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Abstract

Frank-Wolfe algorithms (FW) are popular first-
order methods for solving constrained convex
optimization problems that rely on a linear min-
imization oracle instead of potentially expensive
projection-like oracles. Many works have iden-
tified accelerated convergence rates under vari-
ous structural assumptions on the optimization
problem and for specific FW variants when us-
ing line-search or short-step, requiring feedback
from the objective function. Little is known
about accelerated convergence regimes when uti-
lizing open-loop step-size rules, a.k.a. FW with
pre-determined step-sizes, which are algorithmi-
cally extremely simple and stable. Not only
is FW with open-loop step-size rules not al-
ways subject to the same convergence rate lower
bounds as FW with line-search or short-step, but
in some specific cases, such as kernel herding in
infinite dimensions, it has been empirically ob-
served that FW with open-loop step-size rules
leads to faster convergence than FW with line-
search or short-step. We propose a partial an-
swer to this unexplained phenomenon in ker-
nel herding, characterize a general setting for
which FW with open-loop step-size rules con-
verges non-asymptotically faster than with line-
search or short-step, and derive several acceler-
ated convergence results for FW with open-loop
step-size rules.

1 INTRODUCTION

In this paper, we address the constrained convex optimiza-
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Algorithm 1 Frank-Wolfe algorithm (FW)

1: Input: x0 ∈ C, step-size ηt ∈ [0, 1] for t ∈
{0, . . . , T − 1}.

2: for t = 0, . . . , T − 1 do
3: pt ∈ argminp∈C〈∇f(xt), p− xt〉
4: xt+1 ← (1− ηt)xt + ηtpt
5: end for

tion problem
min
x∈C

f(x), (OPT)

where C ⊆ Rd is a compact convex set and f : C → R is
a convex and L-smooth function. Throughout, let x∗ ∈
argminx∈C f(x) be the constrained optimal solution. A
classical approach to addressing (OPT) is to apply pro-
jected gradient descent. When the geometry of C is too
complex, the projection step can become computationally
too expensive. In these situations, the Frank-Wolfe algo-
rithm (FW) (Frank and Wolfe, 1956), a.k.a. the conditional
gradients algorithm (Levitin and Polyak, 1966), described
in Algorithm 1, is an efficient alternative, as it only requires
first-order access to the objective f and access to a linear
minimization oracle (LMO) for the feasible region, that is,
given a vector c ∈ Rd, the LMO outputs argminx∈C〈c, x〉.
At each iteration, the algorithm calls the LMO, pt ∈
argminp∈C〈∇f(xt), p − xt〉, and takes a step in the di-
rection of the vertex pt to obtain the next iterate xt+1 =
(1− ηt)xt + ηtpt. As a convex combination of elements of
C, xt remains in the feasible region C throughout the algo-
rithm’s execution. Various options exist for the choice of
ηt, such as the open-loop step-size1, a.k.a. agnostic step-
size, rules ηt = `

t+` for ` ∈ N≥1 (Dunn and Harshbarger,
1978) or line-search ηt ∈ argminη∈[0,1] f((1−η)xt+ηpt).
Another classical approach, the short-step step-size ηt =

min{ 〈∇f(xt),xt−pt〉
L‖xt−pt‖22

, 1}, henceforth referred to as short-
step, is determined by minimizing a quadratic upper bound
on the L-smooth objective function. There also exist vari-
ants that adaptively estimate local L-smoothness parame-
ters (Pedregosa et al., 2018).

1Open-loop is a term from control theory and here implies that
there is no feedback from the objective function to the step-size.
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Table 1: Comparison of convergence rates for the Frank-Wolfe algorithm under different assumptions. We denote the
optimal solution by x∗ ∈ argminx∈C f(x). For all results, convexity of C and convexity and smoothness of f are assumed
and thus not explicitly mentioned. The big-O notation O(·)∗ indicates that a result only holds asymptotically and ”str.
convex” is an abbreviation for strongly convex. For step-size rule, ”any” refers to line-search, short-step, and open-loop
step-size ηt = 2

t+2 . Shading is used to separate results belonging to similar settings and our results are denoted in bold.

References Region C Objective f Location of x∗ Rate Step-size rule
(Jaggi, 2013) - - unrestricted O(1/t) any

(Garber and Hazan, 2015) - str. convex interior O(e−t) line-search, short-step
Theorem 3.6 - str. convex interior O(1/t2) open-loop ηt = 4

t+4

(Levitin and Polyak, 1966)
(Demianov and Rubinov, 1970)

(Dunn, 1979)
str. convex ‖∇f(x)‖2 ≥ λ > 0

for all x ∈ C unrestricted O(e−t) line-search, short-step

Theorem D.2 str. convex ‖∇f(x)‖2 ≥ λ > 0
for all x ∈ C unrestricted O(1/t2) open-loop ηt = 4

t+4

Remark D.3 str. convex ‖∇f(x)‖2 ≥ λ > 0
for all x ∈ C unrestricted O(1/t`/2)

open loop ηt = `
t+`

for ` ∈ N≥4

Remark D.3 str. convex ‖∇f(x)‖2 ≥ λ > 0
for all x ∈ C unrestricted O(e−t) constant

(Garber and Hazan, 2015) str. convex str. convex unrestricted O(1/t2) line-search, short-step
Theorem E.1 str. convex str. convex unrestricted O(1/t2) open-loop ηt = 4

t+4

(Wolfe, 1970) polytope str. convex interior of face Ω(1/t1+ε)∗ line-search, short-step
(Bach, 2021) polytope str. convex interior of face O(1/t2)∗ open-loop ηt = 2

t+2

Theorem 4.3 polytope str. convex interior of face O(1/t2) open-loop ηt = 4
t+4

1.1 Related Work

Frank-Wolfe algorithms (FW) enjoy various appealing
properties (Jaggi, 2013). They are first-order methods, easy
to implement, projection-free, affine-invariant (Lacoste-
Julien and Jaggi, 2013; Lan, 2013; Kerdreux et al., 2021c;
Pena, 2021), and iterates are sparse convex combinations
of extreme points of the feasible region. FW is thus an at-
tractive algorithm for practitioners that work at scale and
appears in a variety of scenarios in machine learning, for
example, deep learning, optimal transport, structured pre-
diction, and video co-localization (Ravi et al., 2018; Courty
et al., 2016; Giesen et al., 2012; Joulin et al., 2014). The
drawback of FW is its slow convergence rate in primal
gap of ht = f(xt) − f(x∗) = O(1/t), where x∗ ∈
argminx∈C f(x), in comparison to proximal methods. Un-
der mild assumptions, Wolfe (1970) proved that when the
feasible region is a polytope and the optimum lies in the
relative interior of an at least one-dimensional face, for any
ε > 0, FW with line-search or short-step converges at a
rate of Ω

(
1/t1+ε

)
, see also Canon and Cullum (1968). To

circumnavigate the lower bound and achieve linear con-
vergence rates, algorithmic modifications of FW are nec-
essary, see, for example, Lacoste-Julien and Jaggi (2015);
Garber and Hazan (2016); Braun et al. (2019); Combettes
and Pokutta (2020); Garber (2020). For FW with open-loop
step-size rules, the lower bound of Wolfe (1970) does not
hold and Bach (2021) proved an asymptotic convergence
rate of O(1/t2) in the setting of Wolfe (1970). Proving
that the latter result holds non-asymptotically remains an
open problem. Other drawbacks of line-search and short-
step are that the former can be difficult to compute and

the latter requires knowledge of the smoothness constant
of the objective f . Open-loop step-size rules, on the other
hand, are problem-agnostic and, thus, easy to compute. Fi-
nally, FW with open-loop step-size ηt = 1

t+1 is known to
be equivalent to the kernel-herding algorithm (Bach et al.,
2012). Thus, FW has also been studied in kernel herd-
ing and in the infinite-dimensional kernel-herding setting
in Bach et al. (2012, Figure 3, right), it is empirically ob-
served that FW with open-loop step-size rules converges at
the optimal rate of O(1/t2), whereas FW with line-search
or short-step converges at a rate of essentially Ω(1/t).

1.2 Contributions

Despite the recent research interest in FW and its variants,
FW with open-loop step-size rules is still not fully under-
stood. Especially the practically relevant kernel-herding
problem in Bach et al. (2012) where FW with open-loop
step-size rules converges faster than FW with line-search
or short-step warrants further investigation. The goal of
this paper is to address the current gaps in our understand-
ing of FW with open-loop step-size rules and characterize
settings in which FW with open-loop step-size rules con-
verges at accelerated rates. Our contributions are four-fold:

First, we prove accelerated convergence rates of FW with
open-loop step-size rules in several settings where FW with
line-search or short-step enjoys accelerated convergence
rates. These results are summarized in Table 1. Since FW
with open-loop step-size rules is not a descent method, we
require a different proof technique than for proving acceler-
ated convergence results for FW with line-search or short-
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step.

Second, we characterize a setting for which FW with open-
loop step-size rules is non-asymptotically faster than FW
with line-search or short-step.

Third, we provide a theoretical analysis of the accelerated
convergence rate of FW with open-loop step-size rules in
kernel herding that was left unexplained in Bach et al.
(2012).

Finally, we provide numerical experiments that illustrate
our results and lead to several open questions.

1.3 Outline

Preliminaries are introduced in Section 2. In Section 3, we
present a proof blueprint for obtaining accelerated conver-
gence rates for FW with open-loop step-sizes. In Section 4,
we characterize a problem setting where FW with open-
loop step-size rules converges faster than FW with line-
search or short-step. In Section 5, we prove accelerated
convergence rates for FW with open-loop step-size rules
in the infinite-dimensional kernel-herding setting of Bach
et al. (2012). The numerical experiments are found in Sec-
tion 6. Finally, we discuss our results in Section 7.

2 PRELIMINARIES

Throughout, let d ∈ N. Let 0 ∈ Rd denote the all-zeros
vector, let 1 ∈ Rd denote the all-ones vector, and let 1̄ ∈ Rd

be a vector such that 1̄i = 0 for all i ∈ {1, . . . , dd/2e} and
1̄i = 1 for all i ∈ {dd/2e+ 1, . . . , d}. For i ∈ {1, . . . , d},
let e(i) ∈ Rd be the ith unit vector such that e(i)

i = 1 and
e

(i)
j = 0 for all j ∈ {1, . . . , d}\{i}. Given a vector x ∈ Rd,

define its support as supp(x) = {i ∈ {1, . . . , d} | xi 6= 0}.
Let I ∈ Rd×d denote the identity matrix. Given a set C ⊆
Rd, let aff(C), conv(C), span(C), and vert(C) denote the
affine hull, the convex hull, the span, and the set of vertices
of C, respectively. For z ∈ Rd and β > 0, the ball of radius
β around z is defined as Bβ(z) := {x ∈ Rd | ‖x − z‖2 ≤
β}. For the iterates of Algorithm 1, we denote the primal
gap at iteration t ∈ {0, . . . , T} by ht = f(xt) − f(x∗),
where x∗ ∈ argminx∈C f(x). Finally, for x ∈ R, let [x] :=
x− bxc. We introduce several definitions.
Definition 2.1 (Uniformly convex set). Let C ⊆ Rd be a
compact convex set, α > 0, and q > 0. We say that C
is (α, q)-uniformly convex with respect to ‖ · ‖2 if for all
x, y ∈ C, γ ∈ [0, 1], and z ∈ Rd such that ‖z‖2 = 1, it
holds that

γx+ (1− γ)y + γ(1− γ)
α

2
‖x− y‖q2z ∈ C.

