w⊤xi| ≤ B} for i ∈ [n]. Entry-wisely, we have∣∣∣[K − K̃]i,j

∣∣∣ = ∣∣∣Ew[σ(w⊤xi)σ(w
⊤xj)1Ac

j∩Ac
j
]
∣∣∣

≤ Ew[σ(w⊤xi)
4]1/2E[1Ac

j∩Ac
j
]1/2

≤
√
2E[σ(ξ)4]1/2P (Ac

i )
1/2 ≤ C0 exp (−B2/4),

for some constant C0 > 0 which only depends on ∥σ∥4. Therefore, ∥K − K̃∥ ≤ ∥K − K̃∥F ≤ C0n exp (−B2/4) and∥∥∥K−1/2
λ

(
K − K̃

)
K

−1/2
λ

∥∥∥ ≤ C0

λ0
n exp (−B2/4). (C.3)
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For

B ≥

√
4 log

(
2C0n

λ0

)
, (C.4)

the above equation also implies that
∥∥∥K − K̃

∥∥∥ ≤ λ0

2 , and∥∥∥K̃1/2
λ K

−1/2
λ

∥∥∥2 =
∥∥∥K−1/2

λ K̃λK
−1/2
λ

∥∥∥
≤
∥∥∥K−1/2

λ

(
K − K̃

)
K

−1/2
λ

∥∥∥+ ∥∥∥K−1/2
λ KλK

−1/2
λ

∥∥∥ ≤ 3

2
. (C.5)

Therefore, the smallest eigenvalues of Kλ and K̃λ satisfy

λmin(K̃λ) ≥ λmin(Kλ)−
∥∥∥K − K̃

∥∥∥ ≥ λ0

2
> 0. (C.6)

It suffices to analyze
∥∥∥K−1/2

λ (K̃N −K)K
−1/2
λ

∥∥∥ because of (C.2) and the following equation:

P
(∥∥∥K−1/2

λ (KN −K)K
−1/2
λ

∥∥∥ ≥ t
)
≤ P

(∥∥∥K−1/2
λ (K̃N −K)K

−1/2
λ

∥∥∥ ≥ t
)
+ P

(
KN ̸= K̃N

)
. (C.7)

Meanwhile, by (C.3), (C.4), and (C.5), we know that∥∥∥K−1/2
λ (K̃N −K)K

−1/2
λ

∥∥∥ ≤
∥∥∥K−1/2

λ (K̃N − K̃)K
−1/2
λ

∥∥∥+ ∥∥∥K−1/2
λ (K̃ −K)K

−1/2
λ

∥∥∥
≤
∥∥∥K−1/2

λ K̃
1/2
λ

∥∥∥2 ∥∥∥K̃−1/2
λ (K̃N − K̃)K̃

−1/2
λ

∥∥∥+ ∥∥∥K−1/2
λ (K̃ −K)K

−1/2
λ

∥∥∥
≤ 3

2

∥∥∥K̃−1/2
λ (K̃N − K̃)K̃

−1/2
λ

∥∥∥+ C0n

λ0
exp (−B2/4) (C.8)

Hence, we only need to prove the concentration inequality for K̃−1/2
λ (K̃N − K̃)K̃

−1/2
λ =

∑N
i=1 Hi − EHi. In terms

of the definition of σ̃ and (C.6), we know that, almost surely,

∥Hi − EHi∥ ≤ 2 ∥Hi∥ ≤ 4

λ0N

∥∥σ̃(w⊤
i X)

∥∥2 ≤ 4B2n

λ0N
,

where we take expectation with respect to wi. Analogously, applying (C.6), we have

H2
i =

1

N2
K̃

−1/2
λ σ̃(w⊤

i X)⊤σ̃(w⊤
i X)K̃−1

λ σ̃(w⊤
i X)⊤σ̃(w⊤

i X)K̃
−1/2
λ

≼
2
∥∥σ(w⊤

i X)
∥∥2

λ0N2
K̃

−1/2
λ σ̃(w⊤

i X)⊤σ̃(w⊤
i X)K̃

−1/2
λ

≼
2B2n

λ0N2
K̃

−1/2
λ σ̃(w⊤

i X)⊤σ̃(w⊤
i X)K̃

−1/2
λ .

Notice that E[σ̃(w⊤
i X)⊤σ̃(w⊤

i X)] = K̃. Hence, E[K̃−1/2
λ σ̃(w⊤

i X)⊤σ̃(w⊤
i X)K̃

−1/2
λ ] = 1

1+λ Id, and

E[(Hi − E[Hi])
2
] ≼ EH2

i ≼
2B2n

λ0N2
Id .

Thus, applying Theorem 5.4.1 of (Vershynin, 2018), we obtain

P

(∥∥∥∥∥
N∑
i=1

Hi − EHi

∥∥∥∥∥ > t

)
≤ 2n exp

(
− t2/2

v + at/3

)
, (C.9)

where v ≤ 2B2n
λ0N

and a = 4B2n
λ0N

. Take t = B2
√
n/N and B = C ′√logN . Then for N ≥ B4n, by taking constant C ′ > 0

sufficiently large, (C.4) holds and the right hand side of (C.2) is no great than 1
2N

−2. Moreover, (C.9) implies that there
exists an absolute constant C ′′ > 0 such that

P
(∥∥∥K̃−1/2

λ (K̃N − K̃)K̃
−1/2
λ

∥∥∥ > C ′′ log(N)

√
n

N

)
≤ 1

2
N−2, (C.10)
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for sufficiently large C ′. Here both C ′, C ′′ > 0 are determined by λ0. Notice that for all large N , the second term of (C.8)
can be also bounded by C ′′′ log(N)

√
n
N for some constant C ′′′ > 0 only depending on ∥σ∥4 and λ0. Combing (C.2),

(C.7), (C.8), and (C.10), we can conclude that there exists some large constants C1, C2 > 0, such that with probability at
least 1−N−2, when N/ log2(N) > C1n, and n ≥ n0,∥∥∥K−1/2

λ (KN −K)K
−1/2
λ

∥∥∥ ≤C2 log(N)

√
n

N
,

as desired, where C1, C2 are constants depending only on ∥σ∥4 and λ0.

C.3 Proof of Theorem 2.7

We first prove the following corollary from Proposition C.1.

Corollary C.2. Following the notations of Proposition C.1, let us denote t = C1 log(N)
√

n
N . When t ∈ (0, 1), under the

same assumptions as Proposition C.1, with probability at least 1−N−2, when n ≥ n0, the following holds:∥∥∥(KN + λ Id)−1/2 (K −KN ) (KN + λ Id)−1/2
∥∥∥ ≤t,∥∥∥K−1/2

λ (KN + λ Id)1/2
∥∥∥ ≤

√
1 + t,∥∥∥K1/2

λ (KN + λ Id)−1/2
∥∥∥ ≤(1− t)−1/2,

and the smallest eigenvalue λmin(KN ) ≥ (1− t)λ0.

Proof. Based on Proposition C.1, under the event in (C.1), we can deduce that

(KN −K) ≼ tKλ,

(K −KN ) ≼ tKλ,

(K −KN ) ≼
t

1− t
(KN + λ Id),

(KN + λ Id) ≼ (1 + t)Kλ,

Kλ ≼
1

1− t
(KN + λ Id), (C.11)

with probability at least 1 −N−2. These imply the results of the Corollary C.2, where the bound of λmin(KN ) is due to
Proposition 2.4 and (C.11).

Now we are ready to prove Theorem 2.7.

