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Abstract

Gradients have been exploited in proposal dis-
tributions to accelerate the convergence of
Markov chain Monte Carlo algorithms on dis-
crete distributions. However, these methods
require a natural differentiable extension of the
target discrete distribution, which often does
not exist or does not provide effective gra-
dient guidance. In this paper, we develop a
gradient-like proposal for any discrete distri-
bution without this strong requirement. Built
upon a locally-balanced proposal, our method
efficiently approximates the discrete likelihood
ratio via Newton’s series expansion to enable
a large and efficient exploration in discrete
spaces. We show that our method can also be
viewed as a multilinear extension, thus inher-
iting its desired properties. We prove that our
method has a guaranteed convergence rate with
or without the Metropolis-Hastings step. Fur-
thermore, our method outperforms a number
of popular alternatives in several different ex-
periments, including the facility location prob-
lem, extractive text summarization, and image
retrieval.

1 INTRODUCTION

Discrete structures are common in the real world, from
discrete data such as text [Wang and Cho, 2019, Gu et al.,
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2017] and genomes [Wang et al., 2010], to discrete mod-
els such as low-precision neural networks [Courbariaux
et al., 2016, Peters and Welling, 2018] and graphical
models of molecules [Gilmer et al., 2017]. As data and
models become complex and large-scale, it is desirable to
develop efficient proposals in Markov chain Monte Carlo
(MCMC) algorithms that allow us to sample from these
complex high-dimensional discrete distributions [Zhang
et al., 2022a].

Gradients have been widely utilized in proposal distri-
butions to accelerate the convergence of MCMC, such
as the Langevin algorithm [Roberts and Tweedie, 1996,
Roberts and Stramer, 2002] and Hamiltonian Monte
Carlo (HMC) [Duane et al., 1987, Neal et al., 2011].
These gradient-based methods are mainly designed for
continuous distributions and require a natural neighbor-
hood to define gradients. However, since there is no nat-
ural neighborhood in discrete distributions, it becomes
challenging to incorporate gradients in the proposal to
accelerate sampling.

Previous research has been devoted to making gradient-
based proposals for efficient discrete sampling, however,
they either require natural differentiable relaxation or
sacrifice convergence speed. As shown in the “Natu-
ral continuous extension available” column in Table 1,
Gibbs with gradient proposal [Grathwohl et al., 2021]
and discrete Langevin proposal (DLP) [Zhang et al.,
2022a] assume the existence of an underlying differen-
tiable distribution in the discrete space and exploit gra-
dient information to speed up sampling and inference.
In the top right of Table 1, the locally-balanced pro-
posal [Zanella, 2020] does not require this assumption,
while it only conducts local moves in small windows,
which leads to slow convergence, especially in high-
dimensional tasks. Therefore, the question we need to
answer is how to design a method that can sample effi-
ciently in discrete spaces and has no strong requirement
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Table 1: Proposals for discrete distributions.

Natural differentiable
extension unavailable
Locally-balanced
proposal

Natural differentiable
extension available
Gibbs with

gradient proposal
Discrete Langevin
proposal

Update one
coordinate in a step
Update multiple
coordinates in a step

Newton proposal (Ours)

of natural continuous expansion.

To answer this question, we present a gradient-like in-
formed proposal to efficiently sample from any discrete
distribution without the strong requirement of continuous
relaxations. To find more informative directions during
sampling, our method estimates the likelihood ratio of
making discrete moves through Newton’s series expan-
sion, so we call our proposal Newton proposal. In addi-
tion, we design a coordinatewise factorization scheme in
our method, so we can update multiple coordinates in a
single move, which further improves the sampling effi-
ciency. We summarize our contributions as follows:

We propose a new informed proposal, Newton pro-
posal, for discrete distributions. It allows multiple
coordinates to be updated simultaneously while not
requiring that the discrete distribution to be natu-
rally extended to the continuous domain.

L]

We show that our Newton proposal can be obtained
from Newton’s series approximation to the target
discrete distribution or from Taylor expansion to
the multilinear extension of the discrete distribution,
which justifies Newton proposal’s desirable proper-
ties.

We theoretically prove the convergence rate of our
Newton scheme without and with the Metropolis-
Hastings correction, demonstrating its efficient
sampling in discrete distributions.

e We experimentally show that Newton proposal
outperforms existing discrete proposals and some
optimization-based methods when sampling from
high-dimensional complex discrete distributions,
including facility location, text summarization, and
image retrieval.

2 RELATED WORK

Informed Proposal Various informed Metropolis-
Hastings (MH) proposal distributions have been de-
signed to avoid slow mixing and slow convergence
brought by random walk MH proposals. Using symmet-
ric proposal distributions, random walk MH schemes are
easy to implement, but no information about the target
distribution is utilized and the new state is proposed ran-
domly. In the contrary, informed proposal distributions

elaborate information about the target distribution, such
as the gradient of the target to bias the proposal distri-
bution towards high probability, resulting in substantial
improvements of MCMC performances. However, most
of these informed proposals are based on derivatives and
it is nontrivial to extend such methods to discrete spaces.
As a consequence, most MCMC proposals for discrete
spaces often rely on symmetric and uninformed proposal
distributions, which can induce slow convergence.

Continuous Relaxation-Based Method Gradient-based
informed proposals can be applied to discrete distribu-
tions via continuous relaxations [Pakman and Paninski,
2013, Nishimura et al., 2020, Han et al., 2020, Zhou,
2020, Jaini et al., 2021, Zhang et al., 2022b]. They are
usually implemented by transporting the problem into a
continuous domain, performing updates under gradient-
based proposals there, and transforming back after sam-
pling. The efficiency of this kind of continuous relax-
ation highly depends on the properties of the relaxed
continuous distributions which may be arbitrarily diffi-
cult to sample from, such as being highly multi-modal.
To avoid these pitfalls, for discrete distributions which
can be displayed as continuous, differentiable functions
accepting real-valued inputs but are evaluated only on
a discrete subset of their domain, Gibbs-with-gradient
proposal [Grathwohl et al., 2021] and discrete Langevin
proposal [Zhang et al., 2022a] use gradients to inform
discrete updates directly for these discrete distributions
rather than transport the discrete domain to a continu-
ous one. However, most discrete distributions in the real
world do not have a natural continuous extension, or the
natural extension is still not differentiable. This is why
we propose Newton proposal.

Locally-Balanced Proposal Based on local neighbor-
hood information at the current location, the locally-
balanced proposal [Zanella, 2020] is an informed frame-
work that is applicable to both discrete and continu-
ous spaces. When sampling from discrete distribu-
tions, it does not require natural differentiable exten-
sions. Locally-balanced proposals have been extended
to continuous-time Markov processes [Power and Gold-
man, 2019] and have been tuned via mutual informa-
tion [Sansone, 2022]. It has also been used in Multiple-
try Metropolis (MTM) algorithms to achieve fast con-
vergence [Gagnon et al., 2022]. It is very expensive
to construct locally-balanced proposals when the lo-
cal neighborhood is large or the dimension is high,
preventing them from making large moves in discrete
spaces. The path auxiliary proposal [Sun et al., 2021]
explores a larger neighborhood by making a sequence
of small moves. An adaptive locally-balanced pro-
posal (ALBP) [Sun et al., 2022] has been proposed to
determine the update size automatically. However, it still
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only updates one coordinate per gradient computation
and the update has to be done in sequence. On the con-
trary, our Newton proposal can update many coordinates
in parallel.