We refer to (α, 2)-uniformly convex sets as α-strongly con-
vex sets.
Definition 2.2 (Smooth function). Let C ⊆ Rd be a com-
pact convex set, let f : C → R be differentiable in an open

set containing C, and let L > 0. We say that f is L-smooth
over C with respect to ‖ · ‖2 if for all x, y ∈ C, it holds that

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖22.

Definition 2.3 (Hölderian error bound). Let C ⊆ Rd be a
compact convex set, let f : C → R be convex and differ-
entiable in an open set containing C, let µ > 0, and let
θ ∈ [0, 1/2]. We say that f satisfies a (µ, θ)-Hölderian er-
ror bound if for all x ∈ C and x∗ ∈ argminx∈C f(x), it
holds that

µ(f(x)− f(x∗))θ ≥ min
y∈argminz∈C f(z)

‖x− y‖2. (1)

Note that θ ≤ 1/2 is necessary because we only consider
smooth functions in this work. Throughout, for ease of no-
tation, we assume that x∗ ∈ argminx∈C f(x) is unique.
This follows, for example, from the assumption that f is
strictly convex. When x∗ ∈ argminx∈C f(x) is unique, (1)
becomes

µ(f(x)− f(x∗))θ ≥ ‖x− x∗‖2. (HEB)

However, with the appropriate modifications, all of our re-
sults also extend to functions that are not strictly convex.
An important family of functions satisfying (HEB) is the
family of uniformly convex functions, which interpolate
between convex functions (θ = 0) and strongly convex
functions (θ = 1/2).

Definition 2.4 (Uniformly convex function). Let C ⊆ Rd

be a compact convex set, let f : C → R be differentiable in
an open set containing C, let αf > 0, and let r ≥ 2. We
say that f is (αf , r)-uniformly convex over C with respect
to ‖ · ‖2 if for all x, y ∈ C, it holds that

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
αf
2
‖x− y‖r2.

We refer to (αf , 2)-uniformly convex functions as αf -
strongly convex.

Note that (αf , r)-uniformly convex functions satisfy a
((2/αf )1/r, 1/r)-(HEB):

f(x)− f(x∗) ≥ 〈∇f(x∗), x− x∗〉+
αf
2
‖x− x∗‖r2

≥ αf
2
‖x− x∗‖r2.

3 ACCELERATED CONVERGENCE
RESULTS

FW with open-loop step-size rules was already studied by
Dunn and Harshbarger (1978) and currently, two open-loop
step-sizes are prevalent, ηt = 1

t+1 , for which the best
known convergence rate is O (log(t)/t), and ηt = 2

t+2 , for
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which a faster convergence rate of O(1/t) holds, see, for
example, Dunn and Harshbarger (1978) and Jaggi (2013),
respectively. In this section, we present accelerated con-
vergence results for FW with the open-loop step-size ηt =

4
t+4 . Note that the convergence-rate results presented in
Table 1 proved in this paper for FW with ηt = `

t+` for
` ∈ N≥1 can always be generalized (up to a constant) to
ηt = j

t+j for j ∈ N≥`.

3.1 Convergence Rate Of O(1/t)

We begin the analysis of FW with open-loop step-size rules
by first recalling the, to the best of our knowledge, best gen-
eral convergence rate of the algorithm. Consider the setting
when C ⊆ Rd is a compact convex set and f : C → R
is a convex and L-smooth function with unique minimizer
x∗ ∈ argminx∈C f(x). Then, the iterates of Algorithm 1
with any step-size ηt ∈ [0, 1] satisfy

ht+1 ≤ ht − ηt〈∇f(xt), xt − pt〉+
η2
tL‖xt − pt‖22

2
,

(Progress-Bound)

which follows from the smoothness of f . With
(Progress-Bound), it is possible to derive a baseline con-
vergence rate for FW with open-loop step-size ηt = 4

t+4

similar to Jaggi (2013, Theorem 1) for ηt = 2
t+2 .

Proposition 3.1 (O(1/t) convergence rate). Let C ⊆ Rd

be a compact convex set of diameter δ > 0, let f : C → R
be a convex and L-smooth function with unique minimizer
x∗ ∈ argminx∈C f(x). Let T ∈ N and ηt = 4

t+4 for all
t ∈ Z. Then, for the iterates of Algorithm 1 with open-loop
step-size ηt, it holds that ht ≤ 8Lδ2

t+3 = ηt−12Lδ2 for all
t ∈ {1, . . . , T}.

To prove accelerated convergence rates for FW with open-
loop step-size rules, we require bounds on the Frank-Wolfe
gap (FW gap) maxp∈C〈∇f(xt), xt − p〉, which appears in
the middle term in (Progress-Bound).

3.2 Optimal Solution In The Interior Of C, A
Blueprint For Acceleration

Traditionally, to prove accelerated convergence rates for
FW with line-search or short-step, the geometry of the fea-
sible region, curvature assumptions on the objective func-
tion, and information on the location of the optimum are ex-
ploited, see, for example, Levitin and Polyak (1966); Demi-
anov and Rubinov (1970); Guélat and Marcotte (1986);
Garber and Hazan (2015). We demonstrate that a sim-
ilar approach leads to acceleration results for FW with
open-loop step-size rules, however, requiring a different
proof technique as FW with open-loop step-size rules is
not monotonous in primal gap. We present a blueprint of

the technique used to derive most of the accelerated rates
via the setting when the optimum of f is in the relative in-
terior of the feasible region C and the objective function f
satisfies (HEB).

Our approach for proving accelerated convergence rates is
based on bounding the FW gap to counteract the error ac-
cumulated from the right-hand term in (Progress-Bound).
More formally, we prove the existence of φ > 0, such that
there exists an iteration S ∈ N such that for all iterations
t ≥ S of FW, it holds that

〈∇f(xt), xt − pt〉
‖xt − pt‖2

≥ φ 〈∇f(xt), xt − x∗〉
‖xt − x∗‖2

. (Scaling)

Inequalities that bound (Scaling) from either side are re-
ferred to as scaling inequalities. Intuitively speaking, scal-
ing inequalities relate the FW direction pt−xt

‖pt−xt‖2 with the

optimal descent direction x∗−xt

‖x∗−xt‖2 . Scaling inequalities
stem from the geometry of the feasible region, properties
of the objective function, or information on the location of
the optimum. The scaling inequality below exploits the lat-
ter property.

Lemma 3.2 (Guélat and Marcotte, 1986). Let C ⊆ Rd be a
compact convex set of diameter δ > 0, let f : C → R be a
convex and L-smooth function with unique minimizer x∗ ∈
argminx∈C f(x), and suppose that there exists β > 0 such
that aff(C) ∩Bβ(x∗) ⊆ C. Then, for all x ∈ C ∩Bβ(x∗),

〈∇f(x), x− p〉
‖x− p‖2

≥ β

δ
‖∇f(x)‖2, (Scaling-INT)

where p ∈ argminv∈C〈∇f(x), v〉.

We prove in the lemma below that there exists an iteration
S ∈ N, such that for all t ≥ S, it holds that xt ∈ Bβ(x∗)
and (Scaling-INT) is satisfied.

Lemma 3.3 (Distance to optimum). Let C ⊆ Rd be a com-
pact convex set of diameter δ > 0, let f : C → R be a
convex and L-smooth function satisfying a (µ, θ)-(HEB)
for some µ > 0 and θ ∈]0, 1/2] with unique minimizer
x∗ ∈ argminx∈C f(x), and let β > 0. Let

S =
⌈
8Lδ2 (µ/β)

1/θ
⌉
≥ 1, (2)

T ∈ N, and ηt = 4
t+4 for all t ∈ Z. Then, for the iterates

of Algorithm 1 with open-loop step-size ηt, it holds that
‖xt − x∗‖2 ≤ β for all t ∈ {S, . . . , T}.

We require an additional scaling inequality based on the
objective satisfying (HEB).

Lemma 3.4. Let C ⊆ Rd be a compact convex set and let
f : C → R be a convex function satisfying a (µ, θ)-(HEB)
for some µ > 0 and θ ∈ [0, 1/2] with unique minimizer
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x∗ ∈ argminx∈C f(x). Then, for all x ∈ C,

‖∇f(x)‖2 ≥
〈∇f(x), x− x∗〉
‖x− x∗‖2

≥ 1

µ
(f(x)− f(x∗))1−θ. (Scaling-HEB)

For t ≥ S, where S =
⌈
8Lδ2 (2µ/β)

1/θ
⌉
, we can chain

(Scaling-INT) and (Scaling-HEB) together and plug the re-
sulting inequality into (Progress-Bound) yielding

ht+1 ≤ ht − ηt
β2

2µδ
h1−θ
t +

η2
tLδ

2

2

for all t ∈ {S, . . . , T −1}. Combined with (9), we can then
bound the primal-gap progress via

ht+1 ≤
(

1− ηt
2

)
ht − ηt

β2

4µδ
h1−θ
t +

η2
tLδ

2

2
(3)

for all t ∈ {S, . . . , T − 1}. For sequences satisfying this
type of inequality, the lemma below implies accelerated
convergence rates.

Lemma 3.5. Let ψ ∈ [0, 1/2], S, T ∈ N≥1, and ηt = 4
t+4

for all t ∈ Z. Suppose that there exist constants A,B,C >
0, a nonnegative sequence {Ct}T−1

t=S such that C ≥ Ct ≥ 0
for all t ∈ {S, . . . , T − 1}, and a nonnegative sequence
{ht}Tt=S such that

ht+1 ≤
(

1− ηt
2

)
ht − ηtACth1−ψ

t + η2
tBCt (4)

for all t ∈ {S, . . . , T − 1}. Then,

ht ≤ max

{(
ηt−2

ηS−1

)1/(1−ψ)

hS ,

(
ηt−2B

A

)1/(1−ψ)

+ η2t−2BC

}
. (5)

for all t ∈ {S, . . . , T}.

We conclude the presentation of our proof blueprint by stat-
ing the first accelerated convergence rate for FW with open-
loop step-size ηt = 4

t+4 when the optimum lies in the rela-
tive interior of C and the objective function satisfies (HEB),
a setting for which multiple accelerated convergence results
are known: FW with line-search or short-step converges
linearly if the objective function is strongly convex, see, for
example, Guélat and Marcotte (1986); Garber and Hazan
(2015). Further, FW with open-loop step-size ηt = 1

t+1

converges at a rate of O(1/t2) when the optimum lies in
the relative interior of the feasible region and the objective
function has the form f(x) = 1

2‖x − b‖
2
2 for some b ∈ C

(Chen et al., 2012).

Theorem 3.6 (Optimal solution in the interior of C). Let
C ⊆ Rd be a compact convex set of diameter δ > 0, let

f : C → R be a convex and L-smooth function satisfying a
(µ, θ)-(HEB) for some µ > 0 and θ ∈]0, 1/2] with unique
minimizer x∗ ∈ argminx∈C f(x), and suppose that there
exists β > 0 such that aff(C) ∩Bβ(x∗) ⊆ C. Let

S =
⌈
8Lδ2 (2µ/β)

1/θ
⌉
, (6)

T ∈ N, and ηt = 4
t+4 for all t ∈ Z. Then, for the iterates

of Algorithm 1 with open-loop step-size ηt, it holds that

ht ≤ max

{(
ηt−2

ηS−1

)1/(1−θ)

hS ,(
ηt−22µLδ3

β2

)1/(1−θ)

+ η2
t−2

Lδ2

2

}

for all t ∈ {S, . . . , T}.

We complement Theorem 3.6 with a discussion on the
lower bound of the convergence rate of FW when the opti-
mum is in the interior of the probability simplex by Jaggi
(2013). We recall the result below.

Lemma 3.7 (Jaggi, 2013). Let C ⊆ Rd be the probability
simplex, f(x) = ‖x‖22, and t ∈ {1, . . . , d}. It holds that

min
x∈C

| supp(x)|≤t

f(x) =
1

t
,

where | supp(x)| denotes the number of non-zero entries of
x.

