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Abstract

Classical change detection algorithms typically
require modeling pre-change and post-change
distributions. The calculations may not be fea-
sible for various machine learning models be-
cause of the complexity of computing the parti-
tion functions and normalized distributions. Ad-
ditionally, these methods may suffer from a lack
of robustness to model mismatch and noise. In
this paper, we develop a new variant of the clas-
sical Cumulative Sum (CUSUM) change detec-
tion, namely Score-based CUSUM (SCUSUM),
based on Fisher divergence and the Hyvärinen
score. Our method allows the applications of
the quickest change detection for unnormalized
distributions. We provide a theoretical analysis
of the detection delay given the constraints on
false alarms. We prove the asymptotic optimal-
ity of the proposed method in some particular
cases. We also provide numerical experiments
to demonstrate our method’s computation, per-
formance, and robustness advantages. 1

1 INTRODUCTION

Determining abrupt changes in the underlying distributions
of online data streams as quickly as possible is an im-
portant problem commonly encountered in many appli-
cations. These algorithms typically rely on various pre-
change and post-change data statistics, e.g., cumulative
means. A false alarm occurs when a change has not hap-
pened but is declared by the change detection algorithm.
However, reducing false alarms too strenuously can make
a longer wait time between a change event and the time
that a change is declared (often defined as the detection

1Our code is available at this URL.
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delay). A good algorithm provides a good balance be-
tween the false alarm probability and detection delay. The
performance of the detection algorithm typically depends
on the change point (Veeravalli and Banerjee, 2014). In
this light, for a given algorithm, we are interested in the
minimax objectives that evaluate the trade-off between the
worst conditional detection delay and the probability of a
false alarm (Pollak, 1985).

Unfortunately, most state-of-the-art methods require full
knowledge of pre- and post-change distributions. This
is not available in many modern machine learning ap-
plications when the data-generating distributions must be
modeled using the available data. These models may be
high-dimensional and, in some cases, may not lend them-
selves to explicit distributions. In some cases, such as
energy-based models (LeCun et al., 2006), graphical mod-
els (Koller and Friedman, 2009), and score-based deep gen-
erative models (Song et al., 2020), the models are very ex-
pressive. They may be explicit to a normalization factor
but computationally cumbersome to normalize. The like-
lihood of unnormalized models can be approximated by
Monte Carlo-based methods (e.g., (Hinton, 2002) and the
references therein). However, the performance of change
detection may suffer from the underlying approximation
errors. In particular, Chen and Zhang (2015) showed that
the likelihood-based change detection algorithms for mul-
tivariate data are extremely sensitive through numerical
simulations. For image datasets, Nalisnick et al. (2018)
showed that the likelihood, learned from deep generative
models (such as VAE-based or flow-based deep generative
models), is not robust in the detection of distribution drifts.

This motivates our research in this paper, where we pro-
vide an online change detection scheme that one can
use with unnormalized distributions. We are motivated
by Hyvärinen and Dayan (2005), who established an empir-
ical estimation procedure for unnormalized models. This is
also known as score matching and can be used as a sur-
rogate for maximum likelihood estimation (MLE). Score
matching has been extended successfully to discrete (Lyu,
2012), non-parametric (Sriperumbudur et al., 2017), direc-
tional (Mardia et al., 2016) distribution estimations, and
deep generative models Song et al. (2020). To present
our approach, we first review the classic CUSUM detec-
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tion rule and develop an approach that replaces the nega-
tive log-likelihood terms in CUSUM with a multiple of the
Hyvärinen score. We then mathematically analyze the new
Score-based CUSUM (SCUSUM) algorithm. We summa-
rize the main contributions of this work below.

• We propose SCUSUM, a new quickest change detec-
tion algorithm that applies to unnormalized models for
pre- and post-change distributions.

• We provide a theoretical analysis of the performance
of SCUSUM using Pollak’s minimax objective (Pol-
lak, 1985). Assume that the outcomes before (respec-
tively after) the change point are drawn independent
and identically distributed (i.i.d.) according to pre-
change (respectively post-change) distribution. We
prove that under no change assumption, the expected
running length increases exponentially as a function
of the stopping threshold (Theorem 3). Moreover, if
a change occurs, we prove that the worst-case detec-
tion delay is a linear function of the stopping threshold
(Theorem 4).

• We conduct extensive numerical experiments on
synthetic data to demonstrate the performance of
SCUSUM and compare it with the classical detection
methods CUSUM (Page, 1955), Scan B-statistic (Li
et al., 2019), and CALM-MMD (Cobb et al., 2022).
Our method performs competitively with CUSUM in
terms of empirical detection delay with respect to the
expected run length to false alarms. SCUSUM outper-
forms Scan B-statistic and CALM-MMD in all non-
Gaussian cases. Our experiments further illustrate the
computational advantage of unnormalized models of
SCUSUM over CUSUM.

2 RELATED WORK

Classical developments in the quickest change detection
assumed those pre- and post-change distributions are ex-
plicitly known. In this case, if the outcomes before (re-
spectively after) the change point are drawn i.i.d. ac-
cording to pre-change (respectively post-change) distribu-
tion, Moustakides (1986) proved that the log-likelihood
based CUSUM (described below) provides the optimal
trade-off between worst-case detection delay and false
alarm probability in the sense of Lorden (1971). Relax-
ing the independence assumption, Lai (1998) developed
a window-limited generalized likelihood-based CUSUM
and proved its asymptotic optimality in the sense of Pol-
lak (1985). Another state-of-the-art likelihood-based ap-
proach is the Shiryaev–Roberts (SR) procedure and its ex-
tensions (Shiryaev, 1963; Roberts, 1966). These have been
studied in both Bayesian and non-Bayesian settings (Pol-
lak, 1985; Moustakides et al., 2011; Tartakovsky et al.,
2012) and be optimal in a sense defined by Polunchenko

and Tartakovsky (2010). For a more detailed discus-
sion of the state-of-the-art theoretical results in this clas-
sical setting, we refer the reader to (Polunchenko and Tar-
takovsky, 2012; Veeravalli and Banerjee, 2014) and refer-
ences therein.

Numerous recent advances have been made in the field
(see Xie et al., 2021, and the references therein). For
high-dimensional data streams, subspace dynamics has
been investigated to change detection (Kawahara et al.,
2007; Jiao et al., 2018; Xie et al., 2020; Alanqary et al.,
2021). In contrast, Kernel-based nonparametric methods
(Harchaoui et al., 2008; Li et al., 2015, 2019) have been
proposed that employ higher-dimensional feature spaces.
Other advances include model-free change detection meth-
ods such as graph-based (Sharpnack et al., 2013; Chen and
Zhang, 2015), nearest neighbors based (Banerjee et al.,
2018; Chen, 2019), and distance-based (Padilla et al., 2019;
Cheng et al., 2020) methods. Most of these methods make
less stringent assumptions on the pre- and post-change dis-
tributions than the classical approaches. In contrast, they
do not lend themselves easily to theoretical analysis.

New applications of sequential change-point detection have
also emerged beyond classical domains. A noteworthy ex-
ample is in the field of continual learning or life-cycle mod-
eling (Klaise et al., 2020). In this domain, attention has
been paid to joint online training from streaming data and
detecting changes in high-dimensional scenarios. For over-
parameterized models (such as deep neural networks), Tit-
sias et al. (2022) proposed an online change detection algo-
rithm based on sequential learning (such as the deep neural
network training process). Other likelihood-inspired em-
pirical methods such as those proposed (Ren et al., 2019;
Xiao et al., 2020; Kim et al., 2021) for out-of-distribution
detection (OOD) have been developed for offline settings.

