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Abstract

Label differential privacy (label-DP) is a popu-
lar framework for training private ML models on
datasets with public features and sensitive private
labels. Despite its rigorous privacy guarantee, it
has been observed that in practice label-DP does
not preclude label inference attacks (LIAs): Mod-
els trained with label-DP can be evaluated on the
public training features to recover, with high ac-
curacy, the very private labels that it was designed
to protect. In this work, we argue that this phe-
nomenon is not paradoxical and that label-DP is
designed to limit the advantage of an LIA adver-
sary compared to predicting training labels using
the Bayes classifier. At label-DP ε = 0 this advan-
tage is zero, hence the optimal attack is to predict
according to the Bayes classifier and is indepen-
dent of the training labels. Our bound shows the
semantic protection conferred by label-DP and
gives guidelines on how to choose ε to limit the
threat of LIAs below a certain level. Finally, we
empirically demonstrate that our result closely
captures the behavior of simulated attacks on both
synthetic and real world datasets.

1 INTRODUCTION

Differential privacy (DP) (Dwork et al., 2006, 2014) has
become the foundational tool for private learning on sensi-
tive training data. More recently, this framework has been
adopted for training label differentially private (label-DP)
models (Chaudhuri and Hsu, 2011; Ghazi et al., 2021; Es-
maeili et al., 2021), where only the label of a training sample
is considered sensitive and must be protected. One promi-
nent application for label-DP is online advertisement, where
the learning goal is to predict whether a user clicked on an
ad or not, which is a private and sensitive label, given the
product description for the displayed ad.
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Intuitively, label-DP presents an easier task for the learner
compared to DP since the training features are assumed to
be public. Indeed, prior work showed that label-DP learning
algorithms can achieve much higher test accuracy compared
to the best DP counterparts on benchmark datasets. How-
ever, such models also attain a high accuracy on the training
set, which enables an adversary to simply evaluate the model
on the public training features to (correctly) predict the pri-
vate labels (Busa-Fekete et al., 2021)—a method that we
refer to as the simple prediction attack (SPA). The exis-
tence of such a paradoxical adversary raises the question
of whether label-DP is truly a meaningful privacy notion to
strive for.

In this paper, we take a closer look at the connection be-
tween label-DP and label inference attacks (LIAs). We first
show that label-DP is unable to upper bound the accuracy
of LIAs under arbitrarily small values of the privacy pa-
rameter ε. This limitation applies not only to label-DP, but
any model that generalizes will inevitably enable the SPA
attack to attain high label inference accuracy. In the extreme
case where the learning algorithm perfectly generalizes, the
output model becomes the Bayes classifier and the SPA at-
tack’s accuracy is determined entirely by the Bayes error
rate, which is independent of the training labels.

Our analysis suggests that it is unreasonable to equate la-
bel privacy with limiting the accuracy of LIAs in absolute
terms. At a high level, such an argument is in-line with the
design principle of DP as not to protect against statistical
inference (McSherry, 2016; Bun et al., 2021). Instead, we
consider the advantage of an LIA adversary over predict-
ing training labels according to the Bayes classifier. Such
advantage can only have originated from memorizing the
training set and therefore leakage of private labels, and
vice versa an adversary with zero advantage is no better
than the Bayes classifier that is completely independent
of the training labels. Under this analytical framework, we
show that an ε-label-DP learner can reduce this advantage to
1− 2

1+eε . Importantly, our bound shows that at low ε, even
if an label-DP learner achieves high training accuracy, it
does not necessarily reveal any sensitive information about
the training labels—resolving the aforementioned paradox.
Our bound gives semantic meaning to the label-DP ε and
can be used as a guideline for calibrating the value of ε for
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practical use cases.

We empirically validate the advantage upper bound on both
simulated and real world datasets. On the simulated dataset
where the Bayes classifier is known, our upper bound domi-
nates advantage of the SPA attack and is fairly tight at both
small and large ε values. We also evaluate on the Criteo 1TB
Click Logs dataset (Tallis and Yadav, 2018), which closely
resembles the learning setting in common applications of
label-DP where the ground truth label is very noisy and the
marginal label distribution is highly imbalanced. Our result
shows that advantage of the SPA attack becomes negative at
even moderate values of the privacy parameter ε despite the
attack attaining close to 97% label inference accuracy.

2 PRELIMINARIES

Notations. Let X ,Y denote the feature and label space,
respectively, and let D = (X,y) ∈ (X × Y)n be a training
dataset consisting of n training samples. Let D be the un-
derlying data distribution. For i = 1, . . . , n, X−i ∈ Xn−1

denotes the training features except for the ith sample.

Differential privacy (DP) (Dwork et al., 2006, 2014) is a
standard tool for privacy-preserving data analysis that hides
the contribution of any individual training sample to the
mechanism’s output. In the context of machine learning,
this is achieved by randomizing the learner’s output and
requiring that replacing one data point by another does not
lead to a significant change in the output distribution. We
restate its formal definition below.

Definition 1 ((ε, δ)-Differential Privacy). Let ε, δ ∈ R≥0.
A randomized training algorithmM : (X ×Y)n → R with
domain (X × Y)n and rangeR satisfies (ε, δ)-differential
privacy if for any two adjacent datasets D,D′ ∈ (X ×Y)n,
which differ at exactly one data point (x, y), and for any
subset of outputs S ⊆ R, it holds that:

P[M(D) ∈ S] ≤ eε · P[M(D′) ∈ S] + δ.

