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Abstract

Bilevel optimization, which captures the inherent
nested structure of machine learning problems, is
gaining popularity in many recent applications.
Existing works on bilevel optimization mostly
consider either the unconstrained problems or the
constrained upper-level problems. In this con-
text, this paper considers the stochastic bilevel
optimization problems with equality constraints
in both upper and lower levels. By leveraging
the special structure of the equality constraints
problem, the paper first presents an alternating
projected SGD approach to tackle this problem
and establishes the Õ(ϵ−2) sample and iteration
complexity that matches the state-of-the-art com-
plexity of ALSET (Chen et al., 2021) for stochas-
tic unconstrained bilevel problems. To further
save the cost of projection, the paper presents
an alternating projected SGD approach with lazy
projection and establishes the Õ(ϵ−2/T ) upper-
level and Õ(ϵ−1.5/T

3
4 ) lower-level projection

complexity of this new algorithm, where T is
the upper-level projection interval. Application
to federated bilevel optimization has been pre-
sented to showcase the performance of our al-
gorithms. Our results demonstrate that equality-
constrained bilevel optimization with strongly-
convex lower-level problems can be solved as
efficiently as stochastic single-level optimization
problems. The code is available at https://
github.com/hanshen95/AiPOD.

1 Introduction

Projected stochastic gradient descent (SGD) is a funda-
mental approach to solving large-scale constrained single-
level machine learning problems. Specifically, to minimize
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Eξ [L(x; ξ)] over a given convex set X , it generates the se-
quence xk+1 = ProjX (xk − α∇L(xk; ξk)), where α > 0
is the stepsize and ∇L(xk; ξk) is a stochastic gradient es-
timate of Eξ

[
L(xk; ξ)

]
. If Eξ [L(x; ξ)] is nonconvex, pro-

jected SGD requires a sample complexity of O(ϵ−2) with
O(1/ϵ) batch size (Ghadimi et al., 2016). The requirement
of O(1/ϵ) batch size has been later relaxed in (Davis and
Drusvyatskiy, 2019) using the Moreau envelope technique,
and its convergence rate matches that of vanilla SGD.

However, recent machine learning applications often go
beyond the single-level structure, including hyperparame-
ter optimization (Maclaurin et al., 2015; Franceschi et al.,
2017), meta learning (Finn et al., 2017), reinforcement learn-
ing (Sutton and Barto, 2018) and neural architecture search
(Liu et al., 2019). While the nonasymptotic analysis of the
alternating SGD for unconstrained bilevel optimization with
strongly convex and smooth lower-level problems were well-
understood (Ghadimi and Wang, 2018; Hong et al., 2020; Ji
et al., 2021; Chen et al., 2021; Li et al., 2022a), to our best
of knowledge, finite-time guarantee of alternating projected
SGD on bilevel problems with both upper-level (UL) and
lower-level (LL) constraints have not been investigated yet.
In this context, a natural but important question is

Can we establish the Õ(ϵ−2) iteration and sample
complexity of alternating projected SGD for a family of

bilevel problems with both UL and LL constraints?

We give an affirmative answer to this question for the fol-
lowing stochastic bilevel optimization problems with both
UL and LL constraints, given by

min
x∈X

F (x) ≜ Eξ[f(x, y
∗(x); ξ)] (upper) (1a)

s.t. y∗(x) ≜ argmin
y∈Y(x)

Eϕ[g(x, y;ϕ)] (lower) (1b)

where ξ and ϕ are random variables, X = {x | Bx = e} ⊂
Rdx and Y(x) = {y | Ay + h(x) = c} ⊂ Rdy are closed
convex set; A ∈ Rmy×dy , B ∈ Rmx×dx , c ∈ Rmy , e ∈
Rmx , h : Rdx → Rmy ; A and B are not necessarily full
row or column rank and h can be nonlinear. In (1), the UL
optimization problem depends on the solution of the LL op-
timization over y, and both the LL function and constraint
set depend on the UL variable x. The equality constrained
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bilevel problem (1) covers a wider class of applications than
the unconstrained bilevel optimization, such as distributed
bilevel optimization (Tarzanagh et al., 2022; Yang et al.,
2022), hyperparameter optimization for optimal transport
(Luise et al., 2018; Gould et al., 2022), and design of trans-
portation networks (Marcotte, 1986; Alizadeh et al., 2013).
When A = 0, B = 0, h = 0, c = 0, e = 0, the problem
(1) reduces to the unconstrained stochastic bilevel problem
(Ghadimi and Wang, 2018; Hong et al., 2020; Ji et al., 2021;
Khanduri et al., 2021; Chen et al., 2021, 2022a).