3 BACKGROUND

3.1 Proper Scoring Rules

Let X be a random variable with values in X ⊆ Rd, and let
P be a family of distributions on X . Let P and Q ∈ P de-
note the true data-generating distribution and a postulated
distribution, and let p and q respectively denote their corre-
sponding probability density functions (PDFs). Dawid and
Musio (2014) introduced proper scoring rules as a unified
framework to measure the quality of postulated models.

Definition 1 (Proper Scoring Rule). A scoring
rule (Dawid, 2007; Parry et al., 2012; Dawid and Musio,
2014) is a function (X,Q) 7→ S(X,Q) that measures the
quality of Q for modeling data X . It is said to be proper
if for all P ∈ P , the expected score EX∼PS(X,Q) is
minimized at Q = P over all Q ∈ P . Moreover, S is
strictly proper with respect to P , if for any Q ∈ P and
Q ̸= P , EX∼P [S(X,Q)] > EX∼P [S(X,P )].
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The logarithmic scoring rule is a well-known and widely
applied example of a strictly proper scoring rule.

Definition 2 (Logarithmic Scoring Rule). The logarithmic
scoring rule (also called the log score) is

(X,Q) 7→ SL(X,Q)
∆
= − log q(X),

where q is the PDF of Q.

Minimizing the log score is equivalent to maximum like-
lihood estimation (MLE) and minimizing the associated
Kullback-Leibler (KL) divergence

DKL(P∥Q)
∆
= EX∼P [log p(X)− log q(X)] .

Since DKL(P∥Q) > 0 for any Q ̸= P , the log score is
strictly proper.

3.2 Fisher divergence and Hyvärinen score

Like before, we consider a family of distributions P . How-
ever, we assume that any distribution Q ∈ P with the PDF
q(x) is potentially known only up to a normalizing con-
stant. In other words, instead of q(x), we are given q̃(x)
with

q(x) =
q̃(x)∫

x∈X q̃(x)dx
.

In many cases, the computation of the denominator (also
known as the normalizing factor or the partition function)
may be intractable. In fact, the number of points required
for approximating the integral in the above may grow ex-
ponentially as a function of the dimension of the X .

In addressing this issue, Hyvärinen and Dayan (2005) pro-
posed a scale-invariant proper scoring function, referred to
as the Hyvärinen score, which is closely connected to the
Fisher divergence.

Definition 3 (Hyvärinen Score). The Hyvärinen score
(Hyvärinen and Dayan, 2005) is a mapping (X,Q) 7→
SH(X,Q) given by

SH(X,Q)
∆
=

1

2
∥∇X log q(X)∥22 +∆X log q(X), (1)

where ∇X , and ∆X =
∑d

i=1
∂2

∂x2
i

respectively denote
the gradient and the Laplacian operators acting on X =
(x1, · · · , xd)

⊤.

It is easy to see that the Hyvärinen score remains invariant
if q̃ is used instead of q in Equation (1).

Under some mild regularity conditions on p and q,
Hyvärinen and Dayan (2005) showed that

DF(P∥Q)
∆
= EX∼P

[
∥∇x log p(X)−∇x log q(X)∥22

]
= EX∼P

[
1

2
∥∇x log p(X)∥22 + SH(X,Q)

]
,

where DF(P∥Q) is the classical Fisher Divergence from
the distribution P to Q. Clearly, the invariance of the
Hyvärinen score is inherited from the invariance of Fisher
divergence with respect to the normalization factors. Addi-
tionally, it is easy to verify that DF(P∥Q) > 0 for Q ̸= P .
It follows that the Hyvärinen score is strictly proper.

4 SCORE-BASED QUICKEST CHANGE
DETECTION

4.1 Problem Background

Let {Xn}n≥1 denote a sequence of independent random
observations defined on the probability space (Ω,F , Pν).
Let Fn be the σ−algebra generated by random variables
{Xn}n≥1 and F = σ(∪n≥1Fn), the σ−algebra generated
by the union of sub-σ-algebras. We treat ν ≥ 1 as the
time when an abrupt change has happened. Under Pν , the
observations X1, X2, . . . , Xν−1 are i.i.d. according to a
distribution P∞, and Xν , Xν+1, . . . are i.i.d. according to
another distribution P1. We intuitively consider ν as the
change point, P∞ as the pre-change distribution, and P1

as the post-change distribution. We write ν = ∞ when
no change ever happens, and ν = 1 when all observations
follow P1. In the rest of the paper, we refer to the proba-
bility measure of the entire sequence {Xn}n≥1 also by P∞
when no change occurs. Similarly we refer to the law of
{Xn}n≥1 also by P1 when ν = 1. The differences will
always be clear from the context.

We focus on the classical scenario where the pre- and
post-change distributions, P∞ and P1, are known, and the
change point ν is unknown but deterministic. We use Eν

and Varν respectively to denote the expectation and the
variance operator with the measure Pν .

Any change detection scheme defines a stopping rule T
with respect to the data stream {Xn}n≥1. Clearly, for any
n,

{T ≤ n} ∈ Fn.

If T ≥ ν, we have made a delayed detection; otherwise a
false alarm has happened. Our goal is to find a stopping
time T to optimize the trade-off between well-defined met-
rics on delay and false alarm. We consider two minimax
problem formulations to find the best stopping rule.

Lorden (1971) defined the “double” worst averaged detec-
tion delay (WADD) as

LWADD(T )
∆
= sup

ν≥1
ess supEν [(T − ν + 1)+|Fν ], (2)

where (z)+
∆
= max(z, 0) for any z ∈ R. This leads to the

minimax optimization problem

minimize LWADD(T ) subject to E∞[T ] ≥ γ, (3)
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overall stopping rules T (Lorden, 1971). Under the i.i.d as-
sumptions for pre-change (respectively post-change) out-
comes, Lorden (1971) showed that the likelihood-based
CUSUM (Page, 1955) is an asymptotically optimal solu-
tion to the above optimization problem as γ → ∞. Mous-
takides (1986) later proved that CUSUM provides an opti-
mal solution to the above problem for any γ > 0.

Pollak (1985) proposed an alternative measure of detec-
tion delay. It replaces the double maximization of Lor-
den’s problem with a single maximization over all possible
ν ≥ 1. We define the worst conditional averaged detection
delay (CADD) by

LCADD(T )
∆
= sup

ν≥1
Eν [T − ν|T ≥ ν]. (4)

Then, Pollak (1985) formulated an optimal stopping rule
as a solution to

minimize LCADD(T ) subject to E∞[T ] ≥ γ, (5)

overall possible stopping rules T . When γ → ∞, the
Shiryaev-Roberts-Pollak procedure has been shown to be
asymptotically optimal (Pollak, 1985) to the above prob-
lem. However, for any fixed γ > 0, the optimal point to
Problem (5) remains unsolved. The worst CADD is re-
ferred to as Pollak’s optimality criterion or Pollak’s met-
ric in the following. It is worth noting that LWADD(T ) ≥
LCADD(T ) for any stopping rule T .

4.2 The SCUSUM Algorithm

In this section, we first review the classic CUSUM
rule and subsequently present our Score-based CUSUM
(SCUSUM) algorithm. Following the scheme of CUSUM,
the proposed method can be in a recursive form, which is
not too demanding in computational and memory require-
ments for online implementation.

