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Abstract

We present and analyze the Krylov–Bellman
Boosting algorithm for policy evaluation in gen-
eral state spaces. It alternates between fitting the
Bellman residual using non-parametric regres-
sion (as in boosting), and estimating the value
function via the least-squares temporal differ-
ence (LSTD) procedure applied with a feature
set that grows adaptively over time. By exploit-
ing the connection to Krylov methods, we equip
this method with two attractive theoretical guar-
antees. First, we provide a general convergence
bound that allows for separate statistical estima-
tion errors in residual fitting and LSTD computa-
tion. Consistent with our numerical experiments,
this bound shows that convergence rates depend
on the restricted spectral structure, and are typ-
ically super-linear. Second, by combining this
meta-result with sample-size dependent guaran-
tees for residual fitting and LTSD computation,
we obtain concrete statistical guarantees that de-
pend on the sample size along with the complex-
ity of the function class used to fit the residu-
als. We illustrate the behavior of the KBB algo-
rithm for various types of policy evaluation prob-
lems, and typically find large reductions in sam-
ple complexity relative to the standard approach
of fitted value iteration.

We focus on policy evaluation for Markov decision pro-
cesses defined over general state spaces. Policy evaluation
occupies a central role in reinforcement learning. It is of in-
terest both in its own right and as a key subroutine in many
algorithms. For instance, classical algorithms for com-
puting optimal policies, such as policy iteration (Howard,
1960), and iterative schemes like policy gradient (Williams,
1992; Silver et al., 2014; Sutton et al., 1999; Kakade, 2001)
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methods and actor-critic schemes (Konda and Tsitsiklis,
2001; Mnih et al., 2016; Bhatnagar et al., 2009).

Policy evaluation in discrete state spaces, i.e., the tabular
setting, is very well-understood (e.g., (Bertsekas, 2017b;
Bellman, 1957; Puterman and Brumelle, 1979)); far more
challenging are Markov decision processes involving gen-
eral state spaces. In this setting, there are at least two broad
classes of approaches. One approach is based on using a
suitably “rich” non-parametric function class to repeatedly
refit an estimate of the value function; procedures of this
type are known collectively as fitted value iteration (Ernst
et al., 2005; Antos et al., 2007; Munos and Szepesvári,
2008; Scherrer et al., 2015; Chen and Jiang, 2019), or FVI
for short. Another classical approach to approximate pol-
icy evaluation is via the least-squares temporal difference
method, or LSTD for short (Bradtke and Barto, 1996; Sut-
ton and Barto, 2018; Boyan, 2002). Given a finite collec-
tion of features or basis functions, it computes the value
function within the associated linear span that provides the
“best fit”, as formalized in terms of a projected fixed point
(e.g., (Bertsekas and Yu, 2009; Yu and Bertsekas, 2010)).
In practice, the quality of the LSTD fit depends strongly on
the given basis, and finding a good basis is often a diffi-
cult task. There is a line of past work (Keller et al., 2006;
Menache et al., 2003) on automated procedures for feature
construction.

Our contributions: In this paper, we propose and an-
alyze a procedure for approximate policy evaluation that
combines the LSTD framework with the boosting approach
of fitting residuals. The method estimates the value func-
tion by computing a sequence of LSTD solutions, where
the basis used at each round is augmented with a non-
parametric estimate of the Bellman residual from the previ-
ous round. The LSTD steps can be interpreted as comput-
ing a sequence of Krylov subspaces, and accordingly, given
these foundations, we refer to our method as the Krylov–
Bellman boosting algorithm, or KBB for short. In the tab-
ular setting, an idealized form of the KBB algorithm with
exact Bellman residuals has been studied in past work (Parr
et al., 2007, 2008), called the method of Bellman error ba-
sis functions (BEBF). However, this algorithm has been en-
tirely limited to the setting of finite-dimension state spaces,
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and relied on exact computation with full knowledge of
the transition dynamics, which are both unrealistic restric-
tions. Instead, we use non-parametric procedures to (ap-
proximately) fit the residual in general state spaces. More-
over, any theoretical analysis of the procedure needs to ac-
count for the associated statistical errors (as well those in
approximate LSTD calculation).

Within this broader context, the primary contributions of
this paper take the form of two theorems. Our first main
result, stated as Theorem 3, is a general convergence guar-
antee for the KBB algorithm that allows for errors in both
the residual fitting and LSTD computations. Our conver-
gence guarantee involves a sequence of so-called restricted
spectral values (cf. equation (15)) that track how the ef-
fective conditioning of the residual problem improves as
the algorithm proceeds. Our second set of results, stated
as Theorem 4 and Corollary 1, provides guarantees in the
RL setting, and in particular, for independent samples of
state, next-state and reward triples. Under this set-up, The-
orem 4 provides an upper bound on the regression error
for a general function class, whereas Corollary 1 combines
this guarantee with Theorem 3 to provide an “end-to-end”
guarantee for a particular instantiation of the KBB algo-
rithm. While we focus on the i.i.d. generative setting for
concreteness, we note that our framework for analysis is
general: by using tail bounds for dependent processes, one
could also provide concrete guarantees for trajectory-based
sampling models.

1 BACKGROUND

Here we describe some background necessary to explain
and motivate our results. In Section 1.1 we describe the
basic setup of the problem of interest, solving for the value
function of a Markov reward process, as well as an asso-
ciated sampling model. Section 1.2 then describes an ap-
proximate method for solving for the value function as lin-
ear combination of given basis functions. Finally, in Sec-
tion 1.3 we describe Krylov subspace methods for solving
linear equations.

1.1 Markov decision and reward processes

A Markov decision process consists of a state space X , an
action space U , a reward functionR, along with a collection
of probability transition functions. In this paper, we focus
exclusively on the policy evaluation procedure, in which
case a given policy is fixed up front. For a fixed policy, a
Markov decision process reduces to a Markov reward pro-
cess (MRP), which can be characterized more simply in
terms of the state space X , along with a probability transi-
tion kernel PPP, and a reward function.

In a Markov reward process, the states evolve over time
according to a collection of transition kernels PPP. At some

time t “ 1, 2, . . ., when in state xt, the next state is gener-
ated by sampling Xt`1 „ PPPp¨ | xtq, where for each x P X ,
the function PPPp¨ | xq defines a probability measure over X .
Under standard regularity assumptions, the operator PPP has
a stationary measure µ satisfying the consistency condition

µpx1q “ EX„µrPPPpx1 | Xqs.

The MRP also is equipped with a reward function R :
X Ñ R, which we assume to be uniformly bounded and
µ-measurable. At time t “ 1, 2, . . ., when in state xt, we
receive a reward Rpxtq.

The problem of policy evaluation corresponds to comput-
ing the value function

V ‹pxq – E
“

8
ÿ

t“0

γt ¨RpXtq | x0 “ x
‰

, (1)

where the conditional expectation is taken over a trajectory
pX1, X2, . . .q from the underlying Markov chain. Since the
reward function R is measurable and uniformly bounded,
the value function exists and is uniquely defined. More-
over, it is measurable, uniformly bounded by }R}8

1´γ , and
therefore V ‹ P L2pX , µq.

Given a value function V P L2pX , µq we define the Bell-
man operator T : L2pX , µq Ñ L2pX , µq via

T pV qpxq – Rpxq ` γEx1„PPPp¨|xqrV px1qs @x P X . (2)

By classical results on dynamic programming, the value
function is a fixed point of the Bellman operator—that
is, V ‹ “ T pV ‹q. Moreover, the Bellman operator T is
γ-contractive in the norm } ¨ }µ; see the standard refer-
ences (Puterman, 2014; Sutton and Barto, 2018; Bertsekas,
2009) for further background.

In order to clarify the connection to solving linear oper-
ator equations, define the transition operator PpV qpxq –

Ex1„PPPp¨|xq

“

V px1q
‰

. Observing that P is a linear operator
on L2pX , µq, we can rewrite the Bellman fixed point rela-
tion as

V ‹ “ R ` γPV ‹ ðñ pI ´ γPqV ‹ “ R, (3)

where I denotes the identity operator on L2pX , µq. Thus,
computing the value function is equivalent to solving the
linear operator equation (3).

We conclude by describing the sampling model studied in
this paper. The operator P and the reward function R are
unknown to us, but we have access to sample transition
pairs px, r, x1q generated as follows

x „ µ, r “ Rpxq, and x1 „ PPPp¨ | xq. (4)

To be concrete, intermediate stages of our procedure make
use of a dataset D “ tpxt, rt, x

1
tqunt“1 of n samples.
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1.2 Linear function approximation and LSTD

When the state space X is sufficiently complex—either fi-
nite but with a very large number of states, or continu-
ous in nature—any efficient scheme for policy evaluation
requires some form of function approximation. In loose
terms, we choose some function space, and then seek to
find the “best” approximation to the value function within
this space.

A classical and widely-used approach is based on lin-
ear function approximation. Given a collection of func-
tions ϕj P L2pX , µq for j “ 1, . . . , J , known either
as features or basis functions, we use the subspace S “

spantϕ1, ϕ2, . . . , ϕJu to approximate the value function.
An attractive feature is that any function in the subspace S

can be written as Vθ “
řJ

j“1 θjϕj for some vector θ P RJ ,
so that computations can be reduced to linear-algebraic op-
erations over RJ . One way to define the best approximation
is via the notion of a projected fixed point (e.g., (Bertsekas
and Yu, 2009; Yu and Bertsekas, 2010)). Defining the pro-
jection onto the subspace S via Πpfq – argminV PS }f ´

V }µ, we seek a function V LSTD P S that satisfies the pro-
jected fixed point condition V LSTD “ Π

`

T pV LSTDq
˘

. Since
Π is non-expansive and T is a contraction, both with re-
spect to the } ¨ }µ-norm, there is a unique solution V LSTD,
known as the population LSTD solution. For future refer-
ence, we note that an abstract characterization of V LSTD is
in terms of the orthogonality conditions

xϕj , BpV LSTDqyµ “ 0 for all j “ 1, . . . , J , (5)

where BpV LSTDq – V LSTD´T pV LSTDq is the Bellman resid-
ual.

Less abstractly, the computation of the LSTD estimate
V LSTD can be reduced to solving a linear system over RJ .
Let Φpxq “ pϕ1pxq, ϕ2pxq, . . . , ϕtpxqq P Rt be the vector
obtained by evaluating each basis function at the state
x. By standard LSTD theory (Bradtke and Barto, 1996),
we can compute the LSTD solution V LSTD by solving for
θLSTD P Rt in the linear system

EpX,X1q

“

ΦpXq
`

ΦpXq ´ γΦpX 1q
˘T ‰

θLSTD “

EX„µ

“

RpXqΦpXq
‰

, (6)

and then setting V LSTD “ VθLSTD .

In most practical settings, we cannot compute these expec-
tations exactly, but instead have access to samples D “

tpxi, ri, x
1
iquni“1 generated according to the model (4). We

can use these samples to form empirical estimates as fol-
lows. The plug-in estimate pθLSTD is obtained by solving the

linear system

` 1

n

n
ÿ

i“1

ΦpxiqpΦpxiq ´ γΦpx1
iqqT

˘

pθLSTD

“
1

n

n
ÿ

i“1

riΦpxiq, (7)

which leads to the empirical LSTD estimate pV LSTD “

V
pθLSTD .

1.3 Krylov subspace methods

Portions of our development rely on connections to Krylov
subspace methods for solving systems of linear equa-
tions, which we describe briefly here. See the book by
Saad (Saad, 2003) for more details. Suppose we are inter-
ested in solving a linear system Ax “ b, where A P Rdˆd

is a matrix, and b P Rn is a vector. Krylov subspace meth-
ods are based on approximating the solution to such a lin-
ear system via an expanding sequence of subspaces. For
each positive integer j “ 1, . . . , d, we define the jth-order
Krylov subspace as

KjpA, bq – span
␣

b, Ab,A2b, . . . , Ajb
(

. (8)

Using the subspace KjpA, bq, we can define an approxi-
mate solution px P KjpA, bq

px P KjpA, bq such that b´Apx K KjpA, bq. (9)

Many algorithms for computing approximations to x in-
volve forming the Krylov subspace KjpA, bq and then solv-
ing the system (9); the conjugate gradient method is a no-
table instance. In the setting of tabular reinforcement learn-
ing, the problem of policy evaluation is equivalent to solv-
ing a linear system, so that Krylov methods are applicable,
as has been noted in past work (Petrik, 2007). Our method,
to be described in the next section, exploits the connection
to Krylov theory at the more abstract level of operators, and
allows for statistical errors in the updates.