Proof of Theorem 2.7. From the definitions of training errors in (2.10) and (2.11), Proposition 2.4 and Corollary C.2 im-
plies that both K(X,X) and KN (X,X) are invertible with probability at least 1 − N−2 when t ∈ (0, 3/4). Thus, we
have when t ∈ (0, 3/4), with probability at least 1−N−2, when n ≥ n0,∣∣∣E(RF,λ)

train − E
(K,λ)
train

∣∣∣ = λ2

n

∣∣Tr[(K + λ Id)−2yy⊤]− Tr[(KN + λ Id)−2yy⊤]
∣∣

=
λ2

n

∣∣y⊤ [(K + λ Id)−2 − (KN + λ Id)−2
]
y
∣∣

≤ λ2

n
∥(K + λ Id)−2 − (KN + λ Id)−2∥ · ∥y∥2

≤ λ2∥y∥2

n
∥(K + λ Id)−1 − (KN + λ Id)−1∥ · (∥(K + λ Id)−1∥+ ∥(KN + λ Id)−1∥)

≤ 5λ2∥y∥2

λ0n
∥(K + λ Id)−1 − (KN + λ Id)−1∥, (C.12)

where in the last line, we employ the fact that
∥∥(KN + λ Id)−1

∥∥ ≤ 4λ−1
0 and

∥∥(K + λ Id)−1
∥∥ ≤ λ−1

0 from Corollary
C.2 and Proposition 2.4, respectively.
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Take C2 =
√
2C1 in Proposition C.1. For any N satisfying N/ log2(N) > 2C2

1n, we can make 0 < t < 3/4, where
t = C1 log(N)

√
n
N . From this, considering the identity A−1 − B−1 = B−1(B − A)A−1, and applying Proposition C.1

and Corollary C.2, we obtain that∥∥(K + λ Id)−1 − (KN + λ Id)−1
∥∥

=
∥∥∥(Kλ)

−1/2(Kλ)
−1/2 (KN −K) (Kλ)

−1/2(Kλ)
1/2(KN + λ Id)−1/2(KN + λ Id)−1/2

∥∥∥
≤ 1

2λ0

∥∥∥(Kλ)
−1/2 (KN −K) (Kλ)

−1/2
∥∥∥∥∥∥(Kλ)

1/2(KN + λ Id)−1/2
∥∥∥

≤ t

2λ0

√
1− t

≤ t

λ0
. (C.13)

Hence, from (C.12), we get ∣∣∣E(RF,λ)
train − E

(K,λ)
train

∣∣∣ ≤ 5λ2 ∥y∥2 t
λ2
0n

,

which finishes the proof of Theorem 2.7.

C.4 Proof of Theorem 2.8

We start with the following estimate on the normalized trace trK−1
λ .

Lemma C.3. Under Assumption 2.2, we have trKλ = λ+ ∥σ∥22 and when n ≥ n0,

(λ+ ∥σ∥22)
−1 ≤ trK−1

λ ≤ λ−1
0 .

Proof. By definition of K, we know Tr[K] = nEw[σ(w⊤x)2] = nE[σ(ξ)2] = n ∥σ∥22 for ξ ∼ N (0, 1). Hence,

TrKλ = n
(
λ+ ∥σ∥22

)
. Denote λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 as the eigenvalues of K. Then, by Cauchy–Schwartz

inequality, we have

n =

n∑
i=1

1√
λi + λ

√
λi + λ ≤

(
TrK−1

λ

)1/2
(TrKλ)

1/2
.

Therefore, we can get (λ+ ∥σ∥22)−1 ≤ trK−1
λ . Meanwhile, based on Proposition 2.4, trK−1

λ ≤
∥∥K−1

λ

∥∥ ≤ λ−1
min(K) ≤

λ−1
0 . Notice that λ0 = 1

2σ
2
>ℓ ≤ ∥σ∥22.

Recall that KN,λ = KN + λ Id. The following lemma for the approximation of Kλ with KN,λ holds.

Lemma C.4. Under the assumptions of Proposition C.1, for sufficiently large constant C > 0, when N/ log2(N) >
C(1 + λ2)n, we have, with probability at least 1−N−2, when n ≥ n0,∣∣∣trK−1

λ − trK−1
N,λ

∣∣∣ ≤ C0 log(N)

√
n

N
, (C.14)

and
1

2(λ+ ∥σ∥22)
≤ trK−1

N,λ ≤ 3

2λ0
,

where constants C,C0 > 0 only depends on λ0 and ∥σ∥4.

Proof. From (C.13) and Lemma C.3, by taking t = C1 log(N)
√

n
N ∈ (0, 1), we have∣∣∣trK−1

λ − trK−1
N,λ

∣∣∣ ≤ ∥∥∥K−1
λ −K−1

N,λ

∥∥∥ ≤ t

λ0(1− t)
,

(λ+ ∥σ∥22)
−1 − t

λ0(1− t)
≤ trK−1

N,λ ≤ λ−1
0 +

t

λ0(1− t)
. (C.15)
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Considering sufficiently large constant C > 0 with N/ log2(N) > C(1 + λ2)n, we can ensure that t is sufficiently small
and satisfies 0 ≤ t ≤ min{1/2, λ0/4(λ+ ∥σ∥22)}. Then,

t

λ0(1− t)
≤ 1

2(λ+ ∥σ∥22)
≤ 1

2λ0
. (C.16)

Hence, taking C0 = 2C1/λ0, we can conclude (C.14). The second statement follows from (C.15) and (C.16) directly.

Lemma C.5. Based on the definitions of LOOCVs of KRR and RFRR in (2.13), we have shortcut formulae (2.14) and
(2.15) for KRR and RFRR respectively: for any λ ≥ 0,

CV(K,λ)
n =

1

n
y⊤K−1

λ D−2K−1
λ y,

CV (RF,λ)
n =

1

n
y⊤K−1

N,λD
−2
N K−1

N,λy,

where D and DN are diagonal matrices with diagonals [D]ii = [K−1
λ ]ii and [DN ]ii = [K−1

N,λ]ii, for i ∈ [n], respectively.
When n ≥ n0, we have

(λ+ ∥σ∥22)
−1 ≤ ∥D∥ ≤ λ−1

0 . (C.17)

Additionally, for a constant C > 0 depending on λ0, ∥σ∥2, when N/ log2(N) > C(1 + λ2)n,

1

2
(λ+ ∥σ∥22)

−1 ≤ ∥DN∥ ≤ 2λ−1
0 , (C.18)∥∥D−2 −D−2

N

∥∥ ≤ C0(1 + λ4) log(N)

√
n

N
, (C.19)

with probability at least 1−N−2, for some constant C0 > 0 which only depends on λ0 and ∥σ∥2.

Proof. For i ∈ [n], denote y−i ∈ Rn−1 by the vector y with the i-th entry removed, X−i by the data X with the i-th
colmun removed, and K−i,λ by the matrix Kλ with both the i-th row and column removed. Based on Schur complement
and resolvent identities (Benaych-Georges and Knowles, 2017, Lemma 3.5), we have for any i, j ∈ [n] with j ̸= i, the
(i, j) entry of K−1

λ is given by

[K−1
λ ]i,j = −[K−1

λ ]ii
∑
k ̸=i

[K]i,k[K
−1
−i,λ]k,j . (C.20)

Thus, from definition (2.13), we can exploit (C.20) to obtain

yi − f̂
(K)
λ,−i(xi) = yi −K(xi,X

−i)K−1
−i,λy

−i

= yi +
[K−1

λ ][i,̸=i]y
−i

[K−1
λ ]ii

+

(
[K−1

λ ]ii

[K−1
λ ]ii

yi − yi

)
=

[K−1
λ ][i,:]y

[K−1
λ ]ii

,

for any i ∈ [n], where [K−1
λ ][i,̸=i] is the i-th row of K−1

λ with the i-th entry removed, and [K−1
λ ][i,:] is the i-th row of

K−1
λ . Hence, in matrix form, we can get

CV(K,λ)
n =

1

n

n∑
i=1

y⊤[K−1
λ ]⊤[i,:][K

−1
λ ][i,:]y

[K−1
λ ]ii

=
1

n
y⊤K−1

λ D−2K−1
λ y.

Going through the same procedure, we can verify (2.15) as well.

Secondly, applying Theorem A.4 of (Bai and Silverstein, 2010), we have

[D]ii = [K−1
λ ]ii =

1

[Kλ]ii −K(xi,X
−i)K−1

−i,λK(X−i,xi)
,

for any i ∈ [n]. Recall that, in the proof of Lemma C.3, we have shown [Kλ]ii = λ+ ∥σ∥22 for all i ∈ [n]. Therefore, we
have

(λ+ ∥σ∥22)
−1 ≤ [K−1

λ ]ii ≤ ∥K−1
λ ∥ ≤ λ−1

0 , ∀i ∈ [n].
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which verifies the result (C.17).