Label differential privacy (label-DP) (Chaudhuri and Hsu,
2011) is a relaxation of DP where only the privacy of train-
ing labels must be protected. This setting assumes that the
training features are public and/or non-sensitive but the la-
bels are sensitive and are kept secret. Such a scenario arises
naturally in several common applications of ML:

1. In online advertising, ads are selected by an ML model
for display to maximize click-through rate (CTR)—the per-
centage of users that will click on the ad (Richardson et al.,
2007; McMahan et al., 2013; Chapelle et al., 2014). The
model is trained on features such as product and advertiser
description, and a binary label of whether the user clicked
on a displayed ad or not. In this application, features are
publicly accessible and non-sensitive, but the label indicates
user interest and is considered sensitive and private.

2. In recommendation systems, the learning goal is to
suggest products or webpages to a user based on fea-
tures such as user profile, search query, and descriptions
of products/webpages, which are available to the recom-
mender (Ricci et al., 2011). The training labels are historical
data of user rating or click and are considered private.

The existence of a label-only privacy setting motivates the
study of label-DP. Different from DP, the notion of adja-
cency applies only to the label of a single training sample:
D and D′ are identical except for one data point (x, y) ∈ D
and (x, y′) ∈ D′; see below for a formal definition.

Definition 2 ((ε, δ)-Label Differential Privacy). Let ε, δ ∈
R≥0. A randomized training algorithmM taking as input a
dataset is said to be (ε, δ)-label differentially private ((ε, δ)-
label-DP) if for any two training datasets D and D′ that
differ in the label of a single example, and for any subset S
of outputs ofM, it holds that

P(M(D) ∈ S) ≤ eε · P(M(D′) ∈ S) + δ.

When δ = 0, we simply refer toM as ε-label-DP.

Label-DP learning algorithms. The first mechanism for
achieving label differential privacy is randomized response
(RR) (Warner, 1965), which (with a certain probability) ran-
domly samples training labels according to a pre-determined
distribution before releasing them to the learner. Recent
works proposed several label-DP learning algorithms that
are inspired by RR:

1. Label Private Multi-Stage Training (LP-MST; (Ghazi
et al., 2021)) randomly samples training labels yi using
a learned prior sampling distribution P(y|Xi) instead of
the pre-determined distribution in RR. Such a prior could
be learned by observing the top-K predictions using a pre-
trained model and limiting RR to this subset of most likely
labels. An alternative way is to divide the training process
into multiple stages and leverage the model trained in the
previous stage as the prior for predicting the top-K labels.

2. Private Aggregation of Teacher Ensembles with FixMatch
(PATE-FM; (Esmaeili et al., 2021)) uses FixMatch (Sohn
et al., 2020)—a semi-supervised learning algorithm—to
train several teacher models for private aggregation. Each
teacher is trained on all training features together with a
subset of revealed labels, with this subset disjoint among
different teachers. Finally, a student model is trained us-
ing PATE (Papernot et al., 2016) to predict differentially
privately aggregated labels from the teachers’ predictions
given public training features.

3. Additive Laplace Noise Coupled with Bayesian Inference
(ALIBI; (Esmaeili et al., 2021)) releases differentially pri-
vate training labels by perturbing one-hot encodings of the
labels using the Laplace mechanism (Ghosh et al., 2012).
Since post-processing preserves differential privacy (Dwork
et al., 2014), the resulting noisy labels can then be denoised
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using Bayesian inference to maximize the probability of
recovering the clean label.

3 DOES LABEL-DP PREVENT LABEL
INFERENCE ATTACKS?

Relaxing DP to label-DP provided the flexibility for design-
ing more specialized private learning algorithms. These
methods seem to provide excellent trade-offs between pri-
vacy and model utility, as measured by their high test accu-
racy even at very low ε, δ values. In this section, we take a
closer look at the privacy protection offered by label-DP. We
argue that not only is label-DP unable to prevent adversaries
from inferring the training labels under arbitrarily low val-
ues of privacy parameter ε > 0, any model that generalizes
will inevitably fail to do so as well.

3.1 Label Inference Attack against Label-DP

Label Inference Attack in Vertical Federated Learning.
In the setting of Vertical Federated Learning (VFL), one
party owns the features and the other party owns the labels.
The objective is to jointly train a model without leaking
private information about the labels. One way to achieve
this is using split learning, where the party with features
holds the first several layers of the model and the party
with labels holds the remaining layers of the model, and
the exchange of gradients at the split layer is protected by
label-DP. However, Sun et al. (2022) showed that even when
the label-DP ε is as small as 0.5, the party with the features
can still infer the private labels with a prediction AUC of
0.75.

Label Inference Attack in Label-DP Model Training.
We first make the observation that the label-DP guarantee
does not imply that an adversary cannot leverage the model
to infer its training labels. In fact, if the training accuracy
is high, the adversary can trivially evaluate the model on
the public training set and recover its labels (Busa-Fekete
et al., 2021). We refer to this attack as the simple prediction
attack (SPA) and evaluate it on existing label-DP learning
algorithms.