2 KRYLOV–BELLMAN BOOSTING AND
ITS GUARANTEES

In this section, we first describe the Krylov–Bellman boost-
ing (KBB) procedure (Section 2.1), and then state some
theoretical guarantees on its performance (Section 2.2).
The KBB algorithm involves a sequence of LSTD solu-
tions, along with a sequence of fits to the Bellman residual.
Our first result (Theorem 3) is a general guarantee, one that
allows for arbitrary errors in these intermediate computa-
tions. In Section 2.3, we analyze a general family of non-
parametric procedures for fitting the residual, and provide
an end-to-end result that bounds the behavior of the KBB
procedure with statistical error.
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2.1 Krylov–Bellman Boosting

The KBB procedure can be viewed as a procedure for adap-
tively choosing features or basis function; each feature is a
function belonging to L2pX , µq. In the Krylov–Bellman
boosting procedure, we assume access to a mechanism that
generates samples of the form pxi, ri, x

1
iq generated accord-

ing to the sampling model (4), with which we estimate the
desired quantities. As described in Section 1.2, a dataset of
the form DLSTD “ tpxj , rj , x

1
jqumj“1 can be used to com-

pute the empirical LSTD estimate (7). Moreover, given
our current estimate V of the value function, consider the
problem of estimating the Bellman residual BpV q using a
dataset DREG “ tpxi, ri, x

1
iquni“1. In the specific instan-

tiation of the KBB algorithm given here, we implement
and analyze a non-parametric least-squares estimate of this
residual. More precisely, given a suitably chosen function
class F and the dataset DREG, we compute the approxima-
tion

BpV q « argmin
fPF

! 1

n

n
ÿ

i“1

”

V pxiq ´
`

ri ` γV px1
iq
˘

´ fpxiq
ı2)

.

(10)

The Krylov–Bellman boosting (KBB) procedure alternates
between LSTD fitting and fitting of the residual, as stated
formally as Algorithm 1.

An important choice is the function class F used to com-
pute the regression estimates (11). There are various fami-
lies that are commonly used in machine learning and statis-
tics, including splines and other linear smoothing meth-
ods (Wahba, 1990; Hastie et al., 2001), reproducing ker-
nel Hilbert spaces (Hofmann et al., 2008), random forests
and regression trees (Breiman et al., 1984; Breiman, 2001),
boosting procedures (Freund and Schapire, 1997), and neu-
ral networks (Schmidhuber, 2015). For our numerical ex-
periments presented in Section A, we used a regression tree
boosting procedure (Chen and Guestrin, 2016).

2.2 Convergence guarantees

We now provide some theoretical guarantees for the
Krylov–Bellman Boosting procedure. Our first result (The-
orem 3) is of a general nature: it allows arbitrary pro-
cedures to be used in computing the LSTD solutions and
residual fits at intermediate stages of the algorithm. In fact,
while we have described the KBB residual fits in terms of
non-parametric regression, Theorem 3 actually applies to
other procedures that might be used for this task. (For in-
stance, if the model dynamics were known, one could use
numerical procedures to approximate the Bellman update.)
Our second main result (Theorem 4) is more specific in na-
ture, in that it provides bounds on the error in the LSTD
and residual fitting steps induced by using empirical sam-
ples, as used in our introduction of the procedure.

For ease of notation, define the discount operator Q –

I ´ γP . In the analysis given here, we assume that
the Markov chain is reversible.1 This assumption im-
plies that the transition operator is a self-adjoint operator
on L2pX , µq, so that xPf, gyµ “ xf, Pgyµ for all f, g P

L2pX , µq. This self-adjoint operator Q defines the in-
ner product xf, gyQ – xf, Qgyµ, along with the induced
norm }f}Q –

a

xf, Qfyµ. Under certain regularity con-
ditions, it can be shown (cf. the supplement) that the oper-
ator Q – I ´ γP is self-adjoint, invertible, and satisfies
the relation

p1 ´ γq}f}2µ ď xf, Qfyµ ď p1 ` γq}f}2µ (12)

for all f P L2pX , µq. In addition, the operator Q is
bounded and (under mild regularity conditions) has a dis-
crete spectrum.

Let Wt – ϕt ´ BpVt´1q denote the error in the regression
procedure at round t. Our first assumption provides control
on the regression accuracy:

Assumption 1 (Reg-Err). For each iteration t “ 1, 2, . . .,
the regression procedure is δt-accurate:

E
“

}Wt}
2
Q
‰

ď δ2t . (13)

Our second assumption provides control on the accuracy of
the LSTD computation at each step:

Assumption 2 (LSTD-Err). At each iteration t, the ap-
proximate LSTD solution Vt is ϵLSTD-accurate:

}Vt ´ V ‹}2Q
paq

ď }V LSTD

t ´ V ‹}2Q ` pϵLSTDq2, and

}BpVtq ´ BpV LSTD

t q}Q
pbq

ď ϵLSTD.

(14)

We provide a brief discussion of these assumptions. As-
sumption 1 assumes that the approximate residual fit (10)
is accurate up to some degree. To validate this assump-
tion, we provide a guarantee in Theorem 4 on the regression
step. Assumption 2 is an assumption on the accuracy of the
standard LSTD estimate; see the paper (Dalal et al., 2018)
for a concrete guarantee on the given LSTD estimator.

Our theory involves the behavior of the operator Q when
restricted to certain subspaces of the function space. Re-
call that at each iteration, the algorithm performs LSTD
over the linear subspace St “ spantϕ1, . . . , ϕtu. Letting
SK
t denote the orthogonal complement, we define the con-

straint set Ct –
␣

z P SK
t | xz, Q´1zyµ “ 1

(

, and the Ct-
restricted spectral values

mt – inf
zPCK

t

}z}2µ and Mt – sup
zPCK

t

}z}2µ. (15)

1Although our theory exploits reversibility, it does not seem
essential to the practical behavior of the algorithm itself, as shown
by the simulations to follow in the sequel.
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Algorithm 1 Krylov–Bellman Boosting

1: Inputs: (i) Datasets DLSTD
t and DREG

t , t “ 0, 1, 2, . . ., each containing transition tuples generated according to the
model (4). (ii) Function class F over which to perform regression.

2: Initialize V0 “ 0, S0 “ H.
3: for t “ 0, . . . do
4: Use dataset DREG

t “ tpxi, ri, x
1
iqu

nt
i“1 to estimate BpVtq by solving the non-parametric least-squares problem:

ϕt`1 P argmin
fPF

#

1

nt

nt
ÿ

i“1

“

Vtpxiq ´
`

ri ` γ ¨ Vtpx
1
iq
˘

´ fpxiq
‰2

+

. (11)

5: Update basis set St`1 “ St Y tϕt`1u.
Define function x ÞÑ Φt`1pxq –

`

ϕ1pxq, ϕ2pxq, . . . , ϕt`1pxq
˘

P Rt`1.
6: Use dataset DLSTD

t “ tpxi, ri, x
1
iqu

mt
i“1 to estimate LSTD coefficient vector θt`1 P Rt`1 via

θt`1 “

” 1

mt

mt
ÿ

i“1

Φt`1pxiqpΦt`1pxiq ´ γΦt`1px1
iqqT

ı´1 ! 1

mt

mt
ÿ

i“1

ri ¨ Φt`1pxiq
)

.

7: Set Vt`1 “
řt`1

j“1 θ
t`1
j ϕj .

8: end for

Note we have the sandwich relation 1 ´ γ ď mt ď Mt ď

1`γ at each iteration t. We let Et`1 denote the expectation
over the noise at iterate t` 1.

Theorem 1 (General KBB bound). Suppose that the
Krylov–Bellman procedure is run with a δt-accurate re-
gression procedure (cf.24), and an ϵLSTD-accurate LSTD
implementation (cf. 25). Then at each step t “ 1, 2, . . .,
the error satisfies the Q-norm bound

Et`1}Vt`1 ´ V ‹}2Q ď

´

1 ´
m2

t

8Mt

¯

}Vt ´ V ‹}2Q

` 10
Mt

¨ δ2t ` 8Mt

m2
t

¨ pϵLSTD

t q2.

See the appendix for the complete proof.

Note that the function t ÞÑ
m2

t

8Mt
is non-decreasing in t by

definition, so convergence is at least geometric, and can be
faster if the ratio m2

t

8Mt
is growing quickly. Using the fact

that mt ě 1 ´ γ and Mt ď 1 ` γ, we have the contraction
factor is at least 1 ´

m2
t

8Mt
ď 1 ´

p1´γq
2

8p1`γq
at every iteration.

However in the next section we illustrate that the conver-
gence can be much faster than this worst case behavior. In
addition, we can control the error terms δ2t and pϵLSTD

t q2 by
the number of samples, nt and mt, used in the regression
procedure and LSTD estimate, respectively.

2.3 Regression bounds and consequences for KBB

Here we provide some results on the regression proce-
dure in Algorithm 1 for completeness. Given data points
DREG “ tpxi, ri, x

1
iquni“1, we can write the regression

problem in the generative form as yi “ f˚pxiq ` wi

for i “ 1, 2, . . . , n, where

f˚pxq “ V pxq ´ T V pxq, and (16)

wi “ γ
`

PV pxiq ´ V px1
iq
˘

. (17)

Here we have used the fact that the rewards are determin-
istic. It should be noted that the “noise” variables wi are
actually dependent on the states xi, so that some care is
required in the analysis.

We can write our regression procedure as

pf P argmin
fPF

1

n

n
ÿ

i“1

pyi ´ fpxiqq
2
.

Note that it need not be the case that f˚ P F . In order to
allow for the possibility of such mis-specification, we de-
fine the } ¨ }µ-projection ΠF from L2pX , µq onto F , which
is well-defined when F is closed and convex.

Our results involve a non-asymptotic upper bound on } pf ´

BpV q}µ; it is easy to convert it to a } ¨ }Q-guarantee at the
cost of a p1 ` γq- factor (see the supplement for details).
Additionally, it involves a statistical estimation error βn
that depends on the function class F . This quantity de-
creases to zero as the sample size n increases, but the rate
of decrease depends on the complexity of the function class
F ; see Appendix D.1 for its precise definition, and associ-
ated details.

Theorem 2 (Regression bound). For a given function V P

L2pX , µq, suppose that we compute an estimate pf of the
Bellman residual BpV q via the regression procedure (10)
over a b-bounded and convex function class F . Then we
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have

E} pf ´ BpV q}2µ ď c
!

β2
n `

1

n

`

b2 ` }V }28

˘

` }ΠF pBpV qq ´ BpV q}2µ

)

,
(18)

where the statistical estimation error β2
n depends on the

complexity of F .

See the supplement for the proof. Note that our regression
procedures depends on β2

n, as well as the approximation
error }ΠF pBpV qq ´ BpV q}2µ; such dependence is to be
expected since we are fitting pf in some function class F
that does not necessarily contain BpV q.

Combining Theorems 3 and 4 yields the following “end-to-
end” guarantee on the KBB algorithm:

Corollary 1 (End-to-end guarantee for KBB). Under the
assumptions of Theorems 3 and 4, there are universal con-
stants c1 and c2 such that the KBB update satisfies

Et`1}Vt`1 ´ V ‹}2Q ď

´

1 ´
m2

t

8Mt

¯

}Vt ´ V ‹}2Q

` c2Mt

m2
t

¨ pϵLSTDq2

`
c1
Mt

!