Remark 3.8 (Compatibility with lower bound from Jaggi
(2013)). In Lemma 3.7, the optimum x∗ = 1

d1 ∈ Rd lies
in the interior of C and minx∈C f(x) = 1/d. When C is
the probability simplex, all of its vertices are of the form
e(i) = (0, . . . , 0, 1, 0, . . . , 0)ᵀ ∈ Rd for i ∈ {1, . . . , d},
where the ith entry of e(i) is 1. Thus, any iteration of FW
can modify at most one entry of iterate xt and the primal
gap is at best ht = 1/t− 1/d for t ∈ {1, . . . , d}. Applying
Theorem 3.6 to the setting of Lemma 3.7, we observe that
β = 1/d and acceleration starts only after S = Ω

(
d1/θ

)
≥

Ω(d) iterations. Thus, Theorem 3.6 does not contradict the
lower bound from Lemma 3.7.

3.3 Other Settings

We also derive accelerated convergence rates for the set-
tings when the norm of the gradient of f is bounded from
below by a nonnegative constant and the feasible region
C is uniformly convex in Appendix D and when f satis-
fies (HEB) and the feasible region C is uniformly convex in
Appendix E.
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4 OPTIMAL SOLUTION IN THE
INTERIOR OF AN AT LEAST
ONE-DIMENSIONAL FACE OF C

In this section, we consider the setting when the feasible
region is a polytope, the objective function is strongly con-
vex, and the optimum lies in the relative interior of an at
least one-dimensional face C∗ of C. Then, under mild as-
sumptions, FW with line-search or short-step converges at
a rate of Ω(1/t1+ε) for any ε > 0 (Wolfe, 1970).

We prove that in the same setting, FW with open-loop
step-size rules admits a convergence rate of O(1/t2) and
is thus non-asymptotically faster than FW with line-search
or short-step. To prove the result, we require two assump-
tions, the first of which stems from active set identification,
that is, identifying the face C∗ containing the optimal so-
lution x∗, an important problem: After having determined
the active face, it is possible to apply faster methods and the
dimension dependence of the convergence rate can often be
reduced to the dimension of the optimal face, see, for ex-
ample, Bertsekas (1982); Guélat and Marcotte (1986); Bir-
gin and Martı́nez (2002); Hager and Zhang (2006); Bomze
et al. (2019, 2020) for examples with a focus on FW. For
our current setting, it is possible to determine the number of
iterations necessary for FW with open-loop step-size rules
to identify the optimal face when the following regularity
assumption, already used in Wolfe (1970); Guélat and Mar-
cotte (1986); Garber (2020), is satisfied.

Assumption 4.1 (Strict complementarity). Let C ⊆ Rd be
a polytope and let f : C → R be differentiable in an open
set containing C. Suppose that x∗ ∈ argminx∈C f(x) is
unique and contained in a face C∗ of C and that there exists
κ > 0 such that if p ∈ vert (C) \ C∗, then 〈∇f(x∗), p −
x∗〉 ≥ κ; otherwise, if p ∈ vert (C∗), then 〈∇f(x∗), p −
x∗〉 = 0.

We also assume the optimum to lie in the relative interior
of an at least one-dimensional face C∗ of C.

Assumption 4.2 (Optimal solution in the interior of a face
of C). Let C ⊆ Rd be a polytope and let f : C → R.
Suppose that x∗ ∈ argminx∈C f(x) is unique and con-
tained in the relative interior of an at least one-dimensional
face C∗ of C, that is, there exists β > 0 such that ∅ 6=
Bβ(x∗) ∩ aff(C∗) ⊆ C.

Following the proof blueprint presented in Section 3, with
Assumptions 4.1 and 4.2, we derive two scaling inequali-
ties in Lemmas B.2 and B.4 to prove the accelerated con-
vergence rate for FW with open-loop step-size rules below,
which can be thought of as the non-asymptotic version of
Proposition 2.2 in Bach (2021).
Theorem 4.3 (Optimal solution in the interior of a face
of C). Let C ⊆ Rd be a polytope of diameter δ > 0, let
f : C → R be an αf -strongly convex and L-smooth func-
tion with unique minimizer x∗ ∈ argminx∈C f(x), and

suppose that there exist β, κ > 0 such that Assumptions 4.1
and 4.2 are satisfied. Let M = maxx∈C ‖∇f(x)‖2,

S = max
{⌈

(16Lδ2)/(αfβ
2)
⌉
,
⌈
(64L3δ4)/(αfκ

2)
⌉}
, (7)

T ∈ N, and ηt = 4
t+4 for all t ∈ Z. Then, for the iterates

of Algorithm 1 with open-loop step-size ηt, it holds that

ht ≤ η2
t−2 max

{
hS
η2
S−1

,
B2

A2
+B,

D

η2
S

+ E

}
for all t ∈ {S, . . . , T}, where

A =

√
αfβ

2
√

2
, B =

Lδ2

2
+
β
√
αfβM

ηS2
√

2
+
Lβ2

ηS2
,

D = βM, E =
Lδ2

2
.

We make two remarks. First, we discuss the compatibility
of Theorem 4.3 with the lower bound due to Jaggi (2013).
Remark 4.4 (Compatibility with lower bound from Jaggi
(2013)). Let C = conv({e(1), . . . , e(d),1}) ⊆ Rd. Note
that the probability simplex is a face of C. Thus, Lemma 3.7
implies that the convergence rate of FW for C and f(x) =
‖x‖22 is bounded from below by 1

t −
1
d for the first t ∈

{1, . . . , d} iterations and that x∗ ∈ argminx∈C f(x) lies in
the interior of an at least one-dimensional face of C. By
similar arguments as in Remark 3.8, Theorem 4.3 does not
violate this lower bound, due to the dependence of S on β
and δ.

In the second remark for Theorem 4.3, we discuss how to
relax strict complementarity.
Remark 4.5 (Relaxation of strict complementarity). In
the proof of Theorem 4.3, strict complementarity is only
needed to guarantee that after a specific iteration S ∈
{1, . . . , T − 1}, for all t ≥ S, it holds that pt ∈ vert(C∗),
that is, only vertices that lie in the optimal face get re-
turned by FW’s LMO. However, strict complementarity
is only a sufficient but not necessary criterion to guar-
antee that only vertices in the optimal face are obtained
from the LMO for iterations t ∈ {S, . . . , T − 1}: Con-
sider, for example, the minimization of f(x) = 1

2‖x −
b‖22 for b = (0, 1/2, 1/2)ᵀ ∈ R3 over the probability
simplex C = conv

(
{e(1), e(2), e(3)}

)
. Note that C∗ =

conv
(
{e(2), e(3)}

)
. It holds that x∗ = b and ∇f(x∗) =

(0, 0, 0)ᵀ ∈ R3. Thus, strict complementarity is vio-
lated. However, for any xt = (u, v, w)ᵀ ∈ R3 with
u+v+w = 1 and u, v, w ≥ 0, it holds, by case distinction,
that either 〈∇f(xt), e

(1) − xt〉 > min{〈∇f(xt), e
(2) −

xt〉, 〈∇f(xt), e
(3) − xt〉}, or x∗ = xt. Thus, pt ∈ C∗ for

all t ≥ 0 without strict complementarity being satisfied.

5 KERNEL HERDING

In this section, we answer the following unexplained phe-
nomenon observed in Bach et al. (2012):
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In the kernel-herding setting of Figure 3 in Section 5.1 of
Bach et al. (2012), why does FW with open-loop step-size
rules converge at a rate of O(1/t2)?

5.1 Kernel Herding And The Frank-Wolfe Algorithm

Kernel herding is equivalent to solving a quadratic opti-
mization problem in a reproducing kernel Hilbert space
(RKHS) with FW. To describe this application of FW, we
use the following notation: Let Y ⊆ R be an observa-
tion space, H a RKHS with inner product 〈·, ·〉H, and
Φ: Y → H the feature map associating a real function on
Y to any element of H via x(y) = 〈x,Φ(y)〉H for x ∈ H
and y ∈ Y . The positive-definite kernel associated with Φ
is denoted by k : (y, z) 7→ k(y, z) = 〈Φ(y),Φ(z)〉H for
y, z ∈ Y . In kernel herding, the feasible region is usually
the marginal polytope C, the convex hull of all functions
Φ(y) for y ∈ Y , that is, C = conv ({Φ(y) | y ∈ Y}) ⊆ H.
We consider a fixed probability distribution p over Y and
denote the associated mean element by

µ = Ep(y)Φ(y) ∈ C,

where µ ∈ C follows from the fact that the support of p is
contained in Y . In Bach et al. (2012), kernel herding was
shown to be equivalent to solving the following optimiza-
tion problem with FW and step-size ηt = 1

t+1 :

min
x∈C

f(x), (OPT-KH)

where f(x) := 1
2‖x − µ‖2H. This equivalence led to the

study of FW (variants) with other step-size rules to solve
(OPT-KH), see, for example, Bach et al. (2012); Chen et al.
(2012); Lacoste-Julien et al. (2015); Tsuji et al. (2022). Un-
der the assumption that ‖Φ(y)‖H = R for some constant
R > 0 and all y ∈ Y , the herding procedure is well-
defined and all extreme points of C are of the form Φ(y)
for y ∈ Y (Bach et al., 2012). Thus, the linear minimiza-
tion oracle (LMO) in FW always returns an element of the
form Φ(y) ∈ C for y ∈ Y . Hence, FW constructs iterates
of the form xt =

∑t
i=1 viΦ(yi), where v = (v1, . . . , vt)

ᵀ

is a weight vector, that is,
∑t
i=1 vi = 1 and vi ≥ 0 for all

i ∈ {1, . . . , t}, and xt corresponds to an empirical distri-
bution p̃t over Y with empirical mean

µ̃t = Ep̃t(y)Φ(y) =

t∑
i=1

viΦ(yi) = xt ∈ C.

Then, according to Bach et al. (2012),

sup
x∈H,‖x‖H=1

|Ep(y)x(y)− Ep̃t(y)x(y)| = ‖µ− µ̃t‖H.

Thus, a bound on ‖µ − µ̃t‖H implies control on the er-
ror in computing the expectation for all x ∈ H such that
‖x‖H = 1. In kernel herding, since the objective function
is a quadratic, line-search and short-step are identical.

5.2 Explaining The Phenomenon In Bach et al. (2012)

We briefly recall the infinite-dimensional kernel-herding
setting of Section 5.1 in Bach et al. (2012), see also Sec-
tion 2.1 in Wahba (1990). Let Y = [0, 1] and

H =

{
x : [0, 1]→ R | x′(y) ∈ L2([0, 1]),

x(y) =

∞∑
j=1

(aj cos(2πjy) + bj sin(2πjy)), aj , bj ∈ R

}
.