Table 1 shows test accuracy for several label-DP mod-
els trained on MNIST (LeCun et al., 1998) and CI-
FAR10 (Krizhevsky et al., 2009), along with the correspond-
ing SPA attack accuracy, i.e., the model’s training accuracy.
There is a clear trend that these algorithms can achieve very
high test accuracies with strong label-DP guarantee, i.e.,
low privacy parameter ε. For instance, at ε = 0.1, the test
accuracy could reach as high as 97.0 for MNIST and 87.6
for CIFAR10. However, the SPA attack accuracy is almost
identical to the model’s test accuracy, which (paradoxically)
seems to suggest that models leak a tremendous amount of
label information even when trained with stringent label-DP

guarantees.

3.2 Impossibility of Label Protection under Label-DP

Following the above observation, a natural question to ask
is whether the vulnerability of label-DP to the existing label
inference attack is due to an insufficiently strong privacy
guarantee, i.e., ε, δ being not small enough. We give a
definitive negative answer by formalizing label inference
attacks (LIAs) and showing that label-DP cannot guarantee
protection against LIAs even for arbitrarily small values of
ε, δ > 0.

Threat model. The adversary’s goal is to design a label
inference attack algorithm A that infers the training label
of each sample in the training dataset. The output of A is
a vector of inferred labels ŷ ∈ Yn. We assume that the
adversary has access to the following information:

1. The adversary has full knowledge of the output o =
M(X,y), whereM is any releasing algorithm. The out-
put o could be the model when we consider the label-DP
model training. It could also be a sequential of message
passed between parties when label-DP is applied in the
federated learning setting.

2. The adversary has full knowledge of the feature matrix
X ∈ Rn×d.

3. (Optional) The adversary has knowledge of the condi-
tional data distribution P(y|x) of D.

We refer to the threat model with or without the third as-
sumption as the with-prior or priorless setting. The with-
prior setting is not unrealistic: Given access to a separate
dataset for the same learning task, the adversary can train
a shadow model to estimate the conditional probability
P(y|x). Such an approach is commonly used in membership
inference attacks (Shokri et al., 2017).

Expected attack utility. To measure how successful an
LIA is at inferring training labels, we define the attack utility
function u(ŷi,yi) where ŷi ∈ Y is the inferred label and yi

is the ground truth. We assume that u(ŷi,yi) ∈ [0, B] for
any ŷi,yi ∈ Y , e.g., u(ŷi,yi) = 1(ŷi = yi) is the zero-
one accuracy for classification problems, which is bounded
with B = 1. For regression problems with bounded label
range Y ⊆ [−b, b], we can define u(ŷi,yi) = 4b2 − (ŷi −
yi)

2, which is bounded with B = 4b2. We assume B = 1
for simplicity; our results can be easily generalized to any
B > 0.

The expected attack utility (EAU) is defined as the expec-
tation of u(ŷi,yi) over the randomness of the sampling of
labels and in the learning algorithm:

EAU(A,K) = Ey,M

[
1

n

n∑
i=1

u(ŷi,yi)

∣∣∣∣∣X
]
, (1)
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Table 1: Model test accuracy and attack accuracy of the simple prediction attack (SPA) evaluated on label-DP models trained
on MNIST and CIFAR10. SPA attack accuracy is equivalent to training accuracy for classification and is exceptionally high
in most cases. Our evaluation shows that a learning algorithm can offer a very stringent label-DP guarantee of ε = 0.1 while
failing to prevent label inference attacks.

Algorithm MNIST (ε = 1.0) MNIST (ε = 0.1) CIFAR10 (ε = 1.0) CIFAR10 (ε = 0.1)

Test Acc. Attack Acc. Test Acc. Attack Acc. Test Acc. Attack Acc. Test Acc. Attack Acc.

LP-1ST 93.3 93.3 20.8 20.9 61.5 61.9 15.5 15.8
LP-1ST (in-domain prior) 97.1 96.5 97.0 96.2 75.4 75.7 66.3 66.3

LP-1ST (out-of-domain pior) 94.6 93.7 86.2 85.2 89.5 89.8 87.6 86.9
PATE-FM 99.3 99.1 23.6 23.0 92.4 92.1 18.6 18.6

ALIBI 96.3 96.3 21.5 20.8 67.5 69.6 13.6 13.9

where K denotes the adversary’s knowledge: (X, o,P(y|x))
for the with-prior setting and (X, o) for the priorless setting.

Upper bound on expected attack utility. For attack util-
ity functions u that reflect the accuracy of a label inference
attack, one may ask whether label-DP can provide a uniform
upper bound U(ε, δ) such that

EAU(A,K) ≤ U(ε, δ) (2)

holds for any data distribution D, feature matrix X and
attack algorithm A. A trivial upper bound U(ε, δ) ≤ 1
follows from the boundedness of u. Unfortunately, we show
that this bound is in fact optimal for both the with-prior and
the priorless settings.
Theorem 1. There is no functionU(ε, δ) that satisfies Equa-
tion 2 and is strictly less than 1 at some ε, δ > 0.

Proof. We first consider the with-prior setting where
the adversary has access to the conditional distribution
P(y|x). For a classification problem with utility function
u(ŷi,yi) = 1(ŷi = yi), we define the attack Aprior that
predicts training labels according to the Bayes classifier:

Aprior(K) :=
(
argmax

y∈Y
P(yi = y|Xi) : i = 1, · · ·n

)
.