β2
n ` 1

n

`

b2 ` }Vt}
2
8

˘

` }ΠF pBVtq ´ BVt}2µ
)

,

where n “ nt “ |DREG
t |.

2.4 Estimation error via localized complexities

The statistical estimation error can be decomposed as the
sum

β2
n “ ω2

n ` ε2n, (19)

where each of the two quantities pωn, εnq arise from lo-
calized complexity measures, in particular sub-Gaussian or
Rademacher complexities, that play a central role in empir-
ical process theory (van de Geer, 2000; Bartlett et al., 2005;
Wainwright, 2019). When fitting the residual f˚ “ BpV q,
the relevant set is the shifted function class rF “ tf ´ f̃ |

f P F u, where f̃ – ΠF pf˚q denotes the } ¨ }µ-projection
of f˚ onto F .

In the non-parametric fit of the Bellman residual, there are
two sources of “noise”. The first is the Bellman noise, and
it leads to the sub-Gaussian complexity at scale δ ą 0 de-
fined as

Gnpδ; rF q – E

«

sup
g PrF ,}g}µďδ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wigpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

(20)

Here the xi is generated i.i.d. from the stationary distribu-
tion µ, whereas the noise wi is generated according to the
model (16).

The second form of “noise” has to do with the discrepancy

betwen the empirical norm }f}n –

b

1
n

řn
i“1 f

2pxiq and

the population norm }f}µ “
a

Erf2pXqs. In order to
prove a uniform bound on this discrepancy, we make use
of the local Rademacher complexity of rF at scale δ ą 0 as

Rnpδ; rF q – E

«

sup
g PrF ,}g}µďδ

ˇ

ˇ

ˇ

ˇ

ˇ

1
n

n
ÿ

i“1

εigpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

. (21)

Here txiu
n
i“1 are i.i.d. samples from the stationary distribu-

tion µ, and tεiu
n
i“1 are i.i.d. Rademacher random variables

taking values in t´1,`1u with equal probabilities, inde-
pendent of txiu

n
i“1.

The two quantities εn and ωn in the decomposition (19)
are both quantities known as critical radii in empirical pro-
cess theory. They are defined, respectively as the smallest
positive solutions to the inequalities

Gnpεn, rF q

εn
ď
εn
2
, and

Rnpωn; rF q

ωn
ď
ωn

b
. (22)

As long as the function class rF is convex (as assumed
here), it can be shown that both of the functions δ ÞÑ

Gnpδq

δ

and δ ÞÑ
Rnpδq

δ are non-increasing on the positive real line,
and so the critical radii always exist. We refer the reader
to Chapters 13 and 14 of the book (Wainwright, 2019) for
more details on critical radii, and the arguments used to es-
tablish claims of this type. See the appendix for the critical
radii computed for specific function classes.

3 NUMERICAL RESULTS

We illustrate the behavior of the KBB algorithm for a range
of problems, including both idealized and semi-realistic
settings. In performing these simulations, goal is to reveal
some qualitative differences when compared with value
iteration and fitted value iteration, as well as to provide
empirical confirmation of the accuracy of our theoretical
predictions. Recall that the Bellman operator T is γ-
contractive with respect to }¨}µ, so we can iteratively apply
T and ensures convergence to the true value function V ‹;
this is the value iteration algorithm. The fitted value itera-
tion (FVI) algorithm applies when the Bellman update can-
not be computed T pV q exactly, and must be approximated.
Given a dataset D “ tpxi, ri, x

1
iquni“1 and a function class

F , we compute an approximation via

{T pV q P argmin
fPF

#

1

n

n
ÿ

i“1

“

ri ` γV px1
iq ´ fpxiq

‰2

+

.

In fitted value iteration, we iterate repeating this regres-
sion procedure for every step (potentially with a different
dataset). Algorithm 1, in each iteration, computes the Bell-
man residual BpVtq “ Vt ´ T Vt which involves comput-
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ing the Bellman operator T Vt, so we compare each itera-
tion to one iteration of value iteration and fitted value it-
eration, using the same regression procedure and number
of samples. In our implementations of Algorithm 1, we
use DLSTD

t “ DREG
t —that is, the same samples used in fit-

ting the regression procedure are re-used for the LSTD fit.
When running the algorithm, we have observed that en-
suring the first regression is very accurate results in much
better convergence. In the first step, Krylov-Bellman is es-
timating the reward function R. Having accurate estimates
of the reward function is likely essential as the algorithm is
effectively solving the linear system QV “ R.

3.1 Circular random walk

For a more structured model, we create a tabular MDP with
|X | “ 200 states as follows: indexing the states modulo
200 (i.e. state ´2 is actually state 198), for a state x, it has
1
3 probability of transitioning to itself, and then a 1

6 proba-
bility of transitioning to states x´2, x´1, x`1, and x`2.
The dynamics here model a random walk on the circle, and
have a more interesting eigenstructure than the purely ran-
dom transition models from the previous setting. As shown
in Figure 4, the qualitative behavior of the algorithms is
similar. The value iteration algorithms, either exact or fit-
ted, still exhibits the linear behavior that is indicated by the
γ-contractive nature of the Bellman operator T . Krylov–
Bellman Boosting is again much faster than either of the
algorithms, especially in the case of γ “ 0.99.

3.2 A non-linear example

Consider the nonlinear system in the 3-dimensional state
variable xt “

“

xt,1 xt,2 xt,3
‰

P R3 and control vector
ut P R3 given by

»

–

xt`1,1 ´ x2t`1,2

xt`1,2

xt`1,3 ´ x2t`1,1

fi

fl “ A

»

–

xt,1 ´ x2t,2
xt,2

xt,3 ´ x2t,1

fi

fl ` But ` wt

with control and cost function given by

ut “ K

»

–

xt,1 ´ x2t,2
xt,2

xt,3 ´ x2t,1

fi

fl , and

ctpxt, utq “

»

–

xt,1 ´ x2t,2
xt,2

xt,3 ´ x2t,1

fi

fl

T

Q

»

–

xt,1 ´ x2t,2
xt,2

xt,3 ´ x2t,1

fi

fl ` uTRut.

Here A, B and K are all three-dimensional matrices, with
each of Q and R positive semidefinite, whereas the random
vector wt P R3 follows a zero-mean multivariate Gaussian
random distribution. We choose a nonlinear control system
of this form for ease of computation: for a system of this
general type, despite being nonlinear, it is straightforward
to perform exact value iteration via a change of coordinates

(see the book (Isidori, 1995) for further details). We gener-
ate the associated matrices A,B,Q,K, and R randomly.

The results of the algorithm are plotted in Figure 6. We
still observe the linear behavior of value iteration in both
settings, however this algorithm requires us to know the
underlying nonlinear system exactly as well as its transi-
tion dynamics. In general, Algorithm 1 performs much bet-
ter than fitted value iteration. When γ “ 0.9, initially the
algorithm is much faster than value iteration, but eventu-
ally it catches up and overtakes it due to the noise in the
algorithm. In the setting of γ “ 0.99, we see that Krylov–
Bellman Boosting is much faster than either value iteration
or fitted value iteration. However in this case, we are run-
ning Krylov–Bellman Boosting on the state space given by
xt, which has nonlinear transition dynamics and cost func-
tions.

4 PROOF-SKETCH

In this section, we provide proof sketch for our first main
result, Theorem 3. Due to space constraints, the full proof
as well as the proof of the other results can be found in the
appendix.

Roughly speaking, the idea underlying the proof is that
one round of the KBB algorithm is at least as good as a
gradient-type update that is restricted to the subspace CK

t .
For this reason, the algorithm depends on the restricted
spectral values (15) over this subspace, which determine
the conditioning of the effective problem at each round.

In more detail, suppose both the LSTD and regression pro-
cedures are exact, and consider the problem of minimizing
the functional FpV q – xV ´ V ‹, QpV ´ V ‹qyµ. It has
(Frechet) derivative ∇FpV q “ Q

`

V ´ V ‹
˘

, and more-
over, since the operator Q is positive and self-adjoint, this
is a convex optimization problem, achieving its (unique)
minimum at the true value function V ‹. Using these prop-
erties along with conditions defining LSTD optimality, we
can prove that, for any choice of stepsize α ą 0, we have

}Vt`1 ´ V ‹}2Q ď }Vt ´ αQpVt ´ V ‹q ´ V ‹}2Q

Using the fact that QpVt ´ V ‹q “ BpVtq and then expand-
ing the square yields

}Vt ´ αBpVtq ´ V ‹}2Q

“ }Vt ´ V ‹}2Q ´ 2αxVt ´ V ‹, BpVtqyQ

` α2}BpVtq}Q

piq
“ }Vt ´ V ‹}2Q ´ 2α}BpVtq}2µ ` α2}BpVtq}2Q,

where step (i) makes use of the equivalence QpVt ´V ‹q “

BpVtq. Since Vt is the LSTD fit over St, the optimality con-
ditions for the projected fixed point equation (1.2) ensure
that BpVtq K St, or equivalently BpVtq P SK

t . As an impor-
tant consequence, we can control }BpVtq}µ and }BpVtq}Q
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Figure 1. Illustration of the behavior of three different algorithms, value iteration (red), fitted value iteration (green), and
Krylov-Bellman Boosting (blue). We plot the log error in the } ¨ }µ-norm (vertical axis) against the number of iterations used
(horizonal axis). (a) Circular MRP with discount factor γ “ 0.9. (b) Circular MRP with discount factor γ “ 0.99.
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Figure 2. Illustration of the behavior of three different algorithms, value iteration (red), fitted value iteration (green), and
Krylov-Bellman Boosting (blue) on the nonlinear policy evaluation problem. We plot the log error in the } ¨ }µ-norm (vertical
axis) against the number of iterations used (horizontal axis). Algorithm 1 is still much faster than fitted-value iteration, but in the
case with γ “ 0.9 the Krylov–Bellman Boosting is faster than value iteration initially but because of the noise, value iteration
catches up and overtakes it. (a) Discount factor γ “ 0.9. (b) Discount factor γ “ 0.99.

in terms of the restricted spectral values (15). We claim that
the Bellman residual BpV LSTDq satisfies the bounds

}BpVtq}2Q ď 2Mt}V
LSTD ´ V ‹}2Q, and

}BpVtq}2µ ě mt}V
LSTD ´ V ‹}2Q.

(23)

Indeed, by combining these two inequalities we obtain

}Vt`1 ´ V ‹}Q ď
`

1 ´ 2αmt ` 2α2Mt

˘

}Vt ´ V ‹}2Q.

Setting α “ mt

2Mt
yields

}Vt`1 ´ V ‹}Q ď

ˆ

1 ´
m2

t

4Mt

˙

}Vt ´ V ‹}Q.

This provides on outline of the proof; the complete proof is
more involved as it needs to address what arises when there
are errors in computing the LSTD fit Vt and the Bellman
residual BpVtq .

5 DISCUSSION

In this paper, we presented and analyzed the Krylov–
Bellman boosting (KBB) procedure. It is an efficient al-
gorithm for policy evaluation based on samples for general
state spaces, that is built on the machinery of Krylov sub-
space methods for solving linear operator equations. As
opposed to an idealized Krylov method, our approach al-
lows for errors in both the LSTD steps and the fitting of
the Bellman residual, and we provide general convergence
guarantees that track the effect of such errors. On the em-
pirical front, the KBB algorithm typically exhibits a super-
linear rate of convergence, which is significantly faster than
the linear or geometric rate obtained by fitted value iter-
ation. Consistent with these empirical observations, our
theory also reveals superlinear convergence. In particu-
lar, we show how the KBB convergence rate is determined
by the spectral properties of the Bellman residual opera-
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tor when restricted to a shrinking sequence of subspaces.
Finally, we analyzed the use of non-parametric regression
routines for fitting the Bellman residual. We proved a gen-
eral theorem that bounds the residual fitting error in terms
of a combination of approximation error, and statistical es-
timation error. There exist many interesting avenues for fu-
ture work. While the current theory applies to reversible
Markov chains, the method itself exhibits rapid conver-
gence for general Markov reward processes. It would be
interesting to close this gap between theory and practice
by developing theory applicable to non-reversible Markov
chains. Finally, given the promising nature of our sandbox
simulations, it would be interesting to implement the KBB
procedure on larger scale and more realistic MDP prob-
lems.
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for fitted value iteration. Journal of Machine Learning
Research, 9(27):815–857, 2008.