3 PRELIMINARY

We consider sampling from a target distribution

7(60) = ~ exp(U (),

Z Vo € © 1

where 0 is a d-dimensional variable, © is a finite vari-
able domain, the energy function U is a scalar-valued
function, and Z is the normalizing constant for 7 to be a
distribution. In this paper, we restrict © to a factorized
domain, i.e., © = H?zl ©;, and mainly consider © to
be {0,1}4 or {0,1,...,L — 1}, which correspond to
the binary variable and the categorical one, respectively.

As we state in related work, Locally-balanced pro-
posal [Zanella, 2020] does not require a natural continu-
ous distribution, so it is a flexible framework to build ef-
ficient and informed proposals for discrete distributions:

(9
m(6)

where g is a continuous function from [0, 00) to itself
satisfying g(t) = tg(1/t), vVt > 0. K,(6,df’) is a sym-
metric kernel and o is a scale parameter.

When we set g(t) = Vt, Ky(z,") = N (z,0%) and a =
o2 as the well-known Metropolis-Adjusted Langevin
Algorithm (MALA) proposal [Roberts and Rosenthal,
1998], we get an informed proposal as

u@)-u(®) e'—o|
R >,<3>

Qg,0(0,d0") xx g < ) K,(0,d9"), )

qo (0" ] 0) o< exp (

where the local difference U (6") — U(6) shows the like-
lihood ratio between a given input 6 and other discrete
states ¢’. In case where summing over the full space of
6’ is so expensive that the normalizing constant becomes
intractable, the locally-balanced proposal often restricts
its domain to a small neighborhood. For example, the
Gibbs-with-gradient proposal [Grathwohl et al., 2021]
only considers local moves inside a Hamming ball with
small window sizes.

Finite Difference Finite Difference is a mathematical
expression of the form f(x + b) — f(x + a), which is
an approximation of derivatives. Specifically, a forward
finite difference, denoted Ap[f], of a function f is de-
fined as

Anlfl(x) = f(z +h) — f(z).

When the window size h = 1, h can be omitted:
Alfi(z) = f(z +1) — f().

As for the finite difference with respect to a vector, let’s
consider x € {0,1,...,L — 1}? as a d-dimensional vec-
torand f : {0,1,...,L — 1}¢ — R as a scalar-valued
function. The finite difference of f with respect to the
vector z is defined as

Alf](z) = (Alf](@)1, - .-
Specifically,
Alfl(x); = f (i) — f(z), Vie {1,...,d},

where —;x changes the i-th coordinate from x; to x; + 1
and keeps the other d — 1 coordinates the same as x.

yAlf](@)a) -

Newton’s Series Expansion As the discrete analog of
the continuous Taylor expansion, Newton’s series expan-
sion is used to approximate discrete functions. In New-
ton’s series expansion, we use finite differences instead
of gradients to indicate neighborhood information.

Let’s consider the scalar version first. The Newton series
consists of the terms of the Newton forward difference
equation:

= AF[f](a
sy = B g,
k=0
where () = z(z — 1)(x — 2)---(x — k + 1) and
AF[f](z) represents k-th order forward finite difference
defined as

k
A fl) =Y ( k ) (—1) f(a + i),

7
=0

Specifically, the first-order Newton’s series expansion is
f(z) = f(a) + Alf](a)(x — a). )

When z and a are d-dimensional vectors, A[f](a) is also
a d-dimensional vector and the corresponding first-order
Newton’s series expansion becomes

f@) = f(a) + Alfl(@)" - (z — a). (5)

In this paper, we use the first-order Newton’s series ex-
pansion under 1 = 1 to approximate the likelihood of
discrete moves.

4 EFFICIENT INFORMED
PROPOSALS VIA NEWTON’S
SERIES APPROXIMATION

To sample from discrete distributions efficiently, we pro-
pose Newton proposal. We use Newton’s series expan-
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sion to approximate the likelihood of making discrete up-
dates, and factorize the discrete domain coordinatewise
to reduce the computation cost significantly.

4.1 Informed Proposal via Newton’s Series
Approximation

Consider a common d-dimensional case © =
{0,1,---,L — 1}¢. In each iteration, several coor-
dinates are flipped and we update the current samples

0 to ¢'. We use a first-order forward Newton’s series
expansion with window size h = 1 to approximate
Uu@)—-u():

U@ —U(6) ~ A[UJO) " - (6" —6). (6)

We use the Newton’s series expansion in (6) to approxi-
mate the local difference U (6') — U(6) in (3):

tf(’|9
AU 0'—0) 6 —9|?
2c

x exp <21a (—(9’ — 9)2 +aA[UYO)" - (0 - 9)) >
exp (= SAUN0)?)

—exp (5o ~0 - SALIO) )

(9’|9

(N
We add a term in the fourth line to get the perfect square
form because A[U](6) is independent of ¢’ and will not
affect the normalized result (see the appendix for detailed

proof).

In this way, we obtain the new proposal in a perfect
square form by Newton’s series expansion:

) .

where the normalizing constant is summed over O:

/ «a 2
Ze(0) = Z exp <_||0 —0 _;QA[U](G)’E) '

In a word, finite difference in Newton’s series approx-
imation serves as a guide when exploring the discrete
space, similar to what gradients do in proposals for con-
tinuous distributions. It provides neighborhood infor-
mation about the target distribution so that the sampler
can propose new states more informatively rather than

“blindly”. Moreover, the perfect square form gives us
possibility to accelerate the computation without restrict
our domain in a small neighborhood, which we will dis-
cuss in detail later.

4.2 Efficient Newton Proposal via Coordinatewise
Factorization

The computation cost of the informed proposal in (8) de-
pends on the normalizing constant Zg(6) in (9), which
needs to sum up all states in the discrete space. There-
fore, it is desirable to narrow down the space to make
Zo(0) tractable.

Unlike most locally-balanced proposals which restrict
the domain to a small neighborhood, e.g., a hamming
ball [Zanella, 2020, Grathwohl et al., 2021], a key feature
of the proposal (8) is that it is displayed as a Euclidean
norm and can be factorized coordinatewise [Zhang et al.,
2022a]. To see this, we write (8) as ¢(0'|0) =
H?Zl qi (0 | 6) where ¢; (0. | 0) is a simple categorical
distribution:

Cat (o @A[U](e)i (0~ 6:) - “92‘;9)» e

Here, Cat stands for categorical distribution, o denotes
SoftMax function and 8, € ©,. Recall that A[U](8); =
U(—;0)—U(0), Vi € {1,...,d} where —;0 changes the
i-th coordinate from 6; to 6; + 1 while keeping the other
coordinates the same as 6.

Since both the domain © and the proposal over all coor-
dinates in (8) can be factorized coordinatewisely, we can
update each coordinate in parallel, thus greatly speeding
up the computation. In this way, Newton proposal fills
in the blank in bottom right of Table 1. It enables us
to sample from high-dimensional complex discrete dis-
tributions with better mixing and faster convergence, no
matter whether the discrete distribution has an natural
differentiable extension.

When modeling the proposal distribution over all coordi-
nates jointly, the overall cost of constructing the proposal
in (8)is O (Ld) for {0,1,..., L—1}%. Thanks to the co-
ordinatewise factorization, the cost of Newton proposal
is reduced to O(Ld). This allows the sampler to explore
the full space with the neighborhood information without
paying a prohibitive cost.

4.3 A Variant: With a MH Correction

It is optional to add a Metropolis-Hastings (MH)
step [Metropolis et al., 1953, Zhang et al., 2022a], which
is usually combined with proposals to make the Markov
chain reversible. Specifically, after generating the next
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position 8 from a distribution ¢(- | €), the MH step ac-
cepts it with probability

, / q(016")
min (1, exp (U (0") —U(9)) (](6"9)) . (10)

By rejecting some of the proposed states, the Markov
chain is guaranteed to converge asymptotically to the tar-
get distribution. The sampler with our Newton proposal
is outlined in Algorithm 1.