(3)
The expected attack utility for Aprior is:

EAU(Aprior,K) =
1

n

n∑
i=1

max
y∈Y

P(yi = y|Xi). (4)

In particular, when the label y is deterministic given the
feature x, i.e., P(y|x) = 1 for some y ∈ Y , this EAU
evaluates to 1. Note that Aprior does not depend on o and is
thus valid for any ε, δ, hence U(ε, δ) = 1 ∀ε, δ > 0.

For the priorless setting, consider again a classification prob-
lem with the same utility function u. Denote by Apriorless

the simple prediction attack, which predicts labels using
the label-DP trained model f . We will construct a series of
settings (Dn, Xn, fn) such that each fn is (ε, δ)-label-DP
and as n→∞, EAU (Apriorless,K)→ 1, which shows that
U(ε, δ) ≥ 1 ∀ε, δ > 0.

• Data construction: The feature domain X is {−1, 1} and
the label space Y is {−1, 1}. We construct Xn with n =
2r samples where Xn

1 = · · · = Xn
r = 1 and Xn

r+1 =
· · · = Xn

2r = −1. The conditional label distribution
given the feature is P(yn

i = Xn
i |Xn

i ) = 1 for all i.
• Label-DP algorithm for training fn: We apply random-

ized response with P(ỹi = yn
i ) =

eε

eε+1 to privatize the
labels. We then train fn on the privatized labels to maxi-
mize training accuracy, which results in fn being simply
the majority sign function: fn(1) = sign{

∑r
i=1 ỹi} and

fn(−1) = sign
{∑2r

i=r+1 ỹi

}
.

The fact that fn is (ε, 0)-label-DP follows from ỹi being the
randomized response of yi for i = 1, . . . , n and fn being a
post-processing function. The SPA attack’s EAU is equal to
the training accuracy of the model fn, which can be lower
bounded using Hoeffding’s inequality:

E

[
1

n

n∑
i=1

1 [Apriorless(X
n, fn)i = yn

i ]

∣∣∣∣∣Xn

]

=
1

2
· P

(
r∑

i=1

ỹi > 0

)
+

1

2
· P

(
2r∑

i=r+1

ỹi < 0

)

≥ P

(∣∣∣∣∣1r
r∑

i=1

1 + ỹi

2
− eε

eε + 1

∣∣∣∣∣ < eε

eε + 1
− 1

2

)

≥ 1− 2 exp

(
−
(

eε

eε + 1
− 1

2

)2

n

)
.

Taking n→∞ gives the desired result.

Theorem 1 shows that for both the with-prior and priorless
settings, no non-trivial upper bound for EAU exists for any
label-DP privacy parameters ε, δ > 0. It also validates our
rationalization about the experimental result in Table 1 that
failure to prevent the SPA attack is to be expected.
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4 LABEL-DP PROVABLY BOUNDS
ATTACK ADVANTAGE

The impossibility results derived in section 3 suggest that
limiting the EAU of label inference attacks may not be a
reasonable objective for label privacy. In particular, since
the with-prior attack Aprior in Theorem 1 completely disre-
gards the trained model o, it should be treated as a baseline
for measuring the effectiveness of LIAs. Indeed, Aprior gen-
eralizes the Bayes classifier and is optimal among attacks
that are independent of the training labels y by construction.
Hence any attack that achieves an EAU equal to or less than
that ofAprior does not gain any additional information about
the training labels from o. Thus, we refer to

EAU(Aprior,K) =
1

n

n∑
i=1

max
y∈Y

Eyi
[u(y,yi)|Xi]

as the label-independent expected attack utility (L-EAU),
and instead measure the success of a label inference attack
A by defining its advantage:

Adv (A,K) := EAU (A,K)− EAU(Aprior,K). (5)

Next, we show that label-DP can effectively reduce the ad-
vantage of LIAs to close to 0 when its privacy parameters
ε, δ are small. We first prove a distribution-dependent up-
per bound in Theorem 2 that holds for any label-DP output
o and attack algorithm A but depends on the conditional
distribution P(y|x), and then give a universal upper bound
Adv (A,K) ≤ U(ε, δ) in Corollary 1 that only depends
on the label-DP parameters (ε, δ). Proof is given in Ap-
pendix A.

Theorem 2. Assume each label yi is sampled independent
of (y−i, X−i). If o satisfies (ε, δ)-label-DP then for any
attack algorithm A, we have:

Adv (A,K)

≤
(
1− 2

1 + eε
(1− δ)

)
·

(
1

n

n∑
i=1

Eyi|Xi

[
sup
y∈Y

u(y,yi)

])
.