Meanwhile, from the proof of Lemma C.4, for sufficiently large constants C,C1 depending only on λ0, ∥σ∥2, with t =

C1 log(N)
√

n/N ≤ min{1/2, λ0/4(λ+ ∥σ∥22)} and N/ log2(N) > C(1 + λ2)n, we have

∥D −DN∥ ≤
∥∥∥K−1

λ −K−1
N,λ

∥∥∥ ≤ t

λ0(1− t)
, (C.21)

with probability at least 1−N−2. Therefore, we can verify (C.18) as follows

1

2
(λ+ ∥σ∥22)

−1 ≤ (λ+ ∥σ∥22)
−1 − ∥D −DN∥ ≤ ∥DN∥ ≤ λ−1

0 + ∥D −DN∥ ≤ 2λ−1
0 .

Finally, combining (C.17), (C.18) and (C.21) together, we can obtain that∥∥D−2 −D−2
N

∥∥ ≤∥D∥−2 ∥DN∥−2
(∥DN∥+ ∥D∥) ∥D −DN∥

≤ 12
(λ+ ∥σ∥22)4

λ3
0

t ≤ C0(1 + λ4) log(N)

√
n

N
.

This finally completes the proof of this lemma.

Proof of Theorem 2.8. We start with (2.17). Recall (2.10), (2.11), and KN,λ = KN + λ Id. Using the expression (2.16),
we have

|GCV(K,λ)
n − GCV(RF,λ)

n | ≤ 1

λ2

∣∣∣∣((trK−1
λ

)−2 −
(
trK−1

N,λ

)−2
)
E

(K,λ)
train

∣∣∣∣+ 1

λ2
(
trK−1

λ

)2 ∣∣∣E(K,λ)
train − E

(RF,λ)
train

∣∣∣
≤ 1

n

∥∥K−1
λ y

∥∥2 ∣∣∣∣(trK−1
λ

)−2 −
(
trK−1

N,λ

)−2
∣∣∣∣ (C.22)

+ C2(λ+ ∥σ∥22)2
logN∥y∥2√

nN
, (C.23)

where (C.23) is due to (2.12) and Lemma C.3, and C2 is a constant depending on ∥σ∥4 and λ0.

For the first term (C.22), when N/ log2 N ≥ C(1 + λ2)n for a sufficiently large C, together with Lemmas C.3 and C.4,
we can show that with probability at least 1−N−2,

1

n

∥∥K−1
λ y

∥∥2 ∣∣∣∣(trK−1
λ

)−2 −
(
trK−1

N,λ

)−2
∣∣∣∣

≤
(
trK−1

λ

)−2
(
trK−1

N,λ

)−2 ∣∣∣tr(K−1
λ −K−1

N,λ)
∣∣∣ tr(K−1

λ +K−1
N,λ

) 1

n
∥K−2

λ ∥ ∥y∥2

≤
20(λ+ ∥σ∥22)4

λ3
0n

∥y∥2 C0 log(N)

√
n

N
≤ C1(1 + λ4) ∥y∥2 log(N)√

nN
,

for some constant C1 which only relies on ∥σ∥2 and λ0. Hence, the bounds of (C.22) and (C.23) imply

|GCV(K,λ)
n − GCV(RF,λ)

n | ≤ c(1 + λ4) logN ∥y∥2√
nN

for a constant c depending on λ0, ∥σ∥2, and ∥σ∥4. This proves (2.17) for the GCV concentration.

Now we consider the second result (2.18) for LOOCV. Similar to the analysis of GCV, with the help of the shortcut
formulae (2.14) and (2.15), we can get∣∣∣CV(K,λ)

n − CV(RF,λ)
n

∣∣∣ ≤ ∥y∥2

n

∥∥∥(K−1
λ −K−1

N,λ)D
−2K−1

λ

∥∥∥+ ∥y∥2

n

∥∥∥K−1
N,λ(D

−2 −D−2
N )K−1

λ

∥∥∥
+

∥y∥2

n

∥∥∥K−1
N,λD

−2
N (K−1

λ −K−1
N,λ)

∥∥∥ ≤ c(1 + λ4) logN ∥y∥2√
nN

, (C.24)

with probability at least 1 − N−2. Here, we exploit (C.17), (C.18) and (C.19) in Lemma C.5. This verifies the second
result (2.18) for LOOCV.
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C.5 Proof of Theorem 2.11

For simplicity, we denote KN,λ = (KN + λ Id), Kλ = (K + λ Id), Km,N := KN (X,x) ∈ Rn and Km :=
K(X,x) ∈ Rn. Define

K
(2)
N := Ex[KN (X,x)KN (x,X)], K(2) := Ex[K(X,x)K(x,X)],

where we take expectation with respect to test data x defined in Assumption 2.10. Recalling Assumption 2.9, we have

f∗(x) = τ(⟨β,x⟩), y = τ(X⊤β) + ε,

where β ∼ N (0, Id). Denote the kernel given by τ as Ψ := Eβ[τ(X
⊤β)τ(β⊤X)] and the vector by u :=

Eβ[τ(X
⊤β)f∗(x)] ∈ Rn.

We begin with the following lemmas about the bounds and concentrations with respect to K
(2)
N , K(2), KN,λ, Km,N , and

Km.

Lemma C.6. There exist some constant C > 0 depending on λ0, ∥σ∥22 such that, with probability at least 1−N−1, when
n ≥ max{n0, n1},

K⊤
m,NK−1

N,λKm,N < ∥σ∥22 + ∥σ∥24 + λ,

when N/ log2(N) > C(1 + λ2)n. Moreover, we have

K⊤
mK−1

λ Km < ∥σ∥22 + λ.

Proof. Consider an enlarged block matrix K̃ ∈ R(n+1)×(n+1) defined by

K̃ :=

(
K Km

K⊤
m K(x,x)

)
, (C.25)

where K(x,x) = E[σ(w⊤x)(σ(w⊤x)] = ∥σ∥22. Let K̃λ := K̃ + λ Id. Analogously to (2.4), let us define

K̃ℓ :=

ℓ∑
k=0

ζ2k(σ)(X̃
⊤X̃)⊙k + σ2

>ℓ Id ∈ R(n+1)×(n+1), (C.26)

where X̃ = [X,x] ∈ Rd×(n+1) is the concatenation of training and test data points. By Assumption 2.10, analogously to
the proof of Proposition 2.4, we have∥∥∥K̃ℓ − K̃

∥∥∥2 ≤
∥∥∥K̃ℓ − K̃

∥∥∥2
F

(C.27)

≤ 2∥σ∥44
∥∥∥∥(X̃⊤X̃

)⊙ℓ+1

− Id

∥∥∥∥2
F

= 2∥σ∥44
∥∥∥∥(X⊤X

)⊙ℓ+1

− Id

∥∥∥∥2
F

+ 4∥σ∥44
∥∥∥(X⊤x)⊙(ℓ+1)

∥∥∥2
2
≤ 3

8
λ2
0.

Since λmin(K̃) ≥ λ0 > 0, we have λmin(K̃λ) ≥ 1
4λ0 and K̃λ is positive definite for any λ ≥ 0. By Theorem

7.7.7 of Horn and Johnson (2012), since both Kλ and K̃λ are positive definite, the Schur complement of K̃λ given by
K(x,x) + λ−K⊤

mK−1
λ Km is positive, which concludes our second result in this lemma.

Similarly, consider the block matrix K̃N ∈ R(n+1)×(n+1) defined by

K̃N := KN (X̃, X̃) =

(
KN Km,N

K⊤
m,N KN (x,x)

)
.

Let K̃N,λ := λ Id+K̃N . Combing Assumption 2.10 and (C.27), we can easily ensure Proposition C.1 and Corollary C.2
still hold for K̃λ and K̃N,λ. Therefore, with probability at least 1 − N−2, λmin(K̃N,λ) ≥ 1

2λ0, for sufficiently large
constant C > 0 with N/ log2(N) > C(1 + λ2)n, which implies that K̃N,λ is positive definite with probability 1−N−2.
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Again, from Theorem 7.7.7 of Horn and Johnson (2012), we can get KN (x,x) + λ − K⊤
m,NK−1

N,λKm,N > 0 with
probability at least 1−N−2. Thus,

0 ≤ K⊤
m,NK−1

N,λKm,N < KN (x,x) + λ.