We call Newton proposal without the MH step as
unadjusted Newton algorithm (UNA) and that with
the MH step as Metropolis-adjusted Newton algo-
rithm (MANA). Similar to MALA and ULA in contin-
uous spaces [Grenander and Miller, 1994, Roberts and
Stramer, 2002], MANA contains 2Ld (for finite differ-
ence computation) plus 2 (for the MH correction) func-
tion evaluations and is guaranteed to converge to the tar-
get distribution. Although UNA may have asymptotic
bias, it only requires Ld function evaluations, which is
valuable especially when performing the function eval-
uation is expensive such as in large-scale Bayesian in-
ference [Welling and Teh, 2011, Durmus and Moulines,
2019]

Algorithm 1 Samplers with Newton Proposal.

given: Stepsize a.
loop
fori=1,...,ddo
(Can be done in parallel)
construct ¢;(- | #) as in Equation (9)
sample 0/ ~ q;(- | 0)
end for
> Optionally, do the MH step
compute g (¢' | 6) = [T, a: (6 | 0)
and q (0 0) = [1, a: (6: | 0')
set 0 < ¢’ with probability in Equation (10)
end loop
output: samples {0 }.

S5 AN ALTERNATIVE VIEW OF
NEWTON PROPOSAL

After getting the Newton proposal via Newton’s series,
we give an alternative way to derive Newton proposal
via multilinear extension, which gives us more intuition
about the efficient informed proposal. From the multilin-
ear extension viewpoint, we find further connection with
Discrete Langevin Proposal (DLP) [Zhang et al., 2022a].

5.1 An Equivalent Form via Multilinear Extension

In addition to approximating the likelihood ratio of flip-
ping each dimension with Newton’s series expansion,
we find that our Newton proposal can also be obtained
by conducting Taylor expansion on the multilinear ex-
tension of the discrete distribution. This connection
gives us another interesting viewpoint of the Newton pro-
posal. We briefly show the equivalence between these
two viewpoints in the binary case here and put the cate-
gorical case and detailed proof in the appendix.

Let us consider the d-dimensional binary distribution.
The coordinates can be denoted as a finite set D =
{1,--- ,d}. The sampling process corresponds to choos-
ing which coordinate to flip, so the discrete distribution
is a set function defined over the power set of D as
f:2P — R. A discrete distribution may not have a nat-
ural continuous extension, but its multilinear extension
F :[0,1]¢ — R can always be defined as :

FO)=>_fS][[e: TI a-0. an

SCD i€S  ieD\S

As we can see, F'(6) is a continuous, differentiable func-
tion which accepts real-valued inputs from the interval
[0,1]%. This makes it possible to approximate the like-
lihood of discrete moves with Taylor series expansion.
Besides, an inspiring fact is that F'(6) keeps the same
value with f when they are evaluated on the discrete sub-
set {0, 1}d. For i € D, since F' is linear in 6;, we have
the partial derivative of F'(6) as:

oF
00;

(0) =F (01,...,0i—1,1,0,41,...,04)

,97;_1,0,01‘_._1, .. .,Gd)

We can see that the partial derivative measures the dif-
ference between the energy function of the original state
and the flipped one, which is exactly the finite difference
of the two states. Since F’ and f take the same value on
the discrete domain, the Newton proposal can be equiv-
alently obtained by conducting Taylor expansion on the
multilinear extension of the target discrete distribution.

_F (6. ..

As for categorical distribution, we need to decide not
only which coordinate to flip, but also which level to flip
to. Fortunately, the differentiable function F'(6) can be
obtained with a generalized multilinear extension [Sahin
et al., 2020], on which the likelihood ratio of flipping
each coordinate to any level can be defined. The detailed
algorithm is in the appendix.

5.2 Comparison with Discrete Langevin Proposal

Our Newton proposal and the Discrete Langevin Pro-
posal (DLP) [Zhang et al., 2022a] can be seen as two
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different approximations of the locally-balanced pro-
posal [Zanella, 2020] when taking functions g and K like
MALA, as shown in (3).

DLP is motivated by utilizing gradients to guide the sam-
pling and inference. Thus it requires that the discrete
distribution can be displayed as a differentiable function
which is only evaluated on a discrete domain, e.g., Ising
models, so that the gradient can be defined. In this way,
DLP can be viewed as a first-order Taylor series approx-
imation to the local difference term inside go (6 | 6) in
(3) with:

Ulx) —U@B) = VU®B)" (x —0), Yz € ©.

In contrast, our Newton proposal circumvents this short-
coming by using Newton’s series expansion, a natu-
ral tool to approximate discrete functions. Specifically,
Newton proposal approximates the local difference in
qo (0" | 0) with:

Ulx) —U(0) =~ A[U](0) (x — 0), Vo € ©.

The finite difference A[U](0) is defined on the grid-like
discrete domain and can also guide to explore the discrete
space like what gradients do in continuous relaxation-
based methods.

In addition to the differences in methods and require-
ments, our Newton proposal has more general applica-
tions than DLP: (1) When the discrete distribution has a
natural differential extension, such as Ising model, Re-
stricted Boltzmann Machines (RBMs) and Potts model,
DLP and the Newton proposal both work. In some spe-
cial cases such as some Ising models, when the mul-
tilinear extension and the natural continuous extension
of the original discrete distribution are the same, DLP
and Newton proposal have the same results. (2) The
strict requirement about natural differential relaxation
limits DLP to be widely used in more complex scenar-
i0s. When the target discrete distribution lacks a differ-
entiable extension, DLP does not work while the Newton
proposal is still well-suited for these tasks, such as the fa-
cility location problem, text summarization, etc.

For the computation cost, DLP contains one gradient
computation whose cost depends on d and L, while the
Newton proposal contains Ld function evaluations. Both
gradient and function computations can be done in par-
allel.

6 THEORETICAL ANALYSIS

In this section, we analyze the asymptotic convergence of
UNA and the asymptotic efficiency of MANA. Specifi-
cally, we first prove in Section 6.1 that when the stepsize

a — 0, the asymptotic bias of UNA is zero when the
discrete distribution is a second-order modular function,
whose gain reduction keeps the same for any set [Korula
et al., 2018] (see the rigorous definition in the appendix).
Later in Section 6.2, we derive the asymptotic efficiency
of MANA.

6.1 Asymptotic Convergence of UNA for
Second-order Modular Functions

Besides the property of the proposal itself, the effective-
ness of a proposal also depends on how close its under-
lying stationary distribution is to the target distribution
because if it is far, even if using the MH step to correct
the bias, the acceptance probability will be very low. We
consider a second-order modular distribution, which ap-
pears in common tasks such as Ising models. The fol-
lowing theorem summarizes UNA’s asymptotic accuracy
for such discrete distributions.

Theorem 1. When the discrete distribution is a second-
order modular function [Korula et al., 2018], its multilin-
ear extension F'(#) is quadratic which can be expressed
as F'(§) = 67 AG + bT0. The Markov chain following
transition ¢(- | 8) in (9) (i.e. UNA) is reversible with re-
spect to some distribution 7, and 7, converges weakly
to m as @ — 0. In particular, let \y;, be the smallest
eigenvalue of A, then for any @ > 0,

1 )\min
|7 —7|ly < Z -exp (—— )

2c 2

Theorem 1 shows that the asymptotic bias of UNA de-
creases at a O(exp(—1/(2«a)) rate which vanishes to
zero as the stepsize o — 0. Besides, the asymptotic bias
of UNA is related to the smallest eigenvalue of A.