(8)

For w, x ∈ H, 〈w, x〉H :=
∫

[0,1]
w′(y)x′(y)dy defines an

inner product and (H, 〈·, ·〉H) is a Hilbert space. Moreover,
H is also a RKHS and for y, z ∈ [0, 1], H has the repro-
ducing kernel

k(y, z) =

∞∑
j=1

2

(2πj)2
cos(2πj(y − z))

=
1

2
B2(y − z − by − zc)

=
1

2
B2([y − z]), (Bernoulli-kernel)

where for y ∈ R, [y] := y−byc, andB2(y) = y2−y+ 1
6 is a

Bernoulli polynomial. In the right plot of Figure 3 in Bach
et al. (2012), kernel herding on [0, 1] and Hilbert space H
is considered for the uniform density p(y) := 1 for all y ∈
[0, 1]. Then, for all z ∈ [0, 1], we have

µ(z) =

∫
[0,1]

k(z, y)p(y)dy

=

∫
[0,1]

∞∑
j=1

2

(2πj)2
cos(2πj(z − y)) · 1dy

=

∞∑
j=1

0

= 0,

where the integral and the sum can be interchanged due to
the theorem of Fubini, see, for example, Royden and Fitz-
patrick (1988). For the remainder of this section, we as-
sume that p(y) = 1 and, thus, µ(y) = 0 for all y ∈ [0, 1].
Thus, f(x) = 1

2‖x‖
2
H. For this setting, Bach et al. (2012)

observed empirically that FW with open-loop step-size
ηt = 1

t+1 converges at a rate ofO(1/t2), whereas FW with
line-search converges at a rate of O(1/t), see Figure 2a.
The theorem below explains the accelerated convergence
rate for FW with open-loop step-size ηt = 1

t+1 .

Theorem 5.1 (Kernel herding). LetH be the Hilbert space
defined in (8), let k : R × R → H be the kernel de-
fined in (Bernoulli-kernel), let Φ: [0, 1] → H be the fea-
ture map associated with k restricted to [0, 1] × [0, 1], let
C = conv({Φ(y) | y ∈ [0, 1]}) be the marginal polytope,
and let µ = 0 such that f(x) = 1

2‖x‖
2
H. Let T ∈ N
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(a) Line-search: sublinear convergence. (b) Line-search: linear convergence.

Figure 1: Solving (OPT) with optimum in the interior of an at least one-dimensional face of the feasible region for C ⊆ R100

the probability simplex and f(x) = 1
2‖x − ρ1̄‖22, where ρ ∈ { 1

4 , 2}, Figure 1a and 1b, respectively. In the setting of the
plots, FW with short-step is identical to FW with line-search and, thus, omitted. To avoid the oscillating behavior of the
primal gap, the y-axis represents mini∈{1,...,t} hi, where t denotes the number of iterations and hi the primal gap. Figure 1a
illustrates that there exist problem settings for which FW with open-loop step-size rules converges faster than FW with line-
search or short-step. In Figure 1b, FW with line-search solves the problem exactly after | supp(x∗)| iterations.

and ηt = 1
t+1 for all t ∈ Z. Then, for the iterates of Al-

gorithm 1 with open-loop step-size ηt and the LMO sat-
isfying Assumption C.2 (a tie-breaking rule), it holds that
f(xt) = 1/(24t2) for all t ∈ {1, . . . , T} such that t = 2m

for m ∈ N.

The proof of Theorem 5.1 implies that the iterates of FW
with open-loop step-size ηt = 1

t+1 are identical to the
Sobol sequence at any iteration t = 2m, wherem ∈ N. The
Sobol sequence is known to converge at the optimal rate
of O(1/t2) (Bach et al., 2012) in this infinite-dimensional
kernel-herding setting. Here, the equivalence of FW with
kernel herding leads to the study and discovery of new con-
vergence rates for FW. This is in contrast to other papers
(Chen et al., 2012; Bach et al., 2012; Tsuji et al., 2022) in
which FW is exploited to improve kernel-herding methods.

6 NUMERICAL EXPERIMENTS

In this section, we present the numerical experiments. All
of our numerical experiments are implemented in PYTHON
and performed on an NVIDIA GeForce RTX 2060 GPU
with 6GB RAM and an Intel Core i7-9750H CPU at
2.60GHz with 16 GB RAM. Our code is publicly available
on GitHub.

6.1 Optimum In The Relative Interior Of An At
Least One-dimensional Face Of A Polytope

In this section, we compare the convergence rates of FW
with open-loop step-size rules and line-search when the

optimum lies in the relative interior of an at least one-
dimensional face of a polytope and the objective is strongly
convex. These experiments correspond to the setting of
Section 4.

6.1.1 Setup

For d = 100, we address (OPT) with FW with differ-
ent step-sizes for C ⊆ Rd the probability simplex and
f(x) = 1

2‖x − ρ1̄‖22, where ρ ≥ 2
d and 1̄ is the vector

with zeros for the first dd/2e entries and ones for the re-
maining entries. Then, 2

d 1̄ = x∗ ∈ argminx∈C f(x) is
the unique minimizer of f . For ρ ∈ { 1

4 , 2}, we compare
FW with line-search and open-loop step-sizes ηt = `

t+` for
` ∈ {1, 2, 4} starting with x0 = e(1). The algorithms run
for 100,000 iterations. In this setting, short-step is identical
to line-search and, thus, omitted. We plot the results of the
experiments in log-log plots in Figure 1. To avoid the os-
cillating behavior of the primal gap, the y-axis represents
mini∈{1,...,t} hi, where t denotes the number of iterations
and hi the primal gap.

6.1.2 Results

For ρ ∈ { 1
4 , 2}, that is, in Figures 1a and 1b, FW with open-

loop step-size rules converges at a rate ofO(1/t2) whereas
FW with open-loop step-size ηt = 1

t+1 converges at a rate
of O(1/t). For ρ ∈ { 1

4 , 2}, that is, in Figures 1a and
1b, FW with line-search converges at a rate of Ω(1/t) and
linearly, respectively. In Figure 1b, FW with line-search
solves the problem exactly after | supp(x∗)| iterations.

https://github.com/ZIB-IOL/open_loop_fw/releases/tag/v2.0.0
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(a) Uniform density. (b) Non-uniform density.

Figure 2: Solving (OPT-KH) for the setting presented in Section 5.2 with uniform and non-uniform densities, Figures 2a
and 2b, respectively. In kernel herding, FW with short-step is identical to FW with line-search and, thus, omitted. To avoid
the oscillating behavior of the primal gap, the y-axis represents mini∈{1,...,t} hi, where t denotes the number of iterations
and hi the primal gap. Both for the uniform and non-uniform density, FW with open-loop step-size rules converges at a
rate of O(1/t2) whereas FW with line-search converges at a rate of O(1/t).

6.2 Kernel Herding

In this section, we compare the convergence rates of FW
with open-loop step-size rules and line-search for various
kernel-herding problems. These experiments correspond
to the setting of Section 5.

6.2.1 Setup

Consider the kernel-herding setting of Section 5.2 over
Y = [0, 1]. Given either the uniform density or
a random non-uniform density of the form p(y) v
(
∑n
i=1(ai cos(2πiy) + bi sin(2πiy)))

2 with ai, bi ∈ R and
n ≤ 5 such that

∫
[0,1]

p(y)dy = 1, we address (OPT-KH)
with FW with line-search and open-loop step-sizes ηt =
`
t+` for ` ∈ {1, 2, 4}. The LMO is implemented as an ex-
haustive search over [0, 1] and run for 1,000 iterations and
the algorithms run for 1,000 iterations. We plot the results
of the experiments in log-log plots in Figure 2. To avoid the
oscillating behavior of the primal gap, the y-axis represents
mini∈{1,...,t} hi, where t denotes the number of iterations
and hi the primal gap.

6.2.2 Results

For both settings, FW with open open-loop step-size rules
converges at a rate of O(1/t2), whereas FW with line-
search converges at a rate of O(1/t).

7 DISCUSSION

The central motivation for studying FW with open-loop
step-size rules was the unexplained phenomenon in Bach
et al. (2012), a problem in the foundational area of kernel
herding. To study the mechanisms at large, we revisited
with open-loop step-size rules the regimes where FW al-
gorithms are known to enjoy accelerated convergence rates
with line-search or short-step, even those that do not cor-
respond to kernel herding directly. For these settings, we
derived accelerated convergence rates for FW with open-
loop step-size rules, that, in combination with our kernel-
herding analysis characterize the acceleration of FW with
open-loop step-size rules. The analysis of non-kernel-
herding settings also culminated in the characterization of
a setting in which FW with open-loop step-size rules con-
verges faster than FW with line-search or short-step, see
Theorem 4.3 and the lower bound due to Wolfe (1970). De-
spite closing gaps in our understanding of FW, open ques-
tions remain:

1. FW is a famously affine-invariant algorithm. Our re-
sults, however, rely on norms, which are not affine-
invariant. It remains an open problem to restate the
accelerated convergence rates for FW with open-loop
step-sizes in affine-invariant form.

2. Theorem 5.1, our kernel-herding result in Section 5, is
limited to the uniform density whereas numerical ex-
periments in Section 6.2 suggest that a result similar
to Theorem 5.1 could hold for non-uniform densities.
Future research might be able to address this discrep-
ancy between theory and practice.
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A MISSING PROOFS FROM SECTION 3

Proof of Proposition 3.1. In the literature, the proof is usually done by induction (Jaggi, 2013). Here, for convenience and
as a brief introduction for things to come, we proceed with a direct approach. Since η0 = 1, by L-smoothness, we have
h1 ≤ Lδ2

2 . Let t ∈ {1, . . . , T − 1}. By optimality of pt and convexity of f , 〈∇f(xt), xt − pt〉 ≥ 〈∇f(xt), xt − x∗〉 ≥ ht.
Plugging this bound into (Progress-Bound) and with ‖xt − pt‖2 ≤ δ, it holds that

ht+1 ≤ (1− ηt)ht + η2
t

L‖xt − pt‖22
2

(9)

≤ (1− ηt)
(

(1− ηt−1)ht−1 + η2
t−1

Lδ2

2

)
+ η2

t

Lδ2

2

≤
t∏
i=1

(1− ηi)h1 +
Lδ2

2

t∑
i=1

η2
i

t∏
j=i+1

(1− ηj)

≤ Lδ2

2

(
4!

(t+ 1) · · · (t+ 4)
+

t∑
i=1

42

(i+ 4)2

(i+ 1) · · · (i+ 4)

(t+ 1) · · · (t+ 4)

)
(10)

≤ 8Lδ2

(
1

(t+ 4− 1)(t+ 4)
+

t

(t+ 4− 1)(t+ 4)

)
≤ 8Lδ2

t+ 4
,

where for the third inequality, we use that

t∏
j=i+1

(1− ηj) =

t∏
j=i+1

j

j + 4
=

(i+ 1)(i+ 2) · · · t
(i+ 5)(i+ 6) · · · (t+ 4)

=
(i+ 1)(i+ 2)(i+ 3)(i+ 4)

(t+ 1)(t+ 2)(t+ 3)(t+ 4)
.

Proof of Lemma 3.3. Let t ∈ {S, . . . , T}, where S is as in (2). Then, by (HEB) and Proposition 3.1, it holds that

‖xt − x∗‖2 ≤ µhθt ≤ µ
(

8Lδ2

t+ 3

)θ
≤ µ

 8Lδ2

8Lδ2
(
µ
β

)1/θ


θ

≤ β.

Proof of Lemma 3.4. The statement holds for x = x∗. For x ∈ C \ {x∗}, by convexity and (HEB),

f(x)− f(x∗) ≤ 〈∇f(x), x− x∗〉
‖x− x∗‖2

‖x− x∗‖2 ≤
〈∇f(x), x− x∗〉
‖x− x∗‖2

µ(f(x)− f(x∗))θ.

Dividing by µ(f(x)−f(x∗))θ, which cannot be equal to zero by the assumption that x is not optimal, yields (Scaling-HEB).

Proof of Lemma 3.5. For all t ∈ {S, . . . , T}, we first prove that

ht ≤ max

{(
ηt−2ηt−1

ηS−2ηS−1

)1/(2(1−ψ))

hS ,

(
ηt−2ηt−1B

2

A2

)1/(2(1−ψ))

+ ηt−2ηt−1BC

}
, (11)

which then implies (5). The proof is a straightforward modification of Footnote 3 in the proof of Proposition 2.2 in Bach
(2021) and is by induction. The base case of (11) with t = S is immediate, even if S = 1, as η−1 ≥ η0 = 1. Suppose that
(11) is correct for a specific iteration t ∈ {S, . . . , T − 1}. We distinguish between two cases.