Generically speaking, to solve (1), we can resort to alternat-
ing projected SGD method that performs

yk+1 = ProjY(xk)

(
yk − βhk

g

)
(2a)

xk+1 = ProjX
(
xk − βhk

f

)
(2b)

where hk
g is an unbiased stochastic gradient estimator of

Eϕ[g(x
k, yk;ϕ)], hk

f is a (possibly biased) stochastic gradi-
ent estimator of F (xk), and, α and β are stepsizes. An im-
mediate challenge in analyzing the projected SGD updates
in (2) is that hk

f is usually biased due to the inaccessibility
of y∗(x). Moreover, the bias is roughly proportional to the
LL accuracy ∥yk+1 − y∗(xk)∥, but the latter is not ensured
to be small enough after O(1) LL steps. Therefore, if we di-
rectly apply the existing analysis for nonconvex constrained
single level problem (Davis and Drusvyatskiy, 2019) to even
merely UL constrained bilevel problem, it either leads to
suboptimal rate (Hong et al., 2020) or requires additional
LL corrections (Chen et al., 2022a), let alone coupled with
LL constraints. Leveraging the smoothness of the projection
to linear equality constraints, we develop problem-specific
proof and establish the convergence of alternating projected
SGD comparable to the unconstrained case.

Furthermore, alternating projected SGD in (2) may not be
suitable for the scenarios where evaluating projections is ex-
pensive since it calls projections at every step. For example,
when the constraint set represents the consensus constraint
in federated bilevel learning (Tarzanagh et al., 2022), pro-
jection amounts to averaging the gradients of all clients
(Parikh et al., 2014), which suffers from high communica-
tion cost. This motivates a projection-efficient algorithm for
(1) beyond alternating projected SGD.

1.1 Contributions

In this context, we consider the bilevel optimization with
(possibly coupled) equality constraints. We analyze the
convergence rate for alternating projected SGD, AiPOD for
short, propose a projection efficient variant of AiPOD and
apply it to the federated bilevel optimization. We summarize
our contributions as follows.

C1) We provide the first nonasymptotic analysis of AiPOD
for bilevel optimization with both UL and LL con-
straints and attain the Õ(ϵ−2) sample complexity to

achieve ϵ stationary point of (1), which matches the
complexity of alternating SGD algorithm for uncon-
strained bilevel problem (Chen et al., 2021).

C2) We propose an efficient variant of AiPOD termed E-
AiPOD tailored to the setting where evaluating pro-
jection is costly, and establish an improved projec-
tion complexity of the UL and LL variable over Ai-
POD respectively, i.e. from Õ(ϵ−2) to Õ(ϵ−2/T ) and
Õ(ϵ−1.5/T

3
4 ), where T is the UL projection interval.

C3) We show the implication of the proposed method on
federated bilevel learning and provide the enhanced
communication complexity over the state-of-the-art
work (Tarzanagh et al., 2022). Experiments on numeri-
cal examples and federated hyperparameter optimiza-
tion are provided to verify our theoretical findings.

1.2 Technical challenges

We highlight the technical challenges for the analysis.

T1) The state-of-the-art analysis of unconstrained bilevel
optimization (Ghadimi and Wang, 2018; Hong et al.,
2020; Chen et al., 2021) relies on the smoothness of
the implicit gradient mapping ∇y∗(x). However, the
well-known formula of ∇y∗(x) does not hold when
LL problem has constraints so that the smoothness of
y∗(x) is unknown.

T2) The update of UL can be viewed as biased projected
SGD. However, the bias of gradient estimator will lead
to suboptimal rates if we directly apply the general
analysis of projected SGD (Davis and Drusvyatskiy,
2019) to the UL sequence x, since we can not separate
out a negative term to mitigate the LL bias.

T3) The Lyapunov function that is critical in analyzing the
single-loop unconstrained bilevel optimization (Chen
et al., 2021) is insufficient for the analysis of our
projection-efficient variant E-AiPOD due to the ad-
ditional errors caused by skipping projections steps.

1.3 Related works

To put our work in context, we review prior art from the
following two categories.