Notice that KN (x,x) = 1
N

∑N
i=1 σ(w

⊤
i x)

2, E[KN (x,x)] = ∥σ∥22 , and

E
(
KN (x,x)− ∥σ∥22

)2
=

1

N
Var(σ(w⊤x)2) =

∥σ∥44 − ∥σ∥42
N

≤
∥σ∥44
N

,

where w ∼ N (0, Id). Therefore, by Markov inequality, we conclude that, with probability at least 1− 1/N , KN (x,x) ≤
∥σ∥22 + ∥σ∥24. Therefore, with probability at least 1−N−1, we have K⊤

m,NK−1
N,λKm,N < ∥σ∥22 + ∥σ∥24 + λ.

Lemma C.7. Suppose that, for any 0 ≤ k ≤ ℓ, if ζk(σ) ̸= 0, then ζk(τ) ̸= 0. Then, there exists a universal constant
C > 0 only depending on σ and τ such that for any λ ≥ 0 and n ≥ n0,∥∥∥K−1/2

λ ΨK
−1/2
λ

∥∥∥ ≤ C,

Proof. Analogously to (2.4), we define a truncation version of the kernel Ψ by

Ψℓ :=

ℓ∑
k=0

ζ2k(τ)
(
X⊤X

)⊙k

+ τ2>ℓ Id . (C.28)

Define Kℓ,λ := Kℓ + λ Id. By the assumption and definition of Kℓ, there exists some constant C > 0 such that
Ψℓ ≼ CKℓ,λ for any λ ≥ 0. Here this constant C only relies on the Hermite coefficients ζk(τ), λ0 and ζk(σ) for
0 ≤ k ≤ ℓ. Next, applying Proposition 2.4 for nonlinear function τ , we have

∥Ψ−Ψℓ∥ ≤
√
2∥τ∥24

∥∥∥∥(X⊤X
)⊙ℓ+1

− Id

∥∥∥∥
F

≤
√
2σ2

>ℓ∥τ∥24
4∥σ∥24

. (C.29)

Proposition 2.4 also indicates that ∥K −Kℓ∥ ≤ 1
2λ0. This implies that

K
−1/2
λ Kℓ,λK

−1/2
λ ≼

3

2
Id,

for any λ ≥ 0. Then, for any λ ≥ 0, we can estimate its contribution by∥∥∥K−1/2
λ ΨK

−1/2
λ

∥∥∥ ≤
∥∥∥K−1/2

λ (Ψ−Ψℓ)K
−1/2
λ

∥∥∥+ ∥∥∥K−1/2
λ ΨℓK

−1/2
λ

∥∥∥
≤ λ−1

0 ∥Ψ−Ψℓ∥+
∥∥∥K−1/2

λ K
1/2
ℓ,λK

−1/2
ℓ,λ ΨℓK

−1/2
ℓ,λ K

1/2
ℓ,λK

−1/2
λ

∥∥∥
≤

√
2σ2

>ℓ∥τ∥24
4λ0∥σ∥24

+
∥∥∥K1/2

ℓ,λK
−1/2
λ

∥∥∥2 ∥∥∥K−1/2
ℓ,λ ΨℓK

−1/2
ℓ,λ

∥∥∥
≤

√
2σ2

>ℓ∥τ∥24
4λ0∥σ∥24

+
3

2
C.

Therefore, there is a constant depending only on σ, τ as the upper bound for
∥∥∥K−1/2

λ ΨK
−1/2
λ

∥∥∥. This completes the proof
of this lemma.

Lemma C.8. There exists a constant C > 0 depending only on σ, τ such that for any λ ≥ 0 and n ≥ max{n0, n1},∥∥∥K− 1
2

λ u
∥∥∥ =

∥∥∥Eβ[τ(β
⊤x)τ(β⊤X)]K

− 1
2

λ

∥∥∥ ≤ C(1 + λ1/2),

Proof. Denote Kτ,m := Eβ[τ(β
⊤x)τ(β⊤X)]⊤ and Ψλ := Ψ+λ Id. Analogously to (C.25) and (C.26), we can consider

Ψ̃λ = Eβ[τ(β
⊤X̃)⊤τ(β⊤X̃)] + λ Id =

(
Ψλ Kτ,m

K⊤
τ,m Eβ[τ(β

⊤x)2] + λ

)
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where X̃ = [X,x]. For any λ ≥ 0, both Ψ̃ and Ψ are positive definite because of (C.29) and (C.28). Following the proof
of Lemma C.6, we can similarly derive that the Schur complement Eβ[τ(β

⊤x)2]+λ−K⊤
τ,mΨ−1

λ Kτ,m is positive, where
Eβ[τ(β

⊤x)2] = ∥τ∥22. Therefore, we have

∥∥∥Eβ[τ(β
⊤x)τ(β⊤X)]K

− 1
2

λ

∥∥∥2 = K⊤
τ,mK−1

λ Kτ,m

= K⊤
τ,mΨ

− 1
2

λ Ψ
1
2

λK
−1
λ Ψ

1
2

λΨ
− 1

2

λ Kτ,m

≤ K⊤
τ,mΨ−1

λ Kτ,m ·
∥∥∥Ψ 1

2

λK
−1
λ Ψ

1
2

λ

∥∥∥ ≤ (λ+ ∥τ∥22)
∥∥∥Ψ 1

2

λK
−1
λ Ψ

1
2

λ

∥∥∥ .
Additionally, following the same proof of Lemma C.7, we can also obtain

∥∥∥Ψ 1
2

λK
−1
λ Ψ

1
2

λ

∥∥∥ ≤ C, for some constant C > 0

which only depends on σ, τ . This concludes the proof.

The following lemma is analogous to Lemma 5 in Montanari and Zhong (2022), which addresses the concentrations of
K

(2)
N and f∗(x)KN (X,x) respectively.

Lemma C.9. Suppose that the assumptions of Theorem 2.11 hold. For any λ ≥ 0, define

δ1 :=Eβ,ε

[
y⊤K−1

λ

(
K

(2)
N −K(2)

)
K−1

λ y
]
,

δ2 :=Eβ,x

[
f∗(x) (KN (x,X)−K(x,X))K−1

λ f∗(X)
]
.

Then, for sufficiently large n, with probability at least 1− 1/ log2(N), when n ≥ max{n0, n1}, there exists some constant
C > 0 depending only on σ, τ such that

|δ1| ≤C(1 + λ) log(N)

√
n

N
, (C.30)

|δ2| ≤C(1 + λ) log(N)

√
n

N
. (C.31)

Proof. Let v := K−1
λ y and g̃(x) := K⊤

mv. Notice that δ1 = δ1,1 + δ1,2, where

δ1,1 := Eβ,ε[v
⊤Ex

[
(Km,N −Km)(Km,N −Km)⊤

]
v],

δ1,2 := 2Eβ,ε[v
⊤Ex

[
(Km,N −Km)K⊤

m

]
v] = 2Eβ,ε,x[v

⊤(Km,N −Km)g̃(x)],

Taking expectation with respect to W , we can obtain

0 ≤ E[δ1,1] =
1

N2

N∑
i,j=1

Eβ,ε

[
v⊤EW ,x

[(
σ(w⊤

i x)σ(w
⊤
i X)⊤ −Km

) (
σ(w⊤

j x)σ(w
⊤
j X)−K⊤

m

)]
v
]

=
1

N2

N∑
i=1

Eβ,ε

[
v⊤EW ,x

[(
σ(w⊤

i x)σ(w
⊤
i X)⊤ −Km

) (
σ(w⊤

i x)σ(w
⊤
i X)−K⊤

m

)]
v
]

=
1

N2

N∑
i=1

Eβ,ε

[
v⊤EW ,x

[
σ(w⊤

i x)
2σ(w⊤

i X)⊤σ(w⊤
i X)−KmK⊤

m

]
v
]

≤ 1

N
Eβ,ε

[
v⊤Ew,x

[
σ(w⊤x)2σ(w⊤X)⊤σ(w⊤X)