Ronald Parr, Christopher Painter-Wakefield, Lihong Li,
and Michael Littman. Analyzing feature generation for
value-function approximation. In Proceedings of the 24th
International Conference on Machine Learning, ICML
’07, page 737–744, New York, NY, USA, 2007. Associa-
tion for Computing Machinery. ISBN 9781595937933.

Ronald E. Parr, Lihong Li, Gavin Taylor, Christopher
Painter-Wakefield, and Michael L. Littman. An analy-
sis of linear models, linear value-function approximation,
and feature selection for reinforcement learning. In ICML
’08, 2008.

Marek Petrik. An analysis of Laplacian methods for value
function approximation in MDPs. In Proceedings of the
20th International Joint Conference on Artifical Intelli-
gence, IJCAI’07, page 2574–2579, San Francisco, CA,
USA, 2007. Morgan Kaufmann Publishers Inc.

Martin L Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
2014.

Martin L. Puterman and Shelby L. Brumelle. On the con-
vergence of policy iteration in stationary dynamic pro-
gramming. Mathematics of Operations Research, 4(1):
60–69, 1979.

Yousef Saad. Iterative methods for sparse linear sys-
tems. SIAM, 2003. ISBN 978-0-89871-534-7. doi:
10.1137/1.9780898718003.

Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabil-
lon, Boris Lesner, and Matthieu Geist. Approximate mod-
ified policy iteration and its application to the game of
Tetris. Journal of Machine Learning Research, 16(49):
1629–1676, 2015.

Jürgen Schmidhuber. Deep learning in neural networks:
An overview. Neural Networks, 61:85–117, 2015. ISSN
0893-6080.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris,
Daan Wierstra, and Martin Riedmiller. Deterministic pol-
icy gradient algorithms. 31st International Conference on
Machine Learning, ICML 2014, 1, 06 2014.

Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. The MIT Press, second edi-
tion, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and
Yishay Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In S. Solla,
T. Leen, and K. Müller, editors, Advances in Neural Infor-
mation Processing Systems, volume 12. MIT Press, 1999.

Michel Talagrand. A new look at independence. The An-
nals of Probability, 24(1):1 – 34, 1996.

Michel Talagrand. Upper and lower bounds for stochastic
processes, volume 60. Springer, 2014.

Sara van de Geer. Empirical Processes in M-Estimation.
Cambridge University Press, 2000.

Grace Wahba. Spline Models for Observational Data. So-
ciety for Industrial and Applied Mathematics, 1990. doi:
10.1137/1.9781611970128.

Martin J. Wainwright. High-Dimensional Statistics: A
Non-Asymptotic Viewpoint. Cambridge Series in Statisti-
cal and Probabilistic Mathematics. Cambridge University
Press, 2019. doi: 10.1017/9781108627771.



Eric Xia, Martin J. Wainwright

Ronald J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning, (8):229 – 256, 1992.

Huizhen Yu and Dimitri P. Bertsekas. Error bounds for ap-
proximations from projected linear equations. Mathemat-
ics of Operations Research, 35(2):306–329, 2010. ISSN
0364765X, 15265471.



Krylov–Bellman Boosting

A Complete numerical results

We illustrate the behavior of our algorithm in a mixture of idealized and semi-realistic settings. Appendix A.1 highlights
the behavior of our algorithm in the tabular setting, where X is finite, and Appendix A.2 illustrates the performance in
the linear-quadratic setting, where X “ Rd, but the transitions and costs have simple representations. Appendix A.3
demonstrates the behavior of our algorithm for a nonlinear system with more complicated dynamics.

We compare our algorithm to value iteration and fitted value iteration. Recall that the Bellman operator T is γ-contractive
with respect to } ¨ }µ, so we can iteratively apply T and ensures convergence to the true value function V ‹; this is the
value iteration algorithm. The fitted value iteration (FVI) algorithm applies when the Bellman update cannot be computed
T pV q exactly, and must be approximated. Given a dataset D “ tpxi, ri, x

1
iquni“1 and a function class F , we compute an

approximation via

{T pV q P argmin
fPF

#

1

n

n
ÿ

i“1

“

ri ` γV px1
iq ´ fpxiq

‰2

+

.

In fitted value iteration, we iterate repeating this regression procedure for every step (potentially with a different dataset).
Algorithm 1, in each iteration, computes the Bellman residual BpVtq “ Vt ´ T Vt which involves computing the Bellman
operator T Vt, so we compare each iteration to one iteration of value iteration and fitted value iteration, using the same
regression procedure and number of samples. In our implementations of Algorithm 1, we use DLSTD

t “ DREG
t —that is, the

same samples used in fitting the regression procedure are re-used for the LSTD fit. When running the algorithm, we have
observed that ensuring the first regression is very accurate results in much better convergence. In the first step, Krylov-
Bellman is estimating the reward function R. Having accurate estimates of the reward function is likely essential as the
algorithm is effectively solving the linear system QV “ R.

A.1 Tabular MRPs

In a tabular MRP, the state space X is finite; for ease of notation we represent it as X “ t1, 2, . . . , du where d “ |X |.
We can then represent all quantities of interest as either a matrix or a vector: the transition operator P can be written as a
matrix P P R|X |ˆ|X | and the reward function R can be identified with a vector in R P R|X | via

Rx – Rpxq and Px,x1 “ Ppx1 | xq for all x P X ,

where Ppx1 | xq is the probability of transition to x1 from x. Similarly we can represent a value function V as an equivalent
vector in R|X |. The Bellman operator can then be written in the matrix form as T V “ R ` γPV . In this setting we
perform the regression procedure over the function class F “ R|X |, and the regression is equivalent to computing the
sample average for every state.

Random Transitions: In our first example of a tabular MRP, we create a |X | “ 300 dimensional MRP by generating
a transition matrix P P R300ˆ300 with i.i.d. Unif p0, 1q entries, with each row rescaled so as to ensure row-stochasticity.
Similarly, we generate a reward vector R P R300 with i.i.d Unif p0, 1q entries. We generate such independent samples of
such models, and set the discount parameter as γ “ 0.9 in one case, and γ “ 0.99 in the other. The results are plotted in
Figure 3. The plots clearly illustrate the advantages of Algorithm 1 over fitted value iteration and value iteration. As the
KBB error becomes quite small, we see the error floor (due to statistical error in evaluating the residual) start to dominate,
as should be expected.

Circular Random Walk: For a more structured model, we create a tabular MDP with |X | “ 200 states as follows:
indexing the states modulo 200 (i.e. state ´2 is actually state 198), for a state x, it has 1

3 probability of transitioning to
itself, and then a 1

6 probability of transitioning to states x´ 2, x´ 1, x` 1, and x` 2. The dynamics here model a random
walk on the circle, and have a more interesting eigenstructure than the purely random transition models from the previous
setting. As shown in Figure 4, the qualitative behavior of the algorithms is similar. The value iteration algorithms, either
exact or fitted, still exhibits the linear behavior that is indicated by the γ-contractive nature of the Bellman operator T .
Krylov–Bellman Boosting is again much faster than either of the algorithms, especially in the case of γ “ 0.99.

A.2 Linear Quadratic Regulator

The linear quadratic regulator (LQR) is a canonical model in optimal control; it plays a central role in many applications,
including aeronautics, robotics and industrial process control (Bertsekas, 2017a; Kalman, 1960). Here we consider a
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Figure 3. Illustration of the behavior of three different algorithms, value iteration (red), fitted value iteration (green), and Krylov
Bellman Boosting (blue) on the random tabular MRP. We plot the log error in the } ¨ }µ-norm (vertical axis) against the number
of iterations used (horizontal axis). (a) MRP with discount factor γ “ 0.9. Value iteration excepts the characteristic linear plot
that reflects the γ-contractive nature of value iteration. Fitted value iteration approximates value iteration, and performs worse as
a result of being an inexact procedure. Krlov-Bellman Boosting performs much better than either of these algorithms, although
we see that its convergence slows down drastically and becomes somewhat unstable. (b) MRP with discount factor γ “ 0.99.
Like previously, value-iteration exhibits linear plot that illustrates the contractivity of the Bellman operator T , albeit at a much
slower rate. Fitted value iteration is also still slower than value iteration, and Krylov–Bellman Boosting is much faster than both
of them, but exhibits much greater instability in this setting.

particular variant of the LQR problem known as the linear quadratic Gaussian (LQG) problem. The state space X “ Rd

and action space U “ Rv are continuous, and the transition dynamics starting from state xt P Rd and taking action u P Rv

is given by

xt`1 “ Axt ` But `Wt,

where A P Rdˆd is the transition matrix, B P Rdˆv is the action matrix, and wt „ N p0,Σq. We formulate this problem in
terms of a cost function, rather than a reward function (although for the purposes for policy evaluation it is a meaningless
distinction). Given symmetric positive semidefinite matrices Q P Rdˆd and R P Rvˆv , the cost function at each stage is

ψpx, uq “ xTQx` uTRu.

We restrict our attention to policies of the form ut “ Kxt where K P Rvˆd. We then have a Markov reward process with
dynamics and costs given by

xt`1 “
`

A ` BK
˘

xt ` wt and ψpxtq “ xTt
`

Q ` KTRK
˘

xt.

Assume that the eigenvalues of A`BK are contained within the unit circle on the complex plane. The goal is to solve for
the value function V ‹ of this MRP. The value function can be written as

V ‹pxq “ xTP˚x`
γ

1 ´ γ
¨ tracepP˚Σq,

where the matrix P˚ P Rdˆd is the solution to the Lyapunov equation

P˚ “ Q ` KTRK ` γ
`

A ` BK
˘T

P˚
`

A ` BK
˘

.

Value iteration involves computing the update

Pt`1 “ Q ` KTRK ` γ
`

A ` BK
˘T

Pt

`

A ` BK
˘

and ct`1 “ γct ` γtracepPtΣq.

The pair pPy, ctq define the value function via the value function via Vtpxq “ xTPtx`ct. When A`BK has eigenvalues
contained within the unit circle, this update is guaranteed to be a contraction.
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Figure 4. Illustration of the behavior of three different algorithms, value iteration (red), fitted value iteration (green), and Krylov
Bellman Boosting (blue) on the random tabular MRP. We plot the log error in the } ¨ }µ-norm (vertical axis) against the number
of iterations used (horizonal axis). The algorithms in this setting perform quite similarly to those in Figure 3, although the
Krylov–Bellman Boosting algorithm seems to be more stable in this setting than in the previous one. (a) Circular MRP with
discount factor γ “ 0.9. (b) Circular MRP with discount factor γ “ 0.99.

In the numerical simulations, we choose d “ 5 and v “ 3. The matrices A, B, and K are chosen to have i.i.d. Unif p0, 1q

entries, and then rescaled to ensure that the eigenvalues are contained within the unit circle. The symmetric matrices
Q and R are computed by generating matrices with i.i.d. Unif p0, 1q random variables and then left-multiplied by its
transpose to ensure symmetry. The regression steps in both fitted value iteration and Krylov–Bellman Boosting use the
XGBoost routine (Chen and Guestrin, 2016) to perform the fitting. Result are given in Figure 5. As before, we observe
a geometric (or linear) convergence rate for value iteration, consistent with the γ-contractive nature of the update. We
also see approximately linear convergence of fitted value iteration, albeit at a slower rate compared to value iteration.
Krylov–Bellman Boosting is again more rapidly convergent than these two procedures. (We note that KBB hits an error
floor due to the statistical sampling involved, whereas exact value iteration, which is based on unrealistic knowledge of
the true dynamics, does not involve any such error.) For a larger discount factor γ “ 0.99, the gains afforded by the KBB
procedure become more significant.