Elias Wirth, Thomas Kerdreux, Sebastian Pokutta

First, suppose that ht ≤ (ηtBA )1/(1−ψ). Plugging this bound into (4), we obtain (11) at iteration t+ 1:

ht+1 ≤
(

1− ηt
2

)
ht − 0 + η2

tBCt ≤
(
ηtB

A

)1/(1−ψ)

+ η2
tBC ≤

(
ηt−1ηtB

2

A2

)1/(2(1−ψ))

+ ηt−1ηtBC.

Next, suppose that ht ≥ (ηtBA )1/(1−ψ). Plugging this bound on ht into (4) and using the induction assumption (11) at
iteration t yields

ht+1 ≤
(

1− ηt
2

)
ht − ηtACt

ηtB

A
+ η2

tBCt

=
t+ 2

t+ 4
ht

=
ηt
ηt−2

ht

≤ ηt
ηt−2

max

{(
ηt−2ηt−1

ηS−2ηS−1

)1/(2(1−ψ))

hS ,

(
ηt−2ηt−1B

2

A2

)1/(2(1−ψ))

+ ηt−2ηt−1BC

}

≤ max

{(
ηt−1ηt

ηS−2ηS−1

)1/(2(1−ψ))

hS ,

(
ηt−1ηtB

2

A2

)1/(2(1−ψ))

+ ηt−1ηtBC

}
,

where the last inequality holds due to ηt
ηt−2

(ηt−2ηt−1)1/(2(1−ψ)) ≤ (ηt−1ηt)
1/(2(1−ψ)) for ηt

ηt−2
∈ [0, 1] and 1/(2(1−ψ)) ∈

[1/2, 1]. In either case, (11) is satisfied for t+ 1, proving the lemma.

Proof of Theorem 3.6. Let t ∈ {S, . . . , T − 1}, where S is as in (6). By Lemma 3.3, ‖xt − x∗‖2 ≤ β/2 and, by triangle
inequality, we have ‖xt − pt‖2 ≥ β/2. Thus, for all t ∈ {S, . . . , T}, it follows that (3) holds. This inequality allows us to
apply Lemma 3.5 with A = β2

4µδ , B = Lδ2

2 , C = 1, Ct = 1 for all t ∈ {S, . . . , T − 1}, and ψ = θ, resulting in

ht ≤ max

{(
ηt−2

ηS−1

)1/(1−θ)

hS ,

(
ηt−22µLδ3

β2

)1/(1−θ)

+ η2
t−2

Lδ2

2

}

for all t ∈ {S, . . . , T}.

B MISSING PROOFS FROM SECTION 4

The proof of Theorem 4.3 follows the proof blueprint of Section 3, that is, is built on two scaling inequalities, which hold
when Assumptions 4.1 and 4.2 are satisfied. In the proof of Theorem 5 in Garber (2020), the authors showed that there
exists an iterate S ∈ N such that for all t ≥ S, the FW vertices pt lie in the optimal face, assuming that the objective
function is strongly convex. Below, we generalize their result to convex functions satisfying (HEB).

Lemma B.1 (Active set identification). Let C ⊆ Rd be a polytope of diameter δ > 0, let f : C → R be a convex and L-
smooth function satisfying a (µ, θ)-(HEB) for some µ > 0 and θ ∈]0, 1/2] with unique minimizer x∗ ∈ argminx∈C f(x),
and suppose that there exists κ > 0 such that Assumption 4.1 is satisfied. Let

S =

⌈
8Lδ2

(
2µLδ

κ

)1/θ
⌉
, (12)

T ∈ N, and ηt = 4
t+4 for all t ∈ Z. Then, for the iterates of Algorithm 1 with step-size ηt, it holds that pt ∈ vert (C∗) for

all t ∈ {S, . . . , T − 1}.

Proof. Let t ∈ {S, . . . , T −1}, where S is as in (12). Note that in Line 3 of Algorithm 1, pt ∈ argminp∈C〈∇f(xt), p−xt〉
can always be chosen such that pt ∈ argminp∈vert(C)〈∇f(xt), p− xt〉. For p ∈ vert(C), it holds that

〈∇f(xt), p− xt〉 = 〈∇f(xt)−∇f(x∗) +∇f(x∗), p− x∗ + x∗ − xt〉
= 〈∇f(xt)−∇f(x∗), p− xt〉+ 〈∇f(x∗), p− x∗〉+ 〈∇f(x∗), x∗ − xt〉. (13)
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We distinguish between vertices p ∈ vert (C) \ C∗ and vertices p ∈ vert (C∗). First, suppose that p ∈ vert (C) \ C∗. Using
strict complementarity, Cauchy-Schwarz, L-smoothness, and (HEB) to bound (13) yields

〈∇f(xt), p− xt〉 ≥ −‖∇f(xt)−∇f(x∗)‖2‖p− xt‖2 + κ+ 〈∇f(x∗), x∗ − xt〉
≥ κ− Lδ‖xt − x∗‖2 + 〈∇f(x∗), x∗ − xt〉
≥ κ− µLδhθt + 〈∇f(x∗), x∗ − xt〉.

Next, suppose that p ∈ vert (C∗). Using strict complementarity, Cauchy-Schwarz, L-smoothness, and (HEB) to bound
(13) yields

〈∇f(xt), p− xt〉 ≤ ‖∇f(xt)−∇f(x∗)‖2‖p− xt‖2 + 〈∇f(x∗), x∗ − xt〉
≤ Lδ‖xt − x∗‖2 + 〈∇f(x∗), x∗ − xt〉
≤ µLδhθt + 〈∇f(x∗), x∗ − xt〉.

By Proposition 3.1, it holds that

µLδhθt ≤ µLδhθS ≤ µLδ

 8Lδ2

8Lδ2
(

2µLδ
κ

)1/θ

+ 3


θ

<
κ

2
.

Hence, for t ∈ {S, . . . , T − 1},

〈∇f(xt), p− xt〉 =

{
> κ

2 + 〈∇f(x∗), x∗ − xt〉, if p ∈ vert (C) \ C∗

< κ
2 + 〈∇f(x∗), x∗ − xt〉, if p ∈ vert (C∗) .

Then, by optimality of pt, for all iterations t ∈ {S, . . . , T − 1} of Algorithm 1, it holds that pt ∈ vert (C∗).

Using Assumption 4.2, Bach (2021) derived the following scaling inequality, a variation of (Scaling-INT).

Lemma B.2 (Bach, 2021). Let C ⊆ Rd be a polytope, let f : C → R be a convex and L-smooth function with unique
minimizer x∗ ∈ argminx∈C f(x), and suppose that there exists β > 0 such that Assumption 4.2 is satisfied. Then, for all
x ∈ C such that p ∈ argminv∈C〈∇f(x), v〉 ⊆ C∗, it holds that

〈∇f(x), x− p〉 ≥ β‖Π∇f(x)‖2, (Scaling-BOR)

where Πx denotes the orthogonal projection of x ∈ Rd onto the span of {x∗ − p | p ∈ C∗}.

Proof. Suppose that x ∈ C such that p ∈ argminv∈C〈∇f(x), v〉 ⊆ C∗. Then,

〈∇f(x), x− p〉 = max
v∈C∗
〈∇f(x), x− v〉

≥ 〈∇f(x), x− x∗〉+

〈
∇f(x), β

Π∇f(x)

‖Π∇f(x)‖2

〉
= 〈∇f(x), x− x∗〉+

〈
Π∇f(x) + (I−Π)∇f(x), β

Π∇f(x)

‖Π∇f(x)‖2

〉
= 〈∇f(x), x− x∗〉+ β‖Π∇f(x)‖2
≥ β‖Π∇f(x)‖2,

where the first equality follows from the construction of p ∈ argminv∈C〈∇f(x), v〉, the first inequality follows from the
fact that the maximum is at least as large as the maximum attained on Bβ(x∗) ∩ C∗, the second equality follows from the
definition of the orthogonal projection, the third equality follows from the fact that Πx and (I−Π)x are orthogonal for any
x ∈ Rd, and the second inequality follows from the convexity of f .

We next bound the distance between xt and the optimal face C∗.
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Lemma B.3 (Distance to optimal face). Let C ⊆ Rd be a polytope of diameter δ > 0, let f : C → R be a convex and L-
smooth function satisfying a (µ, θ)-(HEB) for some µ > 0 and θ ∈]0, 1/2] with unique minimizer x∗ ∈ argminx∈C f(x),
and suppose that there exist β, κ > 0 such that Assumptions 4.1 and 4.2 are satisfied. Let

S = max

{⌈
8Lδ2

(
µ

β

)1/θ
⌉
,

⌈
8Lδ2

(
2µLδ

κ

)1/θ
⌉}

, (14)

T ∈ N, and ηt = 4
t+4 for all t ∈ Z. Then, for the iterates of Algorithm 1 with open-loop step-size ηt, it holds that

‖(I −Π)(xt − x∗)‖2 ≤
η4
t

η4
S

β (15)

for all t ∈ {S, . . . , T − 1}, where Πx denotes the orthogonal projection of x ∈ Rd onto the span of {x∗ − p | p ∈ C∗}.

Proof. Let t ∈ {S, . . . , T − 1}, where S is as in (14). By Lemma B.1, pt ∈ vert(C∗). Thus, (I−Π)(pt − x∗) = 0 and

(I−Π)(xt+1 − x∗) = (1− ηt)(I−Π)(xt − x∗) + ηt(I−Π)(pt − x∗)
= (1− ηt)(I−Π)(xt − x∗)

=

t∏
i=S

(1− ηi)(I−Π)(xS − x∗)

=
S(S + 1) · · · t

(S + 4)(S + 5) · · · (t+ 4)
(I−Π)(xS − x∗)

=
S(S + 1)(S + 2)(S + 3)

(t+ 1)(t+ 2)(t+ 3)(t+ 4)
(I−Π)(xS − x∗).

Hence,

‖(I −Π)(xt+1 − x∗)‖2 ≤
S(S + 1)(S + 2)(S + 3)

(t+ 1)(t+ 2)(t+ 3)(t+ 4)
‖(I −Π)(xS − x∗)‖2

≤ (S + 1)(S + 2)(S + 3)(S + 4)

(t+ 2)(t+ 3)(t+ 4)(t+ 5)
‖(I −Π)(xS − x∗)‖2

≤
η4
t+1

η4
S

‖(I −Π)(xS − x∗)‖2

≤
η4
t+1

η4
S

β,

where the last inequality follows from Lemma 3.3.

We require a second scaling inequality, relying on Assumptions 4.1 and 4.2.

Lemma B.4. Let C ⊆ Rd be a polytope of diameter δ > 0, let f : C → R be an αf -strongly convex and L-smooth function
with unique minimizer x∗ ∈ argminx∈C f(x), and suppose that there exist β, κ > 0 such that Assumptions 4.1 and 4.2 are
satisfied. Let M = maxx∈C ‖∇f(x)‖2,

S = max

{⌈
16Lδ2

αfβ2

⌉
,

⌈
64L3δ4

αfκ2

⌉}
, (16)

T ∈ N, and ηt = 4
t+4 for all t ∈ Z. Then, for the iterates of Algorithm 1 with open-loop step-size ηt and t ∈ {S, . . . , T−1},

it holds that

‖Π∇f(xt)‖2 ≥
√
αf
2

√
ht −

η2
t

η2
S

√
αfβM

2
− η4

t

η4
S

Lβ (Scaling-CVX)

or ht ≤ η4t
η4S
βM, where Πx denotes the orthogonal projection of x ∈ Rd onto the span of {x∗ − p | p ∈ C∗}.
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Proof. Given a vector x ∈ Rd, let Πaff(C∗)x denote the projection of x onto aff(C∗), that is, Πaff(C∗)x ∈
argminy∈aff(C∗) ‖y − x‖2. Since aff(C∗) = x∗ + span({x∗ − p | p ∈ C∗}), there has to exist some y ∈ Rd such
that Πaff(C∗)x = (I −Π)x∗ + Πx+ Πy. By orthogonality of Π, we have

‖Πaff(C∗)x− x‖2 = ‖(I −Π)x∗ − (I −Π)x+ Πy‖2 = ‖(I −Π)x∗ − (I −Π)x‖2 + ‖Πy‖2.