Given the data stream {Xn}n≥1, the log score-based
CUSUM rule is defined by,

TCUSUM
∆
= inf

{
n ≥ 1 : max

1≤k≤n

n∑
i=k

log
p1(Xi)

p∞(Xi)
≥ τ

}
,

where τ > 0 is referred to as the stopping threshold, and
the infimum of the empty set is defined to be +∞. The
value of this threshold is clearly related to the false alarm
probability. It is known (Lai, 1998) that TCUSUM can be writ-
ten as

TCUSUM = inf{n ≥ 1 : Λ(n) ≥ τ}.

Here, Λ(n) can be computed using the recursion

Λ(0) = 0,

Λ(n)
∆
=

(
Λ(n− 1) + log

p1(Xn)

p∞(Xn)

)+

,∀n ≥ 1. (6)

It leads to a computationally convenient stopping scheme.

The results of (Lorden, 1971; Moustakides, 1986; Pollak,
1985) demonstrate that for any value of stopping thresh-
old, the log-score based CUSUM achieves the optimality
in solving Problem (3). It is also asymptotically optimal
for Problem (5), e.g., as γ → ∞,

LCADD(TCUSUM) ∼
log γ

DKL(P1∥P∞)
. (7)

Here, for two functions c 7→ g(c) and c 7→ h(c), the
notation g(c) ∼ h(c) as c → c0 indicates that g(c) =
h(c)(1 + o(1)) as c → c0.

Recall from Section 3 that the Hyvärinen score function
is a surrogate of the log score function, which applies to
unnormalized models. Motivated by this analogy, we con-
sider replacing the log scores with the Hyvärinen scores in
the classical CUSUM scheme. Next, we give the defini-
tion of the SCUSUM detection score and then explain the
detection algorithm.

Let X represent a generic random variable. We define the
instantaneous SCUSUM score function X 7→ zλ(X) by

zλ(X)
∆
= λ

(
SH(X,P∞)− SH(X,P1)

)
, (8)

where λ > 0 is a multiplier, SH(X,P∞) and SH(X,P1) are
respectively the Hyvärinen score functions of pre-change
and post-change distributions. In Section 4.3, we will show
that the multiplier λ needs to be chosen appropriately in
the theoretical analysis of SCUSUM. Since λ needs to be
pre-determined, we refer to it as a hyperparameter. In Sec-
tion 5, we will discuss how to determine the value of λ for
SCUSUM in practice.

Our proposed stopping rule is given by

TSCUSUM
∆
= inf

{
n ≥ 1 : max

1≤k≤n

n∑
i=k

zλ(Xi) ≥ τ

}
, (9)

where τ > 0 is a pre-selected stopping threshold whose
value may be used to control the false alarm probability.
As the stopping scheme in CUSUM, the stopping rule of
SCUSUM can be written as

TSCUSUM = inf{n ≥ 1 : Z(n) ≥ τ},

where Z(n), referred to as the SCUSUM detection score,
can be computed recursively by

Z(0) = 0,

Z(n)
∆
= (Z(n− 1) + zλ(Xn))

+, ∀n ≥ 1.

The SCUSUM algorithm is summarized in Algorithm 1.
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Algorithm 1: SCUSUM Detection Algorithm
Input: The Hyvarinen score functions SH(·, P∞) and

SH(·, P1) of pre-change and post-change
distributions, respectively.

Data: m previous observations X[−m+1,0] and the
online data stream {X1, X2, . . .}

Initialization:
Set the current time k = 0, hyperparameter λ > 0,

stopping threshold τ > 0, and detection score
Z(0) = 0

while Z(k) < τ do
k = k + 1
Update zλ(Xk) = λ(SH(Xk, P∞)− SH(Xk, P1))
Update Z(k) = max(Z(k − 1) + zλ(Xk), 0)

Record the current time k as the stopping time T̂
Locate the change point by ν̂ = argmin1≤i≤k Z(i)

Output: T̂ and ν̂

4.3 Theoretical Analysis

Using the same notations and setting of Subsection 4.1, we
next provide a theoretical analysis of SCUSUM. The proofs
of all the results are provided in the supplementary mate-
rial. We first formalize an intuitive justification for the ef-
fectiveness of SCUSUM below.

Lemma 1 (Positive and Negative Drifts). Consider the in-
stantaneous SCUSUM score function X 7→ zλ(X) as de-
fined in Equation (8). Then,

E∞ [zλ(X)] = −λDF(P∞∥P1) < 0, and

E1 [zλ(X)] = λDF(P1∥P∞) > 0.

Lemma 1 shows that, prior to the change, the expected
mean of instantaneous SCUSUM score zλ(X) is negative
under the measurement of random observations. Conse-
quently, the accumulated score has a negative drift at each
time n prior to the change. Thus, the SCUSUM detec-
tion score Z(n) is pushed toward zero before the change
point. This intuitively makes a false alarm unlikely. In con-
trast, after the change, the instantaneous score has a posi-
tive mean, and the accumulated score has a positive drift.
Thus, the SCUSUM detection score will increase toward
infinity and leads to a change detection event.

Next, we discuss the values of the multiplier λ in the the-
oretical analysis. Obviously, with a fixed stopping thresh-
old, a larger value of λ results in a smaller detection de-
lay because the increment of the SCUSUM detection score
is large, and the threshold can be easily reached. How-
ever, a larger value of λ also causes SCUSUM to stop pre-
maturely when no change occurs, leading to a larger false
alarm probability. Hence, except in the degenerate case,
where P∞(SH(X,P1) − SH(X,P∞) ≤ 0) = 1, the value

of λ cannot be arbitrarily large. It needs to satisfy the fol-
lowing key condition:

E∞[exp(zλ(X))] ≤ 1. (10)

We will present a technical lemma that guarantees the ex-
istence of such a λ to satisfy Inequality (10).

Lemma 2 (Existence of appropriate λ). There exists λ > 0
such that Inequality (10) holds. Moreover, either 1) there
exists λ⋆ ∈ (0,∞) such that the equality of (10) holds, or
2) for all λ > 0, the inequality of (10) is strict (This case is
shown to be pathological in the supplementary material).

From now on, we consider a fix λ > 0 that satisfies In-
equality (10) to present our core results. In practice, it is
possible to use m past samples X[−m+1,0] to determine the
value of λ. In particular, λ can be chosen as the positive
root of the function λ → h̃(λ) given by

h̃(λ)
∆
=

1

m

m∑
i=1

[exp(zλ(Xi−m))]− 1. (11)

By Lemma 2 and its related technical discussions, the
above equation has a root greater than zero with a high
probability if m is sufficiently large. In the case that λ is
not chosen properly, the algorithm remains implementable
but the performance of detection delay is not guaranteed.
We discuss this situation further in Remark 1.

Theorem 3. Consider the stopping rule TSCUSUM defined in
Equation (9). Then, for any τ > 0,

E∞[TSCUSUM] ≥ eτ . (12)

E∞[TSCUSUM] is also referred to as the Average Run Length
(ARL) (Page, 1955). Theorem 3 implies that the ARL in-
creases at least exponentially as the stopping threshold in-
creases. The following theorem gives the asymptotic per-
formance of SCUSUM in terms of the detection delay un-
der the control of the ARL.

Theorem 4. Subject to E∞[TSCUSUM] ≥ γ > 0, the stop-
ping rule TSCUSUM satisfies

LWADD(TSCUSUM) ∼ LCADD(TSCUSUM)

∼ E1[TSCUSUM]

∼ log γ

λDF(P1∥P∞)
, (13)

as γ → ∞.

