
Mean Parity Fair Regression in RKHS

Shaokui Wei Jiayin Liu
Shenzhen Research Institute of Big Data

The Chinese University of Hong Kong, Shenzhen
School of Management and Economics

The Chinese University of Hong Kong, Shenzhen

Bing Li Hongyuan Zha
Department of Statistics

Pennsylvania State University
School of Data Science

The Chinese University of Hong Kong, Shenzhen

Abstract

We study the fair regression problem under the
notion of Mean Parity (MP) fairness, which re-
quires the conditional mean of the learned func-
tion output to be constant with respect to the sen-
sitive attributes. We address this problem by lever-
aging reproducing kernel Hilbert space (RKHS)
to construct the functional space whose mem-
bers are guaranteed to satisfy the fairness con-
straints. The proposed functional space suggests a
closed-form solution for the fair regression prob-
lem that is naturally compatible with multiple
sensitive attributes. Furthermore, by formulating
the fairness-accuracy tradeoff as a relaxed fair
regression problem, we derive a corresponding
regression function that can be implemented effi-
ciently and provides interpretable tradeoffs. More
importantly, under some mild assumptions, the
proposed method can be applied to regression
problems with a covariance-based notion of fair-
ness. Experimental results on benchmark datasets
show the proposed methods achieve competitive
and even superior performance compared with
several state-of-the-art methods.

1 INTRODUCTION

As Machine Learning (ML) algorithms have been increas-
ingly applied to solve real-world problems, such as employ-
ment (Kodiyan, 2019), finance (Anshari et al., 2021), and
healthcare (Gupta and Mohammad, 2017), the biases ex-
hibited by ML are attracting attention from both industry
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and academia. Algorithmic fairness has therefore emerged
as a new frontier for ML, of which the critical challenge
is to design algorithms satisfying fairness constraints, thus
mitigating or eliminating the potential discrimination on the
basis of legally protected (sensitive) attributes such as race
or gender. In recent years, substantial efforts on notions and
algorithms of fairness in ML have generally centered on
classification problems (Agarwal et al., 2018; Calders and
Verwer, 2010; Huang and Vishnoi, 2019; Jiang et al., 2020;
Zafar et al., 2019), while the problems of fair regression
have received much less attention.

In this paper, we focus on the general regression problem
in reproducing kernel Hilbert spaces (RKHS) and propose
a novel approach for fair regression by constructing the
space of functions that satisfy the constraints of fairness.
Specifically, we consider the unfairness in the mean re-
sponses across different groups. Such unfairness exists
broadly in many real-life problems including wage/payment
gap (Oettinger, 1996; Barroso and Brown, 2021), employ-
ment inequality (Center, 2016) and educational inequality
(Darling-Hammond, 1998; Baker et al., 2014). To mitigate
such unfairness, we adopt the Mean Parity (MP) fairness,
a notion of group fairness aiming to achieve ”equality on
average”, i.e., the average response of a regression function
to the different groups is the same.

By establishing the connection between the covariance op-
erator and MP fairness, we show that the MP-fair functional
space can be characterized by a set of orthonormal bases
and derive a closed-form solution that minimizes the mean
squared error (MSE). Under some mild assumptions, the
proposed method can also be applied to regression problems
subject to fairness criterion that urges the outcome of the
regression function to be uncorrelated with the sensitive
attributes. In addition, the proposed method is naturally
compatible with multiple sensitive attributes and can be
extended to a broad range of loss functions for regression
using optimization techniques, e.g., gradient descent.
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As it has been empirically observed that the fair model may
suffer from a reduction in accuracy (Berk et al., 2017; Tan
et al., 2020), we further generalize our method to consider
the tradeoff between fairness and accuracy. By formulating
the fairness-accuracy tradeoff as a relaxed fair regression
problem, we derive a closed-form solution which is a simple
combination of the optimal fair solution and the optimal
least-squares solution, controlled by a single parameter. The
proposed relaxed solution allows users to quantify and con-
trol the cost of fairness in terms of MSE and enjoys good
interpretability. Finally, we evaluate our methods on three
real datasets and one synthetic dataset. The experimental
results demonstrate that our solution can eliminate the dis-
crimination in train data and effectively enforce fairness
in test data. Also, experiments on the fairness-accuracy
tradeoff show that our method performs on par with other
approaches and provides precise control over MSE and fair-
ness levels.

Paper organization. The rest of the paper is organized as
follows. Section 2 introduces notations and the formulation
of our problem. In Section 3, we study the characterization
of fair functional space in RKHS and provide a functional
solution to the fair regression problem, after which we dis-
cuss the tradeoff between fairness and accuracy. Section 4
presents some empirical evaluations of our methods. We
discuss some related works in Section 5 and end with some
conclusions and future directions in Section 6. The proofs,
derivations, implementation details, and some additional
experiments are left in Appendix.

2 PRELIMINARIES

2.1 Notations

We first introduce some important notations and a more
comprehensive table of notations can be found in Appendix
F. Let (Ω,F ,P) be a probability space. We consider the
random variables X and Y defined on measurable spaces
(ΩX ,FX) and (ΩY ,FY ) where ΩY is a subset of R and
FY is the Borel σ-filed on ΩY . Let ΩS = {s(j)}kj=1 be
a finite set of k elements from which a random variable
S takes values. We set X , S and Y to be the random
variables for non-sensitive attributes, sensitive attributes
and label/response respectively. In addition, we assume that
P(s) > 0 for all s ∈ ΩS .

Let κX : ΩX × ΩX → R be a universal kernel and κS :
ΩS×ΩS → R be a discrete kernel. We use HX to represent
the RKHS generated by κX and denote its feature map by
ϕX : ΩX → HX , i.e., ϕX(x) = κX(·, x). Similarly, let
HS be the RKHS generated by κS with feature map ϕS . Let
HXS be the RKHS generated by the kernel κXS defined
on ΩXS × ΩXS where ΩXS = ΩX × ΩS . Then, each
member of HXS is a function g(x, s) where x ∈ ΩX , s ∈
ΩS , and we denote the feature map of HXS by ϕXS . By

the reproducing property of HXS , evaluating a function
g ∈ HXS at (x, s) can be written as

g(x, s) = ⟨ϕXS(x, s), g⟩HXS
,

where ⟨·, ·⟩HXS
is the inner product in HXS . For a space

M ⊆ HXS , we denote its orthogonal complement in HXS

by M⊥ such that HXS = M ⊕ M⊥. Moreover, let ⊥⊥
represent the independence between random variables.

2.2 Notions of fairness

Our goal is to find the optimal fair regression function in
HXS that minimizes the mean squared error while main-
taining fairness. For a function g ∈ HXS , we consider the
Mean Parity 1 fairness, as defined below:

Definition 1 (Mean Parity). The subset GMP of HXS de-
fined by

GMP = {g ∈ HXS : E [g(X,S)|S] = E [g(X,S)]}

is called the Mean Parity fair (MP-fair) class of functions.

The above definition says that a function g is MP fair if the
expectation of g(X,S) conditioning on S is constant across
all sensitive groups.

Besides MP-fairness, there are several other ways of defin-
ing fairness. Here, we highlight the connection and dis-
tinction between MP fairness and the other two notions of
fairness.

Demographic Parity (DP) fairness. A popular require-
ment for fairness is g(X,S) ⊥⊥ S, i.e., the distribution of
g(X,S) conditioning on S is the same, and the class of such
functions is called Demographic Parity fair class (Feldman
et al., 2015).

To establish the relationship between MP fairness and DP
fairness, we provide the following proposition:

Proposition 1. Assume that the DP disparity (DPD) and
the MP disparity (MPD) of function g are measured by

DPD(g) =
∑
s∈ΩS

W1(g(X,S)|S = s, g(X,S))

MPD(g) =
∑
s∈ΩS

|E(g(X,S)|S = s)− E(g(X,S))|

where W1 is the 1-Wasserstein distance (Frohmader and
Volkmer, 2021) .

Then,
MPD(g) ≤ DPD(g).

1also known as Mean Difference (Calders et al., 2013; Žliobaitė,
2017), Mean Distance (Komiyama and Shimao, 2017) or Discrim-
ination Score (Calders and Verwer, 2010; Zemel et al., 2013; Raff
et al., 2018).
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Therefore, MP disparity is the lower bound of DP dispar-
ity and achieving MP fairness is necessary to achieve DP
fairness. Moreover, for binary classification problem with a
binary S, MP fairness is equivalent to DP fairness.

Covariance based (CB) fairness. Another widely used
condition for fairness is the Covariance based (CB) fair-
ness (Komiyama et al., 2018; Mary et al., 2019; Pérez-Suay
et al., 2017; Scutari et al., 2021), which requires the out-
put of g to be uncorrelated with the sensitive attribute, i.e.,
Cov(g(X,S), S) = 0.

By the definition of covariance, we can conclude that MP
fairness implies that g(X,S) is uncorrelated with S. Thus,
an MP-fair regression function is always CB-fair. More-
over, MP fairness is equivalent to CB fairness under some
assumptions, which will be discussed later.

2.3 Problem formulation

Now, we introduce the formulation for the MP-fair regres-
sion problem. Consider the general regression model

Y = g(X,S) + ϵ,

where g ∈ HXS and X,S are independent of the centered
random noise ϵ ∈ R and E(Y 2) ≤ ∞.