The right-hand side is minimized when Πy = 0. Thus,

Πaff(C∗)x = (I −Π)x∗ + Πx ∈ argmin
y∈aff(C∗)

‖y − x‖2.

Let t ∈ {S, . . . , T − 1}, where S is as defined in (16). By Lemma 3.3, ‖xt − x∗‖2 ≤ β and, thus, by Assumption 4.2,
Πaff(C∗)xt ∈ C∗. By L-smoothness of f , it holds that

‖∇f(xt)−∇f(Πaff(C∗)xt)‖2 ≤ L‖xt −Πaff(C∗)xt‖2 = L‖(I −Π)(xt − x∗)‖2.

By Lemma B.3, it then holds that

‖∇f(xt)−∇f(Πaff(C∗)xt)‖2 ≤
η4
t

η4
S

Lβ. (17)

Since for any x ∈ Rd, we have that ‖Πx‖2 ≤ ‖Πx‖2 + ‖(I − Π)x‖2 = ‖x‖2, Inequality (17) implies that ‖Π∇f(xt) −
Π∇f(Πaff(C∗)xt)‖2 ≤

η4t
η4S
Lβ. Combined with the triangle inequality,

‖Π∇f(Πaff(C∗)xt)‖2 ≤ ‖Π∇f(xt)‖2 + ‖Π∇f(xt)−Π∇f(Πaff(C∗)xt)‖2 ≤ ‖Π∇f(xt)‖2 +
η4
t

η4
S

Lβ,

which we rearrange to

‖Π∇f(Πaff(C∗)xt)‖2 −
η4
t

η4
S

Lβ ≤ ‖Π∇f(xt)‖2. (18)

For the remainder of the proof, we bound ‖Π∇f(Πaff(C∗)xt)‖2 from below. To do so, define the function g : C∩Bβ(x∗)→
R via g(x) := f(Πaff(C∗)x) = f((I −Π)x∗ + Πx). The gradient of g at x ∈ C ∩Bβ(x∗) is∇g(x) = Π∇f(Πaff(C∗)x) =
Π∇f((I − Π)x∗ + Πx). Since f is αf -strongly convex in C and g(x) = f(x) for all x ∈ aff(C∗) ∩ Bβ(x∗), g is αf -
strongly convex in aff(C∗) ∩Bβ(x∗). Since the projection onto aff(C∗) is idempotent, Πaff(C∗)xt ∈ aff(C∗) ∩Bβ(x∗) for
all t ∈ {S, . . . , T − 1}, and g is αf -strongly convex in aff(C∗) ∩Bβ(x∗), it holds that

‖Π∇f(Πaff(C∗)xt)‖2 = ‖Π∇f(Π2
aff(C∗)xt)‖2

= ‖∇g(Πaff(C∗)xt)‖2

≥
√
αf
2

√
g(Πaff(C∗)xt)− g(x∗)

=

√
αf
2

√
f(Πaff(C∗)xt)− f(x∗).

Suppose that ht ≥ η4t
η4S
βM . By Lemma B.3 and Cauchy-Schwarz, we obtain ht − 〈∇f(xt), (I − Π)(xt − x∗)〉 ≥ ht −

η4t
η4S
βM ≥ 0. Combined with convexity of f , we have

‖Π∇f(Πaff(C∗)xt)‖2 ≥
√
αf
2

√
f(xt) + 〈∇f(xt),Πaff(C∗)xt − xt〉 − f(x∗)

=

√
αf
2

√
ht − 〈∇f(xt), (I −Π)(xt − x∗)〉

≥
√
αf
2

√
ht −

η4
t

η4
S

βM.
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Since for a, b ∈ R with a ≥ b ≥ 0, it holds that
√
a− b ≥

√
a−
√
b, we obtain

‖Π∇f(Πaff(C∗)xt)‖2 ≥
√
αf
2

(√
ht −

√
η4
t

η4
S

βM

)
=

√
αf
2

(√
ht −

η2
t

η2
S

√
βM

)
.

Combining this inequality with (18), we obtain

‖Π∇f(xt)‖2 ≥
√
αf
2

√
ht −

η2
t

η2
S

√
αfβM

2
− η4

t

η4
S

Lβ.

Finally, we prove Theorem 4.3, that is, we prove that when the feasible region C is a polytope, the objective function f is
strongly convex, and the unique minimizer x∗ ∈ argminx∈C f(x) lies in the relative interior of an at least one-dimensional
face C∗ of C, FW with the open-loop step-size ηt = 4

t+4 converges at a rate of O(1/t) for iterations t ≤ S and at a
non-asymptotic rate of O(1/t2) for iterations t ≥ S, where S is defined as in (16). Our result can be seen as the non-
asymptotic version of Bach (2021, Proposition 2.2). Contrary to the result of Bach et al. (2012), our result is in primal gap,
we no longer require bounds on the third-order derivatives, and do not have to invoke affine-invariance of FW to obtain the
accelerated convergence rate.

Proof of Theorem 4.3. Let t ∈ {S, . . . , T − 1}, where S is as in (7). Furthermore, suppose that ht ≥ η4t
η4S
βM . Combine (9)

and (Progress-Bound) to obtain

ht+1 ≤
(

1− ηt
2

)
ht −

ηt
2
〈∇f(xt), xt − pt〉+

η2
tL‖xt − pt‖22

2
.

We plug (Scaling-BOR) and (Scaling-CVX) into the inequality above, resulting in

ht+1 ≤
(

1− ηt
2

)
ht −

ηt
2
〈∇f(xt), xt − pt〉+

η2
tL‖xt − pt‖22

2

≤
(

1− ηt
2

)
ht −

ηtβ

2
‖Π∇f(xt)‖2 +

η2
tLδ

2

2

≤
(

1− ηt
2

)
ht −

ηtβ

2

(√
αf
2

√
ht −

η2
t

η2
S

√
αfβM

2
− η4

t

η4
S

Lβ

)
+
η2
tLδ

2

2

≤
(

1− ηt
2

)
ht − ηt

√
αfβ

2
√

2

√
ht +

η2
tLδ

2

2
+
η3
t β
√
αfβM

η2
S2
√

2
+
η5
tLβ

2

η4
S2

.

Since ηt/ηS ≤ 1 for all t ∈ {S, . . . , T − 1}, it holds that

ht+1 ≤
(

1− ηt
2

)
ht − ηt

√
αfβ

2
√

2

√
ht + η2

t

(
Lδ2

2
+
β
√
αfβM

ηS2
√

2
+
Lβ2

ηS2

)
. (19)

Let

A =

√
αfβ

2
√

2
, B =

Lδ2

2
+
β
√
αfβM

ηS2
√

2
+
Lβ2

ηS2
, C = Ct = 1

for all t ∈ {S, . . . , T − 1}, and ψ = 1/2. Ideally, we could now apply Lemma 3.5. However, Inequality (19) is only
guaranteed to hold in case that ht ≥ η4t

η4S
βM . Thus, we have to extend the proof of Lemma 3.5 for the case that ht ≤ η4t

η4S
βM .

In case ht ≤ η4t
η4S
βM , (9) implies that

ht+1 ≤ (1− ηt)ht + η2
t

L‖xt − pt‖22
2

≤ ht + η2
t

Lδ2

2
≤ ηt−1ηt

(
βM

η2
S

+
Lδ2

2

)
= ηt−1ηt

(
D

η2
S

+ E

)
,
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where D = βM and E = Lδ2

2 . Thus, in the proof of Lemma 3.5, the induction assumption (11) has to be replaced by

ht ≤ max

{
ηt−2ηt−1

ηS−2ηS−1
hS ,

ηt−2ηt−1B
2

A2
+ ηt−2ηt−1BC, ηt−2ηt−1

(
D

η2
S

+ E

)}
.

Then, using the same analysis as in Lemma 3.5, extended by the case that ht ≤ η4t
η4S
βM , proves that

ht ≤ max

{(
ηt−2

ηS−1

)2

hS ,

(
ηt−2B

A

)2

+ η2
t−2B, η

2
t−2

(
D

η2
S

+ E

)}
for all t ∈ {S, . . . , T}.

C MISSING PROOFS FROM SECTION 5

We first present a lemma characterizing the kernel used in Section 5.

Lemma C.1. LetH be the Hilbert space defined in (8) and let k : R× R→ H be the kernel defined in (Bernoulli-kernel).
For y, z ∈ [0, 1] and n ∈ Z, it holds that

k(y, z) = k(z, y) = k(|y − z|, 0) =
1

2
B2(|y − z|) and k(y, z) = k(y, z + n).

Proof. We first prove that for y, z ∈ [0, 1], it holds that k(y, z) = k(z, y). Let a ∈ [0, 1[. Then,

[a] = a− bac = a− 0 = a,

[−a] = −a− b−ac = −a− (−1) = 1− a,

B2([a]) = a2 − a+
1

6
= (1− a)2 − (1− a) +

1

6
= B2[−a]. (20)

Similarly, note that

[1] = 1− b1c = 1− 1 = 0,

[−1] = −1− b−1c = −1− (−1) = 0,

B2([1]) = B2([−1]). (21)

By (20) and (21), for any y, z ∈ [0, 1], it holds that

k(y, z) =
1

2
B2([y − z]) =

1

2
B2([z − y]) = k(z, y). (22)

Next, we prove that for y, z ∈ [0, 1], it holds that k(y, z) = k(|y − z|, 0) = 1
2B2(|y − z|). Let y, z ∈ [0, 1] such that

|y − z| = a ∈ [0, 1[. Then, by (20),

k(y, z) =
1

2
B2([y − z]) =

1

2
B2([|y − z|]) =

1

2
B2(|y − z|). (23)

Furthermore, k(y, z) = 1
2B2([y− z]) = 1

2B2([|y− z|]) = k(|y− z|, 0). Next, let y, z ∈ [0, 1] such that |y− z| = 1. Then,
by (21),

k(y, z) =
1

2
B2([y − z]) =

1

2
B2([|y − z|]) =

1

2
B2([1]) =

1

12
=

1

2

(
12 − 1 +

1

6

)
=

1

2
B2(1) =

1

2
B2(|y − z|). (24)

Furthermore, k(y, z) = 1
2B2([y − z]) = 1

2B2([|y − z|]) = 1
2B2([1]) = k(|y − z|, 0).

Finally, we prove that for y, z ∈ [0, 1] and n ∈ Z, it holds that k(y, z) = k(y, z + n). Indeed,

k(y, z) =
1

2
B2(y − z − by − zc) =

1

2
B2(y − z − n− by − z − nc) = k(y, z + n).
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Next, we provide a proof sketch for Theorem 5.1.