Proof. First note that the adversary’s inferred label vector
ŷ = A(X,M(X,y)) is a random variable that depends on
both the sampling of training labels y and randomness in
the learning algorithmM. Then:

E[u(ŷi,yi)|X,y−i] = Eyi|Xi
[E[u(ŷi,yi)|y, X]] , (6)

where the equality holds by the assumption that yi is in-
dependent of X−i and y−i. For each i = 1, · · · , n, let
B(yi) = supy∈Y u(y,yi) be the maximal attack utility at-
tainable when inferring the ground truth label yi. Consider
an alternative label vector y′ that is identical to y except for
y′i being replaced with some deterministic label value y∗,

and denote by ŷ′ = A(X,M(X,y′)) the adversary’s in-
ferred labels for the model trained on (X,y′). By label-DP,
we have:

E[u(ŷi,yi)|y, X] =

∫ B(yi)

0

P(u(ŷi,yi) > v|y, X) dv

≤
∫ B(yi)

0

P(u(ŷ′i,yi) > v|y, X) dv

+

∫ B(yi)

0

(
1− 2

1 + eε
(1− δ)

)
dv

= E[u (ŷ′i,yi) |y, X]

+

(
1− 2

1 + eε
(1− δ)

)
·B(yi),

where the inequality follows the Remark
A.1 in Kairouz et al. (2015) Substituting
the above inequality into Equation 6 gives:

E[u(ŷi,yi)|X,y−i] ≤ E [u (ŷ′i,yi) |X,y−i]

+

(
1− 2

1 + eε
(1− δ)

)
· Eyi|Xi

[B(yi)]

≤ max
y∈Y

Eyi|Xi
[u(y,yi)]

+

(
1− 2

1 + eε
(1− δ)

)
· Eyi|Xi

[B(yi)] ,

where the last inequality holds by the fact that ŷ′i is inde-
pendent of yi conditioned on X and y−i. Finally, we can
derive our bound for the advantage Adv (A,K):

EAU(A,K)− 1

n

n∑
i=1

max
y∈Y

Eyi
[u(y,yi)|Xi]

=
1

n

n∑
i=1

(
Ey−i

E[u(ŷi,yi)|X,y−i]−max
y∈Y

Eyi
[u(y,yi)|Xi]

)

≤
(
1− 2

1 + eε
(1− δ)

)
·

(
1

n

n∑
i=1

Eyi|Xi

[
sup
y∈Y

u(y,yi)

])
.

Corollary 1. Suppose u(y′, y) ∈ [0, B] for any y′, y ∈ Y
and each label yi is sampled independent of (y−i, X−i). If
o satisfies (ε, δ)-label-DP then for any data distribution D,
any feature matrix X and any attack algorithm A, we have:

Adv (A,K) ≤
(
1− 2

1 + eε
(1− δ)

)
·B.

Interpretation of Theorem 2. We can interpret Theo-
rem 2 by revisiting the example in subsection 3.1. Instead
of bounding the EAU of a label inference attack, Theorem 2
shows that label-DP with low (ε, δ) can upper bound the
advantage to close to 0. This result explains why even with
the strong guarantee of ε-label-DP at ε = 0.1 in Table 1, the
attack utility could still be as high as 80%+: Because both
MNIST and CIFAR10 admit a high L-EAU (i.e., high accu-
racy of the Bayes classifier), LIAs that attain 80%+ EAU
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may not even outperform the label-independent attackAprior,
hence models trained by label-DP algorithms do not leak a
significant amount of information about training labels.

Moreover, we observe that the bound for the advantage,
or equivalently the EAU, is relative to both the label-
DP parameter ε and the underlying distribution. When
1
n

∑n
i=1 Eyi|Xi

[
supy∈Y u(y,yi)

]
is higher, a higher ε is

sufficient to achieve the same level of protection against
LIAs. This interpretation is in-line with the design prin-
ciple of DP, which is meant to limit the difference be-
tween the prior and posterior distributions for the under-
lying data (Dwork et al., 2014; Kasiviswanathan and Smith,
2014). From a practical aspect, one can use Corollary 1 to
calibrate the values of ε and δ for the dataset at hand to limit
the utility of arbitrary label inference attack.

4.1 Label-DP vs. DP

Remarkably, using DP even when only the label is private
can give stronger semantic guarantees against LIAs than the
label-DP guarantee in Theorem 2. This is however not true
under the threat model defined in subsection 3.2 where the
feature matrix X is public, but holds under a weaker threat
model where the feature matrix is non-private but unknown.
This threat model has been considered in Ghazi et al. (2021)
and was implicitly used to motivate the randomized response
mechanism (Warner, 1965).

In essence, with X unknown, the with-prior attack Aprior
is no longer viable. Instead, the optimal attack without
observing the trained model is to guess according to the
marginal distribution of yi for each i, resulting in an EAU
of maxy∈Y Eyi [u(y,yi)], which is provably smaller than
the L-EAU when the feature matrix is known and we denote
it as L-EAUw. For example, when we consider the data
from CIFAR10, the L-EAU is able to attain 80%+ when
feature matrix is known, while L-EAUw is only 10% in the
weaker threat model without the knowledge of the feature
matrix. We define the new advantage corresponding to the
weaker threat model as

Advw (A,Kw) := EAU (A,Kw)− L-EAUw, (7)

where Kw = o denotes the adversary’s knowledge in this
weaker setting.

Due to the lack of protection for the feature matrix, label-
DP is not capable limit this advantage to 0. This is in-
tuitive: with a successful feature (data) reconstruction at-
tack (Fredrikson et al., 2015; Carlini et al., 2019; Zhu et al.,
2019), the adversary will have the knowledge of feature
and hence achieve previous higher L-EAU. Instead, DP in-
cluding the protection of features can successfully limit this
advantage of the weaker threat model into 0. Theorem 3
below gives a precise statement; see Appendix A for proof.
Theorem 3. Assume each data (Xi,yi) is sampled indepen-
dently. If f satisfies (ε, δ)-DP then for any attack algorithm

A, we have:

Advw (A,Kw)

≤
(
1− 2

1 + eε
(1− δ)

)
·

(
1

n

n∑
i=1

Eyi

[
sup
y∈Y

u(y,yi)

])
.