]
v
]
, (C.32)

where in the last line we apply the fact Km = Ewi
[σ(w⊤

i x)σ(w
⊤
i X)⊤] ∈ Rn for any i-th row of W .
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Furthermore, by applying Lemma C.7 and Cauchy–Schwartz inequality, we have

Eβ,ε

[
v⊤Ew,x

[
σ(w⊤x)2σ(w⊤X)⊤σ(w⊤X)

]
v
]

= Tr
(
K−1

λ Ew,x

[
σ(w⊤x)2σ(w⊤X)⊤σ(w⊤X)

]
K−1

λ

(
Ψ+ σ2

ε Id
))

= Ew,x

[
σ(w⊤x)2σ(w⊤X)K−1

λ

(
Ψ+ σ2

ε Id
)
K−1

λ σ(w⊤X)⊤
]

≤ ∥σ∥24 Ew,x

[∥∥σ(w⊤X)
∥∥4 ∥∥K−1

λ

(
Ψ+ σ2

ε Id
)
K−1

λ

∥∥2] 1
2

≤ ∥σ∥24 ·
1

λ0

(
C +

σ2
ε

λ0

)
Ew

[∥∥σ(w⊤X)
∥∥4] 1

2

= ∥σ∥24 ·
1

λ0

(
C +

σ2
ε

λ0

)
Ew

( n∑
i=1

σ(w⊤xi)
2

)2
 1

2

≤∥σ∥44 ·
1

λ0

(
C +

σ2
ε

λ0

)
· n (C.33)

where w ∼ N (0, Id) is independent of x and ∥σ∥44 = Ew,x[σ(w
⊤x)4]. Therefore, combining (C.32) and (C.33), we can

conclude that

E[|δ1,1|] ≤ C1,1
n

N
,

for some constant C1,1 > 0 which only relies on σ and σε. Then, Markov inequality deduces that for sufficiently large n,

P
(
|δ1,1| > 4C1,1 log

2(N)
n

N

)
≤ 1

4 log2(N)
. (C.34)

Next, we consider δ2. Let z1, z2 be two i.i.d. copies of x, and β1,β2 be two i.i.d. copies of β. Let ui := K−1
λ τ(β⊤

i X)⊤

and gi(x) := τ(β⊤
i x) for i = 1, 2. Notice that Ewi

[σ(w⊤
i z1)σ(X

⊤wi)] = K(X, z1). Then, taking expectation with
respect to W , we can obtain

E[δ22 ] = Eβ1,β2

[
u⊤
1 EW ,z1,z2 [(KN (X, z1)−K(X, z1)) g1(z1)g2(z2) (KN (z2,X)−K(z2,X))]u2

]
=

1

N2

N∑
i,j=1

E
[
u⊤
1

(
σ(w⊤

i z1)σ(X
⊤wi)−K(X, z1)

)
g1(z1)g2(z2)

(
σ(w⊤

j z2)σ(w
⊤
j X)−K(z2,X)

)
u2

]

=
1

N2

N∑
i=1

E
[
g1(z1)g2(z2)σ(w

⊤
i z1)σ(w

⊤
i z2)u

⊤
1

(
σ(X⊤wi)σ(w

⊤
i X)−K(X, z1)K(z2,X)

)
u2

]
≤ 1

N
Eβ1,β2,w,z1,z2

[
g1(z1)g2(z2)σ(w

⊤z1)σ(w
⊤z2) · u⊤

1 σ(X
⊤w)σ(w⊤X)u2

]
,

where in the last line, we apply the following bound:

Eβ1,β2,z1,z2

[
g1(z1)g2(z2)σ(w

⊤
i z1)σ(w

⊤
i z2)u

⊤
1 K(X, z1)K(z2,X)u2

]
=
(
Eβ,x

[
τ(β⊤x)σ(w⊤

i x)τ(β
⊤X)K−1

λ K(X,x)
])2

≥ 0.

Let vi := K
−1/2
λ Eβi

[τ(β⊤
i zi)τ(β

⊤
i X)]⊤ for i = 1, 2. Then, Lemma C.8 shows that ∥vi∥ ≤ C(1+λ) for some universal
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constant C. Thus, similarly with the derivation of (C.33), we can deduce that

Eβ1,β2,w,z1,z2

[
g1(z1)g2(z2)σ(w

⊤z1)σ(w
⊤z2) · u⊤

1 σ(X
⊤w)σ(w⊤X)u2

]
= Ew,z1,z2

[
σ(w⊤z1)σ(w

⊤z2) · v1K
−1/2
λ σ(X⊤w)σ(w⊤X)K

−1/2
λ v2

]
≤ Ew,z1,z2

[
σ(w⊤z1)

2σ(w⊤z2)
2
] 1

2 Ew,z1,z2

[
∥v1∥2 ∥v2∥2

∥∥∥K−1/2
λ σ(X⊤w)σ(w⊤X)K

−1/2
λ

∥∥∥2] 1
2

≤ C2(1 + λ)2 ∥σ∥24 Ew

[(
σ(w⊤X)K−1

λ σ(X⊤w)
)2] 1

2

≤
C2(1 + λ)2 ∥σ∥24

λ0
Ew

( n∑
i=1

σ(w⊤xi)
2

)2
 1

2

≤
C2(1 + λ)2 ∥σ∥44 n

λ0
,

where the last line is analogous to (C.33). Therefore, E[δ22 ] ≤ C2(1 + λ)2 n
N . This indicates, for any t > 0,

P (|δ2| > 2t(1 + λ)) ≤ C2n

Nt2
.

Hence, by taking t = log(N)
√
C2n/N , we can conclude the bound of δ2 in (C.31) with probability at least 1− 1

4 log
−2(N).

The analysis of δ1,2 is similar to the analysis for δ2. By definition, we have

δ1,2 = 2Tr
(
Ex

[
(Km,N −Km)K⊤

m

]
K−1

λ (Ψ+ σ2
ε Id)K

−1
λ

)
= 2Ex

[
K⊤

mK−1
λ (Ψ+ σ2

ε Id)K
−1
λ (Km,N −Km)

]
.

Then, consider z1, z2 as i.i.d. copies of x. Let A := K−1
λ (Ψ+ σ2

ε Id)K
−1
λ and

Km,i := Ew[σ(w⊤zi)σ(w
⊤X)]⊤ ∈ Rn,

for i = 1, 2. Then, we have

E[δ21,2] =
4

N2

N∑
i,j=1

E
[
K⊤

m,1A
(
σ(w⊤

i z1)σ(X
⊤wi)−Km,1

)(
σ(w⊤

j z2)σ(w
⊤
j X)−K⊤

m,2

)
AKm,2

]

=
4

N2

N∑
i=1

E
[
K⊤

m,1A
(
σ(w⊤

i z1)σ(X
⊤wi)−Km,1

)(
σ(w⊤

i z2)σ(w
⊤
i X)−K⊤

m,2

)
AKm,2

]
=

4

N2

N∑
i=1

E
[
K⊤

m,1A
(
σ(w⊤

i z1)σ(w
⊤
i z2)σ(X

⊤wi)σ(w
⊤
i X)−Km,1K

⊤
m,2

)
AKm,2

]
(i)

≤ 4

N
Ew,z1,z2

[
σ(w⊤z1)σ(w

⊤z2)K
⊤
m,1Aσ(X⊤w)σ(w⊤X)AKm,2

]
≤ 4

N
E
[
σ(w⊤z1)

2σ(w⊤z2)
2
] 1

2 E
[∥∥∥K⊤

m,1K
− 1

2

λ

∥∥∥2 ∥∥∥K⊤
m,2K

− 1
2

λ

∥∥∥2 ∥∥∥K 1
2

λAσ(X⊤w)σ(w⊤X)AK
1
2

λ

∥∥∥2]
(ii)

≤
4C2(1 + λ)2 ∥σ∥24

λ0N
E

( n∑
i=1

σ(w⊤xi)
2

)2
1/2

≤ C1,2(1 + λ)2
n

N
,

for some constant C1,2 > 0, where (i) is because of positiveness of A and (ii) is due to Lemmas C.7 and C.8. Thus,
Markov inequality allows us to obtain for a constant C > 0,

P
(
|δ1,2| > C(1 + λ) log(N)

√
n

N

)
≤ 1

4 log2(N)
,

Together with (C.34), we can conclude the bound for δ1 in (C.30).
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Based on the above lemmas, we are now ready to prove Theorem 2.11 for the concentrations of the generalization errors
between RFRR and KRR.