Unconstrained bilevel optimization. Bilevel optimiza-
tion has a long history back to (Bracken and McGill, 1973)
and has inspired a rich literature, e.g., (Ye and Zhu, 1995;
Vicente and Calamai, 1994; Colson et al., 2007; Sinha et al.,
2017). Later on, spurred by the advancement of hyperpa-
rameter optimization (Maclaurin et al., 2015; Franceschi
et al., 2018) and meta learning (Finn et al., 2017), bilevel
optimization has received more attention as a unified tool for
problems with nested structure. With the more use cases in
large-scale machine learning, developing stochastic methods
with finite-time guarentee has become the recent focus in the
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AiPOD E-AiPOD BSA ALSET stocBiO FSLA TTSA IG-AL
stochasticity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

UL constraint ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗

LL constraint ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

y-update projected SGD proxskip SGD SGD SGD SGD SGD ALM
sample complexity Õ(ϵ−2) Õ(ϵ−2) O(ϵ−3) Õ(ϵ−2) Õ(ϵ−2) Õ(ϵ−2) O(ϵ−2.5) /

UL projection Õ(ϵ−2) Õ(ϵ−2/T ) / / / / O(ϵ−2.5) /
LL projection Õ(ϵ−2) Õ(ϵ−1.5/T

3
4 ) / / / / / /

Table 1: Sample complexity and projection complexity of our methods AiPOD, E-AiPOD and the state-of-the-art works on
bilevel problem (BSA in (Ghadimi and Wang, 2018), ALSET in (Chen et al., 2021), stoBiO in (Ji et al., 2021), FSLA in
(Li et al., 2022a), TTSA in (Hong et al., 2020)), IG-AL in (Tsaknakis et al., 2022)) to achieve an ϵ stationary point, where
proxskip is in (Mishchenko et al., 2022) and ALM denotes Augmented Lagrangian methods. The notation Õ omits the
polynomial dependency on log(ϵ−1) terms.

area of bilevel optimization. The interest of the nonasym-
pototic analysis of the stochastic bilevel optimization has
been stimulated since a recent work (Ghadimi and Wang,
2018) that tackles the bilevel setting where the LL objec-
tive is strongly convex and Lipschitz smooth. As ∇F (x)
contains the Hessian inverse of the LL objective which is
computational expensive, it has emerged various numeric
approximation methods including Neumann series approxi-
mation (Ghadimi and Wang, 2018), unrolling differentiation
(Grazzi et al., 2020), and conjugate gradient (Ji et al., 2021);
see a comparison in (Lorraine et al., 2020; Ji et al., 2022). In
terms of the alternating SGD algorithm, (Chen et al., 2021)
achieved the Õ(ϵ−2) sample complexity, which matches the
results for single level case. Recently, (Li et al., 2022a) has
put forward a fully single-loop algorithm which updates the
Hessian inverse approximation dynamically. Beyond the
alternating SGD framework, (Khanduri et al., 2021; Yang
et al., 2021b) incorporate variance reduction techniques to
further accelerate the convergence; see a recent survey for
bilevel optimization (Liu et al., 2021a). Nevertheless, none
of them solve (1) with both UL and LL constraints.

Constrained bilevel optimization. While the nonasympo-
totic convergence for various approaches in unconstrained
bilevel setting has been extensively studied in literature,
the nonasymptotic analysis of stochastic algorithms for con-
strained bilevel optimization problems is very limited. Some
recent efforts have been devoted to tackle the constrained
UL setting. Hong et al. (2020) has established O(ϵ−2.5) rate
of TTSA which applied SGD in LL update and projected
SGD in UL update; Chen et al. (2022a) has achieved Õ(ϵ−2)
convergence rate by adding additional corrections on LL
update for the stochastic setting; Chen et al. (2022c) has
proved the O(ϵ−1) convergence rate of proximal acceler-
ated gradient based method for deterministic constrained UL
problem under the Kurdyka-Łojasiewicz geometry. As for
constrained LL problem, the vast majority of works focus on
either the asymptotic analysis, e.g., initialization auxiliary
method (Liu et al., 2021b), value function based approach
(Gao et al., 2022b); or design aspects, e.g. optimality of
bilevel problem (Dempe et al., 2007; Ye and Zhu, 2010),

reformulation (Dempe and Zemkoho, 2013; Brotcorne et al.,
2013), and differential properties (Gould et al., 2016; Dyro
et al., 2022). The notable exception is a recent breakthrough
(Tsaknakis et al., 2022), which tackles linearly inequality
constrained LL problem in a double-loop manner, i.e. up-
date UL variable after attaining a sufficiently accurate LL
solution. However, the overall iteration/sample complexity
has not been established therein.