The value E1[TSCUSUM] is also referred to as the Expected
Detection Delay (EDD) in the literature. Theorems 3 and 4
imply that the EDD increases linearly as the stop threshold
τ increases subject to a constraint on ARL.

Remark 1. It is worth noting that although results of our
core results hold for a pre-selected λ that satisfied the In-
equality (10), the effect of choosing any other λ′ amounts
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to the scaling of all the increments of SCUSUM by a con-
stant factor of λ′/λ. This means that all of these results still
hold adjusted for this scale factor. For instance, the result
of Theorem 3 can be modified to be written as

E∞[TSCUSUM] ≥ exp

{
λτ

max(λ, λ′)

}
,

for any λ′ > 0. It is easy to see that this scaling will change
the statement of Theorem 4 accordingly to

E1[TSCUSUM] ∼
max(λ, λ′)

λ

log γ

λ′DF(P1||P∞)
,

as γ → ∞. In order to have the strongest results in Theo-
rems 3 and 4, we must choose λ as close to λ∗ as possible.

In the end, we consider a special case where pre- and post-
change distributions are both multivariate Normal distribu-
tions. In this case, SCUSUM attains the asymptotic opti-
mality in the sense of Pollak’s and Lorden’s metrics.

Proposition 5 (Multivariate Normal Pre- and Post-change
Distributions). Assume that X1, · · · , Xν−1 ∼ N(θ0,Σ),
and Xν , Xν+1, · · · ∼ N(θ1,Σ). Suppose θ0,θ1 ∈ Θ ⊂
Rd and Σ ∈ Rd×d are known, and Σ = σcId where the
scalar σc > 0. Then the stopping rule TSCUSUM achieves
the asymptotic optimality of Problem (2) and Problem (5)
when γ → ∞, namely, as γ → ∞,

LWADD(TSCUSUM) ∼ LCADD(TSCUSUM)

∼ log γ

DKL(N(θ1,Σ)∥N(θ0,Σ))
, (14)

under the constraint that E∞[TSCUSUM] ≥ γ > 0.

Remark 2. We note that in the above Gaussian case (where
the densities are normalized), whenever

λDF(P1||P∞) < DKL(P1||P∞),

the performance of CUSUM is superior to that of
SCUSUM. However, CUSUM is not readily applicable
to unnormalized models. This is a small penalty that
SCUSUM pays in order to unleash its computational ad-
vantages.

5 EXPERIMENTS

In this section, we conduct extensive numerical experi-
ments on synthetic data to compare the performance of
our method with various change point detection algorithms.
We repeat each experiment for 100 trials. Further details of
the experimental setup and results can be found in the sup-
plementary material.

5.1 Experimental Setup

Dataset We simulate synthetic data streams from multi-
variate Normal distribution (MVN), a subfamily (Yu et al.,

2016) of the exponential family (EXP), and the Gauss-
Bernoulli Restricted Boltzmann Machine (GB-RBM) (Le-
Cun et al., 2006). For the exponential family, we use
the Hamiltonian Monte Carlo (HMC) to generate samples
from the unnormalized models. We compute the normaliz-
ing constant by numerical integration to perform CUSUM
based on log-likelihood. It is worth noting that this calcu-
lation is intractable when the dimension of EXP becomes
large. The samples of GB-RBM are drawn using Gibbs
sampling with 1000 iterations to ensure convergence.

Baseline We evaluate the performance in terms of empir-
ical ARL and empirical CADD, where ARL and CADD are
given by E∞[T ] and Eν [T − ν|T ≥ ν], respectively. When
there is no change, we expect a large value of empirical
ARL; when a change occurs, we expect a small value of
empirical CADD. All the results of empirical CADD and
empirical ARL are reported in a log scale. We do not pro-
vide the results of CUSUM for GB-RBM because the exact
log-likelihood of GB-RBM is hard to compute. In all ex-
periments, we set the change point as ν = 500. To make
sure the data stream is long enough for detection schemes,
we fixed the total length as 10000. The values of ARL
range from 500 to 20000. Their theoretical properties have
been discussed in Section 4.

We compare the performance of SCUSUM with three other
methods:

• CUSUM (Page, 1955). We consider the log score-
based CUSUM as a baseline. The details were dis-
cussed in Subsection 4.2.

• Scan B-statistic (Li et al., 2015, 2019). The
Scan B-statistic algorithm was motivated by the B-
statistic (Zaremba et al., 2013). It is defined by the
kernelized maximum mean discrepancy (MMD) be-
tween sliding bootstrap blocks of the data stream. The
Scan B-statistic was proved to attain the asymptotic
ARL at O(eτ

2

) (Li et al., 2015, Theorem 4), while the
theoretical analysis of CADD was missing.

• CALM-MMD (Cobb et al., 2022). Cobb et al. (2022)
proposed a dynamic threshold-selecting scheme,
named CALM, which is applicable to most two-
sample tests-like change detection methods. The
CALM-MMD algorithm is returned by applying the
CALM procedure to the kernelized two-sample MMD
statistic (Gretton et al., 2012).

For CUSUM and SCUSUM, we follow Algorithm 1. For
a fixed ARL, the stopping threshold is selected by τ =
log(ARL) according to Equation (7). The choice of such
a λ has been discussed in Subsection 4.2.

We implement the Scan B-statistic and CALM-MMD algo-
rithms with the code released by Cobb et al. (2022). Both of
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Figure 1: The results of Detection Score (before and after change) with MVN (ϵµ = 0.3) and ARL= 2000.

these are kernelized MMD-based methods where the Gaus-
sian radial basis function (RBF) kernel, e.g. k(x, x′) =
exp(− 1

ϕ2 ∥x, x′∥22), is employed. The width of RBF is cho-
sen by using the median heuristic, e.g., ϕ is taken to be
the median of the pairwise distances between two samples.
Their stopping thresholds are selected by past observations
empirically, which can lead to significant miscalibration in
practice, as shown by Cobb et al. (2022) and later in our
numerical results.

Other than the evaluation of the trade-off between ARL
and CADD, we also investigate the performance of quick-
est change detection in cases of slight changes, meaning
that the pre- and post-change distributions are very close to
each other. The closeness is measured by the magnitude of
parameter drifts. Here, we run experiments by fixing the
pre-change distribution and constructing the post-change
distribution by perturbing the parameters of the pre-change
distribution. For different families of distributions, we con-
sider different magnitudes of perturbations.

5.2 Experimental Results

Detection Score We illustrate instantaneous detection
scores at time steps in Figure 1. We control ARL to be
fixed as 2000. The data streams are generated from bivari-
ate Gaussian (MVN-ϵµ) with a mean drift ϵµ = 0.3 at time
t = 500. We report the averaged detection scores, marked
as solid lines, and standard errors, marked as shadow in-
tervals. As presented in Figure 1, at the change point,
both CUSUM and SCUSUM react immediately after the
change occurs. In contrast, the detection scores of Scan
B-statistic and CALM-MMD swing between the range of
values 0 and 1. In this case, the two MMD-based meth-
ods fail in detection. In particular, the detection scores of
CUSUM and SCUSUM monotonically increase after the
change happens. However, the detection scores of Scan B-
statistic and CALM-MMD maintain a stable level after the
change happens. Therefore, the results demonstrate that
Scan B-statistic and CALM-MMD may fail to reach the
threshold even after a sufficient number of time steps.