Proof of Theorem 2.11. Recall K = K(X,X) and KN = KN (X,X). Hence, we can further decompose the test
errors (2.20) for both RFRR and KRR in the following way:

L(f̂ (K)
λ ) = E[|f∗(x)|2] + Tr

[
(K + λ Id)−1E[yy⊤](K + λ Id)−1E[K(X,x)K(x,X)]

]
− 2Tr

[
(K + λ Id)−1E[yf∗(x)K(x,X)]

]
,

L(f̂ (RF)
λ ) = E[|f∗(x)|2] + Tr

[
(KN + λ Id)−1E[yy⊤](KN + λ Id)−1E[KN (X,x)KN (x,X)]

]
− 2Tr

[
(KN + λ Id)−1E[yf∗(x)KN (x,X)]

]
,

where we are taking expectations with respect to x,β, and ε. Let us denote

E1 := Tr
[
(KN + λ Id)−1E[yy⊤](KN + λ Id)−1E[KN (X,x)KN (x,X)]

]
,

Ē1 := Tr
[
(K + λ Id)−1E[yy⊤](K + λ Id)−1E[K(X,x)K(x,X)]

]
,

E2 := Tr
[
(KN + λ Id)−1E[yf∗(x)KN (x,X)]

]
,

Ē2 := Tr
[
(K + λ Id)−1E[yf∗(x)K(x,X)]

]
.

Therefore, by taking the expectation with respect to β and ε, we have

E1 = Ex

[
KN (x,X)(KN + λ Id)−1

(
Ψ+ σ2

ε Id
)
(KN + λ Id)−1KN (X,x)

]
,

Ē1 = Ex

[
K(x,X)(K + λ Id)−1

(
Ψ+ σ2

ε Id
)
(K + λ Id)−1K(X,x)

]
,

E2 = Tr
[
(KN + λ Id)−1E[uKN (x,X)]

]
,

Ē2 = Tr
[
(K + λ Id)−1E[uK(x,X)]

]
,

where Ψ = Eβ[τ(X
⊤β)τ(β⊤X)] and u = Eβ[τ(X

⊤β)f∗(x)] ∈ Rn. We can further get the decomposition: E1−Ē1 =
J1,1 + J1,2 + J1,3 and E2 − Ē2 = J2,1 + J2,2, where

J1,1 := Ex

[
K⊤

m,N

(
K−1

N,λ −K−1
λ

) (
Ψ+ σ2

ε Id
)
K−1

N,λKm,N

]
,

J1,2 := Ex

[
K⊤

m,NK−1
λ

(
Ψ+ σ2

ε Id
) (

K−1
N,λ −K−1

λ

)
Km,N

]
,

J1,3 := Eβ,ε

[
y⊤K−1

λ

(
K

(2)
N −K(2)

)
K−1

λ y
]
,

J2,1 := Ex

[
KN (x,X)

(
K−1

N,λ −K−1
λ

)
u
]
,

J2,2 := Ex

[
(KN (x,X)−K(x,X))K−1

λ u
]
.

Recall that Ψ = Eβ[τ(X
⊤β)τ(β⊤X)], u = Eβ[τ(X

⊤β)f∗(x)] ∈ Rn and Ψλ = Ψ+ λ Id. Notice that

K−1
N,λ −K−1

λ = K−1
N,λ (K −KN )K−1

λ

= K
− 1

2

N,λK
− 1

2

N,λK
1
2

λK
− 1

2

λ (K −KN )K
− 1

2

λ K
− 1

2

λ .
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Hence, we can apply Proposition C.1, Corollary C.2, Lemmas C.6, C.7 and C.8 to conclude that

|J1,1| ≤ Ex

[∥∥∥K⊤
m,NK

−1/2
N,λ

∥∥∥2] · ∥∥∥K−1/2
N,λ K

1/2
λ

∥∥∥2 ∥∥∥K−1/2
λ (K −KN )K

−1/2
λ

∥∥∥ · ∥∥∥K−1/2
λ

(
Ψ+ σ2

ε Id
)
K

−1/2
λ

∥∥∥
≤ C(1 + λ) log(N)

√
n

N
,

|J1,2| ≤ Ex

[∥∥∥K⊤
m,NK

−1/2
N,λ

∥∥∥2] · ∥∥∥K−1/2
N,λ K

1/2
λ

∥∥∥∥∥∥K1/2
N,λK

−1/2
λ

∥∥∥
·
∥∥∥K−1/2

λ (K −KN )K
−1/2
λ

∥∥∥∥∥∥K−1/2
λ

(
Ψ+ σ2

ε Id
)
K

−1/2
λ

∥∥∥
≤ C(1 + λ) log(N)

√
n

N
,

|J2,1| ≤ Ex

[∣∣∣K⊤
m,NK

−1/2
N,λ K

−1/2
N,λ K

1/2
λ K

−1/2
λ (K −KN )K

−1/2
λ K

−1/2
λ u

∣∣∣]
≤ Ex

[∥∥∥K⊤
m,NK

−1/2
N,λ

∥∥∥ · ∥∥∥K−1/2
N,λ K

1/2
λ

∥∥∥ · ∥∥∥K−1/2
λ (K −KN )K

−1/2
λ

∥∥∥∥∥∥K−1/2
λ u

∥∥∥]
≤ C(1 + λ) log(N)

√
n

N
,

for some constant C > 0 depending on the norms of τ and σ, λ0 and σε with probability at least 1−N−1.

Meanwhile, based on Lemma C.9, |J1,3| and |J2,2| are both less than C log(N)
√

n
N with probability at least 1−log−2(N),

because δ1 = J1,3 and δ2 = J2,2. Hence, combing the controls of J1,1, J1,2, J1,3 and J2,1, J2,2, we complete the proof of
Theorem 2.11.

C.6 Proof of Theorem 2.12

We first show (2.23). In the proof of Proposition 2.4, we know λmin(Kℓ) ≥ 2λ0 and λmin(K) ≥ λ0. Similar to the proof
of (C.12), using the closed form formula of the training error from (2.10) and Proposition 2.4, we have∣∣∣E(ℓ,λ)

train − E
(K,λ)
train

∣∣∣ =λ2

n

∣∣y⊤ [(Kℓ + λ Id)−2 − (K + λ Id)−2
]
y
∣∣

≤λ2

n
∥(Kℓ + λ Id)−2 − (K + λ Id)−2∥ · ∥y∥2

≤3λ2∥y∥2

2λ0n
∥(Kℓ + λ Id)−1 − (K + λ Id)−1∥

≤3λ2∥y∥2

2λ3
0n

∥K −Kℓ∥ ≤ Cλ2∥y∥2∥σ∥24
λ3
0n

∥∥∥∥(X⊤X
)⊙ℓ+1

− Id

∥∥∥∥
F

(C.35)

for an absolute constant C > 0, where in the third inequality, we use the estimate

∥(Kℓ + λ Id)−1 − (K + λ Id)−1∥ =
∥∥∥K−1

λ (K −Kℓ)K
−1
ℓ,λ

∥∥∥ ≤ 1

(λ+ λ0)λ0
∥K −Kℓ∥ . (C.36)

Next, we prove (2.24). With the same proof in Lemma C.3, we also have(
λ+ ∥σ∥22

)−1

≤ trK−1
ℓ,λ ≤ λ−1

0 . (C.37)

From the definition of GCV in (2.16), we have

|GCV(K,λ)
n − GCV(ℓ,λ)

n | ≤λ−2

∣∣∣∣((trK−1
λ

)−2 −
(
trK−1

ℓ,λ

)−2
)
E

(K,λ)
train

∣∣∣∣ (C.38)

+ λ−2
∣∣∣(trK−1

λ

)−2
(
E

(K,λ)
train − E

(ℓ,λ)
train

)∣∣∣ .
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Equipped with (C.37) and Lemma C.3, following every step in the proof of (2.17) in Section C.4, we can obtain a similar
bound for (C.38) as follows:

λ−2

∣∣∣∣((trK−1
λ

)−2 −
(
trK−1

ℓ,λ

)−2
)
E

(K,λ)
train

∣∣∣∣
≤
(
trK−1

λ

)−2
(
trK−1

ℓ,λ

)−2 ∣∣∣tr(K−1
λ −K−1

ℓ,λ)
∣∣∣ tr(K−1

λ +K−1
ℓ,λ

) 1

n
∥K−2

λ ∥ ∥y∥2

≤
8(λ+ ∥σ∥22)4

λ5
0n

∥K −Kℓ∥ ≤
8
√
2(λ+ ∥σ∥22)4∥σ∥24

λ5
0n

∥∥∥∥(X⊤X
)⊙ℓ+1

− Id

∥∥∥∥
F

.