Sketch of proof for Theorem 5.1. The main idea behind the proof is that FW with ηt = 1
t+1 leads to iterates xt =

1
t

∑t
i=1 Φ(yi) with {y1, . . . , yt} =

{
i−1
t | i = 1, . . . , t

}
for all t = 2m, where m ∈ N. Then, the proof follows

by a series of calculations. We make several introductory observations. Note that Line 3 of Algorithm 1 becomes
pt ∈ argminp∈C Df(xt)(p − xt) = argminp∈C Df(xt)(p), where, for w, x ∈ H, Df(w)(x) = 〈w, x〉H denotes the
first derivative of f at w. For x ∈ C and xt ∈ C of the form xt = 1

t

∑t
i=1 Φ(yi) for y1, . . . , yt ∈ [0, 1], it holds that

Df(xt)(x) =
〈

1
t

∑t
i=1 Φ(yi), x

〉
H
. Then, for y ∈ [0, 1], let

gt(y) :=

〈
1

t

t∑
i=1

Φ(yi),Φ(y)

〉
H

=
1

t

t∑
i=1

k (yi, y) . (25)

Since the LMO of FW always returns a vertex of C of the form Φ(y) for y ∈ [0, 1] (Bach et al., 2012), it holds that
minp∈C Df(xt)(p) = miny∈[0,1] gt(y) and the vertex returned by the LMO during iteration t is contained in the set
{Φ(z) | z ∈ argminy∈[0,1] gt(y)}. Thus, instead of considering the LMO directly over C, we can perform the computations
over [0, 1]. To simplify the proof, we make the following assumption on the argmin operation in the LMO of FW, a tie-
breaking rule in case | argminp∈C Df(xt)(p)| ≥ 2.

Assumption C.2. The LMO of FW always returns pt ∈ argminp∈C Df(xt)(p) such that pt = Φ(z) for z =
min(argminy∈[0,1] gt(y)).

Recall that FW starts at iterate x0, but since η0 = 1, it holds that x1 = Φ(y1). As we will prove in Lemma C.4, without
loss of generality, we can assume that FW starts at iterate x1 = Φ(y1), where y1 = 0.

We now detail three technical lemmas.

Lemma C.3. Let H be the Hilbert space defined in (8), let k : R × R → H be the kernel defined in (Bernoulli-kernel),
let Φ: [0, 1] → H be the feature map associated with k restricted to [0, 1] × [0, 1], let t ∈ N, let {y1, . . . , yt} ={
i−1
t | i ∈ {1, . . . , t}

}
, and let gt be defined as in (25), that is, gt(y) = 1

t

∑t
i=1 k(yi, y). Then, it holds that

argminy∈[0,1] gt(y) =
{
yi + 1

2t | i ∈ {1, . . . , t}
}

.

Proof. Let t ∈ N and {y1, . . . , yt} = { i−1
t | i ∈ {1, . . . , t}}. We stress that this does not imply that for all i ∈ {1, . . . , t},

yi = i−1
t . By Lemma C.1, for all y ∈ [0, 1], it holds that

gt(y) =

〈
1

t

t∑
i=1

Φ(yi),Φ(y)

〉
H

=
1

t

t∑
i=1

k (yi, y) =
1

2t

t∑
i=1

(
|yi − y|2 − |yi − y|+

1

6

)
.

Then, for y ∈ [0, 1] \ {y1, . . . , yt}, it holds that g′t(y) = 1
2t

∑t
i=1

(
2(y − yi)− y−yi

|y−yi|

)
and since

∑t
i=1 yi = (t− 1)/2,

g′t(y) =
1

2

(
2y − t− 1

t
− 1

t

∣∣{yi < y | i ∈ {1, . . . , t}}
∣∣+

1

t

∣∣{yi > y | i ∈ {1, . . . , t}}
∣∣) .

For y ∈
]
i−1
t ,

i
t

[
, where i ∈ {1, . . . , t}, it holds that

g′t(y) =
1

2

(
2y − t− 1

t
− i

t
+
t− i
t

)
=

1

2

(
2y +

1

t
− 2i

t

)

and g′t(y) = 0 if and only if y =
i− 1

2

t . Since gt is strongly convex on
]
i−1
t ,

i
t

[
for i ∈ {1, . . . , t} and continuous on [0, 1],

it holds that yi = i−1
t cannot be a minimum of gt on [0, 1] for any i ∈ {1, . . . , t}. Since gt(0) = gt(1) by Lemma C.1, 1

cannot be a minimum either. Thus, only elements in
{
yi + 1

2t | i ∈ {1, . . . , t}
}

can be minima of gt on [0, 1].

We next prove that gt( i−1
t + 1

2t ) = gt(
j−1
t + 1

2t ) for all i, j ∈ {1, . . . , t}, which concludes the proof of the lemma. To see
this, we show that gt( j−1

t + 1
2t ) = gt(

j
t + 1

2t ) for all j ∈ {1, . . . , t−1}. Using that, by Lemma C.1, k(y, z) = 1
2B2(|y−z|)
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and k(1, y) = k(0, y) for y, z ∈ [0, 1], we have that

t∑
i=1

k

(
i− 1

t
,
j − 1

t
+

1

2t

)
−

t∑
i=1

k

(
i− 1

t
,
j

t
+

1

2t

)
=

t∑
i=1

k

(
i

t
,
j

t
+

1

2t

)
−

t∑
i=1

k

(
i− 1

t
,
j

t
+

1

2t

)
= k

(
t

t
,
j

t
+

1

2t

)
− k

(
0

t
,
j

t
+

1

2t

)
= 0

for all j ∈ {1, . . . , t− 1}. Thus, gt( j−1
t + 1

2t ) = gt(
j
t + 1

2t ) for all j ∈ {1, . . . , t− 1}.

Lemma C.4. Let H be the Hilbert space defined in (8), let k : R× R→ H be the kernel defined in (Bernoulli-kernel), let
Φ: [0, 1]→ H be the feature map associated with k restricted to [0, 1]× [0, 1], let t ∈ N, let y1, . . . , yt ∈ [0, 1], and let gt
be defined as in (25), that is, gt(y) = 1

t

∑t
i=1 k(yi, y). Suppose that argminy∈[0,1] gt(y) = {z1, . . . , zk} ⊆ [0, 1] for some

k ∈ N. Let c ∈ R, let ỹi = [yi + c] for all i ∈ {1, . . . , t}, and let g̃t(y) = 1
t

∑t
i=1 k(ỹi, y). Then, argminz∈[0,1] g̃t(z) =

{[z1 + c], . . . , [zk + c]}.

Proof. It holds that

argmin
z∈[0,1]

g̃t(z) = argmin
z=[y+c],y∈R

g̃t(z)

= argmin
z=[y+c],y∈R

1

2t

t∑
i=1

B2([[yi + c]− [y + c]])

= argmin
z=[y+c],y∈R

1

2t

t∑
i=1

B2([yi + c− byi + cc − (y + c)− (−by + cc)])

= argmin
z=[y+c],y∈R

1

2t

t∑
i=1

B2([yi − y − byi + cc+ by + cc])

= argmin
z=[y+c],y∈R

1

2t

t∑
i=1

B2([yi − y])

= {[z1 + c], . . . , [zk + c]},

where the second-to-last equality is due to Lemma C.1.

Lemma C.5. Let H be the Hilbert space defined in (8), let k : R× R→ H be the kernel defined in (Bernoulli-kernel), let
Φ: [0, 1] → H be the feature map associated with k restricted to [0, 1] × [0, 1], let C = conv({Φ(y) | y ∈ [0, 1]}) be the
marginal polytope, and let µ = 0 such that f(x) = 1

2‖x‖
2
H. Let T ∈ N and ηt = 1

t+1 for all t ∈ Z. Then, for the iterates
of Algorithm 1 with open-loop step-size ηt and the LMO satisfying Assumption C.2 it holds that xt = 1

t

∑t
i=1 Φ(yi) with

{y1, . . . , yt} = { i−1
t | i ∈ {1, . . . , t}} for all t ∈ {1, . . . , T} such that t = 2m for m ∈ N,.

Proof. Since η0 = 1, it holds that x1 = Φ(y1). By Lemma C.4, without loss of generality, we can assume that FW
starts with iterate x1 = Φ(y1), where y1 = 0. Let t ∈ {1, . . . , T}. Since we use the step-size ηt = 1

t+1 , we obtain
uniform weights, that is, xt = 1

t

∑t
i=1 Φ(yi), where yi ∈ [0, 1] for all i ∈ {1, . . . , t}. Suppose that t = 2m for some

m ∈ N. The proof that it holds that {y1, . . . , yt} = { i−1
t | i ∈ {1, . . . , t}} is by induction on m ∈ N. The base

case, m = 0, follows from x1 = Φ(y1), where y1 = 0. Suppose that for t = 2m for some m ∈ N, it holds that
{y1, . . . , yt} = { i−1

t | i ∈ {1, . . . , t}}. If we show that

{y1, . . . , y2t} =

{
i− 1

2t
| i ∈ {1, . . . , 2t}

}
, (26)

the statement of the lemma follows from induction. (26) is subsumed by the stronger statement that yt+j = yj + 1
2t for all

j ∈ {1, . . . , t}, and we prove the latter for the remainder of this proof.

By Lemma C.3 and Assumption C.2, it holds that yt+1 = 1
2t . Suppose that for some ` ∈ {1, . . . , t − 1}, it

holds that yt+j = yj + 1
2t for all j ∈ {1, . . . , `}. We decompose the function gt+`(y) into gt(y) and g̃`(y) =
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〈 1`
∑`
i=1 Φ(yi + 1

2t ),Φ(y)〉H, that is, we consider the decomposition gt+`(y) = t
t+`gt(y) + `

t+` g̃`(y). By Lemma C.3,
argminy∈[0,1] gt(y) =

{
yi + 1

2t | i ∈ {1, . . . , t}
}
⊆ [0, 1] and by Assumption C.2, y`+1 = min(argminy∈[0,1] g`(y)).

Thus, by Lemma C.4, it holds that

min

(
argmin
y∈[0,1]

g̃`(y)

)
= min

(
argmin
y∈[0,1]

g`(y) +
1

2t

)
= y`+1 +

1

2t
∈
{
yi +

1

2t
| i ∈ {1, . . . , t}

}
.

Thus, min(argminy∈[0,1] g̃`(y)) ∈ argminy∈[0,1] gt(y) and

yt+`+1 = min

(
argmin
y∈[0,1]

gt+`(y)

)
= min

(
argmin
y∈[0,1]

g̃`(y)

)
= y`+1 +

1

2t
.

By induction, yt+j = yj + 1
2t for all j ∈ {1, . . . , t}, as required to conclude the proof.

Finally, we prove Theorem 5.1.

Proof of Theorem 5.1. By Lemma C.5, we have xt = 1
t

∑t
i=1 Φ

(
i−1
t

)
and, since µ = 0,

f(xt) =
1

2
‖xt‖2H

=
1

2t2

〈
t∑
i=1

Φ

(
i− 1

t

)
,

t∑
j=1

Φ

(
j − 1

t

)〉
H

=
1

2t2

t∑
j=1

t∑
i=1

k

(
i− 1

t
,
j − 1

t

)

=
1

2t

t∑
i=1

k

(
i− 1

t
, 1

)
,

where the second-to-last equality follows from the definition of k and the last equality follows from repeatedly applying

t∑
i=1

k

(
i− 1

t
,
j − 1

t

)
=

t∑
i=1

k

(
i− 1

t
,
j

t

)
, (27)

where j ∈ {1, . . . , t}. To see that (27) holds, recall that by Lemma C.1, it holds that

t∑
i=1

k

(
i− 1

t
,
j − 1

t

)
−

t∑
i=1

k

(
i− 1

t
,
j

t

)
=

t∑
i=1

k

(
i

t
,
j

t

)
−

t∑
i=1

k

(
i− 1

t
,
j

t

)
= k

(
1,
j

t

)
− k

(
0,
j

t

)
= 0

for all j ∈ {1, . . . , t}. Thus,

f(xt) =
1

2t

t∑
i=1

k

(
i− 1

t
, 1

)
=

1

2t

t∑
i=1

k

(
i− 1

t
, 0

)
=

1

2t

t∑
i=1

k

(
i

t
, 0

)
=

1

4t

t∑
i=1

((
i

t

)2

− i

t
+

1

6

)
,

where the second, third, and fourth equalities are due to Lemma C.1. Since
∑t
i=1 i = t(t+1)

2 and
∑t
i=1 i

2 = 2t3+3t2+t
6 , it

holds that f(xt) = 1
4t (

2t+3+ 1
t

6 − t+1
2 + t

6 ) = 1
24t2 .
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D NORM OF THE GRADIENT OF f IS BOUNDED FROM BELOW BY A
NONNEGATIVE CONSTANT

In this section, we address the setting when feasible region C is uniformly convex and the norm of the gradient of f is
bounded from below by a nonnegative constant.