Empirical CADD against ARL In Figure 2, we illus-
trate the empirical CADD against ARL in cases of bivari-
ate Gaussian mean drifts (MVN-ϵµ), bivariate Gaussian co-

(a) MVN (𝝐𝝁)

(c) EXP (𝝐𝝉)

(b) MVN (𝝐𝒍𝒐𝒈(𝝈𝟐))

(d) GB-RBM (𝝈𝝐)

Figure 2: Empirical CADD against ARL and Empirical
ARL against ARL for MVN (ϵµ = 0.1), MVN (ϵlog(σ2) =
0.5), EXP (ϵτ = 1.0), and GB-RBM (σϵ = 0.05).
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variance drifts (MVN-ϵlog(σ2)), scale parameter drifts of an
exponential family (EXP-ϵτ ), and weight matrix drifts of
the GB-RBM (GB-RBM-σϵ), respectively. The notations
ϵµ, ϵlog(σ2), ϵτ , and σϵ denote the magnitude of shits of
the MVN mean, MVN covariance matrix, EXP scale pa-
rameter, and GB-RBM weight matrix, respectively. The
results demonstrate that our proposed SCUSUM performs
competitively with CUSUM in terms of empirical CADD
against ARL. In particular, we see the red lines (SCUSUM)
and the black lines (CUSUM) are in parallel, meaning that
the empirical CADD of SCUSUM increases at a similar
rate as that of CUSUM. Furthermore, SCUSUM can also
outperforms CUSUM for a fixed ARL in Figures 2(b, c).

The right columns of Figure 2 illustrate empirical ARL
against ARL when no change happens throughout all time
steps. The results demonstrate that CUSUM and SCUSUM
can successfully control the false alarm rate, while MMD-
based methods fail to do so. For the Gaussian mean
shifts, Scan B-statistic and CALM-MMD perform better
than CUSUM and SCUSUM at low values of ARL. How-
ever, we point out that this gain is due to an out-of-control
of false alarms, as illustrated in the right columns of Fig-
ure 2(a). Furthermore, MMD-based methods not only
fail to control false alarms but also perform worse than
CUSUM and SCUSUM, as illustrated in Figures 2(b-d).

Empirical CADD against Changes We investigate the
performance of the detection methods in cases of slight
changes in Figure 3, namely, pre- and post-change dis-
tributions are very close to each other. In the scenario
of slight changes, CUSUM and SCUSUM perform better
than MMD-based methods in Figures 3(b-d). In partic-
ular, CUSUM and SCUSUM have much smaller empiri-
cal CADD when the magnitude of changes increases. Al-
though MMD-based methods perform better than CUSUM
and SCUSUM in Figure 3(a), it is worth noting that it
comes to the cost of out-of-control of false alarms as il-
lustrated in Figure 2.

Computation We compare SCUSUM with other base-
lines in terms of computational costs by varying the dimen-
sions of the EXP dataset. In Table 1, we demonstrate that
when the dimension grows from 2D to 4D, the run time
needed for CUSUM grows significantly. It is due to the
numerical integration of the exact log-likelihood calcula-
tion. Meanwhile, the run time of SCUSUM slightly grows
due to the calculation of the Hyvärinen score. The run time
of MMD-based methods stays consistent as the dimension
grows. CALM-MMD requires a much longer run time due
to its computation of candidate thresholds.

6 CONCLUSION

In this work, we proposed the SCUSUM algorithm to de-
tect changes in unnormalized models. Our detection algo-

(a) MVN (𝝐𝝁)

(c) EXP (𝝐𝝉)

(b) MVN (𝝐𝒍𝒐𝒈(𝝈𝟐))

(d) GB-RBM (𝝈𝝐 )

Figure 3: Empirical CADD against perturbations with
ARL= 2000

Table 1: Running times (in seconds) of change detection of
each trial (pre- and post-change distributions belong to the
exponential family)
Detection Algorithms d = 1 d = 2 d = 3 d = 4

CUSUM 2.4 2.9 294.8 66409.2
SCUSUM 2.2 9.1 21.0 38.4

Scan B-statistic 8.1 8.2 8.2 8.3
CALM-MMD 111.9 111.4 110.2 111.0

rithm follows the classic CUSUM detection scheme, shar-
ing its computational advantage of recursive implementa-
tion. We analyzed the asymptotic properties of SCUSUM
in the sense of Pollak’s optimality criterion. We also pro-
vided numerical results demonstrating significant perfor-
mance gains and a reduction in computational complexity.
Future work may relax the assumption of knowing the post-
change distribution and data independence.
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A THEORETICAL ANALYSIS

In this section, we give detailed proofs for the theoretical results presented in the main paper.
Assumption 1. P∞ ̸= P1.
Assumption 2. The same mild regularity conditions2 made by Hyvärinen and Dayan (2005) so that the Hyvärinen score
is well-defined.
Assumption 3. The mild assumptions that the order of integrals and derivatives can be interchanged.

A.1 Proof of Lemma 1

Proof. Under some mild regularity conditions, Hyvärinen and Dayan (2005) proved that

DF(P∥Q) = EX∼P

[
1

2
∥∇X log p(X)∥22 + SH(X,Q)

]
.

Let C(P ) denote EX∼P

[
1
2 ∥∇X log p(X)∥22

]
for any P ∈ P , then

E∞[SH(X,P∞)− SH(X,P1)] = DF(P∞∥P∞)− C(P∞)− DF(P∞∥P1) + C(P∞) = −DF(P∞∥P1),

and
E1[SH(X,P∞)− SH(X,P1)] = DF(P1∥P∞)− C(P1)− DF(P1∥P1) + C(P1) = DF(P1∥P∞).

Since λ > 0 is a constant with respect to P1 and P∞, the proof is complete.

A.2 Proof of Lemma 2

Proof. Define the function λ :7→ h(λ) given by

h(λ)
∆
= E∞[exp(zλ(X))]− 1.

Observe that
h′(λ)

∆
=

dh

dλ
(λ) = E∞[(SH(X,P∞)− SH(X,P1)) exp(zλ(X))].

Note that h(0) = 0, and h′(0) = −DF(P∞∥P1) < 0. Thus, there exists λ > 0 such that h(λ) < 0, and Inequality (10) is
satisfied.

Next, we prove that either 1) there exists λ⋆ ∈ (0,∞) such that h(λ⋆) = 0, or 2) for all λ > 0 we have h(λ) < 1.

Observe that

h′′(λ)
∆
=

d2h

dλ
(λ) = E∞[(SH(X,P∞)− SH(X,P1))

2 exp(zλ(X))] ≥ 0.

We claim that h(λ) is strictly convex, namely h′′(λ) > 0 for all λ ∈ [0,∞). Suppose h′′(λ) = 0 for some λ ≥ 0, we must
have SH(X,P∞) − SH(X,P1) = 0 almost surely. This implies that E∞[(SH(X,P∞) − SH(X,P1))] = 0 which in turn
gives −DF(P∞∥P1) = 0 and P∞ = P1 almost everywhere, leading to a contradiction to the assumption P∞ ̸= P1. Thus,
h(λ) is strictly convex and h′(λ) is strictly increasing.

It follows that either 1) h(λ) have at most one global minimum in (0,∞), or 2) it is strictly decreasing in [0,∞). We
recognize two cases, and we show that the second case is degenerate that is of no practical interest.

• Case 1: If the global minimum of h(λ) is attained at a ∈ (0,∞), then h′(a) = 0. Since h′(0) < 0 and h(0) = 0,
the global minimum h(a) < 0. Since h′(λ) is strictly increasing, we can choose b > a and conclude that h′(λ) >
h′(b) > h′(a) = 0 for all λ > b. It follows that limλ→∞ h(λ) = +∞. Combining this with the continuity of h(λ),
we conclude that h(λ∗) = 0 for some λ∗ ∈ (0,∞) and any value of λ ∈ (0, λ∗] satisfies Inequality (10).