Hence, in the scenario where the adversary does not have
access to the feature matrix X , DP gives a stronger guaran-
tee against label inference attacks and can be preferred over
label-DP especially when L-EAU is relatively large.

5 EXPERIMENTS

We validate Theorem 2 on both a simulated Gaussian mix-
ture dataset (subsection 5.1) and a real world ads click pre-
diction dataset (subsection 5.2) and show that empirical
results obey the theoretically derived upper bound. For full
reproducibility, we release our code at https://github.
com/jinpz/label_differential_privacy/.

5.1 Simulated Dataset with Gaussian Mixture

Data generation. We define a classification setting where
the feature space X = Rd with d = 100 and the label space
Y = {1, . . . ,m} for m = 2 or m = 100 classes. For each
class i, features are sampled from an isotropic Gaussian
N (ei, σ

2Id) where ei is the standard basis vector. We vary
σ ∈ {1, 10, 100} and the resulting data distribution D is the
uniform mixture of the m classes’ distributions.

Model training. To train a private model that satisfies
label-DP, we first draw n = 100 random samples from
the mixture distribution D. Given a target label-DP pri-
vacy parameter ε, the learning algorithm trains a logistic
regressor by generating privatized labels using randomized
response (Warner, 1965) to satisfy ε-label-DP. This process
is repeated multiple times to estimate the EAU of the simple
prediction attack; see the following paragraph for details.

Attack evaluation. We evaluate the simple prediction at-
tack (SPA) using the utility function u(ŷ, y) = 1{ŷ = y}.
To estimate the expected attack utility (EAU), we first fix
a random draw of training features X from the marginal
distribution of D. Given X and the Gaussian mixture pa-
rameters, we can compute the conditional probability of
each y ∈ Y using mixture densities and sample the label
vector y accordingly. This process is repeated T = 1000
times for the same training features to estimate the expec-
tation over y in Equation 1. We find that the sampling of
X does not significantly impact our result. Finally, we can
construct the Bayes classifier by choosing the label y for
each Xi that maximizes the conditional probability P(y|Xi)
and compute L-EAU directly.

https://github.com/jinpz/label_differential_privacy/
https://github.com/jinpz/label_differential_privacy/
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(a) Expected Attack Utility vs. (b) Advantage vs.  

Figure 1: (a) EAU and L-EAU vs. ε on the simulated dataset with m = 2, 100 and σ = 1, 10, 100. EAU decreases with
lower ε (stronger privacy guarantee) and can be lower than L-EAU for moderately low values of ε. (b) Attack advantage and
theoretical upper bound vs. ε. The upper bound dominates the advantage while being fairly tight for the end values ε = 0.1
and ε = 10 for m = 100. The error bar represents standard deviation across T = 1000 different draws of label vector y.

Results. In Figure 1(a), we plot EAU and L-EAU against
ε for the simulated dataset with m = 2, 100 and σ =
1, 10, 100. For both settings, EAU is close to 100% when
ε = 10, and decreasing ε (i.e., stronger privacy guarantee)
leads to smaller EAU values. For m = 2, although EAU
is consistently high even at ε = 0.1, L-EAU is also very
high, hence the attack does not attain a very large advantage
(difference between EAU and L-EAU). For m = 100, L-
EAU is much lower due to the classification problem being
harder, while EAU also drops very quickly as ε decreases.

In Figure 1(b), we plot advantage and the upper bound
in Theorem 2 against ε. As expected, the upper bound
dominates attack advantage in all settings, and both values
decrease monotonically as ε decreases. The upper bound is
tight at the two end values ε = 0.1 and ε = 10 form = 100,
whereas for m = 2 it can be fairly loose. This is because
L-EAU for m = 2 is at least 0.5 and therefore advantage
is always upper bounded by 0.5. Our upper bound could
potentially be improved if the minimum L-EAU value can
be inferred from the task and/or data distribution.

5.2 Criteo Ads Click-Through Rate (CTR) Prediction

To understand the behavior of LIAs and our advantage
bound on real world datasets that closely resemble the us-
age scenarios of label-DP, we conduct experiments on the
Criteo 1TB Click Logs dataset1 (Tallis and Yadav, 2018) for
click-through rate (CTR) prediction.

Dataset description. In CTR prediction, the task is to
predict the percentage of users that will click on the ad given

1https://ailab.criteo.com/download-criteo-1tb-click-logs-
dataset

ad features. The features consist of 13 integer values and
26 categorical features, while the semantic of these features
is undisclosed. The binary label indicates whether a user
clicked on the ad or not. The marginal label distribution is
heavily skewed with approximately 97% of samples having
the label 0, i.e., no click.

The dataset contains more than 4B click log data points
spanning across 24 days of data collection. We subsample
1M data points from the first day’s entries, and take 80% as
the training set, 4% as the validation set and the remaining
16% as the test set. Following the Kaggle competition2 for
this dataset, we evaluate model utility using log loss:

1

|Dtest|
∑

(x,y)∈Dtest

−y · log (f(x))+(y−1) · log (1− f(x)) .