Then, we focus on the least-squares MP-fair regression task
formulated as a constrained optimization problem

min
g

E (Y − g(X,S))
2

s.t. g ∈ GMP .
(1)

3 FAIR REGRESSION UNDER MEAN
PARITY

In this section, we discuss how to solve Problem 1. To do
so, we first develop a theory to characterize the MP-fair
class GMP within HXS . After that, we derive a closed-
form solution by employing a projection operator P from
HXS onto GMP and introduce a formulation to control the
fairness-accuracy tradeoff. At last, we discuss the perfor-
mance guarantees of the derived solution and how to solve
the MP-fair regression problem with other loss functions.

3.1 Characterization of MP-fair function space

We begin by introducing some concepts. For Hilbert spaces
H1, H2 and a linear operator A : H1 → H2, we define the
kernel of A by ker(A) = {f ∈ H1 : Af = 0H2

} where
0H2

is the zero function in H2. Let ran(A) represent the
set {Af : f ∈ H1}, which is the range of A. Let µXS

be the kernel mean embedding of (X,S) in HXS , which
is defined as µXS = E [κXS (·, (X,S))]. Similarly, let
µS = E [κS(·, S)] be the kernel mean embedding of S in

HS . Then, we define the covariance operator between S
and (X,S) as

ΣS(XS) = E [(ϕS(S)− µS)⊗ (ϕXS(X,S)− µXS)] ,

where ⊗ represents the outer product in RKHS.

To characterize GMP , we present the following assumption.
Assumption 1. Assume that the following system of equa-
tions

k∑
j=1

ηj(ϕS(s
(j))− µS) = 0HS

,

k∑
j=1

ηj = 0 (2)

has exactly one solution, i.e., ηj = 0 for all j ∈ {1, . . . , k}.

Note that the choice of κS can be independent of κXS and
κX . Since the cardinality of ΩS is finite, Assumption 1
is quite mild. A typical choice for κS is to have linearly
independent features {ϕS(s(j))}kj=1. For example, a poly-
nomial kernel with degree k − 1 would satisfy Assumption
1 for ΩS ⊂ R. The proof is given in Appendix C.4.

Then, the following theorem provides insight into the char-
acterization of GMP .
Theorem 1. Under Assumption 1, GMP is the kernel of the
operator ΣS(XS), that is,

GMP = ker(ΣS(XS)).

Based on Theorem 1, GMP can be found using the relation

ker(ΣS(XS)) = ran(Σ(XS)S)
⊥,

where ran(Σ(XS)S) can be characterized by the generalized
eigenvalue problem (Hoegaerts et al., 2005; Schölkopf et al.,
1998; Yuan and Cai, 2010).

Since HS has finite dimension, Σ(XS)S is a finite rank op-
erator. Let us say its rank is m ≤ k. Let A : HS → HS

be any positive definite linear operator. Then, the first m
eigenfunctions of Σ(XS)SAΣS(XS), say, θ1, . . . , θm, span
ran(Σ(XS)S), that is,

ker(ΣS(XS)) = span({θ1, . . . , θm})⊥.
Thus, GMP can be characterized by a set of eigenfunctions
{θ1, . . . , θm} which allows us to construct an orthogonal
projection operator P from HXS to GMP .

Denote a set of orthonormal bases of ran(Σ(XS)S) by
{θ′1, · · · , θ′m}. Given a function g ∈ HXS , the orthogonal
projection operator from HXS onto ran(Σ(XS)S)

⊥ elimi-
nates the components of g in ran(Σ(XS)S). Thus, we can
construct the following orthogonal projection operator

P = I −
m∑
j=1

θ′j ⊗ θ′j ,

where I : HXS → HXS is the identity operator.

For simplicity, the detailed process to estimate P from a
given dataset is left to Appendix B.
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Remark. Consider the general CB fairness that seeks to re-
move the correlation between the sensitive feature map used
for prediction and the predicted value. By the observation
that Cov(ϕS(S), g(X,S)) = ΣS(XS)g, ker(ΣS(XS)) is the
space whose members are CB fair under the assumption that
κXS is composed of κS and κX , e.g., κXS = κX + κS .
Therefore, the results in the rest of this paper, except the
interpretation of tradeoffs, can also be applied to fair regres-
sion with CB constraints. The detailed discussion is left
to Appendix C.1. In particular, if both the above assump-
tion and Assumption 1 are satisfied in HXS , MP fairness is
equivalent to CB fairness.

3.2 Optimal fair regression function

To find the optimal fair regression function, we introduce
the optimality condition for Problem 1.

Lemma 1. A function g∗G is an optimal solution for Problem
1 if and only if

E(Y g(X,S)) = E(g(X,S)g∗G(X,S)) ∀g ∈ GMP .

By introducing the uncentralized covariance operator
Σ̃(XS)(XS) = E [(ϕXS(X,S)⊗ (ϕXS(X,S))] and a func-
tion h = E(ϕXS(X,S)Y ), Lemma 1 tells us that g∗G is an
optimal solution for Problem 1 if and only if

⟨h, g⟩HXS
= ⟨Σ̃(XS)(XS)g

∗
G , g⟩HXS

∀g ∈ GMP .

Given an orthogonal projection operator P from HXS to
GMP , a key insight is that g∗G = Pg∗H where g∗H can be
obtained by solving the following problem

⟨Ph, g⟩HXS
= ⟨P Σ̃(XS)(XS)Pg

∗
H, g⟩HXS

∀g ∈ HXS ,

So, we reach the Proposition 2.

Proposition 2. The optimal MP-fair regression function to
Problem 1 is

g∗G = P [P Σ̃(XS)(XS)P ]
†Ph, (3)

where (·)† is the Moore-Penrose Inverse of an operator
(Groetsch, 1977; Wang et al., 2018).

Note that if P is an identity operator, the solution 3 reduces
to g∗G = [Σ̃(XS)(XS)]

†h, which is the least-squares regres-
sion function in HXS .

3.3 Tradeoff between accuracy and fairness

There are multiple ways of relaxing the MP-fair con-
straint to control the accuracy-fairness tradeoff. One
group of relaxed constraints is imposed on the overall
unfairness, e.g., MPD(g) ≤ β or ∥ΣS(XS)g∥HS

≤ β
for some positive real number β, but such constraints
ignore the unfairness for individual group, which weak-
ens their interpretability. Another group of relaxed

constraints is imposed on each sensitive group, from
which we employ the following relaxed constraint

E(g(X,S)|S)−E(g(X,S)) = α [E(g∗(X,S)|S)− E(g∗(X,S))]
(4)

where g∗ is the least-squares regression function in HXS

and α ∈ [0, 1] is a scalar to control the level of unfairness.
A larger α results in a higher level of unfairness and g
is MP-fair if α = 0. Thus, the constraint 4 allows us
to scale the unfairness of the least-squares regression
function for each group by a scalar α and therefore
provides good interpretability. More importantly, we will
show that constraint 4 provides precise control of the
accuracy-fairness tradeoff later.

To move forward, we present the immediate corollary from
Theorem 1.

Corollary 1. Given g1, g2 ∈ HXS , under Assumption
1, E(g1(X,S)|S) − E(g1(X,S)) = E(g2(X,S)|S) −
E(g2(X,S)) if and only if ΣS(XS)g1 = ΣS(XS)g2.

By Corollary 1, it suffices to consider the following relaxed
fair regression problem

min E(Y − g(X,S))2

s.t. ΣS(XS)g = αΣS(XS)g
∗.

(5)

As HXS = GMP ⊕ G⊥
MP , a function g ∈ HXS can be

written as g = gMP + gMP⊥ where gMP ∈ GMP and
gMP⊥ ∈ G⊥

MP . Then, the following proposition is the key
to solving the Problem 5.

Proposition 3. A function g ∈ HXS satisfies ΣS(XS)g =
ΣS(XS)g

∗ if and only if gMP⊥ = g∗MP⊥ .

By Proposition 3, the optimal solution gα for Problem 5
is of the form gα = gαMP + αg∗MP⊥ , where gαMP is the
optimal solution to the following fair regression problem

min
g∈GMP

E (Y − αg∗MP⊥(X,S)− g(X,S))
2
. (6)

Solving Problem 6 gives the following proposition.

Proposition 4. The optimal solution of Problem 5 is gα =
(1− α)g∗G + αg∗

Let L(g) = E((Y − g(X,S))2). By Proposition 4, the
following equations allow us to precisely control the tradeoff
between fairness and accuracy

L(gα) = (1− α)2L(g∗G) + (1− (1− α)2)L(g∗)

MPD(gα) = αMPD(g∗).

Remark. The detailed derivation for this subsection can
be found in Appendix C.2. When MPD(g∗) > 0, the above
equations indicate that L(gα) is a quadratic function of
MPD(gα).
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3.4 Performance guarantee

Besides the explicit expression, the optimal regression func-
tion g∗G also enjoys a theoretical performance guarantee with
respect to MSE.

Proposition 5. Under Assumption 1, the MSE of g∗G is
bounded by

L(g∗G) ≤L(g∗) + ⟨Σ̃(XS)(XS)g
∗
MP⊥ , g

∗
MP⊥⟩HXS

,

where g∗ is the optimal regression function in HXS .