Note that in this case, we must have P∞ (SH(X,P∞)− SH(X,P1) ≥ c) > 0, for some c > 0. Otherwise,
we have P∞ (SH(X,P∞)− SH(X,P1) ≤ 0) = 1. This implies that P∞(zλ(X) ≤ 0) = 1, or equivalently
E∞[exp(zλ(X))] < 1 for all λ > 0, and therefore leads to Case 2: h(λ) < 0 for all λ > 0. Here, E∞[exp(zλ(X))] ̸=
1 since P∞(SH(X,P∞) − SH(X,P1) = 0) < 1; otherwise P∞(SH(X,P∞) − SH(X,P1) = 0) = 1, and then
E∞[SH(X,P∞)− SH(X,P1)] = −DF(P∞∥P1) = 0, causing the same contradiction to P1 ̸= P∞.

2We refer the details to Hyvärinen and Dayan (2005).
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• Case 2: If h(λ) is strictly decreasing in (0,∞), then any λ ∈ (0,∞) satisfies Inequality (10). As discussed before,
in this case, we must have P∞ (SH(X,P∞)− SH(X,P1) ≤ 0) = 1. Equivalently, all the increments of the SCUSUM
detection score are non-positive under the pre-change distribution, and P∞(Z(n) = 0) = 1 for all n. Accordingly,
E∞[TSCUSUM] = +∞. When there occurs change (under measure P1), we also observe that SCUSUM can get close
to detecting the change point instantaneously as λ is chosen arbitrarily large. Obviously, this case is of no practical
interest.

A.3 Proof of Theorem 3

Proof. We follow the proof of Lai (1998, Theorem 4) to conclude the result of Theorem 3. A constructed martingale and
Doob’s submartingale inequality (Doob, 1953) are combined to finish the proof.

1. We first construct a non-negative martingale with mean 1 under the measure P∞. Define a new instantaneous score
function X 7→ z̃λ(X) given by

z̃λ(X)
∆
= zλ(X) + δ,

where

δ
∆
= − log

(
E∞ [exp(zλ(X))]

)
.

Further define the sequence

G̃n
∆
= exp

( n∑
k=1

z̃λ(Xk)

)
, ∀n ≥ 1.

Suppose X1, X2, . . . are i.i.d according to P∞ (when there is no change occurs). Then,

E∞

[
G̃n+1 | Fn

]
= G̃nE∞[exp(z̃λ(Xn+1))] = G̃ne

δE∞[exp(zλ(Xn+1))] = G̃n,

and

E∞[G̃n] = E∞

[
exp

(
n∑

i=1

(zλ(Xi) + δ)

)]
= enδ

n∏
i=1

E∞[exp(zλ(Xi))] = 1.

Thus, {G̃n}n≥1 is a non-negative martingale with the mean E∞[G̃1] = 1.

2. We next examine the new stopping rule

T̃SCUSUM = inf

{
n ≥ 1 : max

1≤k≤n

n∑
i=k

z̃λ(Xi) ≥ τ

}
,

where z̃λ(Xi) = zλ(Xi) + δ. By Inequality (10), we observe that δ ≥ 0. By Jensen’s inequality,

E∞[exp(zλ(X))] ≥ exp (E∞[zλ(X)]) , (15)

with equality holds if and only if zλ(X) = c almost surely, where c is some constant. Suppose the equality of
Equation (15) holds, then

−λDF(P1||P∞) = E∞[zλ(X)] = c = E1[zλ(X)] = λDF(P∞||P1).

It follows that 0 ≤ DF(P∞||P1) = −DF(P1||P∞) ≤ 0, which implies that P∞ = P1 almost everywhere. This
leads to a contradiction to the assumption P∞ ̸= P1. Thus, the inequality of Equation (15) is strict, and therefore
δ < λDF(P∞||P1). Hence, T̃SCUSUM is not trivial.
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Define a sequence of stopping times:

η0 = 0,

η1 = inf

{
t :

t∑
i=1

z̃λ(Xi) < 0

}
,

ηk+1 = inf

t > ηk :

t∑
i=ηk+1

z̃λ(Xi) < 0

 , for k ≥ 1.

By previous discussion, {G̃n}n≥1 is a nonnegative martingale under P∞ with mean 1. Then, for any k and on
{ηk < ∞},

P∞

 n∑
i=ηk+1

z̃λ(Xi) ≥ τ for some n > ηk | Fηk

 ≤ e−τ , (16)

by Doob’s submartingale inequality (Doob, 1953). Let

M
∆
= inf

{
k ≥ 0 : ηk < ∞ and

n∑
i=ηk+1

z̃λ(Xi) ≥ τ for some n > ηk

}
. (17)

Combining Inequality (16) and Definition (17),

P∞(M ≥ k + 1 | Fηk
) = 1− P∞

 n∑
i=ηk+1

z̃(Xi) ≥ τ for some n > ηk | Fηk

 ≥ 1− e−τ , (18)

and

P∞(M > k) = E∞[P∞(M ≥ k + 1 | Fηk
)I{M≥k}] = E∞[P∞(M ≥ k + 1 | Fηk

)]P∞(M > k − 1). (19)

Combining Equations (19) and (18),

E∞[M ] =

∞∑
k=0

P∞(M > k) ≥
∞∑
k=0

(1− e−τ )k = eτ .

Observe that

T̃SCUSUM = inf

{
n ≥ 1 :

n∑
i=ηk+1

z̃λ(Xi) ≥ τ for some ηk < n

}
≥ M,

and T̃SCUSUM ≤ TSCUSUM. We conclude that E∞[TSCUSUM] ≥ E∞[T̃SCUSUM] ≥ E∞[M ] ≥ eτ .

A.4 Proof of Theorem 4

We first introduce a technical definition in order to apply (Woodroofe, 1982, Corollary 2.2.) to the proof of Theorem 4.

Definition 4. A distribution P on the Borel sets of (−∞,∞) is said to be arithmetic if and only if it concentrates on a set
of points of the form ±nd, where d > 0 and n = 1, 2, . . ..

Remark 3. Any probability measure that is absolutely continuous with respect to the Lebesgue measure is non-arithmetic.

Proof. Consider the random walk that is defined by

Z ′(n) =

n∑
i=1

zλ(Xi), for n ≥ 1.
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We examine another stopping time that is given by

T ′
SCUSUM

∆
= inf{n ≥ 1 : Z ′(n) ≥ τ}.

Next, for any τ , define Rτ on {T ′
SCUSUM < ∞} by

Rτ
∆
= Z ′(T ′

SCUSUM)− τ.

Rτ is the excess of the random walk over a stopping threshold τ at the stopping time T ′
SCUSUM. Suppose the change point

ν = 1, then X1, X2, . . . , are i.i.d. following the distribution P1. Let µ and σ2 respectively denote the mean E1[zλ(X)]
and the variance Var1[zλ(X)]. Note that

µ = E1[zλ(X)] = λDF(P1∥P∞) > 0,

and
σ2 = Var1[zλ(X)] = E1[zλ(X)2]− (λDF(P1∥P∞))

2
.

Under the mild regularity conditions given by Hyvärinen and Dayan (2005),

E1[SH(X,P∞)]2 < ∞, and

E1[SH(X,P1)]
2 < ∞.