Model training. We implemented gradient-boosted deci-
sion tree (Friedman, 2001) in CatBoost (Dorogush et al.,
2018) as the baseline non-private learning algorithm. We
further adapted LP-MST (Ghazi et al., 2021) and PATE (Pa-
pernot et al., 2016) to this setting as label-DP learning al-
gorithms; see Appendix B for implementation details. For
LP-MST, we considered multiple variants: LP-1ST, LP-1ST
(domain prior), LP-1ST (noise correction) and LP-2ST.

Attack evaluation. Since the dataset is heavily skewed
towards the label 0, simply predicting the all-zero label
vector ŷ can attain an approximately 97% attack accuracy
under the zero-one accuracy utility function. To correct for
this bias, we consider a weighted attack utility function:

u(ŷ, y) :=
1

2py
1{ŷ = y}, (8)

2https://www.kaggle.com/c/criteo-display-ad-challenge

https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset
https://www.kaggle.com/c/criteo-display-ad-challenge
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Table 2: Log loss of state-of-the-art label-DP algorithms under different ε. When ε ≤ 2, none of the label-DP algorithms
outperform the constant prediction baseline, which attains a log loss of 0.135. For LP-1ST (domain prior) at ε ∈ {2, 1, 0.1},
the mechanism heavily relied on the prior and returned label 0 with probability 1 for all training samples, so training did not
yield any meaningful result.

Label-DP Algorithm ε =∞ ε = 8 ε = 4 ε = 2 ε = 1 ε = 0.1

LP-1ST 0.123 0.123 0.129 0.204 0.360 0.651
LP-1ST (domain prior) 0.123 0.123 0.128 - - -

LP-1ST (noise correction) 0.123 0.123 0.126 0.151 0.177 0.646
LP-2ST 0.123 0.123 0.129 0.202 0.346 0.530
PATE 0.130 0.151 0.164 0.194 0.248 0.676

(a) Expected attack utility (EAU) vs. (b) Advantage vs.
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Figure 2: Expected attack utility (EAU) and advantage of the simple prediction attack against label-DP models trained on
the Criteo dataset. L-EAU of 0.676 is estimated using maximum test accuracy achieved on this dataset among all trained
models. Even at ε = 8, the EAU for label-DP models is marginally above L-EAU, hence the corresponding advantage is
only slightly above 0. In (b), we show that Theorem 2 strictly upper bounds attack advantage but there exists a large gap
compared to the computed advantage.

where py is the marginal probability of label y. This
re-weighting has a meaningful interpretation for the
adversary as well: The label 1 represents a user click
and is more valuable to infer compared to the label 0
that represents no click, and hence should be given a
higher utility when predicted correctly. Under this attack
utility, predicting all-0, all-1 or randomly guessing y with
probability py all attain an EAU of 1/2. Finally, we adapt
the SPA attack accordingly to optimize re-weighted utility:

Apriorless(X, f)i = argmax
y∈{0,1}

1

py
· (y · f(Xi) + (1− y) · (1− f(Xi)).

Computing EAU. Since the conditional label distribution
is unknown, we cannot compute EAU or L-EAU directly
as in the simulated dataset experiment in subsection 5.1.
Instead, we use a model’s training accuracy (weighted ac-
cording to Equation 8) as an unbiased estimator for the
EAU of the SPA attack. For L-EAU, any ML model evalu-
ated on the test set gives a valid lower bound, and we pick
the maximum over all models trained on this dataset as an
approximation for L-EAU.

Results. Table 2 shows the model utility of label-DP mod-
els trained with ε ∈ {∞, 8, 4, 2, 1, 0.1}. Since the dataset
is heavily skewed with p0 ≈ 0.97 fraction of samples be-
longing to class 0, the constant predictor f(x) = p0 for all
x achieves a log loss of 0.135. In comparison, the label-
DP algorithms fail to outperform this naive baseline when
ε ≤ 2. Our evaluation suggests that there is much room for
improvement in existing label-DP learning algorithms for
this highly noisy and heavily skewed learning setting.

Next, we plot EAU of the SPA attack along with our esti-
mate of L-EAU in Figure 2(a). The maximum attainable
EAU is 1.0, while both EAU of the SPA attack and the es-
timated L-EAU are not very high, which reflects the noisy
nature of this dataset. Moreover, EAU quickly deteriorates
to below L-EAU when ε = 2, despite the attack accurately
inferring approximately 97% of the training labels by pre-
dicting (nearly) all-zero. Finally, we see in Figure 2(b) that
advantage of these attacks is very low and can be negative
for ε ≤ 2. We also evaluate the upper bound in Theorem 2,
where the quantity Eyi|Xi

[
supy∈Y u(y,yi)

]
= 1 by con-

struction of u (cf. Equation 8). Although this bound again
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dominates the computed advantage, there exists a very large
gap. We suspect this is due to a number of reasons, includ-
ing the SPA attack being sub-optimal or due to looseness
in label-DP accounting. Future work may be able to design
better LIAs that exploit model memorization in other ways
or use tighter label-DP accounting to reduce this gap.