For this setting, FW with line-search or short-step admits linear convergence rates when the feasible region is also strongly
convex (Levitin and Polyak, 1966; Demianov and Rubinov, 1970; Garber and Hazan, 2015). In Theorem 2.2, Kerdreux
et al. (2021b) interpolated between O(1/t) and the linear convergence rates by relaxing strong convexity of the feasi-
ble region to uniform convexity. Two FW variants employ open-loop step-sizes and enjoy accelerated convergence rates
when the norm of the gradient of f is bounded from below by a nonnegative constant and the feasible region C is uni-
formly convex: the primal averaging conditional gradients algorithm (PACG) (Lan, 2013; Kerdreux et al., 2021a) and a
momentum-guided FW variant (Li et al., 2021). Below, we derive Theorem D.2 for FW with open-loop step-size rules,
which interpolates between the known convergence rate of O(1/t) (Jaggi, 2013), and O(1/t2) depending on the uniform
convexity of the feasible region. To prove the result, we require two new scaling inequalities. Let C ⊆ Rd be a compact
convex set and let f : C → R be a convex and L-smooth function such that there exists λ > 0 such that for all x ∈ C,

‖∇f(x)‖2 ≥ λ. (Scaling-EXT)

In case f is well-defined, convex, and differentiable on the entirety of Rd, (Scaling-EXT) is, for example, implied by the
convexity of f and the assumption that the unconstrained optimum of f , that is, argminx∈C f(x), does not lie in C. The
second scaling inequality follows from the uniform convexity of the feasible region and is proved in the proof of Kerdreux
et al. (2021b, Theorem 2.2) in FW gap, using Kerdreux et al. (2021b, Lemma 2.1). The result stated below is then obtained
by bounding the FW gap from below with the primal gap.

Lemma D.1 (Kerdreux et al., 2021b). For α > 0 and q ≥ 2, let C ⊆ Rd be a compact (α, q)-uniformly convex set
and let f : C → R be a convex function that is differentiable in an open set containing C with unique minimizer x∗ ∈
argminx∈C f(x). Then, for all x ∈ C,

〈∇f(x), x− p〉
‖x− p‖22

≥
(α

2
‖∇f(x)‖2

)2/q

(f(x)− f(x∗))1−2/q, (Scaling-UNIF)

where p ∈ argminv∈C〈∇f(x), v〉.

Combining (Scaling-EXT) and (Scaling-UNIF), we prove the following result.

Theorem D.2 (Norm of the gradient of f is bounded from below by a nonnegative constant). For α > 0 and q ≥ 2,
let C ⊆ Rd be a compact (α, q)-uniformly convex set of diameter δ > 0, let f : C → R be a convex and L-smooth
function with lower-bounded gradients, that is, ‖∇f(x)‖2 ≥ λ for all x ∈ C for some λ > 0, with unique minimizer
x∗ ∈ argminx∈C f(x). Let T ∈ N and ηt = 4

t+4 for all t ∈ Z. Then, for the iterates of Algorithm 1 with open-loop
step-size ηt, when q ≥ 4, it holds that

ht ≤ max

η1/(1−2/q)
t−2

Lδ2

2
,

(
ηt−2L

(
2

αλ

)2/q
)1/(1−2/q)

+ η2
t−2

Lδ2

2


for all t ∈ {1, . . . , T}, and when q ∈ [2, 4[, with S =

⌈
8Lδ2

⌉
, it holds that

ht ≤ max


(
ηt−2

ηS−1

)2

hS ,

(
ηt−2L

(
2

αλ

)2/q
)2

+ η2
t−2

Lδ2

2


for all t ∈ {S, . . . , T}.

Proof. Let t ∈ {1, . . . , T − 1}. Combining (Scaling-UNIF) and (Scaling-EXT), it holds that

〈∇f(xt), xt − pt〉 ≥ ‖xt − pt‖22
(
αλ

2

)2/q

h
1−2/q
t .
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Then, using (Progress-Bound), we obtain ht+1 ≤ ht − ηt‖xt − pt‖22(αλ2 )2/qh
1−2/q
t +

η2tL‖xt−pt‖22
2 . Combined with (9),

we have

ht+1 ≤
(

1− ηt
2

)
ht +

ηt‖xt − pt‖22
2

(
ηtL−

(
αλ

2

)2/q

h
1−2/q
t

)
. (28)

Suppose that q ≥ 4. Then, 2/q ∈ [0, 1/2] and we can apply Lemma 3.5 with A = (αλ2 )2/q , B = L, C = δ2

2 , Ct =
‖xt−pt‖22

2 for all t ∈ {1, . . . , T − 1}, and ψ = 2/q, resulting in

ht ≤ max


(
ηt−2

ηS−1

)1/(1−2/q)

hS ,

(
ηt−2L

(
2

αλ

)2/q
)1/(1−2/q)

+ η2
t−2

Lδ2

2

 ,

which, with S = 1, h1 ≤ Lδ2

2 , and η−1 ≥ η0 = 1 proves the first statement of the lemma.

Next, suppose that q ∈ [2, 4[. Note that 2/q > 1/2. Thus, we require a burn-in phase after which Lemma 3.5 can be
applied. Let S =

⌈
8Lδ2

⌉
≥ 8Lδ2 and t ∈ {S, . . . , T − 1}. By Proposition 3.1, ht ≤ 8Lδ2

S+3 ≤ 1. Since 1− 2/q ≤ 1/2, we

have h1−2/q
t ≥ h1/2

t = h
1−1/2
t . Combined with (28), it holds that

ht+1 ≤
(

1− ηt
2

)
ht +

ηt‖xt − pt‖22
2

(
ηtL−

(
αλ

2

)2/q

h
1−1/2
t

)
.

We then apply Lemma 3.5 with A = (αλ2 )2/q , B = L, C = δ2

2 , Ct =
‖xt−pt‖22

2 for all t ∈ {S, . . . , T − 1}, and ψ = 1/2,
resulting in

ht ≤ max


(
ηt−2

ηS−1

)2

hS ,

(
ηt−2L

(
2

αλ

)2/q
)2

+ η2
t−2

Lδ2

2


for all t ∈ {S, . . . , T}. Note that the lemma holds even if S = 1 since η−1 ≥ η0 = 1.

As we show below, in the setting of Theorem D.2, in case the feasible region is strongly convex, FW with open-loop
step-sizes ηt = `

t+` for ` ∈ N≥4 an even number converges at rates faster than O(1/t2).

Remark D.3 (Open-loop with linear convergence rate). Under the assumptions of Theorem D.2, suppose that C is α-
strongly convex. Since q = 2, (28) simplifies to

ht+1 ≤
(

1− ηt
2

)
ht +

ηt‖xt − pt‖22
2

(
ηtL−

αλ

2

)
.

Analogously to Proposition 3.1, one can prove a convergence rate of O(1/t) for FW with any step-size ηt = `
t+` for

even ` ∈ N≥4 depending on L, δ, and `. Thus, there exists S ∈ N depending only on L,α, δ, λ, and `, such that for all
t ∈ {S, . . . , T − 1}, it holds that

ηt‖xt − pt‖22
2

(
ηtL−

αλ

2

)
≤ 0.

By induction, for even ` ∈ N≥4, it then holds that

ht ≤
hS(S + `/2)(S + `/2 + 1) · · · (S + `− 1)

(t+ `/2)(t+ `/2 + 1) · · · (t+ `− 1)

for all t ∈ {S, . . . , T − 1}, yielding a convergence rate of O(1/t`/2) after an initial burn-in phase with convergence rate
O(1/t) for the first S iterations. Using a similar line of arguments, one can prove that the constant open-loop step-size rule
ηt = αλ

2L admits a linear convergence rate of ht ≤ (1− αλ
4L )th0. for all t ∈ {0, . . . , T}.



Acceleration of Frank-Wolfe Algorithms with Open-Loop Step-Sizes

E NO ASSUMPTIONS ON THE LOCATION OF THE OPTIMUM

In this section, we address the setting when there are no assumptions on the location of the optimum, the feasible region C
is uniformly convex, and the objective function f satisfies (HEB).

Garber and Hazan (2015) showed that strong convexity of the feasible region and the objective function are enough to
modify (Progress-Bound) to prove a O(1/t2) convergence rate of FW with line-search or short-step. These assumptions
were relaxed in Kerdreux et al. (2021b, Theorem 2.10) and convergence rates for FW with line-search or short-step inter-
polating betweenO(1/t) andO(1/t2) were provided. Below, we show that accelerated convergence rates not only hold for
line-search or short-step but also open-loop step-size rules, characterizing a problem setting for which FW with open-loop
step-size rules converges at the same rate as FW with line-search or short-step, up to a constant.

Theorem E.1 (No assumptions on the location of the optimum). For α > 0 and q ≥ 2, let C ⊆ Rd be a compact (α, q)-
uniformly convex set of diameter δ > 0, let f : C → R be a convex and L-smooth function satisfying a (µ, θ)-(HEB) for
some µ > 0 and θ ∈ [0, 1/2] with unique minimizer x∗ ∈ argminx∈C f(x). Let T ∈ N and ηt = 4

t+4 for all t ∈ Z. Then,
for the iterates of Algorithm 1 with open-loop step-size ηt, it holds that

ht ≤ max

η1/(1−2θ/q)
t−2

Lδ2

2
,

(
ηt−2L

(
2µ

α

)2/q
)1/(1−2θ/q)

+ η2
t−2

Lδ2

2


for all t ∈ {1, . . . , T}.

Proof. Let t ∈ {1, . . . , T − 1}. Combining (Scaling-UNIF) and (Scaling-HEB), we obtain 〈∇f(xt), xt − pt〉 ≥ ‖xt −
pt‖22( α2µ )2/qh

1−2θ/q
t . Then, using (Progress-Bound), we obtain ht+1 ≤ ht− ηt‖xt− pt‖22( α2µ )2/qh

1−2θ/q
t +

η2tL‖xt−pt‖22
2 .

Combined with (9), we have

ht+1 ≤
(

1− ηt
2

)
ht +

ηt‖xt − pt‖22
2

(
ηtL−

(
α

2µ

)2/q

h
1−2θ/q
t

)
.

This inequality allows us to apply Lemma 3.5 with A = ( α2µ )2/q , B = L, C = δ2

2 , Ct =
‖xt−pt‖22

2 for all t ∈ {S, . . . , T −
1}, and ψ = 2θ/q ≤ 1/2, resulting in

ht ≤ max


(
ηt−2

ηS−1

)1/(1−2θ/q)

hS ,

(
ηt−2L

(
2µ

α

)2/q
)1/(1−2θ/q)

+ η2
t−2

Lδ2

2


for all t ∈ {S, . . . , T}, which, with S = 1, h1 ≤ Lδ2

2 , and η−1 ≥ η0 = 1 proves the theorem.