In Proposition 5, the inequality can be obtained by in-
troducing a non-optimal fair regression function Pg∗.
Note that g = 0HXS

is always a fair regression, so
we can claim that L(g∗G) ≤ E(Y 2). Since the term
⟨Σ̃(XS)(XS)g

∗
MP⊥ , g

∗
MP⊥⟩HXS

measures the violation of
fairness constraints by g∗, Proposition 5 shows that the MSE
of fair regression function is bounded and the upper bound
is related to the unfairness level of g∗.

3.5 Extension

So far we only consider the fair regression with squared loss
function. However, the proposed method can also be applied
to other differentiable loss functions in practice. Given a
differentiable loss function ℓ and the training dataset D =
{xi, si, yi}ni=1, we consider the following fair regression
problem

ĝ∗G = argmin
g∈GMP

∑
i

ℓ(yi, g(xi, si)). (7)

By the Representer theorem (Schölkopf et al., 2001), the
above problem is to find w∗

G subject to ΦXSw
∗
G ∈ GMP

that minimizes the following objective function

J(w) =
n∑

i=1

ℓ (yi, ⟨ϕXS(xi, si),ΦXSw⟩HXS
) ,

where ΦXS is the feature matrix of the training data. Given
an estimated projection operator P̂ , we can first find

wH = argmin
w

n∑
i=1

ℓ(yi, ⟨ϕXS(xi, si), P̂ΦXSw⟩HXS
)

by optimization techniques, e.g., gradient descent.

Then, the solution to Problem 7 is

ĝ∗G = P̂ΦXSwH.

4 EXPERIMENTS

We adapt the experiment settings in Agarwal et al. (2019) to
evaluate the proposed method on simulated and real-world
datasets. The datasets are summarized below:

Synthetic dataset has n data points {(xi, si, yi)}ni=1 with
d-dimension non-sensitive attributes and e-dimension sen-
sitive attributes. Specifically, we first generate xi ∼
N (0d, Id×d), w ∼ N (0d+e, I(d+e)×(d+e)) and ϵi ∼
N (0, ρ2noise). Then, si is sampled uniformly at random
from {0.1,−0.1}e. Next, we set yi = [xi, si]

Tw + ϵi for
linear regression and yi = sin([xi, si]

Tw) + ϵi for nonlin-
ear regression (kernel regression case).

Adult dataset (Kohavi et al., 1996) has 48,842 samples
with 14 attributes. We aim to predict the probability that an
individual’s income exceeds $50k per year while we keep
gender as the sensitive attribute. Our experiments evaluate
all methods on a subset of the Adult dataset with 2,000
random samples.

Law School dataset (Wightman, 1998) refers to the Law
School Admissions Council’s National Longitudinal Bar
Passage Study with 20,649 samples. We aim is to predict a
student’s GPA (normalized to [0, 1]) while we keep race as
the sensitive attribute. We convert the original race attributes
to a single binary attribute, i.e., white or non-white. Our
experiments evaluate all methods on a subset of the Law
School dataset with 2,000 random samples.

Communities & Crime (C&C) dataset (Redmond and
Baveja, 2002) combines socio-economic, law enforcement,
and crime data about communities in the US with 1,994
samples. We aim to predict the number of violent crimes
per 100,000 population (normalized to [0, 1]) while we
keep race as the sensitive attribute (whether the majority
population of the community is white).

In all experiments, we measure the loss of function g by the
empirical MSE and the MP disparity by the sum of absolute
mean difference (SMD) which is the empirical estimation
of MPD(g) as defined below

SMD(g) =

k∑
j=1

∣∣∣∣∑n
i=1 g(xi, si)I(si = s(j))∑n

i=1 I(si = s(j))
−
∑n

i=1 g(xi, si)

n

∣∣∣∣ ,
where I(·) is the indicator function.

For all datasets, we split the data into two parts, i.e., 80%
for training and 20% for testing. We discuss the experi-
ments on MP fairness in this section and postpone exper-
iments on CB fairness, DP fairness and regression with
other loss functions to Appendix E. The code is available at
https://github.com/shawkui/MP Fair Regression.

4.1 Regression with single binary sensitive attribute

We first consider regression with single binary sensitive
attribute. We claim that MP fairness is equivalent to CB
fairness in this setting with proof in Appendix A.7, which
allows us to compare the proposed method against the
state-of-the-art (SOTA) CB-fair algorithms for regression.
Specifically, we compare our method with the ordinary least
squares method (OLS), Fair Penalty Regression method

https://github.com/shawkui/MP_Fair_Regression
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Figure 1: Results of linear regression with single binary sensitive attribute. Figures in the first row show the MSE of different
methods, whereas the figures in the second row show the SMD of different methods. The legends FKR-1 and FKR-3
stand for FKR method with regularizer coefficients 10 and 1,000 respectively. Similarly, FPR-1 and FPR-3 stand for FPR
method with regularizer coefficients 10 and 1,000 respectively. We also show the experiment results for kernel regression in
Appendix E.1.

(FPR), Fair Kernel Learning method (FKR, Pérez-Suay
et al. (2017)), and Nonconvex Regression with Fairness Con-
straints method (NRFC, Komiyama et al. (2018)) in terms
of MSE and SMD, where FKR and NRFC are the SOTA al-
gorithms designed for CB fairness. For regularization-based
methods, i.e., FPR and FKR, we evaluate them twice with
regularization coefficients 10 (FPR-1, FKR-1) and 1, 000
(FPR-3, FKR-3) respectively. More details of the baselines
and experiment settings can be found in Appendix D.1.

The experiment results are summarized in Figure 1, from
which we see that the proposed method can consistently
enforce the MP-fair constraint, and its performance is supe-
rior to regularization-based methods and competitive with
NRFC. Notably, our method can completely remove the
algorithmic discrimination on conditional mean for train
data. Supplemental Figure 5 shows our method achieves a
smaller MSE than NRFC in kernel regression when both of
them reach MP-fairness in train data.

4.2 Tradeoff between fairness and accuracy

We now test the proposed method in Section 3.3 on control-
ling the accuracy-fairness tradeoff, following the setting in
Section 4.1.

Note that different baselines adopt different metrics and no-
tions for such tradeoff and we only evaluate them in terms of
MSE and SMD. For this purpose, we test the regularization-
based methods with fairness regularizer coefficients from
0 to 106 while for NRFC and the proposed method, we
evaluate them with the fairness level parameters from 0 to 1.
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Figure 2: Results of the fairness-accuracy tradeoff. The first
row presents the experiment results for train data whereas
the second row shows the experiment results for test data.

The curves of the fairness-accuracy tradeoff are shown in
Figure 2. As discussed in Section 3.3, the MSE climbs when
stricter fairness constraints are imposed. In Figure 2, the
curve of our method coincides with the curves of FKR and
FPR, and performs better than the curve of NRFC. When
SMD is approaching 0, all methods receive almost the same
MSE while NRFC has a higher MSE than other methods
on the Communities & Crime dataset when weaker fairness
constraints are imposed. A similar pattern can be found
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Figure 3: Results of linear regression on Communities & Crime dataset with multiple binary sensitive attributes. Figures in
the first row show the MSE of different methods whereas the figures in the second row show the SMD of different methods.
The experiment on kernel regression shows similar results in Appendix E.1.

in supplemental Figure 7 but NRFC and FKR achieve a
slightly smaller test MSE sometimes. Although the curves
are similar, our method enjoys better explainability and
much lower complexity. Unlike other methods which need
to solve the regression problem for each level of fairness,
our method only solves the regression problem twice and
produces a precise tradeoff between fairness and accuracy.

4.3 Regression with multiple sensitive attributes

As aforementioned, our method can be naturally generalized
to regression with multiple sensitive attributes as long as κS
satisfies Assumption 1. In this experiment, we set κS to be
a polynomial kernel and choose multiple binary sensitive
attributes on the Communities & Crime dataset. The number
of sensitive groups is k = 2r where r is the number of binary
sensitive attributes.

In this case, we consider only two baselines: FPR and the
OLS since MP-fairness may be not equivalent to CB fairness.
Figure 3 depicts the MSE and SMD for different numbers of
sensitive attributes, from which we can see that our method
can enforce fairness with different numbers of sensitive
attributes.

4.4 Distribution of MP-fair response

In this section, we visualize the distribution of response
Y and the predicted response Ŷ produced by our method
on MP-fair regression problem to demonstrate the effect
of MP-fairness. Specifically, we consider linear regression
with single binary sensitive attribute S ∈ {0, 1}. Note that
to test our method on an extreme case, the synthetic dataset
is generated following the linear regression setting with
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Figure 4: Visualization of centralized response distribution.
Both the normalized histograms (bins) and the estimated
density (curves) are reported. Figures in the first row show
the conditional distribution of response in the test dataset
while the figures in the second row show the corresponding
conditional distribution of the MP-fair predicted response.

sensitive attribute drawn from {−10, 10} uniformly so that
the distributions of response in two groups are significantly
different.

The results of the Synthetic test dataset and the Adult test
dataset are summarized in Figure 4, from which we can
see that the distribution of Ŷ conditioning on the sensitive
attribute S are similar to each other. This observation agrees
with the experiment results in Appendix E.4 which says
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that enforcing MP fairness can significantly reduce the DP
disparity.