6 DISCUSSION AND CONCLUSION

Busa-Fekete et al. (2021) first noted the fact that even
with the label-DP guarantee, an adversary can still recover
the training labels via the simple prediction attack. Their
Bayesian interpretation of this paradox is that the public
release of features contributed to this privacy loss and that
label-DP cannot mitigate this risk. We offer a different view
and advocate that label leakage in absolute terms should not
be considered a privacy violation. Instead, with the appro-
priate metric of success for the adversary, i.e., advantage,
we showed that label-DP can indeed prevent label inference
attacks. We hope that future work can build upon our analy-
sis to deepen our understanding of the connection between
label-DP and LIAs. Lastly, we do not foresee any negative
societal impacts for our work.

Limitations. Our paper focuses on deriving LIA advan-
tage bounds for (ε, δ)-label-DP. Alternative formulations
of DP such as Rényi-DP (Mironov, 2017) and Gaussian
DP (Dong et al., 2019) offer much tighter privacy account-
ing for composition of mechanisms, and hence it may be
of interest to derive similar bounds under these accounting
frameworks. Moreover, our evaluation on the Criteo dataset
is only a preliminary study. Follow-up work on thoroughly
analyzing label-DP algorithms and studying their limita-
tions on such challenging datasets is warranted for a better
understanding of the privacy-utility trade-offs.
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A Proof of Theorem 3

Theorem 3. Assume each data (Xi,yi) is sampled independently. If f satisfies (ε, δ)-DP then for any attack algorithm A,
we have:

Advw (A,K) ≤
(
1− 2

1 + eε
(1− δ)

)
·

(
1

n

n∑
i=1

Eyi

[
sup
y∈Y

u(y,yi)

])
.

Proof. The proof follows similarly from proof of Theorem 3. First note that the adversary’s inferred label vector ŷ =
A(M(X,y)) is a random variable that depends on both the sampling of training labels y and randomness in the learning
algorithmM. Then:

E[u(ŷi,yi)|X−i,y−i] = Eyi,Xi
[E[u(ŷi,yi)|y, X]] , (9)

where the equality holds by the assumption that yi is independent of X−i and y−i. By DP, we have:

E[u(ŷi,yi)|y, X] =

∫ B(yi)

0

P(u(ŷi,yi) > v|y, X) dv

≤
∫ B(yi)

0

(
P(u(ŷ′i,yi) > v|y, X) +

(
1− 2

1 + eε
(1− δ)

))
dv

= E[u (ŷ′i,yi) |y, X] +

(
1− 2

1 + eε
(1− δ)

)
·B(yi),

where the inequality once again follows the Remark A.1 in Kairouz et al. (2015). Substituting the above inequality into
Equation 9 gives:

E[u(ŷi,yi)|X−i,y−i] ≤ E [u (ŷ′i,yi) |X−i,y−i] +
(
1− 2

1 + eε
(1− δ)

)
· Eyi,Xi [B(yi)]

≤ max
y∈Y

Eyi,Xi
[u(y,yi)] +

(
1− 2

1 + eε
(1− δ)

)
· Eyi,Xi

[B(yi)] ,

where the last inequality holds by the fact that ŷ′i is independent of yi conditioned on X−i and y−i. Finally, we can derive
our bound for the advantage Adv (A,K):

EAU(A,K)− 1

n

n∑
i=1

max
y∈Y

Eyi
[u(y,yi)] =

1

n

n∑
i=1

(
Ey−i

E[u(ŷi,yi)|X−i,y−i]−max
y∈Y

Eyi
[u(y,yi)]

)

≤
(
1− 2

1 + eε
(1− δ)

)
·

(
1

n

n∑
i=1

Eyi

[
sup
y∈Y

u(y,yi)

])
.

B Experiment Details

The implementation details of label-DP algorithms for Criteo CTR prediction dataset are listed as below.

1. LP-1ST (RR): LP-1ST is a one-stage version of LP-MST. Notice that it is equivalent to Randomized Response
(RR) Warner (1965), which flips each training label to other labels uniformly to satisfy the label-DP.

2. LP-1ST (domain prior): We follow the Algorithm 4 in Ghazi et al. (2021) to compute the prior label distribution for each
data and feed these prior distributions to LP-1ST. We set the number of clusters as 100. Before the clustering, we encode
all categorical features into one-hot representations and normalize integer features into the range [0, 1].

3. LP-1ST (noise correction): LP-1ST injects uniform noise to the training labels before the training of gradient boost.
We can additionally adapt a post-training noise correction method in Zhang et al. (2021) for LP-1ST to achieve better
performance.

4. LP-2ST: LP-2ST is the two-stage version of LP-MST.
5. PATE: We make two adaptions for the original PATE to keep the information of those minority labels of 1:
• When a trained teacher predicts the label for a data point, instead of outputting the label that has maximum probability

score, we sample a label from the output probability vector.
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• When we aggregate the prediction from each teacher for student’s training, instead of outputting the label with
maximum count in the noisy histogram of teacher’s predictions, we again sample a label from the probability,
normalized from the noisy prediction histogram.

Without the above two adaptions, as we empirically verified, all aggregated labels would be 0 and the student model
would be meaningless. Moreover, we perform data-independent privacy cost accounting following Papernot et al. (2016)
and obtain different ε by varying number of queries with fixed noise level.
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