A.3 A non-linear example

Consider the nonlinear system in the 3-dimensional state variable xt “
“

xt,1 xt,2 xt,3
‰

P R3 and control vector ut P R3

given by

»

–

xt`1,1 ´ x2t`1,2

xt`1,2

xt`1,3 ´ x2t`1,1

fi

fl “ A

»

–

xt,1 ´ x2t,2
xt,2

xt,3 ´ x2t,1

fi

fl ` But ` wt

with control and cost function given by

ut “ K

»

–

xt,1 ´ x2t,2
xt,2

xt,3 ´ x2t,1

fi

fl , and ctpxt, utq “

»

–

xt,1 ´ x2t,2
xt,2

xt,3 ´ x2t,1

fi

fl

T

Q

»

–

xt,1 ´ x2t,2
xt,2

xt,3 ´ x2t,1

fi

fl ` uTRut.

Here A, B and K are all three-dimensional matrices, with each of Q and R positive semidefinite, whereas the random
vector wt P R3 follows a zero-mean multivariate Gaussian random distribution. We choose a nonlinear control system of
this form for ease of computation: for a system of this general type, despite being nonlinear, it is straightforward to perform
exact value iteration via a change of coordinates (see the book (Isidori, 1995) for further details). In the simple case where
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Figure 5. Illustration of the behavior of three different algorithms, value iteration (red), fitted value iteration (green), and Krylov
Bellman Boosting (blue) on the LQR policy evaluation problem. We plot the log error in the } ¨ }µ-norm (vertical axis) against
the number of iterations used (horizontal axis). The algorithms in this setting perform quite similarly to those in Figure 3,
although the Krylov–Bellman Boosting algorithm seems to be more stable in this setting than in the previous one. (a) Linear
Quadratic Regulator with discount factor γ “ 0.9. (b) Linear Quadratic Regulator with discount factor γ “ 0.99.

wt “ 0 and

A “

»

–

0 1 0
0 0 1
1 0 0

fi

fl and B “

»

–

0 0 0
1 0 0
0 0 0

fi

fl ,

we can verify that the system has the following state space representation

xt`1,1 “ xt,2 `
“

xt,3 ´ x2t,1 ` ut,1
‰2
,

xt`1,2 “ xt,3 ´ x2t,1 ` ut,1,

xt`1,3 “ xt,1 ` 2xt,2
“

xt,3 ´ x2t,1 ` ut,1
‰2

`
“

xt,3 ´ x2t,1 ` ut,1
‰4
.

We generate the associated matrices A,B,Q,K, and R in the same manner as Appendix A.2.

The results of the algorithm are plotted in Figure 6. We still observe the linear behavior of value iteration in both settings,
however this algorithm requires us to know the underlying linear system exactly as well as its transition dynamics. In
general, Algorithm 1 performs much better than fitted value iteration. When γ “ 0.9, initially the algorithm is much faster
than value iteration, but eventually it catches up and overtakes it due to the noise in the algorithm. In the setting of γ “ 0.99,
we see that Krylov–Bellman Boosting is much faster than either value iteration or fitted value iteration. However in this
case, we are running Krylov–Bellman Boosting on the state space given by xt, which has nonlinear transition dynamics
and cost functions.

A.4 ARCH

For the final example, we consider the autoregressive conditional heteroskedasticity model (ARCH) (Engle, 1982; Boller-
slev, 1986). The state vectors Xt evolve according to the non-linear dynamics

Xt`1 “ AXt `
a

q `XtQXt ¨Wt

where q ě 0 is a scalar, the matrix Q P Rdˆd is positive semidefinite, and Wt „ N p0,Σq is system noise. We turn this
into a Markov reward process by assigning a cost function ψpxq “ xTRx and adding discounting. Then the value function
V ‹ is the solution to the Bellman relation

V pxq “ T pV qpxq – xTRx` γEW

”

V pAx`
a

q ` xTQx ¨W q

ı

.
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Figure 6. Illustration of the behavior of three different algorithms, value iteration (red), fitted value iteration (green), and Krylov
Bellman Boosting (blue) on the nonlinear policy evaluation problem. We plot the log error in the } ¨ }µ-norm (vertical axis)
against the number of iterations used (horizontal axis). Algorithm 1 is still much faster than fitted-value iteration, but in the
case with γ “ 0.9 the Krylov–Bellman Boosting is faster than value iteration initially but because of the noise, value iteration
catches up and overtakes it. (a) Discount factor γ “ 0.9. (b) Discount factor γ “ 0.99.

Under some regularity conditions on the triple pq,A,Rq, the Bellman operator T is γ-contractive under the norm } ¨

}µ. Consequently, we can solve for the value function via value iteration in the same manner as previous settings. A
straightforward calculation yields

V ‹pxq “ xTP˚x`
γq

1 ´ γ
¨ tracepP˚Σq

where the matrix P˚ P Rdˆd solves the linear system

P˚ “ R ` γ
␣

ATP˚A ` Q ¨ tracepP˚Σq
(

.

In our numerical simulations we choose d “ 5, and q “ 0.5. The matrix A is chosen to have i.i.d. Unif(0, 1) entries, and
then rescaled to ensure that the system is stable. The matrix Q is computed by generating a matrix with i.i.d. Unifp0, 1q

random variables, and then left-multiplying by its transpose to ensure symmetry. The results are plotted in Figure 7. The
behavior in this setting seems to be the same as what we observed in the past few settings. Initially, Krylov–Bellman
Boosting is much faster than both fitted value iteration and value iteration. In the setting of γ “ 0.9, Krylov Bellman
Boosting hits an error floor relatively early, and it takes value iteration and fitted value iteration quite a while to catch up.
For γ “ 0.99, we observe a similar behavior, but both value iteration and fitted value iteration take significantly longer to
match Krylov–Bellman Boosting in accuracy.

B Proofs

In this section, we present a complete proof of our results. For the convenience of our reader, we restate the major results
and assumptions.

KBB General Guarantee

We have the following guarantees on the steps in the KBB procedure: Let Wt – ϕt ´ BpVt´1q denote the error in the
regression procedure at round t. Our first assumption provides control on the regression accuracy:

Assumption 3 (Reg-Err). For each iteration t “ 1, 2, . . ., the regression procedure is δt-accurate:

E
“

}Wt}
2
Q
‰

ď δ2t . (24)
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Figure 7. Illustration of the behavior of three different algorithms, value iteration (red), fitted value iteration (green), and Krylov
Bellman Boosting (blue) on the ARCH policy evaluation problem. We plot the log error in the } ¨ }µ-norm (vertical axis) against
the number of iterations used (horizonal axis). Algorithm 1 is still much faster than fitted-value iteration, but in the case with
γ “ 0.9 the Krylov–Bellman Boosting is faster than value iteration initially but because of the noise, value iteration catches up
and overtakes it. (a) ARCH with discount factor γ “ 0.9. (b) ARCH with discount factor γ “ 0.99

Our second assumption provides control on the accuracy of the LSTD computation at each step:

Assumption 4 (LSTD-Err). At each iteration t, the approximate LSTD solution Vt is ϵLSTD-accurate:

}Vt ´ V ‹}2Q
paq

ď }V LSTD

t ´ V ‹}2Q ` pϵLSTDq2, and

}BpVtq ´ BpV LSTD

t q}Q
pbq

ď ϵLSTD.

(25)

Theorem 3 (General KBB bound). Suppose that the Krylov–Bellman procedure is run with a δt-accurate regression
procedure (cf.24), and an ϵLSTD-accurate LSTD implementation (cf. 25). Then at each step t “ 1, 2, . . ., the error satisfies
the Q-norm bound

Et`1}Vt`1 ´ V ‹}2Q ď

´

1 ´
m2

t

8Mt

¯

}Vt ´ V ‹}2Q ` 34
Mt

¨ δ2t ` 8Mt

m2
t

¨ pϵLSTD

t q2.

Regression bound

We prove the following guarantee on the regression procedure over some function class F .

Theorem 4 (Regression bound). For a given function V P L2pX , µq, suppose that we compute an estimate pf of the
Bellman residual BpV q via the regression over a b-bounded and convex function class F . Then we have

E} pf ´ BpV q}2µ ď c
!

ω2
n ` ε2n `

1

n

`

b2 ` }V }28

˘

` }ΠF pBpV qq ´ BpV q}2µ

)

, (26)

where the statistical estimation error ω2
n and ε2n depends on the complexity of F .

We begin by proving Theorem 1 in Appendix B.1. This proof relies on a result of possible interest—stated as Proposition 1
and proved in Appendix B.2—that controls the one-step of the algorithm when the LSTD calculations are exact.

B.1 Proof of Theorem 3

Our proof of this result consists of two parts:

(a) First, we analyze an idealized version of the algorithm in which there is no error in the LSTD calculation. We
summarize our conclusions in Proposition 1 stated below.
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(b) Second, we leverage our understanding of the “exact-LSTD” setting in order to analyze the general algorithm. Our
strategy is to reduce the general update to perturbed form of the “exact-LSTD” update.

We begin by bounding the behavior of an update that is not actually used in the algorithm itself, but is a useful auxiliary
quantity. In particular, suppose that we are given an LSTD solution V LSTD, computed from a subspace S with spectral
parameters pm,Mq, as previously defined (15). For a stepsize α ą 0, define the update

FαpV LSTDq “ V LSTD ´ α
␣

BpV LSTDq `W
(

,

where W represents noise in the computation of the Bellman residual. We let b “ ErW s and σ2 “ E}W ´ b}2Q denote the
bias and variance, respectively, of this noise. Recall that by our regression-noise assumption 24, the mean-squared error
satisfies the upper bound }b}2Q ` σ2 ď δ2—we say that the regression procedure is δ-accurate for short.

Proposition 1. Given a δ-accurate regression procedure and a stepsize α P r0, 12 s, for any LSTD solution V LSTD, the update
FαpV LSTDq satisfies the bound

E}FαpV LSTDq ´ V ‹}2Q ď
`

1 ´ 3αm
2 ` 2α2M

˘

}V LSTD ´ V ‹}2Q `
`

8α
m ` α2

˘

}b}2Q ` α2 ¨ σ2. (27a)

where E denotes expectation over the regression noise W . In particular, for the choice α “ m
2M , we have

E}FαpV LSTDq ´ V ‹}2Q ď
`

1 ´ m2

4M

˘

}V LSTD ´ V ‹}2Q ` 5
M }b}2Q ` 1

2M ¨ σ2. (27b)

See Appendix B.2 for the proof of this proposition.

In addition, we require another auxiliary result, which characterizes the LSTD solution as a projection under the Q-norm:

Lemma 1. For a reversible Markov chain, the LSTD estimate V LSTD is the projection of V ‹ onto S under the } ¨ }Q-norm—
viz.

V LSTD “ argmin
V PS

}V ´ V ‹}2Q. (28)

See Appendix B.3 for the proof.

Equipped with these two auxiliary results, we are now ready to prove Theorem 3, which applies to the algorithm that
includes errors in both the regression and LSTD phase. Focusing on the update from Vt to Vt`1, we need to bound the
error }Vt`1´V ‹}Q in terms of the error }Vt´V ‹}Q. In order to do so, our analysis also involves the exact LSTD solutions
V LSTD
t`1 and V LSTD

t ; let us emphasize that these quantities are not actually computed in the algorithm itself.

Condition (a) in the definition 25 of LSTD accuracy allows us to relate Vt`1 to V LSTD
t`1 via the inequality

}Vt`1 ´ V ‹}2Q ď }V LSTD

t`1 ´ V ‹}2Q ` pϵLSTD

t q2. (29a)

Next, we observe that for any scalar α, the function V LSTD
t ´ α

`

BpVtq ` Wt`1

˘

is an element of St`1, since ϕt`1 “

BpVtq `Wt`1 is the basis function added at round t. Consequently, applying Lemma 1 with V LSTD
t`1 and the subspace St`1

guarantees that

}V LSTD

t`1 ´ V ‹}2Q ď }V LSTD

t ´ α
`

BpVtq `Wt`1

˘

´ V ‹}2Q. (29b)

Now observe that, by definition of the one-step update Fα, we have the equivalence

V LSTD

t ´ α
`

BpVtq `Wt`1

˘

“ FαpV LSTD

t q ` α
␣

BpV LSTD

t q ´ BpVtq
(

.