Similarly, for the second term (C.23), we have from (C.35) and Lemma C.3,

λ−2
∣∣∣(trK−1

λ

)−2
(
E

(K,λ)
train − E

(ℓ,λ)
train

)∣∣∣ ≤ C(λ+ ∥σ∥22)2∥σ∥24
λ3
0n

∥∥∥∥(X⊤X
)⊙ℓ+1

− Id

∥∥∥∥
F

,

which implies (2.24). Next, we verify (2.25). Recall (2.14) and (2.15). Analogously, we have

CV(ℓ,λ)
n =

1

n
y⊤K−1

ℓ,λD
−2
ℓ K−1

ℓ,λy,

where Dℓ is a diagonal matrix with diagonals [Dℓ]ii = [K−1
ℓ,λ]ii for i ∈ [n]. Notice that ∥Dℓ −D∥ has the same upper

bound as (C.36), and any [Dℓ]ii has the same lower and upper bounds as (C.37) for i ∈ [n]. Hence, repeatedly applying
Proposition 2.4 and following (C.24), we can obtain

∣∣∣CV(ℓ,λ)
n − CV(K,λ)

n

∣∣∣ ≤ C2(1 + λ4)
∥y∥2

n

∥∥∥∥(X⊤X
)⊙ℓ+1

− Id

∥∥∥∥
F

,

for some constant C2 > 0 which only relies on ∥σ∥2 , ∥σ∥4, and λ0. This concludes the bound in (2.25).

Finally, we can repeat the analysis in the proof of Theorem 2.11 and apply (C.36) to obtain (2.26). By taking expectation
with respect to β and ε, we have

∣∣∣L(f̂ (ℓ)
λ (x))− L(f̂ (K)

λ (x))
∣∣∣ ≤ |E′

1 − Ē1|+ |E′
2 − Ē2|, where

E′
1 :=Ex

[
Kℓ(x,X)K−1

ℓ,λ

(
Ψ+ σ2

ε Id
)
K−1

ℓ,λKℓ(X,x)
]
,

Ē1 =Ex

[
K(x,X)K−1

λ

(
Ψ+ σ2

ε Id
)
K−1

λ K(X,x)
]
,

E′
2 :=Tr

[
K−1

ℓ,λE[uKℓ(x,X)]
]
,

Ē2 =Tr
[
K−1

λ E[uK(x,X)]
]
.

Denote Km,ℓ = Kℓ(X,x) and Kℓ,λ = λ Id+Kℓ(X,X). Recall that Ψ = Eβ[τ(X
⊤β)τ(β⊤X)] and u =

Eβ[τ(X
⊤β)f∗(x)] ∈ Rn. Because of the Assumption 2.10, similar to the proof of Proposition 2.4, we obtain

∥Km,ℓ −Km∥ ≤ ∥Km,ℓ −Km∥2 ≤
√
2∥σ∥24

∥∥∥(X⊤x)⊙(ℓ+1)
∥∥∥
2
≤ 1√

2
λ0. (C.39)

Moreover, analogously to Lemma C.6, we have∥∥∥K⊤
m,ℓK

−1/2
ℓ,λ

∥∥∥ ≤ ∥σ∥22 + λ. (C.40)

Also, following the proofs of Lemma C.7 and Lemma C.8, we can check that∥∥∥K−1/2
ℓ,λ ΨK

−1/2
ℓ,λ

∥∥∥ , ∥∥∥K−1/2
ℓ,λ u

∥∥∥ ≤ C, (C.41)

for some constant C > 0 depending only on σ, τ . Therefore, because of Proposition 2.4, Lemmas C.6 and C.7, and (C.39),
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(C.40) and (C.41), we can deduce that

|E′
1 − Ē1| ≤

∣∣∣(Km,ℓ −Km)⊤K
−1/2
ℓ,λ K

−1/2
ℓ,λ

(
Ψ+ σ2

ε Id
)
K

−1/2
ℓ,λ K

−1/2
ℓ,λ Km,ℓ

∣∣∣
+
∣∣∣K⊤

mK
−1/2
λ K

−1/2
λ (K −Kℓ)K

−1/2
ℓ,λ K

−1/2
ℓ,λ

(
Ψ+ σ2

ε Id
)
K

−1/2
ℓ,λ K

−1/2
ℓ,λ Km,ℓ

∣∣∣
+
∣∣∣K⊤

mK
−1/2
λ K

−1/2
λ

(
Ψ+ σ2

ε Id
)
K

−1/2
λ K

−1/2
λ (K −Kℓ)K

−1/2
ℓ,λ K

−1/2
ℓ,λ Km,ℓ

∣∣∣
+
∣∣∣K⊤

mK
−1/2
λ K

−1/2
λ

(
Ψ+ σ2

ε Id
)
K

−1/2
λ K

−1/2
λ (Km,ℓ −Km)

∣∣∣
≤ C ′

1(1 + λ)

∥∥∥∥(X̃⊤X̃
)⊙ℓ+1

− Id

∥∥∥∥
F

,

for some constant C ′
1 > 0. Similarly, due to Lemma C.8, (C.39), (C.40) and (C.41), we can obtain

|E′
2 − Ē2| ≤ E

∣∣∣(Km,ℓ −Km)⊤K
−1/2
ℓ,λ K

−1/2
ℓ,λ u

∣∣∣
+ E

∣∣∣K⊤
mK

−1/2
ℓ,λ K

−1/2
ℓ,λ (K −Kℓ)K

−1/2
λ K

−1/2
λ u

∣∣∣
≤ C ′

2(1 + λ)

∥∥∥∥(X̃⊤X̃
)⊙ℓ+1

− Id

∥∥∥∥
F

,

for some constant C ′
2 > 0. This completes the proof of (2.26).

C.7 Proof of Theorem 2.13

First, we state a more generic statement of the lower bound of the generalization error for RFRR. Instead of proving
Theorem 2.13, we prove the following theorem in this section.
Theorem C.10. Under the assumptions of Theorem 2.11, when N/ log2(N) ≥ C1(1 + λ2)n and n ≥ max{n0, n1}, with
probability at least 1− log−1(N),

L(f̂ (RF)
λ ) ≥ ∥P>ℓf

∗∥22 − C2(1 + λ) log(N)

√
n

N
− C2

√
n
∥∥∥(X⊤x)⊙(ℓ+1)

∥∥∥
2
,

and

L(f̂ (RF)
λ ) ≥ ∥P>ℓf

∗∥22 + σ2
εEx

[
K⊤

m,ℓK
−2
λ,ℓKm,ℓ

]
− C2

√
n
∥∥∥(X⊤x)⊙(ℓ+1)

∥∥∥
2

− C2(1 + λ)

(∥∥∥∥(X̃⊤X̃
)⊙ℓ+1

− Id

∥∥∥∥
F

+ log(N)

√
n

N

)
, (C.42)

where C1 depends only on σ, and C2 > 0 depends only on σ, τ and σε. In particular, when N/ log2 N ≫ n, with high
probability,

L(f̂ (RF)
λ ) ≥ ∥P>ℓf

∗∥22 + σ2
εEx

[
K⊤

m,ℓK
−2
λ,ℓKm,ℓ

]
− on(1)

≥ ∥P>ℓf
∗∥22 − on(1).

Proof. Since τ ∈ L2(R,Γ), we have the following Hermite expansion: τ(x) =
∑∞

k=0 ζk(τ)hk(x). Then

f∗(x) = τ(β⊤x) =

∞∑
k=0

ζk(τ)hk(β
⊤x),

(P≤ℓf
∗) (x) =

∑
k<ℓ

ζk(τ)hk(β
⊤x), (P>ℓf

∗) (x) =
∑

k≥ℓ+1

ζk(τ)hk(β
⊤x).