5 RELATED WORK

Fair regression. Most prior work on fair regression ap-
proximates the optimal fair regression function by data pre-
processing or regularizers. Inspired by the two-stage least-
squares method used in economics, Komiyama and Shimao
(2017) propose a two-stage algorithm for linear regression
that aims to remove the correlation in the dataset, and extend
their work to control the level of fairness by employing a
nonconvex optimization method (Komiyama et al., 2018).
To provide a general framework for fair regression, Berk
et al. (2017) introduce a family of fairness regularizers for
linear regression problems which enjoy convexity and per-
mit fast optimization. Similarly, Steinberg et al. (2020) and
Mary et al. (2019) propose to measure the fairness using
mutual information and Renyi maximum correlation coef-
ficient respectively and incorporate the proposed criterion
into regularized risk minimization framework. Recently,
Scutari et al. (2021) propose a framework for estimating
regression models subject to a user-defined level of fairness
by introducing a ridge penalty for unfairness. Unlike those
works, this paper focuses on the explicit solution to the
MP-fair regression problem with both interpretability and
theoretical performance guarantees.

Several works are seeking the explicit solution to the fair
regression problem. Calders et al. (2013) consider the fair
linear regression problem with MP-constraints and provide
a closed-form solution using the method of Lagrange multi-
pliers. Based on the connection between least-squares fair
regression under Demographic Parity and optimal transport
theory, Chzhen et al. (2020) and Gouic et al. (2020) recently
establish the general form of the optimal DP fair regres-
sion function and propose a post-processing algorithm that
transforms a base estimator of the regression function into
a nearly fair one using random smoothing. In the work of
Chzhen and Schreuder (2022), the authors consider learn-
ing regression function satisfying α-relative DP fair con-
straint and propose a framework that continuously interpo-
lates between two extreme cases, which is similar to our
fairness-accuracy tradeoff method. Other approaches to fair
regression include optimization-based methods (Oneto et al.,
2020), reduction-based methods (Agarwal et al., 2018), and
adversary-based methods (Chi et al., 2021) under some
notions of fairness. Unlike them, we focus on MP-fair
regression problem in RKHS and derive a closed-form solu-
tion by the characterization of fair functional space, which
can be extended to covariance-based fairness and other loss
functions.

Kernel methods for algorithmic fairness. In recent
years, kernel methods have drawn increasing attention from
the algorithmic fairness community, which can be roughly

categorized into two classes. The first class of work aims
to employ the kernel method as a regularizer for fairness.
Pérez-Suay et al. (2017) present the fair kernel ridge re-
gression formulation by incorporating the kernel Hilbert
Schmidt independence criterion (KHSIC) as the regularizer
on the dependence between the predictor and the sensitive
attribute. Similarly, Kim and Gittens (2021) propose to
learn fair low-rank tensor decompositions by regularizing
the Canonical Polyadic Decomposition factorization with
the KHSIC. Cho et al. (2020) develop a kernel density esti-
mation (KDE) methodology for classification problems to
quantify the fairness measure as a differentiable function
and incorporate it as a regularizer. Another class of work
aims to learn fair representation by leveraging kernel models.
In Grünewälder and Khaleghi (2021), the authors study the
relaxed Maximum Mean Discrepancy (MMD) criterion and
propose to generate new features that are minimally depen-
dent on the sensitive features while closely approximating
the non-sensitive ones. In Okray et al. (2019), the authors
consider fair regression with binary sensitive attributes and
propose to learn fair feature embeddings in kernel space
by minimizing the mean discrepancy between the protected
group and the unprotected group. In Tan et al. (2020), the
authors leverage the classical sufficient dimension reduc-
tion (SDR) framework to construct fair representations as
subspaces of the RKHS under some criterion. Our method
differs from those methods from two perspectives: we root
in constructing the fair function space and aim to find the
explicit solution to the MP fair regression problem.

6 CONCLUSION

In this paper, we have proposed a novel approach for regres-
sion under Mean Parity fairness which is appealing both
theoretically and practically. By characterizing the space of
fair regression functions, we derive a closed-form solution
to the fair regression problem which has a simple implemen-
tation in practice. The proposed fair function space can also
be applied to regression under covariance-based fairness
and other loss functions. In addition, our method allows
users to control the fairness-accuracy tradeoff systemically
and offers a simple interpretation. Experimental results sug-
gest that our approach is promising for applications and
improves fairness with multiple sensitive attributes.

Limitations and future work. One important direction of
future work, and a current challenge is the scalability of the
proposed algorithm which is also a common limitation of
kernel methods. We remark that many approaches have been
proposed to reduce the computational cost of kernel-based
algorithms by low-rank matrix approximation (El Alaoui
and Mahoney, 2014; Kumar et al., 2009) or random projec-
tion (Cesa-Bianchi et al., 2015), which can also benefit our
method. Another valuable direction is to apply our method
to other kernel-based models such as Support Vector Ma-
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chine (Noble, 2006) and Generalized Linear model (Nelder
and Wedderburn, 1972). Other directions of interest include
studying the generalization problem of fair algorithms and
the characterization of the fair function space for more no-
tions of fairness.
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A PROOFS

A.1 Proof of Proposition 1

Proof. By the fact that E(X) =
∫∞
0

(1− F (x))dx−
∫ 0

−∞ F (x)dx where F (X) is the cumulative distribution functions
(CDF) of X , we have

MPD(g) =
∑
s∈ΩS

|E(g(X,S)|S = s)− E(g(X,S))|

=
∑
s∈ΩS

∣∣∣∣∫
R
(Fg(X,S)|S=s(t)− Fg(X,S)(t))dt

∣∣∣∣
DPD(g) =

∑
s∈ΩS

W1(g(X,S)|S = s, g(X,S))

=
∑
s∈ΩS

(∫
R

∣∣(Fg(X,S)|S=s(t)− Fg(X,S)(t))
∣∣ dt)

where Fg(X,S)|S=s and Fg(X,S) are the CDF of g(X,S)|S = s and g(X,S) respectively.

By the Triangle inequality, we have∣∣∣∣∫
R
(Fg(X,S)|S=s(t)− Fg(X,S)(t))dt

∣∣∣∣ ≤ ∫
R

∣∣(Fg(X,S)|S=s(t)− Fg(X,S)(t))
∣∣ dt ∀s ∈ ΩS . (8)

So,
MPD(g) ≤ DPD(g)

A.2 Proof of Theorem 1

Proof. By the definition of ker(ΣS(XS)), a function g is in ker(ΣS(XS)) if and only if

ΣS(XS)g = 0HS
.

For a function g ∈ HXS , notice that

ΣS(XS)g = EXS [(ϕS(S)− µs)⊗ (ϕXS(X,S)− µXS)g]

= EXS [⟨ϕXS(X,S)− µXS , g⟩HXS
(ϕS(S)− µs)] (By the definition of ⊗)

= EXS [(g(X,S)− EXS(g(X,S)))(ϕS(S)− µs)] (By the reproducing property)
= ES [(EX(g(X,S)|S)− EXS(g(X,S))) (ϕS(S)− µs)]

=

k∑
j=1

P(S = s(j))
(
EX(g(X,S)|S = s(j))− EXS(g(X,S))

)
(ϕS(s

(j))− µs)

and
k∑

j=1

P(S = s(j))
(
EX(g(X,S)|S = s(j))− EXS(g(X,S))

)
= 0

where we use the reproducing property of HXS and the definition that (a⊗ b)c = ⟨b, c⟩Ha for b, c ∈ H (Gretton, 2013).

Note that we assume P(S = s(j)) > 0 for all s(j) ∈ ΩS since the sensitive attributes with zero probability don’t influence
the fairness in practice. Then, under the Assumption 1 that the system of equations

k∑
j=1

ηj(ϕS(s
(j))− µS) = 0HS

,
k∑

j=1

ηj = 0 (9)
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has unique solution ηj = 0 for all j ∈ {1, . . . , k}, we can conclude that

ΣS(XS)g = 0HS
∀g ∈ GMP

EX(g(X,S)|S)− EXS(g(X,S)) = 0 ∀g ∈ ker(ΣS(XS)).

So, GMP = ker(ΣS(XS)).

A.3 Proof of Lemma 1

Proof. Recall that Problem 1 considers the following objective

E(Y − g(X,S))2,

which is equivalent to
E(Y 2)− 2E(Y g(X,S)) + E(g(X,S))2.

Denote the optimal regression function of Problem 1 by g∗G . Let ∆ be an arbitrary function in GMP , then g′ = g∗G +∆ is a
function in GMP and

E((Y − g′(X,S))2 = E(Y 2)− 2E(Y g′(X,S)) + E(g′(X,S))2

= E(Y − g∗G(X,S))
2 − 2E(Y∆(X,S))

+ 2E(g∗G(X,S)∆(X,S)) + E(∆(X,S))2.

Note that g∗G is an optimal solution if and only if

E((Y − g′(X,S))2 ≥ E(Y − g∗G(X,S))
2

which is equivalent to

−2E(Y∆(X,S)) + 2E(g∗G(X,S)∆(X,S)) + E(∆(X,S))2 ≥ 0 ∀∆ ∈ GMP .