Using this decomposition and applying the Fenchel-Young inequality with a parameter τ ą 0 to be chosen, we find that

}Vt`1 ´ V ‹}2Q ď p1 ` τq}FαpV LSTD

t q ´ V ‹}2Q `
`

1 ` 1
τ

˘

}BpVtq ´ BpV LSTD

t q}2Q ` pϵLSTD

t q2

piq
ď p1 ` τq}FαpV LSTD

t q ´ V ‹}2Q `
`

2 ` 1
τ

˘

pϵLSTDq2,
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where step (i) follows inequality (b) in the definition of ϵLSTD-accuracy for the LSTD computation.

We can apply Proposition 1 with the choice α “ mt

2Mt
to upper bound the first term, thereby obtaining

Et`1

“

}FαpV LSTD

t q ´ V ‹}2Q
‰

ď κt}V
LSTD

t ´ V ‹}2Q ` 17
Mt

}bt`1}2Q ` 1
2Mt

¨ σ2
t .

where we have introduced the shorthand κt – 1 ´
m2

t

4Mt
P p0, 1q. Putting together the pieces, we have

Et`1}Vt`1 ´ V ‹}2Q ď p1 ` τqκt}V
LSTD

t ´ V ‹}2Q ` p1 ` τq

´

17
Mt

}bt`1}2Q ` 1
2Mt

¨ σ2
t

¯

`
`

2 ` 1
τ

˘

pϵLSTDq2.

Setting the Fenchel-Young parameter as τ “ 1´κt

2κt
yields

p1 ` τqκt “
1 ` κt

2
“ 1 ´

m2
t

8Mt
.

We also have τ “ 1´κt

2κt
“

m2
t

8Mt´2m2
t

ď 1
2 , using the fact that m2

t ď 2Mt in the inequality. Moreover, we observe that

2 `
1

τ
“ 2 `

2κt
1 ´ κt

“
2

1 ´ κt
“

8Mt

m2
t

.

Putting together the pieces, we conclude

Et`1}Vt`1 ´ V ‹}2Q ď
`

1 ´
m2

t

8Mt

˘

}V LSTD

t ´ V ‹}2Q `
34

Mt
¨ }bt`1}2Q `

1

Mt
¨ σ2

t `
8Mt

m2
t

¨ pϵLSTDq2. (30)

Finally, since both V LSTD
t and Vt belong to the subspace St, Lemma 1 guarantees that

}V LSTD

t ´ V ‹}2Q ď }Vt ´ V ‹}2Q.

Substituting this upper bound into the inequality (30) and using the fact that }bt`1}2Q ` σ2
t ď δ2t yields the claim.

B.2 Proof of Proposition 1

Let V LSTD be an LSTD solution defined by the subspace S, and let pm,Mq be the associated spectral quantities. Recall that
our goal is to control the behavior of the operator FαpV LSTDq “ V LSTD ´ α

␣

BpV LSTDq `W
(

, where W is the noise in the
evaluation of the Bellman residual.

We first claim that the following decomposition holds

E}FαpV LSTDq ´ V ‹}2Q “ T1 ` T2 ` α2}b}2Q ` α2σ2, (31)

where the two terms are defined as

T1 – }V LSTD ´ V ‹}2Q ´ 2α}BpV LSTDq}2µ ` α2}BpV LSTDq}2Q, and (32a)

T2 – 2α2xV LSTD ´ V ‹, QbyQ ´ 2αxV LSTD ´ V ‹, byQ. (32b)

In order to prove the claim (31), we begin by observing that for any stepsize α ą 0, expanding the square yields

}FαpV LSTDq ´ V ‹}2Q “ }V LSTD ´ V ‹}2Q ´ 2αxV LSTD ´ V ‹, BpV LSTDq `W yQ ` α2}BpV LSTDq `W }2Q,

Taking expectation over the regression noise, we find that

ExV LSTD ´ V ‹, BpV LSTDq `W yQ “ xV LSTD ´ V ‹, BpV LSTDq ` byQ, and

E}BpV LSTDq `W }2Q “ }BpV LSTDq ` b}2Q ` σ2,

where the second equation follows from a bias-variance decomposition. Thus we have

E}FαpV LSTDq ´ V ‹}Q “ }V LSTD ´ V ‹}2Q ´ 2α xV LSTD ´ V ‹, BpV LSTDq ` byQ

` α2}BpV LSTDq ` b}2Q ` α2σ2.
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We have

xV LSTD ´ V ‹, BpV LSTDq ` byQ “ xV LSTD ´ V ‹, BpV LSTDqyQ ` xV LSTD ´ V ‹, byQ

“ }BpV LSTDq}2µ ` xV LSTD ´ V ‹, byQ, (33)

and

}BpV LSTDq ` b}2Q “ }BpV LSTDq}2Q ` 2xBpV LSTDq, byQ ` }b}2Q

“ }BpV LSTDq}2Q ` 2xV LSTD ´ V ‹, QbyQ ` }b}2Q, (34)

using the self-adjointness of Q. Combining equations (33) and (34) yields

E}FαpV LSTDq ´ V ‹}2Q “ }V LSTD ´ V ‹}2Q ´ 2α}BpV LSTDq}2µ ` α2}BpV LSTDq}2Q

` 2α2xV LSTD ´ V ‹, QbyQ ´ 2α xV LSTD ´ V ‹, byQ ` α2p}b}2Q ` σ2q

“ T1 ` T2 ` α2p}b}2Q ` σ2q,

which establishes the claimed decomposition (31).

Our next step is to bound the terms T1 and T2 that were previously defined (32).

Bounding T1: It suffices to show that the Bellman residual BpV LSTDq satisfies the bounds

}BpV LSTDq}2Q ď 2M}V LSTD ´ V ‹}2Q, and }BpV LSTDq}2µ ě m}V LSTD ´ V ‹}2Q. (35)

Indeed, by combining these two inequalities, we find that

T1 ď
`

1 ´ 2αm` 2α2M
˘

}V LSTD ´ V ‹}2Q,

In order to prove the claims (35), we first observe that the lower bound follows immediately from the definition of m. As
for the upper bound, we have

}z}2Q “ xQ´1{2z, Q2Q´1{2zyµ
piq
ď 2 xQ´1{2z, QQ´1{2zyµ

“ 2 }z}2µ

ď 2M}V LSTD ´ V ‹}2Q,

where step (i) follows from the inequality Q2 ĺ 2Q.

Bounding T2: We apply the Fenchel-Young inequality with a parameter τ ą 0 to be chosen, thereby obtaining the bound

|T2| “ 2α
ˇ

ˇxV LSTD ´ V ‹, pαQ ´ IqbyQ
ˇ

ˇ ď 2α
`τ

2
}V LSTD ´ V ‹}Q `

1

2τ
}pαQ ´ Iqb}2Q

˘

“ ατ}V LSTD ´ V ‹}2Q `
α

τ
}pαQ ´ Iqb}2Q.

In order to bound the second term on the right-hand side of this inequality, we again apply the Fenchel-Young inequality
so as to obtain

}pαQ ´ Iqb}2Q ď 2α2}Qb}2Q ` 2}b}2Q.

Since Q3 ĺ 2Q2 ĺ 4Q, we have }Qb}2Q “ xb, Q3byµ ď 4 xb, Qbyµ “ 4}b}2Q, whence

T2 ď ατ}V LSTD ´ V ‹}2Q `
2α

τ

`

4α2 ` 1
˘

}b}2Q.

We now set the Fenchel-Young parameter as τ “ m
2 . With this choice, and recalling that α P p0, 12 s, we find that

T2 ď
αm

2
}V LSTD ´ V ‹}Q `

8α

m
}b}2Q.
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Putting together the pieces, we conclude that

E}FαpV LSTDq ´ V ‹}2Q ď
`

1 ´
3αm

2
` 2α2M

˘

}V LSTD ´ V ‹}2Q `
`8α

m
` α2

˘

}b}2Q ` α2 ¨ σ2,

as claimed in equation (27a).

Finally, setting α “ m
2M and using the inequality m2 ď 2M yields the claim (27b).

B.3 Proof of Lemma 1

Recall that V LSTD is the LSTD solution defined by the subspace S. For any V P S, we have

}V LSTD ´ V ´ V ‹}2Q “ }V LSTD ´ V ‹}2Q ` 2 xV, V LSTD ´ V ‹yQ ` }V }2Q

“ }V LSTD ´ V ‹}2Q ` 2 xV, Q
`

V LSTD ´ V ‹
˘

yµ ` }V }2Q
piq
“ }V LSTD ´ V ‹}2Q ` }V }2Q,

where the equality (i) follows from the inclusion QpV LSTD ´ V ‹q P SK, as guaranteed by definition of the LSTD fixed
point. Consequently, we see that this quadratic form is minimized by setting V “ 0, yielding the claim.

B.4 Proof of Theorem 4

Key to this proof is the notion of the empirical local sub-Gaussian complexity of rF , defined at scale δ ą 0 as

pGnpδ; rF , txiuni“1q – E

«

sup
g PrF , }g}nďδ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wigpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ txiu
n
i“1

ff

.

Here the samples txiu
n
i“1 correspond to those in regression data set DREG, upon which we are conditioning. For con-

venience, we drop the dependence on the observation data txiu
n
i“1 and directly write pGnpδ; rF q. We use the shorthand

Ew – Er¨ | txiu
n
i“1s in the paper occasionally for convenience.

Relative to the population-level sub-Gaussian complexity defined previously (20) (in which we take expectations over
state variables), the complexity function pG treats the data txiu

n
i“1 as fixed where G does not. In analogy to the critical

radii (22) defined at the population level, we also define a critical radius at using pG: more specifically, let pεn ą 0 be the
smallest positive solution to the inequality

pGpδ;rF q

δ ď δ
2 . Finally, recall that the dataset txiu

n
i“1 defines the empirical norm

}f}2n – 1
n

řn
i“1 f

2pxiq.

With this set-up, our proof is broken into three main steps:

(i) We control the empirical error } pf ´ f̃}2n in terms of empirical sub-Gaussian critical radius pεn and the approximation
error }f̃ ´ f˚}2n, as stated in Lemma 2.

(ii) We establish that pεn is controlled by the population critical radii εn and ωn, given by Lemma 3.

(iii) We use the critical radius ωn to establish uniform control and connect } ¨ }n with } ¨ }µ (cf. Lemma 4).

We begin by stating several technical lemmas. Recall that ωn ą 0 satisfies the critical inequality Rpωn; rF q ď
ω2

n

b . The
statement of this lemma treats the observations txiu

n
i“1 as fixed, and provides control of } pf ´ f̃}n over the noise in wi

conditional on txiu
n
i“1.

Lemma 2. For any t ě pεn, we have

} pf ´ f̃}2n ď c1tpεn ` c2}f̃ ´ f˚}2n

with probability exceeding 1 ´ e
´c3n¨

tpεn
}V }28 .

See Appendix B.5.1 for the proof.

In Lemma 2, we have a guarantee in terms of the empirical critical radius pεn, which is a random variable dependent on
txiu

n
i“1 and rF . The following lemma controls the expectation of pε2n.
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Lemma 3. The empirical sub-Gaussian complexity pεn has expectation bounded as

E
“

pε2n
‰

ď c1ε
2
n ` c2 ω

2
n `

c3
n

`

b2 ` }V }28

˘

for universal constants c1, c2, c3.

See Appendix B.5.2 for a proof of this lemma.

The next lemma allows us to convert our empirical norm guarantee to one involving the stationary norm } ¨ }µ. It provides
control on }f ´ f̃}n in terms of }f ´ f̃}µ uniformly for all f P rF ; we require a uniform version since pf is a random
quantity.