Similarly, we define

f∗(X) = τ(β⊤X) =

∞∑
k=0

ζk(τ)hk(β
⊤X) ∈ Rn,

(P≤ℓf
∗) (X) =

∑
k≤ℓ

ζk(τ)hk(β
⊤X), (P>ℓf

∗) (X) =
∑

k≥ℓ+1

ζk(τ)hk(β
⊤X), (C.43)
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By the property of Hermite polynomials in (2.3), we know

Eβ[hj(β
⊤x)hk(β

⊤xi)] = δjk⟨x,xi⟩k.

This implies

∥f∗∥22 = Eβ[f
∗(x)2] =

∞∑
k=0

ζk(τ)
2 = ∥τ∥22,

∥P≤ℓf
∗∥22 =

ℓ∑
k=0

ζ2k(τ), ∥P>ℓf
∗∥22 =

∞∑
k=ℓ+1

ζ2k(τ),

E[P≤ℓf
∗(x)P>ℓf

∗(x)] = 0. (C.44)

From (2.9), the predictor of the KRR is given by

f̂
(K)
λ (x) := K(x,X)(K(X,X) + λ Id)−1 (f∗(X) + ε) ,

where

K(x,X) =

∞∑
k=0

ζ2k(σ)(x
⊤X)⊙k ∈ R1×n,

and from Assumption 2.10,

∥K(x,X)∥ ≤
√
2n ∥σ∥24 . (C.45)

Define

P≤ℓf̂
(K)
λ (x) := K(x,X)(K(X,X) + λ Id)−1 (P≤ℓf

∗(X)) ,

P>ℓf̂
(K)
λ (x) := K(x,X)(K(X,X) + λ Id)−1 (P>ℓf

∗(X) + ε) .

From the orthogonal relation in (2.3) and (C.43),

Eβ,ε[P≤ℓf̂
(K)
λ (x)P>ℓf̂

(K)
λ (x)] = 0, (C.46)

Eβ[(P>ℓf
∗) (X)(P>ℓf

∗)(x)] =
∑

k≥ℓ+1

ζ2k(τ)((x
⊤x1)

k, . . . , (x⊤xn)
k).

Then by the linearity of expectation, we have

Eβ,ε[f̂
(K)
λ (x)P>ℓf

∗(x)] =
∑
k>ℓ

ζ2k(τ)K(x,X)(K(X,X) + λ Id)−1((x⊤x1)
k, . . . , (x⊤xn)

k)⊤,

which implies

∣∣∣Eβ,ε[P>ℓf̂
(K)
λ (x)P>ℓf

∗(x)]
∣∣∣ ≤ ∥K(x,X)∥λ−1

0

∞∑
k=ℓ+1

ζ2k(τ)
∥∥∥(X⊤x)⊙k

∥∥∥
2

≤
√
2n ∥σ∥24 λ

−1
0 ∥τ∥24

( ∞∑
k=ℓ+1

∥∥∥(X⊤x)⊙k
∥∥∥2
2

)1/2

≤ 2
√
2n ∥σ∥24 λ

−1
0 ∥τ∥24

∥∥∥(X⊤x)⊙(ℓ+1)
∥∥∥
2
, (C.47)

where the second inequality is due to (C.45), and the third inequality comes from Cauchy’s inequality. Recall the general-
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ization error of any predictor defined in (2.20). We have

L(f̂ (K)
λ ) = E

(
f∗(x)− f̂

(K)
λ (x)

)2
= E

(
P≤ℓf

∗(x) + P>ℓf
∗(x)− P≤ℓf̂

(K)
λ (x)− P>ℓf̂

(K)
λ (x)

)2
= E

(
P≤ℓf

∗(x)− P≤ℓf̂
(K)
λ (x)

)2
+ E

(
P>ℓf

∗(x)− P>ℓf̂
(K)
λ (x)

)2
+ 2E

[(
P≤ℓf

∗(x)− P≤ℓf̂
(K)
λ (x)

)(
P>ℓf

∗(x)− P>ℓf̂
(K)
λ (x)

)]
≥ E

(
P>ℓf

∗(x)− P>ℓf̂
(K)
λ (x)

)2
= ∥P>ℓf

∗∥22 + E[P>ℓf̂
(K)
λ (x)2]− 2E[P>ℓf

∗(x)P>ℓf̂
(K)
λ (x)]

≥ ∥P>ℓf
∗∥22 + E[P>ℓf̂

(K)
λ (x)2]− 4

√
2nλ−1

0 ∥σ∥24 ∥τ∥
2
4

∥∥∥(X⊤x)⊙(ℓ+1)
∥∥∥
2
, (C.48)

where the first inequality is due to the orthogonal relations (C.44) and (C.46), and the second inequality is due to (C.47).
Let v = K−1

λ K(X,x). The second term in (C.48) can be written as

E[P>ℓf̂
(K)
λ (x)2] = E[(P>ℓf

∗(X) + ε)⊤(K−1
λ K(X,x)K(x,X)K−1

λ ) (P>ℓf
∗(X) + ε)]

= Ex

∑
ij

vivj

(
Eβ[P>ℓf

∗(xi)P>ℓf
∗(xj)] + δijσ

2
ε

)
= σ2

εEx ∥v∥2 + E[P>ℓf
∗(X)⊤(vv⊤)P>ℓf

∗(X)],

≥ σ2
εEx ∥v∥2 = σ2

ε TrK
−1
λ Ex[K(X,x)K(x,X)]K−1

λ .

On the other hand, from the generalization error approximation bounds in (2.21), we obtain with probability at least
1− log−1(N), when N/ log2(N) ≥ C1(1 + λ2)n,

L(f̂ (RF)
λ ) ≥ ∥P>ℓf

∗∥22 + σ2
ε TrK

−1
λ Ex[K(X,x)K(x,X)]K−1

λ

− C2(1 + λ) log(N)

√
n

N
− C3

√
n
∥∥∥(X⊤x)⊙(ℓ+1)

∥∥∥
2

≥ ∥P>ℓf
∗∥22 − C2(1 + λ) log(N)

√
n

N
− C3

√
n
∥∥∥(X⊤x)⊙(ℓ+1)

∥∥∥
2
.

Since we can approximate K(x,X) with Kℓ(x,X), we can apply the proof of Theorem 2.12 to obtain that∣∣∣TrK−1
λ Ex[K(X,x)K(x,X)]K−1

λ − Ex

[
K⊤

m,ℓK
−2
λ,ℓKm,ℓ

]∣∣∣
≤
∣∣∣Ex

[
(Km,ℓ −Km)⊤K−2

λ,ℓKm,ℓ

]∣∣∣+ ∣∣∣Ex

[
K⊤

m

(
K−1

λ,ℓ −K−1
λ

)
K−1

λ,ℓKm,ℓ

]∣∣∣
+
∣∣∣Ex

[
K⊤

mK−2
m (Km,ℓ −Km)

]∣∣∣+ ∣∣∣Ex

[
K⊤

mK−1
λ

(
K−1

λ,ℓ −K−1
λ

)
Km,ℓ

]∣∣∣
≤C(1 + λ)

∥∥∥∥(X̃⊤X̃
)⊙ℓ+1

− Id

∥∥∥∥
F

for some constant C > 0 depending on σ, τ, σε, when in the last inequality, we exploit Proposition 2.4 and (C.39). Thus,
we conclude that under the same assumptions of Theorem 2.11, with probability at least 1− log−1 N ,

L(f̂ (RF)
λ ) ≥∥P>ℓf

∗∥22 + σ2
εEx

[
K⊤

m,ℓK
−2
λ,ℓKm,ℓ

]
− C(1 + λ)

∥∥∥∥(X̃⊤X̃
)⊙ℓ+1

− Id

∥∥∥∥
F

− C2(1 + λ) log(N)

√
n

N
− C3

√
n
∥∥∥(X⊤x)⊙(ℓ+1)

∥∥∥
2
.

This completes the proof of the lower bound of (C.42).
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