The above inequality holds if and only if

−2E(Y∆(X,S)) + 2E(g∗G(X,S)∆(X,S)) = 0 ∀∆ ∈ GMP ,

which is equivalent to
E(Y∆(X,S)) = E(g∗G(X,S)∆(X,S)) ∀∆ ∈ GMP ,

otherwise, scaling ∆ by a proper scalar yields a contradiction.

A.4 Proof of Corollary 1

Proof. Given g1, g2 ∈ HXS , E(g1(X,S)|S)−E(g1(X,S)) = E(g2(X,S)|S)−E(g2(X,S)) indicates that g1−g2 ∈ GMP ,
that is, under Assumption 1,

ΣS(XS)(g1 − g2) = 0HS
.

Rewriting the above equation gives
ΣS(XS)g1 = ΣS(XS)g2.

A.5 Proof of Proposition 3

Proof. A function g ∈ HXS satisfies ΣS(XS)g = ΣS(XS)g
∗ if and only if ΣS(XS)(g − g∗) = 0HS

. By the definition of
GMP , we have

ΣS(XS)(g − g∗) = ΣS(XS)(gMP − g∗MP ) + ΣS(XS)(gMP⊥ − g∗MP⊥)

= ΣS(XS)(gMP⊥ − g∗MP⊥)

= 0HS
.

As gMP⊥ − g∗MP⊥ ∈ G⊥
MP , the above equation holds if and only if gMP⊥ = g∗MP⊥ .
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A.6 Proof of Proposition 5

Proof. To bound the MSE of g∗G , we introduce a sub-optimal fair regression function g′ = Pg∗ where g∗ is the optimal
regression function in HXS . Then, the reduction of MSE are

L(g∗G)− L(g∗) ≤ L(g′)− L(g∗)

= E(Y − g′(X,S))2 − E(Y − g∗(X,S))2

= −2E(Y g′(X,S)) + E(g′(X,S))2 −
(
−2E(Y g∗(X,S)) + E(g∗(X,S))2

)
= E(g′(X,S))2 − 2E(Y g′(X,S)) + E(g∗(X,S))2 (By the optimal condition of g∗)

= E(g′(X,S))2 − 2E(g∗(X,S)g′(X,S)) + E(g∗(X,S))2 (By the optimal condition of g∗)

= E(g′(X,S)− g∗(X,S))2

= E(g∗MP⊥(X,S))
2 (By g∗ = Pg∗ + g∗MP⊥ )

= ⟨Σ̃(XS)(XS)g
∗
MP⊥ , g

∗
MP⊥⟩HXS

.

Therefore, under Assumption 1, the MSE of g∗G is bounded by

L(g∗G) ≤ L(g∗) + ⟨Σ̃(XS)(XS)g
∗
MP⊥ , g

∗
MP⊥⟩HXS

. (10)

A.7 Proof in Example 1

In this section, we prove that when S is a binary random variable, κS(si, sj) = sisj satisfies Assumption 1.

Proof. Without loss of generality, we assume that S ∈ {0, 1}. Since the following system of equations

η1(0− P(S = 1)) + η2(1− P(S = 1)) = 0

η1 + η2 = 0,

has a unique solution η1 = η2 = 0, Assumption 1 is satisfied.

B IMPLEMENTATION

In this section, we focus on the estimation of optimal regression function by solving the empirical approximation of
Problem 1. Specifically, given the training dataset D = {xi, si, yi}ni=1, we seek the solution to the following regularized fair
regression problem (Kadri et al., 2010; Hoegaerts et al., 2005),

min
g∈GMP

1

n

n∑
i=1

(yi − g(xi, si))
2 +

λ

n
∥g∥HXS

, (11)

where λ ≥ 0 is a real number (regularization coefficient) to control the tradeoff between approximating properties and the
smoothness of g. Note that when λ = 0, Problem 11 is the estimation of Problem 1, but it may be ill-posed depending on
HXS .

To solve Problem 11, we first show the empirical estimation of Σ(XS)S and how to estimate the eigenfunctions of
Σ(XS)SAΣS(XS), which allows us to construct an orthogonal projection operator. After that, we derive the closed-form
solution for Problem 11 which is the empirical estimation of the optimal fair regression function 3 when λ = 0.

B.1 Empirical estimation of MP-fair function space

Recall that the feature maps of HXS and HS are ϕXS and ϕS respectively. Let us define ϕ̄XS(xi, si) = ϕXS(xi, si) −
1
n

∑n
j=1 ϕXS(xj , sj) and ϕ̄S(si) = ϕS(si)− 1

n

∑n
j=1 ϕS(sj). Then, the empirical estimation of Σ(XS)S is

Σ̂(XS)S =
1

n

n∑
i=1

ϕ̄XS(xi, si)⊗ ϕ̄S(si).
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To simplify the derivation, we set A to be the identity operator and focus on Σ̂(XS)SΣ̂S(XS).

Define the feature matrix ΦXS and Gram matrix KXS as

ΦXS = [ϕXS(x1, s1), . . . , ϕXS(xn, sn)]
T

KXS = ΦT
XSΦXS ,

such that the ith column of ΦXS is ϕXS(xi, si) and the (i, j) entry of KXS is κXS((xi, si), (xj , sj)). Similarly, we denote
the feature matrix and Gram matrix of S by ΦS and KS respectively.

For simplicity, we assume that {ϕ̄XS(xi, si)} is a set of linearly independent feature maps which ensures that an eigenfunc-
tion θ̂l is uniquely determined by a set of scalars. In case where {ϕ̄XS(xi, si)} are not linearly independent e.g., duplicated
data samples, the following process can still be applied since we can get orthonormal bases by removing the duplicated
eigenfunctions.

By the observation that ran(Σ̂(XS)SΣ̂S(XS)) is a subspace of span({ϕXS(xi, si)}ni=1), the jth eigenfunction of
Σ̂(XS)SΣ̂S(XS) can be written as

θ̂j = ΦXSaj or θ̂j = Φ̄XSāj ∀j ∈ {1, . . . ,m},

where aj , āj ∈ Rn are vectors of coefficients and Φ̄XS = ΦXSH for H = In×n − 1
n1n×n (Schölkopf et al., 1998).

The generalized eigenvalue ψj corresponding to θ̂j satisfies

ψj θ̂j = Σ̂(XS)SΣ̂S(XS)θ̂j .

Writing the above equation as a matrix form yields

ψjāj =
1

n2
K̄SK̄XSāj ,

where K̄S = HKSH and K̄XS = HKXSH .

Thus, āj is the eigenvector of the matrix 1
n2 K̄SK̄XS and aj = Hāj . Since Σ̂(XS)SΣ̂S(XS) is self-adjoint, the first

m eigenfunctions are orthogonal. So, we can normalize the eigenfunctions to construct a set of orthonormal bases of
ran(Σ̂(XS)S). A more detailed derivation can be found in Appendix C.3.

B.2 Construction of projection operator

With some abuse of notation, we denote a set of orthonormal bases of ran(Σ(XS)S) by {θ1, · · · , θm} and its estimation by
{θ̂1, · · · , θ̂m} where θ̂j = ΦXSaj to avoid complicated symbols. Given a function g ∈ HXS , the orthogonal projection
operator from HXS onto ran(Σ(XS)S)

⊥ eliminates the components of g in ran(Σ(XS)S). Thus, we can construct the
following orthogonal projection operator

P = I −
m∑
j=1

θj ⊗ θj ,

where I : HXS → HXS is the identity operator.

So, the estimation of P can be written as

P̂ = I −
m∑
j=1

θ̂j ⊗ θ̂j (12)

Note that given g = ΦXSc, the projection of g on GMP is

P̂ g = g −
m∑
j=1

⟨g, θ̂j⟩HXS
θ̂j = ΦXSPc,

where P = (In×n −∑m
j=1 amaT

mKXS).
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B.3 Estimation of fair regression function

Given an orthogonal projection operator estimation P̂ , the optimal solution to Problem 11 is ĝ∗G = P̂ ĝ∗H where ĝ∗H can be
obtained by solving the following problem

min
g∈HXS

1

n

(
yi − ⟨ϕXS(xi, si), P̂ g⟩

)2
+
λ

n

∥∥∥P̂ g∥∥∥
HXS

.

By the Representer theorem (Schölkopf et al., 2001), ĝH is of the form ĝH = ΦXSwH for wH ∈ Rn. So, it suffices to
minimize the following objective function

J(w) =wTP TKXSKXSPw − 2Y TKXSPw

+ Y TY + λwTP TKXSPw,

where Y = [y1, . . . , yn] is a vector in Rn.

Since J(w) is convex, it has a minimizer. Setting ∂J
∂w to zero yields

wH = (P TKXSKXSP + λP TKXSP )†P TKXSY .

So, the optimal fair regression function is ĝ∗G = ΦXSw
∗
G where

w∗
G = P (P TKXSKXSP + λP TKXSP )†P TKXSY .

Example: fair linear regression. Consider the fair linear regression problem with single binary sensitive attribute. The
kernels are

κS(si, sj) = sisj

κX(xi, xj) = xTi xj

κXS((xi, si), (xj , sj)) = κS(si, sj) + κX(xi, xj).