It implies that E1[zλ(X)2] < ∞ if λ is chosen appropriately, e.g. λ satisfy Inequality (10) and λ is not arbitrary large.
Therefore, by Lorden (1970, Theorem 1),

sup
τ≥0

E1[Rτ ] ≤
E1[(zλ(X)+)2]

E1[zλ(X)]
≤ µ2 + σ2

µ
,

where zλ(X)+ = max(zλ(X), 0). Additionally, P1 must be non-arithmetic in order to have Hyvärinen scores well-
defined. Hence, by Woodroofe (1982, Corollary 2.2.),

E1[T
′
SCUSUM] =

τ

µ
+

E1[Rτ ]

µ
≤ τ

µ
+

µ2 + σ2

µ2
, ∀τ ≥ 0.

Observe that for any n, Z ′(n) ≤ Z(n), and therefore TSCUSUM ≤ T ′
SCUSUM. Thus,

E1[TSCUSUM] ≤ E1[T
′
SCUSUM] ≤

τ

µ
+

µ2 + σ2

µ2
, ∀τ ≥ 0. (20)

By Theorem 4, we select τ = log γ to satisfy the constraint E∞[TSCUSUM] ≥ γ > 0. Plugging it back to Equation (20), we
conclude that, as γ → ∞,

E1[TSCUSUM] ∼
log γ

µ
=

log γ

λDF(P1||P∞)
,

to complete the proof.

Due to the stopping scheme of SCUSUM, the expected time Eν [TSCUSUM − ν|TSCUSUM ≥ ν] is independent of the change
point ν (This is obvious, and the same property for CUSUM has been shown by Xie et al. (2021)). Let ν = 1, and we have

LCADD(TSCUSUM) = E1[TSCUSUM]− 1.

Thus, we conclude that

LCADD(TSCUSUM) ∼
log γ

λDF(P1∥P∞)
.

Similar arguments applies for LWADD(TSCUSUM).
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A.5 Proof of Proposition 5

Proof. By direct computation, it can see that

zλ(X) = λ

(
−1

2
(X − θ0)

TΣ−2(X − θ0) +
1

2
(X − θ1)

TΣ−2(X − θ1)

)
,

where Σ−2 is a short notation for Σ−1 · Σ−1. Then

E∞[exp(zλ(X))] =

∫
X∈X

1√
2π det(Σ)

exp

(
−1

2
(X − θ0)

TΣ−1(X − θ0) +
λ

2
(X − θ0)

TΣ−2(X − θ0)

−λ

2
(X − θ1)

TΣ−2(X − θ1)

)
dX.

The above integral can be calculated to be

E∞[exp(zλ(X))] = exp(−λ2(θ0 − θ1)
TΣ−3(θ0 − θ1) + λ(θ0 − θ1)

TΣ−2(θ0 − θ1)).

Clearly, E∞[exp(zλ(X))] = 1 if

λ =
(θ0 − θ1)

TΣ−2(θ0 − θ1)

(θ0 − θ1)TΣ−3(θ0 − θ1)
.

The Fisher divergence and KL divergence between two Normal distributions can be calculated by

DF(N (θ1,Σ)||N (θ0,Σ)) = (θ0 − θ1)
TΣ−2(θ0 − θ1),

and
DKL(N (θ1,Σ)||N (θ0,Σ)) = (θ0 − θ1)

TΣ−1(θ0 − θ1),

respectively. Thus
λDF(P1||P∞)

DKL(P1||P∞)
=

[(θ0 − θ1)
TΣ−2(θ0 − θ1)]

2

[(θ0 − θ1)TΣ−3(θ0 − θ1)][(θ0 − θ1)TΣ−1(θ0 − θ1)]
.

Let {v1, v2, · · · , vd} denote an orthonormal basis of eigenvectors of Σ, corresponding to its eigenvalues {σ1, σ2, · · · , σd}.
We can write (θ0 − θ1) in this orthonormal basis as

(θ0 − θ1) =

d∑
k=1

ckvk.

Then, it follows from direct calculations that

λDF(P1||P∞)

DKL(P1||P∞)
=

(
∑d

k=1
c2k
σ2
k
)2

(
∑d

k=1
c2k
σ3
k
)(
∑d

k=1
c2k
σk

)
.

Applying the Cauchy-Schwarz inequality, we have

λDF(P1||P∞) ≤ DKL(P1||P∞),

with equality if and only if all the eigenvalues σi, i = 1, 2, · · · , d for ci ̸= 0 are equal. In particular, in the case when
Σ is a scalar matrix, λDF(P1||P∞) = DKL(P1||P∞), and thus CUSUM and SCUSUM both achieve the same asymptotic
performance.

B EXPERIMENTS

B.1 Experimental Setup

Multivariate Normal Distribution (MVN) We consider the multivariate normal distribution. Let µ and Σ respectively
denote the mean and the covariance matrix. The corresponding score function is calculated by

SH(X,P ) =
1

2
(X − µ)TΣ−2(X − µ)− tr(Σ−1),
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where the operator tr(·) takes the trace of matrix.

We consider the pre-change distribution with mean µ = (0, 0)T and covariance matrix Σ =

(
1, 0.5
0.5, 1

)
. For the post-

change distribution, we first investigate the scenario of mean shifts by fixing the covariance matrix Σ =

(
1, 0.5
0.5, 1

)
and

assigning post-change means µ = (0, 0)T + ϵµ, where + here is element-wise plus and ϵµ is the perturbations of µ. We
take values of ϵµ from 0 to 0.5 with step size 0.05. Next, we consider the case of covariance shifts. In this scenario, we fix

the post-change mean as µ = (0, 0)T and assign post-change covariance by Σ =

(
1, 0.5
0.5, 1

)
◦ exp(ϵlog(σ2)), where ◦

denotes the element-wise product and ϵlog(σ2) denotes the element-wise perturbations of the covariance matrix. To make
the perturbed covariance matrix positive-definite, we perturb the log of each component of the covariance matrix. We take
the value of ϵlog(σ2) vary from 0.05 to 0.5 by a step size 0.05.

Exponential Family (EXP) We consider a subfamily of the Exponential family belonging to pairwise interaction graph-
ical models (Yu et al., 2016). Let Pτ and pτ respectively represent the distribution and the associated PDF of the random
variable X . The PDF is formulated as

pτ (X) =
1

Z
exp

−τ

 d∑
i=1

x4
i +

∑
1≤i≤d,i≤j≤d

x2
ix

2
j

 ,

where τ ∈ T ⊂ R+ is the model parameter and Z is the normalizing constant. The associated Hyvarinen score function is
given by

SH(X,Pτ ) =
1

2

d∑
i=1

(
∂

∂xi
log pτ (X)

)2

+

d∑
i=1

∂2

∂xi
log pτ (X),

where

∂

∂xi
log pτ (X) = −τ

4x3
i + 2

∑
1≤i≤d,i≤j≤d

xix
2
j

 , and

∂2

∂xi
log pτ (X) = −τ

12x2
i + 2

∑
1≤i≤d,i≤j≤d

x2
j

 .

We consider the pre-change distribution with τ = 1 and post-change distribution with τ = 1 + ϵτ , where ϵτ denotes the
perturbations of the scale parameter τ . We take values of ϵτ from 0.1 to 2.0 by a step size 0.1.