Example. Let’s consider the well-known model in ther-
modynamic systems, the Ising model. Note that its dis-
tribution is second-order modular:

F(D)= Y Aluv)+ ) b(w)

u,veED ueD

where A(u,v) represents the interaction between any
two adjacent sites u,v € D, and a site v € D has an
external magnetic field b(u) interacting with it. We run
UNA with varying stepsizes on a 2 by 2 Ising model,
as shown in Figure 1. For each stepsize, we run the
chain long enough to ensure its convergence. The results
clearly show that the distance between the stationary dis-
tribution of UNA and the target distribution decreases as
the stepsize decreases.
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Figure 1: UNA with varying stepsizes on an Ising model.

6.2 Asymptotic Efficiency of MANA

To understand the asymptotic efficiency of MCMC tran-
sition kernels, we study the asymptotic variance and the
spectral gap of the kernel. The asymptotic variance is
defined as

1 T
vary(h, Q) = TlgnOo 7 var <; h (a:t))
where h : X — R is a scalar-valued function, @ is
a p-stationary Markov transition kernel. The asymp-
totic variances measures the additional variance incurred
when using sequential samples from () to estimate
E,[h(z)]. The spectral gap is defined as

Gap(Q)=1— Xy

where Ao is the second largest eigenvalue of the transi-
tion probability matrix of (). For transition probability
matrices with non-negative eigenvalues, the spectral gap
is related to the mixing time, with larger values corre-
sponding to faster mixing [Levin and Peres, 2017].

Since our method approximates Qg (6, df’) in (2), we
should expect some decrease in efficiency. We character-
ize this decrease in terms of the asymptotic variance and
the spectral gap, under the Lipschitz-like assumption on
A[U](6). In particular, we show that the decrease is a
constant factor that depends on the Lipschitz constant of
A[U](0) and the dimension of the target distribution.

Theorem 2 Let Q (¢,6) and Q (¢',6) be the Markov
transition kernels given by the Metropolis-Hastings al-
gorithm using the locally-balanced proposal qo (6’ | 0)
and our approximation ¢ (0 | 9). Let the finite difference
A[U](6) has an Lipschitz-like property with constant L,
and () = %5(0))' Then it holds

1. var, (m@) < M 4 l=c

c

-varg (h).
2. Gap (@) = ¢ Gap(Q)

where ¢ = e~ 2E0% and D = Supgco 16/ — 9.

Remark. We can see that the constant D is correlated
with the dimension of the target discrete distribution. In
high-dimensional scenarios, D will be a large constant,
leading to loose bounds of the asymptotic variance and
spectral gap. However, on one hand, there is a gap be-
tween theory and experiment [Kwisthout and Van Rooij,
2013]. It may be hard to achieve the bound in practice.
On the other hand, we can add a slight restriction on the
number of changed coordinates in a single step. In this
way, D can be reduced to a small number as we expect,
and we can get tighter bounds in theory.

7 EXPERIMENTS

We conduct a comprehensive empirical evaluation
for Newton proposal on synthetic and real-world
sampling tasks. = The unadjusted and Metropolis-
adjusted Newton proposals are denoted as UNA
and MANA, respectively. We release the code at
https://github.com/DongyaoZhu/Newton-Proposal-for-
Discrete-Sampling. Baselines and evaluation tasks are
described below.

Baselines. We compare the performance of Newton pro-
posals with widely-used sampling methods for discrete
distributions, including (1) two Gibbs-based methods:
Gibbs sampling, Gibbs with Gradient (GWG) [Grath-
wohl et al., 2021]; (2) two methods which perform sam-
pling in a continuous space by gradient-based methods
and then transforms the collected samples to the orig-
inal discrete space: discrete Stein Variational Gradi-
ent Descent (D-SVGD) [Han et al., 2020] and relaxed
MALA (R-MALA) [Grathwohl et al., 2021]; (3) one
gradient-based method which requires the target dis-
crete distribution to have a differential relaxation: Dis-
crete Langevin Proposal (DLP) [Zhang et al., 2022a] and
(4) the locally-balanced sampler (LB) [Zanella, 2020].
Specifically, we denote DULA and DMALA for unad-
justed and Metropolis-adjusted DLPs, respectively. All
methods are implemented in Pytorch and we use the offi-
cial release of code from previous papers when possible.

Evaluation Tasks. (1) Discrete distributions without
natural differentiable extensions. Since GWG and DLP
require gradients and can not be applied, we mainly com-
pare the Newton proposal with Gibbs and LB in these
tasks. (2) Discrete distributions with natural differen-
tiable extensions. We also apply Newton proposal to
these distributions such as the Ising model which is bi-
nary and Potts model which is categorical, to show the
broad applicability of our method. In this scenario, we
also compare Newton proposal with continuous relax-
ation methods (GWG and DLP) and the results are in-
cluded in the appendix.
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7.1 Facility Location

In the facility location task, we are given a set of fa-
cilities denoted V and a set of m customers to decide
whether to open a facility or not [Krause et al., 2008],
corresponding to sampling from a binary distribution. If
the i-th facility (¢ € V) is opened, then it provides ser-
vice of value ¢; ; to customer j (j € {1,---,m}). We
suppose that each customer chooses the opened facility
with highest value, then the total value provided to all
customers is Z;nzl max;cy ¢;,;. Besides, we penalize
the number of selected facilities to ensure the most total
utility with a small number of facilities. Therefore, the
distribution of the facility location model can be repre-
sented as f(S) = >_7 | maxiey ¢; j — A[V|, where A is
a hyperparameter, controlling the strength of the penalty
term. To evaluate the Newton proposal on facility loca-
tion task, we generate the utility matrix C' from a gaus-
sian mixture model with m = 64 and |V| = 15. We
run 30000 iterations and set the stepsizes of MANA and
UNA as 1 and 0.2, respectively.

We first compare the root-mean-square error (RMSE)
between the estimated mean and the true mean under
A = 10 in Figure 2. The blue lines of MANA are both
below other lines, indicating that MANA is the fastest
to converge in terms of both iterations and running time.
This demonstrates (1) sampling in the original discrete
space is important: D-SVGD and R-MALA get poor re-
sults because this task is complex and the relaxed distri-
butions are hard to sample from; (2) the finite difference
makes the exploration over the discrete space more in-
formative rather than “blind” compared to Gibbs; (3) the
MH step enables MANA to make larger and more ef-
fective moves with a larger step size without worrying
about unconvergence compared to UNA; (4) changing
many coordinates in one step accelerates the convergence
compared to LB and Gibbs. We then show that Newton
proposal can change multiple coordinates in one iteration
while still maintaining a high acceptance rate in Figure
3(a). When the stepsize o = 1, on average MANA can
change 5.3 coordinates in one iteration with an accep-
tance rate 62.4% in the MH step, while the acceptance
rate of LB proposal is only 35%. In Figure 3(b), we
compare the effective sample size (ESS) for exact sam-
plers (z.e., having the target distribution as its stationary
distribution). MANA outperforms other methods, indi-
cating the correlation among its samples is low due to
making significant updates in each step.

7.2 Extractive Text Summarization

Extractive text summaries are formed by selecting sev-
eral sentences S from source documents that best fit cer-
tain quality measurements. [Lin and Bilmes, 2011] de-
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Iters Runtime (s)

(a) log RMSE w.r.t. Iterations (b) log RMSE w.r.t. Runtime

Figure 2: Facility location model results. MANA out-
performs the baselines in both number of iterations and
running time.
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Figure 3: Facility location sampling results.