We prove that the above setting satisfies Assumption 1 in Appendix A.7, which implies that MP fairness is equivalent to CB
fairness in this example. Let λ = 0. The optimal fair regression function is

ĝ∗G = ΦXSP (KXSP )†Y

and the fitted value of Y is
Ŷ = KXSP (KXSP )†Y .

C DERIVATIONS AND DISCUSSIONS

C.1 Relation between MP fairness and CB fairness

In this section, we discuss general CB fairness and its relation to MP fairness. We first provide the following assumption

Assumption 2. Assume the κXS is composed of κS and κX .

which is the assumption in ordinary kernelized regression problem where S and X are mapped to ϕS(S) and ϕX(X)
respectively. As discussed in the work of Komiyama et al. (2018) and Pérez-Suay et al. (2017), the general CB fairness
seeks to remove the correlation between S and g(X,S) on the (possibly infinite) representation space. Specifically, the CB
fairness requires that the regression function g ∈ HXS achieves Cov(ϕS(S), g(X,S)) = 0HS

under Assumption 2. By the
definition of Cov(ϕS(S), g(X,S)), we have

Cov(ϕS(S), g(X,S)) = E [(g(X,S)− E(g(X,S)))(ϕS(S)− µS)]

= E [⟨ϕXS(X,S)− µXS , g⟩HXS
(ϕS(S)− µS)]

= E [(ϕS(S)− µS)⊗ (ϕXS(X,S)− µXS)⟩] g
= ΣS(XS)g,

(13)
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where we use the reproducing property of HXS and the definition that (a⊗ b)c = ⟨b, c⟩Ha for b, c ∈ H (Gretton, 2013) to
derive this result.

Equation 13 claims that a function g ∈ HXS is CB-fair if and only if g is in ker(ΣS(XS)). Since the proposed method solves
the fair regression problem by the characterization of ker(ΣS(XS)), it can also be applied to CB fairness under Assumption
2. In particular, if both Assumption 1 and Assumption 2 are satisfied, MP fairness is equivalent to CB fairness.

C.2 Derivation of equations in Section 3.3

Solving Problem 6 gives

gαMP = P [P Σ̃(XS)(XS)P ]
†P (h− αΣ̃(XS,XS)g

∗
MP⊥)

= g∗G − αP [P Σ̃(XS)(XS)P ]
†P Σ̃(XS,XS)g

∗
MP⊥ .

As g∗MP⊥ = (I − P )g∗ where I is the identity operator, we have

P [P Σ̃(XS)(XS)P ]
†P Σ̃(XS,XS)g

∗
MP⊥

= P [P Σ̃(XS)(XS)P ]
†P Σ̃(XS,XS)g

∗ − P [P Σ̃(XS)(XS)P ]
†P Σ̃(XS,XS)Pg

∗

where the first term equals to g∗G by the property that ⟨g, Σ̃(XS,XS)g
∗⟩HXS

= ⟨g, h⟩HXS
for all g ∈ HXS , and the second

term equals to Pg∗ since it’s the optimal solution of ming∈GMP
E(Pg∗ − g)2.

Therefore, we get

gαMP = (1− α)g∗G + αPg∗.

Alternatively, we can show the above equation using the fact that gα = g∗ when α = 1.

Thus, the optimal solution to Problem 5 is gα = (1− α)g∗G + αg∗.

Now, we turn to the MSE of gα. We have

L(gα) = E(Y − gα(X,S))2

= E(Y − (1− α)g∗G(X,S)− αg∗(X,S))2

= E((1− α)(Y − g∗G(X,S)) + α(Y − g∗(X,S)))2

= E((1− α)(Y − g∗G(X,S)))
2 + E(α(Y − g∗(X,S)))2

+ 2E((1− α)(Y − g∗G(X,S))(α(Y − g∗(X,S))))

= E((1− α)(Y − g∗G(X,S)))
2 + E(α(Y − g∗(X,S)))2

+ 2α(1− α)E((Y − g∗G(X,S))(Y − g∗(X,S)))

= (1− α)2E(Y − g∗G(X,S)))
2 + (1− (1− α)2)E((Y − g∗(X,S)))2

= (1− α)2L(g∗G) + (1− (1− α)2)L(g∗)

= α2(L(g∗G)− L(g∗))− 2α(L(g∗G)− L(g∗)) + L(g∗G),

= (1− α)2L(g∗G) + (1− (1− α)2)L(g∗)

MPD(gα) = αMPD(g∗).

(14)

since E(Y (Y − g∗(X,S))) = E(Y − g∗(X,S))2 and E(g∗G(X,S)(Y − g∗(X,S))) = 0.

C.3 Estimating eigenfunctions and orthonormal bases

Now we provide detailed derivation about finding the eigenfunctions of Σ̂(XS)SAΣ̂S(XS).

Recall that

Σ̂(XS)S =
1

n

n∑
i=1

ϕ̄XS(xi, si)⊗ ϕ̄S(si).
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Let A be the identity operator, and we get

Σ̂(XS)SAΣ̂S(XS) =

(
1

n

n∑
i=1

ϕ̄XS(xi, si)⊗ ϕ̄S(si)

)(
1

n

n∑
i=1

ϕ̄S(si)⊗ ϕ̄XS(xi, si)

)

=
1

n2

n∑
i=1

n∑
j=1

ϕ̄XS(xi, si)⊗ ϕ̄S(si)ϕ̄S(sj)⊗ ϕ̄XS(xj , sj)

=
1

n2

n∑
i=1

n∑
j=1

⟨ϕ̄S(si), ϕ̄S(sj)⟩HS
ϕ̄XS(xi, si)⊗ ϕ̄XS(xj , sj)

=
1

n2

n∑
i=1

n∑
j=1

κ̄S(si, sj)ϕ̄XS(xi, si)⊗ ϕ̄XS(xj , sj).

For simplicity, we assume that {ϕ̄XS(xi, si)} is a set of independent feature maps which ensures that θ̂l is uniquely
determined by a set of scalars. In case where {ϕ̄XS(xi, si)} are not independent e.g., duplicated data samples, the following
process can still be applied since we can get orthonormal bases by removing the duplicated eigen functions.

Since Σ̂(XS)SΣ̂S(XS) is in ran({ϕ̄XS(xi, si)}ni=1), the lth eigenfunction of Σ̂(XS)SΣ̂S(XS) can be written as

θ̂l =

n∑
i=1

āli ϕ̄XS(xi, si).

By the definition of eigenfunction, we get
ψlθ̂l = Σ̂(XS)SΣ̂S(XS)θ̂l. (15)

Observe that

⟨ϕ̄XS(xi, si),

n∑
j=1

ālj ϕ̄XS(xj , sj)⟩HXS
=

n∑
j=1

ālj κ̄XS ((xi, si), (xj , sj)) ,

where κ̄XS ((xi, si), (xj , sj)) is the (i, j) entry of the matrix K̄XS = HKXSH with Gram matrix KXS and H =
In×n − n−11n×n. Thus, we get

Σ̂(XS)SΣ̂S(XS)θ̂l =
1

n2

n∑
i=1

n∑
j=1

βlj κ̄S(si, sj)ϕ̄XS(xi, si),

where βlj =
∑n

r=1 ālr κ̄XS ((xj , sj), (xr, sr)).

By Equation 15, it suffices to solve

λlāli =
1

n2

n∑
j=1

κ̄S(si, sj)

n∑
r=1

ālr κ̄XS ((xj , sj)(xr, sr)) .

Writing the above equation as a matrix equation yields

ψlāl =
1

n2
K̄SK̄XSāl,

where al = [āl1 , . . . , āln ] is a column vector in Rn.

Thus, al is the eigenvector of the matrix 1
n2 K̄SK̄XS . Let

al = Hāl.

The lth eigenvector can be rewritten as

θ̂l =

n∑
i=1

aliϕXS(xi, si).

Since Σ̂(XS)SΣ̂S(XS) is self-adjoint, the first m eigenfunctions are orthogonal. So, we can normalize the eigenfunctions to
construct a set of orthonormal bases of ran(Σ̂(XS)S).
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C.4 Choice of kernel

For Mean Parity Fair Regression, the choice of κS is independent of κXS and κX as long as ϕS satisfies Assumption 1. Here
we show that a polynomial kernel with degree k − 1 would satisfy Assumption 1 for ΩS ⊆ R, i.e., S is a scalar variable.

Consider a polynomial kernel with degree of k − 1, i.e., κS(s1, s2) = (1 + s1s2)
k−1. The feature map ϕS(s) is

ϕS(s) = [c0, c1s, c2s
2, · · · , ck−1s

k−1]

where ci =
√(

k−1
i

)
according to the binomial theorem.

Now we show that {ϕS(s(j))}kj=1 is a set of linearly independent feature maps by showing the following problem has no
non-zero solution

k∑
j=1

wjϕS(s
(j)) = 0HS

(16)

Equation 16 is equivalent to
c0 c0 c0 · · · c0

c1(s
(1))1 c1(s

(2))1 c1(s
(3))1 · · · c1(s

(k))1

c2(s
(1))2 c2(s

(2))2 c2(s
(3))2 · · · c2(s

(k))2

...
...

...
...