Lemma 4. For any t ě ωn, we have

ˇ

ˇ

ˇ
}f ´ f̃}2n ´ }f ´ f̃}2µ

ˇ

ˇ

ˇ
ď

1

2
}f ´ f̃}2µ `

t2

2
for all f P rF (36)

with probability exceeding 1 ´ c1e
´c2

nt2

b2 .

See Theorem 14.1 in the reference (Wainwright, 2019) for the proof.

Note that for an arbitrary real-valued random variable Z, the inequality Z ď maxtZ, 0u allows to write ErZs ď

ErmaxtZ, 0us “
ş8

0
PpZ ě uq du, so that we can upper bound ErZs by integrating an upper tail bound.

Let us apply this line of reasoning to the random variable

Z –
ˇ

ˇ} pf ´ f̃}2n ´ } pf ´ f̃}2µ

ˇ

ˇ ´
1

2
} pf ´ f̃}2µ,

using the tail bound established in Lemma 4. With a change of variables, we have

ErZs ď

ż 8

0

PpZ ě uq du ď
1

2
ω2
n `

ż 8

ω2
n{2

PpZ ě uq du

ď
1

2
ω2
n `

ż 8

0

c1e
´2c2

nu
b2 du

“
1

2
ω2
n `

c1
2c2

¨
b2

n
.

(37)

Additionally, observe that Lemma 2 treats txiu
n
i“1 as fixed and the high probability is over the randomness with respect to

twiu conditional on txiu. Thus, integrating the tail bound again yields

Ew

”

} pf ´ f̃}2n

ı

ď c1
!

pε2n `
}V }28

n
` }f̃ ´ f˚}2n

)

for some universal constant c1. Taking expectations over txiu
n
i“1 then yields

E} pf ´ f̃}2µ ď c1
!

E
“

pε2n
‰

`
}V }28

n
` }f̃ ´ f˚}2µ

)

. (38)

Finally, combining equations (37) and (38), we conclude that

E} pf ´ f̃}2µ ď c
2
!

E
“

pε2n
‰

` ω2
n `

1

n

`

b2 ` }V }28

˘

` }f̃ ´ f˚}2µ

)

.

The theorem then follows from applying Lemma 3 and rearranging.

B.5 Proof of auxiliary lemmas for Theorem 4

We collect here the proofs of the auxiliary lemmas.
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B.5.1 Proof of Lemma 2

We begin with some straightforward algebraic manipulations. By expanding the square, we have

1

n

n
ÿ

i“1

pyi ´ fpxiqq
2

“
1

n

n
ÿ

i“1

pỹi ´ fpxiqq
2

`
2

n

n
ÿ

i“1

´

f˚pxiq ´ f̃pxiq
¯

pỹi ´ fpxiqq `
1

n

n
ÿ

i“1

´

f˚pxiq ´ f̃pxiq
¯2

,

where we define ỹi – f̃pxiq ` wi. Since the rightmost term does not involve f , we can write

pf P argmin
fPF

#

1

n

n
ÿ

i“1

pỹi ´ fpxiqq
2

`
2

n

n
ÿ

i“1

´

f˚pxiq ´ f̃pxiq
¯

pỹ ´ fpxiqq

+

.

By optimality of pf and feasibility of f̃ , we have

1

n

n
ÿ

i“1

´

ỹi ´ pfpxiq
¯2

`
2

n

n
ÿ

i“1

´

f˚pxiq ´ f̃pxiq
¯

pỹi ´ pfpxiqq

ď
1

n

n
ÿ

i“1

´

ỹi ´ f̃pxiq
¯2

`
2

n

n
ÿ

i“1

´

f˚pxiq ´ f̃pxiq
¯

pỹi ´ f̃pxiqq.

Rearranging terms yields the basic inequality

1

2n

n
ÿ

i“1

´

pfpxiq ´ f̃pxiq
¯2

ď T1 ` T2, (39)

where we define

T1 –
1

n

n
ÿ

i“1

wi

´

pfpxiq ´ f̃pxiq
¯

, and T2 –
1

n

n
ÿ

i“1

´

f˚pxiq ´ f̃pxiq
¯´

pfpxiq ´ f̃pxiq
¯

.

We bound each of T1 and T2 in turn.

Bounding T2: By applying the Fenchel-Young inequality, we find that

T2 ď
1

n

n
ÿ

i“1

´

f˚pxiq ´ f̃pxiq
¯2

`
1

4n

n
ÿ

i“1

´

pfpxiq ´ f̃pxiq
¯2

“ }f˚ ´ f̃}2n `
1

4
} pf ´ f̃}2n.

Bounding T1: We make use of techniques for controlling localized empirical processes; see Chapter 13 in the
book (Wainwright, 2019) for relevant background. Recall that by definition, the scalar pεn ą 0 satisfies the critical in-
equality

pGpδ;rF q

δ ď δ
2 . Recall that rF “ tf ´ f̃ : f P F u is the shifted function class around f̃ . For a scalar u ě pεn, define

the event

Epuq “

#

D g P rF with }g}n ě u such that

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wi gpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ě 2}g}nu

+

. (40)

The following result controls the probability of this event:

Lemma 5. For all u ě pεn, we have

PpEpuqq ď e
´cn¨ u2

}V }28

for some universal constant c ą 0.
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See Appendix C.2 for the proof of this lemma.

By Lemma 5, since pf ´ f̃ P rF , we have if } pf ´ f̃}n ą
?
tpεn for some t ě pεn, then

|T1| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wip pfpxiq ´ f̃pxiqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2} pf ´ f̃}n

a

tpεn

with probability exceeding 1 ´ e
´cn¨

tpεn
}V }28 .

Putting together the pieces, we conclude that

1

2
} pf ´ f̃}2n ď

1

2
tpεn ` 2} pf ´ f̃}n

a

tpεn ` }f˚ ´ f̃}2n `
1

4
} pf ´ f̃}2n,

which implies that

} pf ´ f̃}2n ď 2tpεn ` 8
a

tpεn} pf ´ f̃}n ` 4}f˚ ´ f̃}2n.

This inequality implies that there are universal constants c1, c2, c3 such that

} pf ´ f̃}2n ď c1tpεn ` c2}f̃ ´ f˚}2n (41)

with probability exceeding 1 ´ e
´c3n¨

tpεn
}V }28 .

B.5.2 Proof of Lemma 3

It suffices to show that for any u ě maxtεn,
ω2

n

εn
u, we have the bound

pε2n ď 4uεnwith probability at least 1 ´ c1e
´c2n

uεn
p}V }8`bq2 . (42)

Indeed, the statement of the lemma can be obtained by integrating this tail bound. Accordingly, the remainder of our proof
is devoted to establishing inequality (42) for some fixed but arbitrary u.

Recall that by the definition (22), the critical radii satisfy the inequalities

pGnppεn, rF q

pεn
ď

pεn
2
,

Gnpεn, rF q

εn
ď
εn
2
, and

Rnpωn; rF q

ωn
ď
ωn

b
.

For each t ě, define the random variable

Znptq – Ew

«

sup
gPrF ,}g}µďt

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wigpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

, (43)

and observe that ErZnptqs “ Rnpt; rF q by construction. We also define the events

E0ptq –

"

Znptq ď Rnpt; rF q `
t
?
uεn
8

*

, and E1ptq –

#

sup
fPrF

ˇ

ˇ}f}2n ´ }f}2µ

ˇ

ˇ

}f}2µ ` t2
ď

1

2

+

. (44)

Conditional on E1ptq, we have for all f P rF

}f}n ď

b

3
2}f}2µ ` 1

2 t
2 ď 2}f}µ ` t, and

}f}µ ď
a

2}f}2n ` t2 ď 2}f}n ` t.

Therefore conditioned on E1p
?
uεnq,

pGnpsq “ Ew

«

sup
gPrF ,}g}nďs

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wigpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď Ew

«

sup
gPrF ,}g}µď2s`

?
uεn

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wigpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

“ Znp2s`
?
uεnq. (45)
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Conditioning on both E0
`

9
?
uεn

˘

and E1p
?
uεnq, we have

pGp4
?
uεnq

piq
ď Znp9

?
uεnq

piiq
ď Rnp9

?
uεnq `

9

8
uεn,

where step (i) follows from the bound (45), and step (ii) follows from the event E0p9
?
uεnq. Since the function δ ÞÑ

Rnpδq

δ
is non-increasing, and 9

?
uεn ě εn,

Rnp9
?
uεnq

9
?
uεn

ď
Rnpεnq

εn
ď
εn
2

ď

?
uεn
2

ùñ Rnp9
?
uεnq ď

9

2
uεn,

using the definition of εn and the critical inequality. We then have

pGp4
?
uεnq ď

9

2
uεn `

9

8
uεn “

45

8
uεn,

which implies

pGp4
?
uεnq

4
?
uεn

ď
45

32

?
uεn ď

4
?
uεn
2

.

Thus 4
?
uεn satisfies the critical inequality defined by pG, implying that pεn ď 4

?
uεn, as desired.

The following lemma provides control on the events E0p9
?
uεnqc and E1p

?
uεnqc.

Lemma 6. For any u ě maxtεn,
ω2

n

εn
u, we have

PpE0p9
?
uεnqcq ď 2 exp

ˆ

´c1n ¨
uεn

}V }28 ` b}V }8

˙

, and (46)

PpE1p
?
uεnqcq ď c2 exp

´

´c3n ¨
uεn
b2

¯

. (47)

See Appendix C.3 for the proof of this lemma.

C Further Proofs

Here we present the proof of various lemmas used in the main text of the paper.

C.1 Proof of equation (12)

Let us state the result to be proven more formally:
Lemma 7. For any separable Hilbert space L2pX , µq, the operator pI ´ γPq is self-adjoint, invertible, and satisfies the
bounds

p1 ´ γq}f}2µ ď xf, pI ´ γPqfyµ ď p1 ` γq}f}2µ for all f P L2pX , µq. (48)

The requirements for L2pX , µq to be separable is quite mild; in the case where X “ Rd for some dimension d, one
sufficient condition is that µ is a continuous distribution.

Proof. By definition of the stationary measure, the operator P satisfies the bound }PV }µ ď }V }µ. Thus, by classical
functional analysis (e.g., see Chap. 8 in the reference (Kreyszig, 1991)), the inverse pI ´ γPq´1 exists, and can be
represented via the Neumann series expansion

pI ´ γPq´1 “

8
ÿ

j“0

γjPj .

The other statements follow from using linearity of the inner product, and then applying Cauchy-Schwarz in conjunction
with the operator norm bound of P .

Since Q – I ´ γP is a positive operator, it has a unique square root pI ´ γPq1{2. In addition, since Q is invertible, so is
its square root (which is also self-adjoint).
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C.2 Proof of Lemma 5

This argument is inspired by the proof of Lemma 13.12 in the book (Wainwright, 2019), along with some new ingredients.
We treat the observations txiu

n
i“1 as fixed here. Define the empirical process

Znpuq – sup
gPrF ,

}g}nďu

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wi gpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

.

We claim that

P pEpuqq ď PpZnpuq ě 2u2q.

In order to establish this claim, suppose that there exists g P rF with }g}n ě u such that
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wi gpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ě 2}g}nu.

Define the rescaled function g̃ “ u
}g}n

g; observe g̃ P rF by convexity. We then have
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wi g̃pxiq

ˇ

ˇ

ˇ

ˇ

ˇ

“
u

}g}n

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wi gpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ě 2u2,

as desired.

It remains to control the probability PpZnpuq ě 2u2q. If we view Znpuq as a function of pw1, . . . , wnq, it can then be seen
that it has Lipschitz constant of u?

n
in the Euclidean norm and is separately convex. Since |wi| ď 2}V }8, we have by

Theorem 3.4 in the book (Wainwright, 2019) we have

PpZnpuq ě ErZnpuqs ` sq ď e
´cn¨ s2

u2}V }28 .