Left: Newton proposal keeps a higher acceptance rate.
Right: MANA yields the largest effective sample size
(ESS) among all the methods compared.

signed their metrics on .S for both similarity and diver-
sity, formally defined as F(S) = L£(S) + AR(S) sub-
ject to some cost constraint C(S) < K, where L£(S)
measures the coverage or "fidelity" of summary set S to
the document, R(S) rewards diversity in S, and A > 0
is a trade-off coefficient. The undifferentiable distribu-
tion of the summary f(S) = max F(S) makes the task
well-suited for our methods based on pseudo-gradients.
Futhermore, due to the limited time constraint, the pro-
posals with non-parallel updates cannot explore enough
into the distribution, while our Newton proposal will be
able to avoid this issue with multidimensional updates.
We use an exponential decay schedule on step size to en-
courage faster convergence under limited time constraint.
The final result is then given by a sample-wise majority
vote algorithm [Wang et al., 2022] on the collection of
samples we produce.

We report results of MANA, LB and Gibbs sampler on
DUC 2002 dataset [Over and Liggett, 2002], which con-
tains about 30 sentences per document. ROUGE scores
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Table 2: Performance of sampling methods on Extractive Text Summarization on DUC-2002 dataset. We report F(.S)
at 500, 750 and 1000 steps, as well as ESS, runtime of 1000 steps (s), the ROUGE-2 recall (R), F-measure (F) and

Precision (P) (%).

Method | Z(500) F(750) F(1000) R F P ESS Runtime
MANA | 6.28 6.40 646 872 885 1096 572 67
LB 6.28 6.39 642 791 840 1068 418 99
Gibbs 6.01 6.12 642 791 831 1062 152 1.0

Table 3: Performance of sampling methods on Image
Retrieval on Holidays dataset. F(S) and mean Average
Precision (mAP) are reported at 500, 750, 1000 steps.

Method | £(500) Z(750) F(1000) mAP
MANA | 1136 1137 1138 0.84
LB 11.04 1105 1105 055
Gibbs 1101 1101 11.03 053

[Lin, 2004] are widely used for text summarization eval-
uation, and we compare ROUGE-2 scores (precision P,
recall R, and F-measure F') of different samplers. In
addition, we show the average objective scores JF(.5)
at 500th, 750th and 1000th iteration, respectively. As
shown in Table 2, Newton proposal constantly outputs
highest F(5) and ROUGE-2 scores under limited time
constraints.

7.3 Image Retrieval

Given a database of images and a query image, we look
for a subset from the database that best matches the
query. We follow the same settings in the extractive
text summarization experiments, and we use the discon-
tinuous score function F(.S) proposed by [Yang et al.,
2014] to measure the matching of a particular collection
of images to a query image. We empirically found that
sample-wise majority vote algorithm [Wang et al., 2022]
did not perform well, thus we also propose a dimension-
wise majority vote algorithm: given a collection of N
samples X € {0,1}":P, each dimension d will have a
count of z4 = 1, and the dimensions of top counts are
selected (details in appendix).

We evaluate various methods on the INRIA Holidays
Dataset [Jegou et al., 2008] which consists of 1491 im-
ages (dimensions) and 500 queries. Our results in F(S)
values and mean Average Precision (mAP) are reported
in Table 3. The F(S) shows that the sampler with New-
ton proposal quickly reaches and stably keeps a better so-
lution to the maximization problem than other methods
despite limited time constraint. Our high mean Average
Precision demonstrates that our solution is a better ap-
proximation to the ground truth labels compared to other
methods.

8 CONCLUSION

We propose a new gradient-like efficient informed pro-
posal, the Newton proposal, for general discrete distribu-
tions. This proposal better explores discrete spaces under
the guidance of the finite difference produced by New-
ton’s series expansion, which does not require natural
differentiable expansions. Additionally, the factorization
on coordinates allows multiple coordinates to be updated
simultaneously, leading to a faster convergence rate. To
the best of our knowledge, Newton proposal makes the
first attempt to utilize Newton’s series expansion and
multilinear extension in discrete sampling, which fills
the gap of efficient sampling for complex discrete dis-
tributions when gradients are not available. For different
application scenarios, we develop several variants with
Newton proposal, including unadjusted and Metropolis-
adjusted versions. We theoretically prove the conver-
gence and efficiency of Newton proposal without and
with the MH step. Empirical results on various problems
demonstrate the superiority of our method over baselines
in general settings.
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Efficient Informed Proposals for Discrete Distributions via Newton’s Series
Approximation: Supplementary Materials

1 Detailed Derivation of Newton Proposal

We give more details about the derivation of our Newton proposal.

We start from the MALA-like locally-balanced proposal [Zanella, 2020] we mentioned in Section 3:

1 u@)—-u(®) o' —9|>
Zo(0) eXp( 2 T oa >

where Zg(6) is the normalizing constant. When we use Newton’s series expansion to approximate the local difference
U —U(), we get

q0 (9/ | 0) =

(D

q(0"]10)=qo (0] 0) =
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eXp 20&

Z() 2

0
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where the second line is because A [U](6) is independent of 6’ and will not affect the normalized result.

Since (2) is actually an ¢-2 norm, ¢ (6’ | #) can be factorized coordinatewisely. Besides, we assume the domain can be
factorized coordinatewisely. Therefore, we can factorize ¢ (8’ | 8) in (2) as ¢ (¢’ | 6) = H?Zl qi (0] 0) and

00 (0110) = exp (=560 - 0= 58,0100

/02
scenp (5anl0l0)0; - 09 - ) ®

= Softmax (;Ah[U}(@)(% —0;) — (GYI;O?Z)Q) .

Then we get our Newton proposal which is easy to compute in parallel:

/ N2
Categorical (Softmax <;Ah[U](9,;) 0; —0;) — M)) . 4)

2

2 Algorithm for Binary Variables

When the variable domain © is binary {0, 1}%, if we flip any coordinate 6; to 0!, (0, — ;)% is always 1. Thanks to the
coordinatewise factorization, the sample space only contains 2 states: flipping or remaining the original state, which
makes the normalizing constant Zg (6) tractable. In this way, we could simplify Algorithm 1 in the main body of our
paper further and obtain the following algorithm, which clearly shows that our method can be cheaply computed in
parallel on CPUs and GPUs. We give the pseudo code when sampling from binary distributions with Newton proposal
as follows.
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Algorithm 1 Samplers with Newton Proposal on Binary Domains.

Input: Stepsize o.

loop

exp —%A;JU](O)@(?G—I)—%
Compute P(0) = cxp(E%Ah[U](H)@(Zafl)fi)J)rl

sample 1 ~ Unif(0, 1)¢

I+ dim(p < P(9))

0" + flipdim(I)

> Optionally, do the MH step

compute ¢ (6 | 6) = [T, : (6} | 6) = [L,e; P(8); - [Lz; (1~ P(6):)
exp(— S AR[U)(0")O(20'—1)— 5%)

exp(— 3 An[U](0)O(20'~1)— 55 ) +1

compute g (0 [ 0') =[], ¢; (0; | 0') = [[,c; P (¢'), - Hz‘¢1 (1=P(0),)
set 6 < 6’ with probability

compute P(¢') =

. , q(01]0)
min (LGXP () -U(©) Q(9'|9)>

end loop
Output: samples {6y, }.

3 Newton Proposal for Categorical Variables

3.1 Method 1: Newton’s Series Approximation

When using one-hot vectors to represent categorical variables, our Newton proposal becomes

0, — 0;
Categorical <Softmax <;A;,,[U](97;)T (0; —0;) — M)) ) (5)

2

where 6;, 6 are one-hot vectors.

If the variables are ordinal with clear ordering information, we can also use integer representation 6 € {0,1,...,L —
1}¢ and compute the Newton proposal as in Equation (4).