...
ck−1(s

(1))k−1 ck−1(s
(2))k−1 ck−1(s

(3))k−1 · · · ck−1(s
(k))k−1




w1

w2

w3

...
wk

 =


0
0
0
...
0


We can simplify the above problem to


1 1 1 · · · 1

(s(1))1 (s(2))1 (s(3))1 · · · (s(k))1

(s(1))2 (s(2))2 (s(3))2 · · · (s(k))2

...
...

...
...

...
(s(1))k−1 (s(2))k−1 (s(3))k−1 · · · (s(k))k−1


︸ ︷︷ ︸

V


w1

w2

w3

...
wk

 =


0
0
0
...
0



Since the matrix V is a Vandermonde Matrix, it has determinant det(V ) =
∏

1≤i<j≤k

(s(j) − s(i)) ̸= 0. Therefore, the above

problem has no non-zero solution and {ϕS(s(j))}kj=1 is a set of linearly independent features. Thus, a polynomial kernel
with degree k − 1 would satisfy Assumption 1 for scalar-valued S.

For sensitive attributes with non-scalar value, a modified polynomial kernel that first maps S to scalar value and then
computes the features by the standard polynomial kernel can be well adopted.

D EXPERIMENTS DETAILS

D.1 Baselines

The details of the baselines used in the experiments are summarized below:

• Constant Prediction: a regression function with a constant outcome that minimizes the MSE. It achieves MP, DP and
CB fairness.

• Ordinary Least Squares: the standard linear regression model without regularizers.

• Kernel Ridge Regression: the standard kernel regression (Welling, 2013) method with regularizers.

• Fair Penalty Regression: a regression model with MP-fair regularizers. Derivation can be found in Appendix D.3.
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• Fair Kernel Learning (Pérez-Suay et al., 2017): a regularizer-based method aims to eliminate the covariance between the
predicted value and the sensitive attributes. The implementation is borrowed from https://isp.uv.es/soft regression.html.

• Nonconvex Regression with Fairness Constraints (Komiyama et al., 2018): a nonconvex optimization method aims to
control the correlation between the predicted value and the sensitive attributes. Note that the optimization process is
applied only when the target CB disparity is set to be larger than 0, otherwise, NRFC is reduced to a data preprocessing
method. We adapt the official implementation from https://github.com/jkomiyama/fairregresion.

• Reduction Based Algorithm (Agarwal et al., 2019): a reduction based method aims to achieve DP
fairness for a randomized predictor using discretization. We adapt the official implementation from
https://github.com/steven7woo/fair regression reduction.

D.2 Experiment settings

The detailed settings in each experiment are summarized below:

• Data preprocessing. For all experiments, both response values in train data and test data are centralized using the
mean of training response values.

• Linear regression. For synthetic dataset, we choose n = 2, 000, d = 5 and e = 1 for regression with single sensitive
attribute. The variance of noise ρ2noise is set to be 0.1. For the proposed method and FPR, we set the kernel of sensitive
attributes as the polynomial kernel. All methods focus on the unregularized least-squares problem, i.e, λ = 0. We
test FKR with fairness regularizer coefficients 10 and 1, 000 which are represented by FKR-1 and FKR-3 respectively.
Similarly, We test FPR with coefficients of fairness regularizer 10 and 1, 000 which are represented by FPR-1 and
FPR-3 respectively. Note that for NRFC, it defaults to fit linear regression with intercept. So, when evaluating other
methods, we add a column of ones to X to match the setting of NRFC. Other settings for the hyper-parameters in the
baselines follow the default settings of their corresponding papers. We run each method 10 times.

• Kernel regression. For the proposed method, we set κS to be polynomial kernel while all other kernels are set to be
Radial Basis Function (RBF) Kernel with γ = 0.1. We focus on the regularized least-squares problem with λ = 1.
Other settings for the hyper-parameters in the baselines are the same as the settings in the linear regression experiment.

• Tradeoff. The proposed method is evaluated with α = [0, 1/50, 2/50, . . . , 1]. For FKR and FPR, we alter the
coefficient of fairness regularizer from 0 to 106. Moreover, we run NRFC with ζ , the parameter for the level of fairness
from 0 to 1. Note that except α, all other parameters need to be tuned carefully since the relation between fairness and
accuracy is hard to interpret (sometimes a small change in the fairness parameter will make a dramatic change to the
loss while sometimes the change is negligible). In particularly, the values of ζ concentrate in [0, 0.1] and even [0, 0.01].
For the regularizer coefficient of FKR and FPR, the values concentrate in [102, 104]. To make the figures clear, we plot
a subset of experiment results in Figure 2 and Figure 7 by subsampling 1/5 of the results uniformly.

• Multiple sensitive attributes. For regression with multiple sensitive attributes on the Communities and Crime dataset,
we choose race, medIncome, householdsize and medFamInc as the sensitive attributes sequentially. For medIncome,
householdsize and medFamInc, we convert them to binary attributes by whether their values are larger than 0.5.

D.3 Fair penalty regression

In this section, we derive an FPR model for MP fairness using the framework of Pérez-Suay et al. (2017) which is used as a
baseline in our experiment. For the FPR model, the key point is to find function Q(g(X,S), S) which measures the level of
MP-fairness of a regression function. Notice that a function g ∈ HXS satisfies MP fairness if and only if its projection onto
GMP is itself, i.e., g − Pg = 0HXS

. So, we set

Q(g(X,S), S) = ∥g − Pg∥HXS
.

Given the training dataset D = {xi, si, yi}ni=1, we seek the solution of the following regularized optimization problem,

min
g∈GMP

1

n

n∑
i=1

(yi − g(xi, si))
2 +

λ

n
∥g∥HXS

+
ζ

n
∥g − Pg∥HXS

. (17)

https://isp.uv.es/soft_regression.html
https://github.com/jkomiyama/fairregresion
https://github.com/steven7woo/fair_regression_reduction
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where ζ ≥ 0 is the parameter to control the level of fairness.

By the Representer theorem, the optimal solution g∗ is of the form ΦXSw. So, we need to solve the problem

min
g∈GMP

Y TY − 2Y TKXSw +wTKXSKXSw + λwTKXSw + ζwTKXSA
TKXSAKXSw, (18)

where A =
∑m

j=1 aja
T
j . Since the above problem is convex, its has a solution

w =
(
KXSKXS + λKXS + ζKXSA

TKXSAKXS

)†
KXSY

= (KXSKXS + λKXS + ζKXSAKXS)
†
KXSY .

E ADDITIONAL EXPERIMENT RESULTS

E.1 Supplementary results for Section 4

In this section, we provide the supplementary experiment results for Section 4. In Figure 5, we compare different baselines
in the kernel regression setting for single binary sensitive attribute. Figure 6 describes the performance of KRR, FPR and
the proposed method in the setting of kernel regression for multiple sensitive attributes. In Figure 7, we summarize the
experiment results for the fairness-accuracy tradeoff on different datasets.
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Figure 5: Results of kernel regression for all datasets with one binary sensitive attribute. Figures in the first row show the
MSE of different methods whereas the figures in the second row show the SMD of different methods. The methods FKR-1
and FKR-3 stand for FKR method with regularizer coefficients 10 and 1000 respectively. And FPR-1 and FPR-3 stand for
FPR method with regularizer coefficients 10 and 1000 respectively.
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Figure 6: Results of kernel regression on the Communities & Crime dataset with multiple binary sensitive attributes. Figures
in the first row show the MSE of different methods whereas the figures in the second row show the SMD of different
methods.

2 4
MSE 1e−2

0

2

4

SM
D

1e−1 Synthetic

1.125 1.150 1.175 1.200
MSE 1e−1

0

1

2
1e−1 Adult

9.0 9.1
MSE 1e−3

0

1

2

3

1e−2 Law School

2.0 2.5 3.0
MSE 1e−2

0

1

2

3
1e−1 C&C

2 4
MSE 1e−2

4

6

SM
D

1e−1

1.100 1.125 1.150
MSE 1e−1

1

2

1e−1

9.6 9.8
MSE 1e−3

0

1

2

3
1e−2

2.0 2.5 3.0
MSE 1e−2

1

2

3

1e−1

FKR FPR NRFC Ours

Figure 7: Results of the tradeoff between fairness and accuracy. Figures in the first row show the experiment results on
train data whereas the figures in the second row show the tradeoff in test data. In order to compare the results on different
datasets, some results in Section 4 are repeated. We remark that both FKR and NRFC suffer from numerical instability with
respect to MSE when fairness constraint is removed or strictly imposed which can be seen from experiment results on the
Law School dataset.

E.2 Experiments on constant baselines

In this section, we evaluate the baseline with constant prediction equal to the mean of the labels. Since the ”Constant
Prediction” baseline can achieve perfect MP fairness in both train data and test data, we only compare the MSE of the
”Constant Prediction” baseline and our method for simplicity. The experiment results are summarized in Table 1 and Table 2.

The experiment results show that our method significantly outperforms the ”Constant Prediction” baseline in all settings, as
expected.

We remark that for linear regression on the Synthetic dataset, the MSE of the ”Constant Prediction” is about 77× higher
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than the MSE of our method since the MSE of ”Constant Prediction” baseline is highly dependent on the scale of response.