Restricted Boltzmann Machine (RBM) The RBM (LeCun et al., 2006) is a generative graphical model defined on a bi-
partite graph of hidden and visible variables. We consider the Gauss-Bernoulli RBM (GB-RMB), which has binary-valued
hidden variables H = (h1, . . . , hdh

)T ∈ {0, 1}dh , real-valued visible variables X = (x1, . . . , xdx
)T ∈ Rdx , and the joint

PDF

p(X,H) =
1

Z
exp

−

1

2

dx∑
i=1

dh∑
j=1

xi

σi
Wijhj +

dx∑
i=1

bixi +

dh∑
j=1

cjhj −
1

2

dx∑
i=1

x2
i

σ2
i

 ,

where model parameters θ = (W,b, c) and Z is the normalizing constant. We set σi = 1 for all i = 1, . . . , dx.

Let Pθ and pθ respectively represent the distribution and the associated PDF of the visible variable X . Its PDF can be
written as pθ(X) =

∑
h∈{0,1}dh pθ(X,H) = 1

Z exp{−Fθ(X)}, where Fθ(X) is the free energy given by

Fθ(X) =
1

2

dx∑
i=1

(xi − bi)
2 −

dh∑
j=1

Softplus

(
dx∑
i=1

Wijxi + bj

)
.

The Softplus function is defined as Softplus(z) ∆
= log(1+exp(z)) with a default scale parameter β = 1.The corresponding
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Hyvärinen score is given by

SH(X,Pθ) =

dx∑
i=1

1
2

xi − bi +

dh∑
j=1

Wijϕj

2

+

dh∑
j=1

W 2
ijϕj (1− ϕj)− 1

 ,

where ϕj
∆
= Sigmoid(

∑dx

i=1 Wijxi + bj). The Sigmoid function is defined as Sigmoid(z)
∆
= (1 + exp(−z))−1.

The pre-change distribution is with the parameters W = W0, b = b0, and c = c0, where each component of W0, b0,
and c0 is randomly drawn from the standard Normal distribution N (0, 1). For the post-change distribution, we assign the
parameters W = W0 + ϵW, b = b0, and c = c0. Here, we only consider the shift of weight matrix W, denoted as ϵW.
Each component of ϵW is drawn from N (0, σ2

ϵ ). We let σϵ take values from 0.005 to 0.1 with step size 0.005.

B.2 Experimental Results

B.2.1 The Effect of Hyper-parameters

The implementation of SCUSUM requires a pre-selected multiplier λ. Obviously, with a fixed stopping threshold, a larger
value of λ results in a smaller detection delay because the increment of the SCUSUM detection score is large, and the
threshold can be easily reached. This is formally claimed in Theorem 5, which states that the expected detection delay
increases linearly with respect to the stopping threshold at the rate of 1

λDF(P1∥P∞) . However, a larger value of λ also causes
SCUSUM to stop prematurely when no change occurs, leading to a larger false alarm rate. Hence, instead of the trivial case
discussed in the proof of Lemma 2, the value of λ cannot be arbitrarily large. The value λ needs to satisfy Inequality (10)
in order to control the false alarm rate (by Theorem 3). Lemma 2 proved that there exists such a λ, and it can even make
the equality of (10) hold. Therefore, it is possible to use m past observations to determine the value of λ to guarantee the
theoretical performance of SCUSUM.

In practice, we choose λ as the positive root of the function λ → h̃(λ), given by

h̃(λ) =
1

m

m∑
i=1

[exp(zλ(Xi−m))]− 1. (21)

Different samples of past observations may determine different values of λ, which can cause the inconsistent performance
of SCUSUM. We next investigate this problem through numerical simulations. In Figure 4 (a) to (d), the data streams are
generated from MVNs with ϵµ = 0.1, MVNs with ϵlog(σ2) = 0.5, EXPs with ϵτ = 1, and GB-RBMs with σϵ = 0.05.
The first columns of Figure 4 illustrate values of determined λ varying from the size of past observations. The second (and
the third) columns of Figure 4 report the empirical CADD (respectively the empirical ARL) of SCUSUM varying from the
size of past observations. We report all values in averages over 100 random runs with error bars.

As Figure 4 demonstrates, as long as m is large enough, the value of λ is not too sensitive to different samples. In particular,
when m > 100, we see small standard errors in Figue 4(a)-(c). Accordingly, the performance of SCUSUM in terms of
the empirical CADD tends to be stable. Note that in the case of GB-RBM (as shown by Figure 4(d)), we take λ = 1
when m < 300. It is because we can not numerically find the positive root of Equation (11) given a small size of past
observations. Finally, as shown in Column 3 of Figue 4, the empirical ARL is always under control.

B.2.2 Detection Scores

In this section, we add additional numerical results to illustrate instantaneous detection scores. We control ARL to be fixed
as 2000. From Figure 5 to Figure 8, the data streams are generated from MVN-ϵµ, MVN-ϵlog(σ2), EXP-ϵτ , and GB-RBM-
σϵ, respectively. The change happens at time t = 500. We report the averaged detection scores, marked as solid lines, and
standard error, marked as shadow intervals.
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(a) MVN (𝛜𝛍 = 𝟎. 𝟏)

(c) EXP (𝛜𝝉 = 𝟏)

(b) MVN (𝛜𝒍𝒐𝒈(𝝈𝟐) = 𝟎. 𝟓)

(d) GB-RBM (𝝈𝝐 = 𝟎. 𝟎𝟓)

Figure 4: Column 1: λ versus m; Column 2: Empirical CADD versus m; Column 3: Empirical ARL versus m.



Suya Wu, Enmao Diao, Taposh Banerjee, Jie Ding, Vahid Tarokh

0 500 1000 1500 2000
Time Step

0

2

4

6

De
te

ct
io

n 
Sc

or
e

CUSUM
Threshold
Change Point

0 500 1000 1500 2000
Time Step

0

2

4

6

De
te

ct
io

n 
Sc

or
e

SCUSUM
Threshold
Change Point

0 500 1000 1500 2000
Time Step

0

1

2

3

4

De
te

ct
io

n 
Sc

or
e

Scan B-statistic
Threshold
Change Point

0 500 1000 1500 2000
Time Step

0.00

0.02

0.04

0.06

0.08

De
te

ct
io

n 
Sc

or
e

CALM-MMD
Threshold
Change Point

0 500 1000 1500 2000
Time Step

0

20

40

60

De
te

ct
io

n 
Sc

or
e

CUSUM
Threshold
Change Point

0 500 1000 1500 2000
Time Step

0

10

20

30

De
te

ct
io

n 
Sc

or
e

SCUSUM
Threshold
Change Point

0 500 1000 1500 2000
Time Step

0

1

2

3

4

De
te

ct
io

n 
Sc

or
e

Scan B-statistic
Threshold
Change Point

0 500 1000 1500 2000
Time Step

0.00

0.02

0.04

0.06

0.08

De
te

ct
io

n 
Sc

or
e

CALM-MMD
Threshold
Change Point

Figure 5: The results of Detection Score (before and after change) with MVN mean shifts (MVN-ϵµ) at t = 500 with
ARL= 2000. Top: ϵµ = 0.05; Bottom: ϵµ = 0.25.
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Figure 6: The results of Detection Score (before and after change) with MVN covariance shifts (MVN-ϵlog(σ2)) at t = 500
with ARL= 2000. Top: ϵlog(σ2) = 0.05; Bottom: ϵlog(σ2) = 0.5.
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Figure 7: The results of Detection Score (before and after change) with the EXP scalar shifts (EXP-ϵτ ) at t = 500 with
ARL= 2000. Top: ϵτ = 0.1; Bottom: ϵτ = 1.0.
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Figure 8: The results of Detection Score (before and after change) with GB-RBM weight matrix shifts (GB-RBM-σϵ) at
t = 500 with ARL= 2000. Top: σϵ = 0.005; Bottom: σϵ = 0.05.
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