3.2 Method 2: Multilinear Extension

As we stated in Section 5.1, for binary variables, our Newton proposal obtained from the first-order Newton’s series
approximation is equivalent to that obtained from the first-order Taylor series approximation to the multilinear exten-
sion of the original discrete target distribution. For categorical variables, we not only need to decide which coordinate
to flip, but also need to decide the level. By introducing the concepts of 'multiset’, we generalize the multilinear
extension to categorical distributions and thus extend our Newton proposal to categorical variables.

3.2.1 Multiset

In classical sets, distinct elements can only occur once. A multiset is a natural generalization of a set, where elements
can be contained repeatedly. The number of times an element occurs is called the multiplicity (i) of the element 7. A
multiset M, is defined as a pair (V, ), where V is the support and 1 : V — N is a function defining multiplicity for
each element [Sahin et al., 2020]. Given this definition, we can use the integer vector of the multiset’s multiplicity to
represent any multiset. Also, we can transfer several important notions from multisets to integer vectors, such as the
notion of a subset, set intersection, set union and set difference.

Now consider sampling from a d-dimensional discrete distribution. The support can be represented as X' = H?Zl X,
where X; = {0,1,...,L; — 1} and the discrete function f is an integer function defined as f: X — N. For ease of
notation, we assume that L; does not depend on ¢ and X;; is the same along each dimension, i.e., X; = {0, 1, ..., L—1},



Vi € 1,...,d. The obtained sample will be an integer vector & = (x1,...,2,) (x; € X;, Vi € 1,...,n) and can
be equivalently represented as a multiset. Note that the integer z; (Vi € 1,...,n) can be also represented as a binary
vector x; of length L — 1. Take the k = 3 case as an example. x; can be (0,0)7, (1,0)" or (0,1) T, corresponding to
the level of 0, 1, 2, respectively. For the simplicity in calculation, we will use the binary representation in the following
parts.

3.2.2 Generalized Multilinear Extension

Given the discrete distribution f(6), generalized multilinear extension will extend f to a continuous domain while
keeping the values on original discrete domain.

Let p; € RY™! be the marginals of a d-dimensional categorical distribution and p := [py;...; pg] € {0,1}(L—-1)xd
is the concatenation of all p; vectors. Each p; lives in the L — 1 dimensional simplex A“~!. The simplex AL~1 is
defined as
AL .— {pz S RL-1 . Pil+ ...+ piL—1 <1
Pij ZO,]:].,,L*]-}
We define the union of n simplexes as AL~!, and naturally p € Ag‘l. Once we sample from p, we get

0 = (61,...,04) € {0,1}(L=1xd_ The generalized multilinear extension F is defined on the space of product
of categorical distributions and can be written as:

F(p) =Eonp,....pu[f(0)]- (6)
We need to compute the sum of L¢ elements to compute the expectation in Equation (6). Note that when L = 2, this
extension corresponds to the multilinear extension of a set function. Here is an example with d = 2 and L = 3. In this
case we have two categorical distributions which take three different values.

F(p) =F ([p1; p2]) = F (p11, p12, p21, p22)

8)) (1= p11 — p12) (1 — p21 — p22) + f(((l] ?))mzpzz + f( ((1) 8))P11 (1 — pa1 — pa2)

o O O

é>) (1= p11 — p12) p21 +f(<(1) 8))/)12 (1 = pa1 — pa2) +f((8 (1))) (1= p11 — p12) p22

o

-((
+f(<
+f(<(1) (1)>)P11P21 + f(((l) ?))Pnpm + f(((l) (1)))1012p217

where we have the following constraints

p11+p12 < 1,p21 +p22 < 1,045 20,0, = 1,2.

3.2.3 Newton Proposal via Generalized Multilinear Extension

Similar to the multilinear extension for the binary domain, we can calculate the first-order partial derivative of the
generalized multilinear extension of f, i.e., F' (p1,...,pq). Given p € Ag ~1, let Ry be a random multiset where
elements appear independently with probabilities p;. Since F' is multilinear, the partial derivative can be written as a
difference of two generalized multilinear extensions:

oF
Opij

= F(plvpi = ejapn) _F(plapi = Oapn)

~Eru., [1 (RoUE!)] - By, [1 (Ro1€1)]

where U and \ corresponds to union and set difference between multisets, respectively. e; € AF~1is a unit vector with

the j-th element 1. Eij is the multiset whose i-th element has multiplicity j. In this way, we can get VF € R(Z—1)xd
and calculate the proposal of each coordinate as below:

: 1 T _ gy 10i—6il3
Categorical | Softmax 2VF(9)Z. (0; —0;) 50 . (7
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3.3 Experiments

We implement the Newton proposal on the dim= 4 x 4 x 3 x 3 Potts model.
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Figure 1: Potts model: lines of MANA run under others.

Figure 1 shows that MANA converges fast in both the number of iterations and running time. Our Newton proposal
achieves promising performance for categorical variables.

4 Details and Proof of Theorem 1

As we discuss in Section 5, our Newton proposal can be equivalently obtained by conducting Taylor expansion on the
multilinear extension of the target discrete distribution. In this section, we focus on second-order modular functions
and study the asymptotic convergence of UNA.

4.1 Definitions of Submodular Function and Multilinear Extension

A submodular function is a set function whose value has the property that the difference in the incremental value of
the function that a single element makes when added to an input set decreases as the size of the input set increases.
In a word, submodular functions have a natural diminishing returns property. If f is submodular then its multilinear
extension, ¢.e., F, is concave along any line d > 0.

For a discrete distribution whose function is a set function f : 2P — R, its multilinear extension F : [0,1]? — R is

defined as:
POy = s TLe TT (a-0). ®
SCD i€S  i€D\S

It is possible to relate properties of f to properties of its multilinear extension F'. In particular, we have:

Proposition 1. Let F' be the multilinear extension of f, then:

1. If f is non-decreasing, then F’ is non-decreasing along any direction d > 0.

2. If f is submodular then F' is concave along any line d > 0.

Both properties can be established by first looking at how F' behaves along coordinates axes. We first calculate the
first and second order derivative of F'(6).

1. Let i € D, since F'is linear in 6;, we have:

oF

%(a) = F(917' "791—17170i+17"'50d) - F(ela"'voi—laoaai-‘rla"'79d)



Let R be the random subset of D\{i} where each element j € D\{i} is included with probability 6;, then we
can rewrite:

or
00;

2. Similarly, let Ry be the random subset of D\{i, j} and R3 be the random subset of D\{j} where each element

k is included with probability 8y, we have:
0’F . ) .
m(@ = E[f(Ry U{i, j})] — E[f (R U{i})] - E[f(R2 U {j})] + E[f(Rz)] 10)

=E[(f(R2U{i,j}) — f(R2U{i})) — (F(R2U{j}) — f(R2))].

By submodularity of f, the last quantity in (10) is non-positive, i.e., %(9) <0.

(0) = E[f(RU{i})] - E[f(R)]. ©

Let 8 € [0,1]™ and d > 0. We define the function Fp 4(A) = F(0 + Ad) of the real variable \. We note that
F} 4(\) = (d, VF(0 + \d)) and F}/,, = dT H (0 + Ad)d.

1. If f is non-decreasing, then VF'(6 + Ad) > 0 and (d, VF(6 + Ad)) > 0. Hence Fy 4 is nondecreasing.

2. If f is submodular, then H (6 + Ad) < 0 and d” H;(0 + Ad)d < 0. Hence Fy 4 is concave.

4.2 Second-Order Modular

For a submodular function f, let MG(A,e) = f(AU {e})— f(A) denote the marginal gain from adding element e
to set A. For sets A, S, we define GR(A, S,e) = MG(A,e) — MG(A U S, e) as the amount by which S reduces the
marginal gain from adding e to A. (Here, GR stands for Gain Reduction.) Note that by definition of submodularity,
GR(A, S, e) is always non-negative.