Method Metric Adult Law School Communities & Crime Synthetic
Constant MSE (Train) 0.1858 ± 0.0016 0.0101 ± 0.0002 0.0544 ± 0.0010 4.5342 ± 0.0450
Constant MSE (Test) 0.1839 ± 0.0062 0.0103 ± 0.0008 0.0536 ± 0.0039 4.6285 ± 0.1806
Ours MSE (Train) 0.1175 ± 0.0018 0.0092 ± 0.0002 0.0313 ± 0.0009 0.0585 ± 0.0081
Ours MSE (Test) 0.1327 ± 0.0072 0.0095 ± 0.0008 0.0344 ± 0.0026 0.0577 ± 0.0081

Table 1: Experiment results on constant baselines for linear regression.

Method Metric Adult Law School Communities & Crime Synthetic
Constant MSE (Train) 0.1858 ± 0.0016 0.0101 ± 0.0002 0.0544 ± 0.0010 0.1474 ± 0.0015
Constant MSE (Test) 0.1839 ± 0.0062 0.0103 ± 0.0008 0.0536 ± 0.0039 0.1476 ± 0.0061
Ours MSE (Train) 0.0913 ± 0.0020 0.0050 ± 0.0002 0.0294 ± 0.0010 0.1151 ± 0.0014
Ours MSE (Test) 0.1232 ± 0.0076 0.0093 ± 0.0010 0.0332 ± 0.0034 0.1202 ± 0.0060

Table 2: Experiment results on constant baselines for kernel regression.

E.3 Experiments on CB fair regression

In this section, we show the experimental results of applying our method to CB fairness. The datasets and experiment
settings are the same as in Section 4 except for the choice of κS for FPR in the proposed method. In this experiment, we
choose κS under Assumption 2. We compare the proposed method with baselines in terms of MSE and the Norm of the
covariance matrix, i.e.,

Norm of Cov = ∥Cov(ϕS(S), g(X,S))∥HS
.

Figure 8 describes the results for the linear regression case which shows that our method achieves almost the same
performance as NRFC. In Figure 9, we can find that the MSE of our methods is much lower than the MSE of NRFC in the
train data. However, our method receives higher MSE than NRFC in the test data, which shows an overfitting problem in
this setting. A similar trend can be found with respect to the norm of covariance.
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Figure 8: Results of linear regression on the Communities & Crime dataset with multiple binary sensitive attributes. Figures
in the first row show the MSE of different methods whereas the figures in the second row show the Norm of Cov of different
methods.
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Figure 9: Results of kernel regression on the Communities & Crime dataset with multiple binary sensitive attributes. Figures
in the first row show the MSE of different methods whereas the figures in the second row show the Norm of Cov of different
methods.

E.4 Experiments on DP fairness regression

We also compare the performance of our method with a recent (in-processing) method for DP fairness, i.e., the reduction-
based algorithm (RBA, Agarwal et al. (2018)). Note that RBA is designed to produce a DP-fair randomized predictor rather
than a simple linear/kernel regression function. We test RBA under the setting of the linear regression with a single binary
sensitive attribute, and the experiment results on two benchmark datasets are shown in Figure 10.
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Figure 10: Results under the setting of linear regression with a single binary sensitive attribute.

In this experiment, we found that enforcing DP fairness helps to improve MP fairness and vice versa. However, as DP is a
stronger notion of fairness, a DP-fair regression function has a significantly larger cost of fairness, i.e., a larger loss. Note
that all algorithms suffer from distribution shifts in the test data, so both MSE, SMD, and DPD are higher in the testing
phase. However, since DP fairness is stronger than MP fairness, RAB can achieve comparable and even lower SMD on the
test dataset sometimes, even if our algorithm can eliminate MP unfairness in the train data. This motivates us to investigate
the generalization problem for fair algorithms in our future work. We remark that our method is almost 200× faster than
RBA in the above experiment.
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E.5 Experiments on other loss functions

In this section, we evaluate the proposed method on other loss functions using gradient descent (Fair-GD). Specifically, we
set the loss function to be Smooth L1 Loss, a commonly used loss function that is less sensitive to outliers than the MSE as
it treats error as square only inside an interval. We evaluate Fair-GD in the setting of linear regression with single binary
sensitive attribute and compare Fair-GD with the gradient descent (GD) algorithm to show its effect on enforcing fairness.
In this experiment, we use Adam (Kingma and Ba, 2014) as our optimizer with a learning rate 1× 10−4. The results are
summarized in Figure 11 and Figure 12, from which we can see that Fair-GD enjoys the same convergence rate as GD while
consistently enforcing the fairness constraint.
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Figure 11: Results of Fair-GD with single binary sensitive attribute using Smooth L1 Loss (β = 0.1). Figures in the first
row show the loss of different methods whereas the figures in the second row show the SMD of different methods.
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Figure 12: Results of Fair-GD with single binary sensitive attribute using Smooth L1 Loss (β = 1). Figures in the first row
show the loss of different methods whereas the figures in the second row show the SMD of different methods.

E.6 Visualization of distribution

In this section, we provide the visualization of MP-fair response for all datasets as an extension to Figure 4. The results are
summarized in Figure 13.
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S=1 S=0Figure 13: Visualization of response and predicted MP-fair response. Figures in the first row and the third row show the
conditional distribution of response variables in the training dataset and test dataset, respectively. Similarly, the figures in the
second row and the fourth row show the conditional distribution of the predicted response variables in the training dataset
and test dataset, respectively.

E.7 Removing sensitive attributes

In this section, we consider the case of removing the sensitive attributes from the regression function which is a good choice
for mitigating unfairness. We remark that such a setting can be regarded as a special case of our general setting. By choosing
a kernel κXS which ignores the input S, i.e., κXS(X,S) = κX(X), the proposed method can be adapted to fair regression
without sensitive attributes. We evaluate the proposed method for regression without inputting sensitive attributes on the
linear regression with binary sensitive attribute case and summarize the experiment results in Table 3. Note that we omit the
SMD in the training dataset since it is zero in our experiments. The experiment results show that including the sensitive
attribute in regression can help to reduce the MSE while removing the sensitive attribute may help to improve the testing
fairness.

F TABLE OF NOTATIONS

We summarize the notations used throughout this paper in the following table.
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Train Test
MSE w/ S MSE w/o S MSE w/ S MSE w/ S SMD w/o S SMD w/o S

Synthetic 0.0584±0.0081 2.2994±0.6630 0.0577±0.0081 2.4286±0.7560 0.1508±0.1348 0.1957±0.1235
Adult 0.1176±0.0018 0.1203±0.0022 0.1327±0.0072 0.1350±0.0076 0.0300±0.0243 0.0355±0.0221
Law School 0.0092±0.0002 0.0094±0.0002 0.0095±0.0008 0.0097±0.0008 0.0055±0.0034 0.0042±0.0033
C&C 0.0313±0.0009 0.0375±0.0010 0.0344±0.0026 0.0402±0.0028 0.0232±0.0164 0.0187±0.0087

Table 3: Experiments on Mean Parity fair linear regression with (w/) and without (w/o) the sensitive attitude S.

Table 4: Table of notations

Notation Description/Definition
∆ An arbitrary function in GMP

Σ The covariance operator
Σ̂ The empirical estimation of Σ
Σ̃ The uncentralized covariance operator
Φ The feature matrix of the data
Ω A set from which a random variable is chosen
F Borel σ-filed on Ω
E The expectation function
P The probability function
R Set of real numbers
GMP A MP-fair space
A A linear operator
F The cumulative distribution function of random variable
J The generalized objective function for regression problem
L The mean square loss function
P The projection operator
P̂ The empirical estimation of P
S Random variable for sensitive attributes
X Random variable for non-sensitive attributes
Y Random variable for label/response
H H = In×n − 1

n1n×n

K The Gram matrix
P P = (In×n −∑m

j=1 amaT
mKXS)

Y The vector of response in dataset
Ŷ The predicted value of Y
DPD The DP disparity
MPD The MP disparity
α A scalar in [0, 1] to control the accuracy-fairness tradeoff
β A real number
ϵ Random noise
ζ The parameter for fairness penalty term
η A real number
θ An (normalized) eigenfunction of Σ(XS)SAΣS(XS)

κ Kernel function
λ The regularization coefficient
µ A kernel mean embedding
ϕ Feature map
ψ Eigenvalue
ϕ̄ The empirically centralized feature map
a The weight vector for an (normalized) eigenfunction with respect to ΦXS

ā The weight vector for an (normalized) eigenfunction with respect to Φ̄XS
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g, f Functions
g∗ The least-squares regression function
g∗G An optimal solution for Problem 1
ĝ∗G The empirical estimation of g∗G
gα An optimal solution to Problem 5
gMP The projection of g on GMP

gMP⊥ The projection of g on GMP⊥

h A function defined as h = E(ϕXS(X,S)Y )
k The cardinality of ΩS

m The rank of Σ(XS)S

n The number of training samples
s A realization of S
x A realization of X
y A realization of Y
w A weight vector
ℓ A differentiable loss function
ker The kernel of a linear operator
ran The range of a linear operator
⊗ The outer product
⟨·, ·⟩ The inner product
0H The zero function in H
† The Moore-Penrose Inverse of an operator
I(·) The indicator function
⊥ The orthogonal complement of a space
⊥⊥ Independence between two random variables
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