Observe by definition that ErZnpuqs “ pGpuq, so that

pGpuq

u

piq
ď

pGppεnq

pεn

piiq
ď

pεn
2

ď pεn,

where step (i) uses Lemma 13.6 in the book (Wainwright, 2019) and the fact that u ě pεn, and step (ii) uses the critical
inequality (22). Thus, we conclude that

PpZnpuq ě 2u2q ď PpZnpuq ě upεn ` u2q ď e
´cn¨ u2

}V }28 ,

as desired.

C.3 Proof of Lemma 6

To begin, we observe that the claim (47) follows by applying Lemma 4, along with the fact that u ě
ω2

n

εn
implies that

?
uεn ě ωn. In order to prove the claim (46), assume that u ě εn, and define the random variable

Znptq – sup
gPrF ,}g}µďt

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wi gpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

.

By the definition (43) of Znptq, we have the equivalence

Znptq “ Ew rZnptqs “ ErZnptq | txiu
n
i“1s,

and E
“

Znptq
‰

“ ErZnptqs “ Gnptq. The moment generating function of Znptq ´ Gnptq can be bounded as

E
„

eλpZnptq´Gnptqq

ȷ

“ E
”

eλpEwrZnptqs´Gnptqq
ı

ď E
!

Ew

”

eλpZnptq´Gnptqq
ı)

“ E
”

eλpZnptq´Gnptqq
ı

,
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where the inequality follows from a (conditional) Jensen’s inequality. Consequently, we can control Znptq ´ Gnptq by
controlling Znptq ´ Gnptq using a Chernoff-type argument. We prove an upper tail bound on Znptq via Talagrand concen-
tration (Talagrand, 1996) which uses a Chernoff bound in its proof; see Theorem 3.27 in the book (Wainwright, 2019) for
further details.

Define the random variable Σ2 “ supfPrF ,}f}µďt
1
n

řn
i“1 w

2
i fpxiq

2. We then have by Talagrand concentration

PpZnptq ě Gnptq ` sq ď 2 exp

ˆ

´cn ¨
s2

ErΣ2s ` bs

˙

where c is a universal constant. By Equation (3.84) from the book (Wainwright, 2019), we have

ErΣ2s ď sup
fPrF ,}f}µďt

Erw2f2pxqs ` 4b}V }8 ¨ Gnptq

ď 4}V }28 t2 ` 4b}V }8 ¨ Gnptq,

where we have used the fact |w| ď 2}V }8 a.s. Thus, we have

P
ˆ

Znp9
?
uεnq ě Gnp9

?
uεnq `

9uεn
8

˙

ď 2 exp

ˆ

´cn ¨
u2ε2n

}V }28uεn ` b}V }8 ¨ Gnp9
?
uεnq ` b}V }8uεn

˙

piq
ď 2 exp

ˆ

´c1n ¨
uεn

}V }28 ` b}V }8

˙

,

where step (i) follows from the fact that Gp9
?
uεnq ď 9

2uεn for u ě εn.

D Critical radii calculations

In this section, we describe the form of the critical radii for several different function classes.

D.1 Examples of statistical error

For simplicity, we consider classes with }V }8 “ b “ 1. Here we summarize the form of the critical radii; see Appendix D.2
for the computations that underlie these conclusions.

Polynomials of degree d: As our first example, suppose that rF is the family of d-degree polynomials defined on X “

r´1, 1s uniformly bounded by 1. For a given θ P Rd`1, define fθpxq – θ0 ` θ1x` . . .` θd`1x
d. Then we have

rF – tfθ : r´1, 1s Ñ R for some θ P Rd`1 such that }fθ}8 ď 1 u.

Some straightforward calculations yield ω2
n À d`1

n , and ε2n À d`1
n , so that we can conclude

β2
n À

d` 1

n
.

Radial basis kernels: Consider X “ r´1, 1s and the reproducing kernel Hilbert space (RKHS) H given by the Gaussian

kernel K px, zq “ e´
1
2 px´zq

2

defined on the Cartesian product space r´1, 1sˆr´1, 1s. Consider the unit ball in this RKHS,
given by

rF “ tf P H |
›

›f
›

›

H ď 1, }f}8 ď 1u.

For this example, it can be shown that ω2
n À

logpn`1q

n and ε2n À
logpn`1q

n , and hence

β2
n À

logpn` 1q

n
.

This is a simple example of a non-parametric class, since the effective degrees of freedom (logpn ` 1q in this case) grows
as a function of the sample size.
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Convex Lipschitz functions: We let X “ r0, 1s and rF be the class of convex 1-Lipschitz functions, i.e.

rF – tf : r0, 1s Ñ R | fp0q “ 0, and f is convex and 1-Lipschitzu.

We can show ω2
n À 1

n4{5 and ε2n À 1
n4{5 , giving

β2
n À

1

n4{5
.

D.2 Calculations for Appendix D.1

In this section we provide the details behind the calculations in Appendix D.1. Before proceeding to the computations, we
have the following result relating the sub-Gaussian complexity Gpδ; rF q and the Rademacher complexity Rpδ; rF q

Lemma 8. We have for some universal constant c,

Gpδ; rF q ď c}V }8 ¨ Rpδ; rF q.

This lemma allows us to instantly obtain a bound for the sub-Gaussian complexity after computing the Rademacher com-
plexity of the function class rF . In Appendix D.1, we assume }V }8 “ 1; consequently ω2

n À ε2n.

Proof. We have by the tower property,

Gpδ; rF q “ E

«

Ew

«

sup
gPrF ,}g}µďδ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

wigpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ffff

We can then bound, letting εi be i.i.d. Rademacher random variables independent of txiu
n
i“1,

Ew

“

sup
gPrF ,}g}µďδ

ˇ

ˇ

1

n

n
ÿ

i“1

wigpxiq
ˇ

ˇ

‰
paq

ď 2Ew,ε

“

sup
gPrF ,}g}µďδ

ˇ

ˇ

1

n

n
ÿ

i“1

εiwigpxiq
ˇ

ˇ

‰

“ 4}V }8 ¨ Ew,ε

«

sup
gPrF ,}g}µďδ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εi ¨
wigpxiq

2}V }8

ˇ

ˇ

ˇ

ˇ

ˇ

ff

pbq

ď 8}V }8 ¨ Eε

“

sup
gPrF ,}g}µďδ

ˇ

ˇ

1

n

n
ÿ

i“1

εigpxiq
ˇ

ˇ

‰

,

where step (a) follows from symmetrization (cf. Chapter 4 in the reference (Wainwright, 2019)) and step (b) follows from
the bound |wi| ď 2}V }8 and the Ledoux-Talagrand contraction inequality (Ledoux and Talagrand, 1991).

D.3 Polynomials of degree d

To simplify the calculations, let ϕ0, . . . , ϕd be an orthonormal basis of rF with respect to x¨, ¨yµ. This basis exists via
applying Gram-Schmidt on the basis t1, x, . . . , xdu. We can then write any polynomial function in rF as fbpxq “ b0ϕ0pxq`

b1ϕ1pxq ` . . . ` bdϕdpxq, which satisfies }fb}µ “ }b}2. Define the matrix M P Rnˆpd`1q with Mij “ ϕjpxiq. We then
have, letting (with mild abuse of notation) ε “ pε1, . . . , εnq P Rn,

Gnpδ; rF q “ E

«

sup
fbPrF ,}fb}µďδ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εifbpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď E

«

sup
}b}2ďδ

ˇ

ˇ

ˇ

ˇ

1

n
εTMb

ˇ

ˇ

ˇ

ˇ

ff

paq
“

δ

n
E
“

}εTM}2
‰

pbq

ď

b

Er}εTM}22s,

where step (a) follows from the fact that } ¨ }2 is a dual norm to itself, and step (b) follows from Jensen’s inequality.

Manipulating further, we have

E
“

}εTM}22

‰

“ E
“

EεrtracepMT εεTMqs
‰

“ E
“

tracepEεrεεT sMMT q
‰

,
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where we have used the fact that Eεr¨s – Er¨ | txiu
n
i“1s and M is a function of txiu

n
i“1. We then have

E}εTM}22
paq
“ ErtracepMMT qs

pbq
“ pd` 1qn,

where the equality (a) follows from the fact that ErεεT s “ I, and the equality (b) follows from the fact that tϕ0, . . . , ϕdu

is orthonormal. To identify the critical radius, we compute using the definition (22),

4δ
?
d` 1

δ
?
n

ď δ ùñ ω2
n À

d` 1

n
.

By Lemma 8, we have ε2n À d`1
n .

D.4 Radial basis kernels

By Mercer’s theorem (see Chapter 12 in the book (Wainwright, 2019)), we have the kernel integral operator TK pfqpxq –
ş

X K px, zqfpzq dµpzq has a set of eigenvalues tµju8
j“1. Then we have (cf. Corollary 14.5 (Wainwright, 2019))

Rnpδ; rF q ď

c

2

n
¨

g

f

f

e

8
ÿ

j“1

mintµj , δ2u.

Since a reversible Markov chain has a uniform stationary distribution, the eigenvalues of TK satisfies

µj ď c0e
´c1j log j , for j “ 1, 2, . . .

for some universal constants c0, c1 (see Chapter 12 in the reference (Wainwright, 2019)).

Let k be the smallest positive integer such that c0e´c1k log k ď δ2. We have

c

2

n
¨

g

f

f

e

8
ÿ

j“1

mintµj , δ2u ď

g

f

f

e

8
ÿ

j“1

mintδ2, c0e´c1j log ju

ď

g

f

f

ekδ2 ` c0

8
ÿ

j“k`1

e´c1j log j

ď
a

kδ2 ` c0e´c1k log k ď c0
?
kδ2,

where c0, c1 denote universal constants whose values may change from line to line. Some algebra then shows ω2
n À

logpn`1q

n and ε2n À
logpn`1q

n , as claimed.

D.5 Convex Lipschitz functions

We use results involving chaining and empirical process theory to compute the critical radii in this setting, see the refer-
ences (Wainwright, 2019; van de Geer, 2000; Talagrand, 2014) for a full exposition. Recall the definition of the event E1ptq
from Equation (44), and let ωn denote the critical radius. By an argument similar to that of the proof of Lemma 3, we have
for k ě 1,

Eε

«

sup
gPrF ,}g}µďωn

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εi gpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď Eε

«

sup
gPrF ,}g}nďpk`2qωn

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εi gpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

,

with probability exceeding 1 ´ c0e
´c1n

k2ω2
n

b2 . We bound the right-hand side via chaining: we know from existing results
(see Chapter 14 in the book (Wainwright, 2019)) that for Lipschitz function class rF ,

Eε

«

sup
gPrF ,}g}nďpk`2qωn

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εi gpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď
1

?
n

ppk ` 2qωnq
3{4

.
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Defining

Z – Eε

«

sup
gPrF ,}g}nďpk`2qωn

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

εi gpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

We can integrate the tail bound to get

ErZs “

ż 8

0

PpZ ě uq du

ď
1

?
n

p3ωnq3{4 `
1

?
n

ż 8

p3ωnq3{4

PpZ ě uq du

paq

ď
1

?
n

p3ωnq3{4 `
3c0ω

3{4
n

4

ż 8

0

exp
`

´c1nk
2ω2

n

˘

¨ pk ` 2q´1{4 dk

ď p3ωnq3{4 `
3c0ω

3{4
n

4
?
n

ż 8

0

exp
`

´c1nk
2ω2

n

˘

dk

pbq
“

1
?
n

p3ωnq3{4 `
3c0ω

3{4
n

8
?
n

¨

c

π

nω2
n

,

where step (a) follows from the change of variables u “ ppk`2qωnq3{4 and step (b) follows from the integral of a Gaussian
density. By definition (22), we have Rnpωn; rF q “ ω2

n, so we have for universal constants c1 and c2,

ω2
n ď c1

ω
3{4
n

?
n

`
c2

ω
1{4
n n

.

Thus we conclude ω2
n À 1

n4{5 , as claimed.