The function f is said to be second-order modular if, for all sets A, B, .S such that A C B, and SN B = (), and all
elements e, we have: GR(A, S,e) = GR(B, S, e) [Korula et al., 2018].

Specifically, if for any set R, Vi, j, f(R2 U {3,j}) — f(R2U{i}) = b; and f(R2 U {j}) — f(R2) = A;; + b; where
A;; and b; are both constants, then GR(Ry, {i}, j) = b;. At this time, f is second-order modular. That is to say, the
second-order modular function is in the form of f(D) = > p A(u,v) + >, cp b(u), whose multilinear function
is

F(0) =67 A6+ b0, (11)

which is exactly in the same form with the energy function of Ising model.

4.3 Proof of Theorem 1

Proof. We finish the proof in the view of multiliear extension, i.e., we see the multilinear extension of the original
discrete distribution as the energy function. We first prove the weak convergence and then prove the convergence rate
with respect to the stepsize a.

(1) Weak convergence. When f(D) is second-order modular, the Hessian matrix of its multilinear extension F in
Equation (11) will be a constant, i.e., %(G) = A;j, V0. We have that VF(0) = 2470 + b, V2F(0) = 2A. Since
V2F () is a constant, we can rewrite the proposal distribution as the following
exp (SVFO)T (0~ 0) — 54 10— o))
s exp (3VEO) (= 0) — 55 e — 0]|?)
exp (%vzv(a)T O —0)+ 1O —0)T A0 —0)— (0 —0)T (L1 +34) (0 - 9))
L exp(AVEO)T(x—0)+ 3(x—0)TA(z—0) — (x— 0)T (=1 + 3A) (x—0))
exp (3 (F(0) = F(0) = (0" = 0)T (51 +14) (0 —0))
YL exp(3(F(x) = F(0) — (2 —0)T (£1+34) (x—0))

qa (0" ]6) =




Efficient Informed Proposals for Discrete Distributions via Newton’s Series Approximation: Supplementary Materials

where the last equation is because the Taylor expansion F' (¢') — F(§) = VF(0) " (6/ — 0)+ 3 (¢ — 0)" 24 (0 —0).

Let Zo(0) = >, exp (3(F(z) — F(0) —(z—0)T (1 + 1A4) (z —0)), and 7o, = %, now we will
show that ¢, is reversible w.r.t. 7. We have that ’

, Zaoyne) P (FF@) = FO)— (@ —0) (L1+34) (0 o))
Wa(e)q& (0 | 0) = ZI Za(x)w(x) ’ Za<9)
exp (1(F(0)+ F©0) — (0 = 0)" (351 + 34) (9" - 0))

Z -3 Zala)m(z) '

(12)

We can see that the expression in (12) is symmetric in 6 and 6’. Therefore ¢, is reversible and the stationary distribution
is 7. Now we will prove that 7, converges weakly to 7w as & — 0. Notice that for any 6,

Za(0) = ;exp (;(F(x) —F(0) - (z—0)7 (21al + ;A) (@ — 9))
2 Y exp (5(F(0) - FO) ) ofo)

T

=1,

where dg(z) is a Dirac delta. It follows that 7, converges pointwisely to 7(6). By Scheffé’s Lemma, we attain that 7,
converges weakly to 7.

(2) Convergence Rate w.r.t. Stepsize.

Let us consider the convergence rate in terms of L;-norm

| Zome)
e =l = 3= e )
We write out each absolute value term
Zo(0)(6) o . Z(0) -
ot 0| =0 s
= m(0)-

I+ Zz;se exp (%F(m) - %F(G) —(z—-0)" (il + %A) (x— 9))
1+, 5 epFW) X,z oxp (3F(0) = 3F(y) — (0 )T (351 + 34) (=)

Since Amin(A)||z]|? < 2T Az, Vz, it follows that

1 1 1 +aAmin
(@—0)T (QQI + 2A) (0 - 6) = =22 o — g

— 1.



. . Za (0
We also notice that min, ¢ ||z — 6> = 1, thus when W(w;ﬂ(%) —1>0, we get

ZlO)r0) | o

= eyt 0] =)

(gDt e ) )
1+ 32, zexp(F(y) X,z exp (3F (@) = 5F(y) — (& =) (g5 + 34) (x —y))
<7(0) [ 1+ T e (570) - 37160) - g2 o o) - 1)
T#0
1+ a)\min 1 1
<7l |l+exp|——F"— exp | =F(z)—=F()) -1
() (- 0) )
=7 ex 1 x—l -ex —71—'—04)\@“
=r0) | Sew (37 2F<9>)) e
0) (Zeme(m))) exp ()

=7(0)Z - exp <1+2C¥Oi\nun) .

- Za(6)
Similarly, when S Zato@) 1 < 0, we have,

2a0)70) |
S Zo(@)7(@) “))‘ ©)
(1 14 pexp (AF() — SF(0) — (z—6)7 (A1 + 34) (z— ) )
Y))

1Y, L exp(F1) X, exp (3F(@) — LF(y) — (v — )7 (51 + 3A) (v —

1
< () (1 14 >y ~exp(F(y)) Dty €XD (LF(z) - LF(y) - HC;Q))
_ >y 2 ex(F(1) Y, ., exp (3F(x) — LF(y) — LHrgum)
=m(0) )

1+3, 2 exp(F(y)) Doty €XP (LF(z) - LF(y) - %

0) (Zy: % exp(F(y)) a;yexp <;F(:c) - ;F(y)>) . exp (HQQO?I“)

0) (Z exp<F<x>>> - exp (—”gjjm)
— (0)Z - exp <_1+0‘Am) .

20
Therefore, the difference between 7, and 7 can be bounded as follows

1 )\min 1 >\min
o =l < X w(0)7-exp (-HEpmn ) — 7 exp (g ).

5 Proof of Theorem 2

Proof. Our proof follows from Theorem 1 of [Grathwohl et al., 2021] and Theorem 2 of [Zanella, 2020], which state
that for two p-reversible Markov transition kernels Q1 (2', z) and Q3 (2’, ), if there exists ¢ > 0 for all 2’ # z such
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that Q1 (2/,2) > ¢- Q2 (¢, ) then

1. vary, (h, Q1) < %?Ql) + 1=¢ . var,(h)

2. Gap (Q1) > c¢- Gap (Q2)

where var, (h, Q) is the asymptotic variance and Gap(Q)) is the spectral gap, which are both defined in the main body
of this paper. var,,(h) is the standard variance E,, [h(z)?] — E,[h(x)]?. Our proof proceeds by showing we can bound
QV (2',2) > c-Q (2',x), and the results of the theorem then follow directly from Theorem 2 of [Zanella, 2020].

5.1 Definitions

We begin by writing down the proposal distribution of interest and their corresponding Markov transition kernels. For
ease of notion we define some values

A(0',0) :=U (6') —U(6);

A(0',6) := An[U](O)T (0" - 0);
D := sup ||0 — 0] .
0'c©

Then our original proposal, i.e., the MALA-like locally-balanced proposal for ¢’ is

exp (%A (0',0) — = (0 — 9)2)

20

13)

where we have defined

Z() =) exp (;A (0',0) — i(@' - 9)2> .

0'cO

When we examine the acceptance rate of the proposal we find

exp (U (8') — U(0))

exp (LA(0,0)) — 2 (0 — 0)2)Z(0)
exp (LA(0,0) — L (0 — 0)2) 2(0)

:exp(%A(@l, 9) + %A(Q, 9/)) ZZ((g/))
_Z(0)
A

Then the acceptance rate of the target proposal in (13) can be simplified as

min {l,exp (U (0 - U(®)) W'“} = min {1, 2(6) } .

q0 (0" | 0)

This corresponding Markov transition kernel is

Q(0.0) = g0 (¢' | 0) min {1, ZZEZ))}

= min { &xp (%A (9/7 9) — iw/ - 9)2) exXp (%A (9'79) - i(@’ — 0)2) } |

Z(0) ! Z0)



Our proposed Newton proposal is the first-order Newton’s series approximation of the original target proposal (13) for
0 € ©:
exp (3A(0',0) - 4 (6' - 0)°)

Q(9/|9): Z(9>

where we have defined

Z(0) =Y exp GA 0',6) — %(9' - 9)2> .

0'cO

For our Newton proposal, we simplify the term in the acceptance rate of the proposal as

N q(01¢)
exp (U (0) - U(0) s
exp (%A(e, o) — L(0— 9')2) Z(0)
=exp (A(0',9)) . : .
exp (% (07,0) — L (0 — 0)2) Z(9")
—ex / 1~ AN 1 A (0 2(9)
—exp (A(@ 0)+ 5200~ 550 ,9)) 50)

Then the Markov transition kernel Q (¢’,6) =

q (6" | 6) min {l,exp (A(G', 0) +

1
2

[ (%A (0,0) — Lo — 9)2) exp (A(O’,H)

- 2(0) | 20

5.2 Preliminaries

It can be seen that A (¢, 0) is a first-order Newton’s series approximation to Ay, (6’,6). When the finite difference
A[U](6) has an analog of Lipschitz continuity, i.e., |A (8/,0) — A (¢/,0)| < £ ||¢’ — 0]%, since ||¢" — 0] is bounded,
we have

—gm <A@0.0)-A@0,0) <

5.3 Normalizing Constant Bounds

We derive upper- and lower-bounds on Z(6) in terms of Z(6).

Z(0) =) exp @A 0',6) — 2i(9' - 9)2)

«
0'cO

= Zexp

0'€cO

(
< Z exp (;A ¢,6) — i(el -~ 0)2) oxp <sz>

%A (0/,0) — 5 (0" 9)2) exp <;A(9’, 0) - %A(G’, 9))

0'cO
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Following the same argument we can show

In this way, we get bounds between the normalizing constants of original proposal and our approximated proposal.

Z(0) > exp (‘ZD2> Z(9).

5.4 Inequalities of Minimums

We show Q (#,6) > ¢-Q (¢', ) for ¢ = exp (_LQDZ). Since both Q (¢, 6) = min{a,b} and Q (¢’,0) = min{

it is sufficient to show @ > ¢ - a and b > ¢+ bto prove the desired result. We begin with the a terms

Now the b terms

S S

5.5 Conclusions

0]
>
ke}
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|
~
<
N~ N N
0]
>
ke}
N
|
~
T
[\v]
~__

a e (%A (0,0) — (0 — 0)2) 2(0)

o Z(6) exp (A (0',0) = 250"~ 0)°)
— Z(G) 1~ / _ 1 /
=50 p(2A(0,9) 2A(9,9)>

Z(0y
(0/) exp (A (9/, 9) + %A (05 0/)>
) exp (34 (¢0/,0))
(')

exp (A (0,0) + %A (@ 9’))

Z (x')
_LD? 1. 1.
exp 1 exp (2A (0',0) + §A (9,6 ))
_LD? 1. 1 )
exp 1 exp (2A (0,0") — §A (0,0 ))

o

We have shown that @ > exp (%[’2) aand b > exp (7LD ’ ) b and therefore it holds that

2

B _ 2
2(0.0) = e (5 ) Q00

From this, the main result follows directly from Theorem 2 of [Zanella, 2020].

3
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Figure 2: Ising model sampling results. (a) MANA converges faster than the baselines in number of iterations. (b)
MANA converges faster than the baselines in the same running time. (¢) MANA and DMALA yield the largest
effective sample size (ESS) among all the methods compared.

6 Experiments on Ising Model

In the main body of the paper, we have shown that for distributions without natural differentiable extension, our Newton
proposal outperforms popular baselines, including Gibbs sampler and locally-balanced sampler (LB) [Zanella, 2020],
while continuous relaxation-based proposals become valid. We also apply Newton proposal to discrete distributions
with natural differentiable distributions, such as the Ising model, to show the broad applicability of our method. In this
case, we compare our Newton proposal with proposals which do not rely on gradients (Gibbs sampler and LB) and
continuous relaxation methods (GWG[Grathwohl et al., 2021] and DLP [Zhang et al., 2022]).

6.1 Experiment Settings

We have shown in Section 5 that Newton proposal is equivalent to DLP when the discrete distribution has a natural
differential extension. Therefore, if Newton proposal and DLP are applied to sample from the same discrete distribu-
tion, they will have the same results. However, we also demonstrate in Theorem 1 that the smallest eigenvalue of A is
related to the asymptotic convergence. Consider the Ising model whose distribution is

FD)= > Alu,v)+ Y blu), (14)
u,veD u€eD

where A is a binary adjacency matrix, a is the connectivity strength and b is the bias. We can see the diagonal of
matrix A in Equation (14) will not affect the distribution in the discrete domain because u and v are different elements
in the set D. Meanwhile, DLP is applied to a discrete distribution in a 0-diagonal quadratic form, which can be seen
as the multilinear extension of the distribution of Newton proposal when A is 0-diagonal. We are interested in the
performance of Newton proposal and DLP when \,,,;,, in Newton proposal is larger than that in DLP.

6.2 Ising Model Sampling Results

We consider a 4 by 4 lattice Ising model with random variable § € {—1,1}%, and d = 4 x 4 = 16. The distribution is
f(D)= > Alw,v)+ ) blu)
u,veD ueD
where A is a binary adjacency matrix, a = 0.1 is the connectivity strength and b = 0.2 is the bias.

We run 60000 iterations with all samplers. To make the comparison of convergence speed fair, we tune the stepsizes so
that MANA and DMALA change almost the same number of coordinates in a single update. The stepsizes of MANA,
DMALA, UNA and DULA as 0.5, 0.8, 0.1 and 0.1, respectively.
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We first compare the root-mean-square error (RMSE) between the estimated mean and the true mean in Figure 2.
MANA is the fastest to converge in terms of both iterations and runtime. This demonstrates (1) changing many
coordinates in one step accelerates the convergence compared to LB and GWG; (2) the finite difference works like
the gradient in cases with natural differential extensions to explore the discrete space. In fact, the Newton proposal
is equivalent to DLP when the discrete distribution has a natural differential extension, as shown in Section 5. That’s
why DMALA and MANA achieve similar convergence when they change the same number of coordinates in a single
update. MANA and DMALA converge obviously faster than UNA and DULA because the MH correction accelerates
the convergence for this task. In Figure 2(c), we compare the effective sample size (ESS) of different samplers.
MANA and DMALA significantly outperform other methods, indicating the correlation among its samples is low due
to making significant updates in each step.

7 ROUGE Score in Text Summarization

We used the official implementation of Rouge score evaluation toolkit (https://pypi.org/project/rouge-score/). We
follow the same ROUGE score configuration as the settings in [Lin, 2004]: ROUGE version 1.5.5 with options: -a -c
95-b 665 -m-n4-w1.2.

8 Dimension-wise Majority Vote in Image Retrieval

For the image retrieval task, the pseudo code for the dimension-wise majority vote algorithm mentioned in the main
body of our paper is as follows:

Algorithm 2 Dimension-wise Majority Vote
X e {0,1}1P
ans < zeros([D])
indices <— argsort(mean(X))
> select top dimensions under cost constraint C'
ans[indices[: C]] =1
return ans
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