We summarize the comparison of our work with the closely
related prior art in Table 1.

2 AiPOD for Stochastic Bilevel Problems

In this section, we introduce notations, present the AiPOD
algorithm and establish the finite-time convergence for it.

2.1 Preliminaries

For convenience, we define g(x, y) := Eϕ [g(x, y;ϕ)] and
f(x, y) := Eξ [f(x, y; ξ)]. We also define ∇yyg(x, y) as
the Hessian of g with respsect to y and denote

∇xyg(x, y) =


∂2

∂x1∂y1
g(x, y) · · · ∂2

∂x1∂ydy
g(x, y)

...
. . .

...
∂2

∂xdx∂y1
g(x, y) · · · ∂2

∂xdx∂ydy
g(x, y).


We use ∥ · ∥ to denote the ℓ2 norm for vectors and Frobe-
nius norm for matrix. We also denote A† and B† as the the
Moore Penrose inverse of A and B (James, 1978). More-
over, we define Px := I − B†B as the projection matrix
over the null space of x and ∥x∥Px :=

√
x⊤Pxx as the Px

weighted Euclidean norm.

In literature, the common convergence metric for con-
strained optimization is (Ghadimi et al., 2016)

E[∥λ−1(x− ProjX (x− λ∇F (x)))∥2] (3)

for some λ > 0. In (1), since X contains only linear equality
constraints, (3) can be simplified according to the following
lemma, the proof of which will be deferred to Appendix B.
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Lemma 1. For any x ∈ X and any λ > 0, we have that

∥λ−1(x− ProjX (x− λ∇F (x)))∥2 = ∥∇F (x)∥2Px
.

Therefore, we define the ϵ stationary point x for (1) as

E
[
∥∇F (x)∥2Px

]
≤ ϵ. (4)

If B = 0, (4) is reduced to E
[
∥∇F (x)∥2

]
≤ ϵ, which is

the standard stationary measure for unconstrained stochastic
bilevel optimization settings (Ghadimi and Wang, 2018; Ji
et al., 2021; Chen et al., 2021).

2.2 The basic algorithm

In this section, we will introduce the basic version of AiPOD
algorithm for (1), which updates x and y in an alternating
projected SGD manner.

At a given UL iteration k, we update yk+1 by the output of
the S projected SGD steps for g(xk, y). With initialization
yk,0 = yk, we update

yk,s+1 = ProjY(xk)

(
yk,s − β∇g(xk, yk,s;ϕk,s)

)
(5)

and set yk+1 = yk,S . For UL, the gradient ∇F (x) can be
calculated by the chain rule

∇F (x) = ∇xf(x, y
∗(x)) +∇⊤y∗(x)∇yf(x, y

∗(x)) (6)

where the implicit mapping ∇y∗(x) is essential.

Without LL constraint, ∇y∗(x) can be derived from the LL
optimality condition ∇yg(x, y

∗(x)) = 0 as (Ghadimi and
Wang, 2018)

∇y∗(x) = −∇−1
yy g(x, y

∗(x))∇yxg(x, y
∗(x)). (7)

We generalize it to the constrained LL setting, and establish
the implicit gradient for constrained LL in the following
lemma, the proof of which is deferred to Appendix C.1.

Lemma 2. Define V2 as the orthogonal basis of Ker(A) :=
{y | Ay = 0}. When g(x, y) is twice differentiable and
strongly convex over y, the implicit gradient ∇y∗(x) can be
written as

∇y∗(x)=−V2(V
⊤
2 ∇yyg(x, y

∗(x))V2)
−1V ⊤

2︸ ︷︷ ︸
P1

×
(
∇yxg(x, y

∗(x))−∇yyg(x, y
∗(x))A†∇h(x)

)
−A†∇h(x)︸ ︷︷ ︸

P2

(8)

where A† is the Moore-Penrose inverse of A.

Compared with (7), the term P1 in (8) can be viewed as
projecting ∇−1

yy g(x, y
∗(x)) to Ker(A); while P2 accounts

for the coupling constraints Ay + h(x) = c.

Algorithm 1 AiPOD for constrained bilevel problem
1: Initialization: x0, y0, stepsizes {α, β}, N
2: for k = 0 to K − 1 do
3: for s = 0 to S − 1 do ▷ Set yk,0 = yk

4: update yk,s+1 by (5).
5: end for ▷ Set yk+1 = yk,S

6: evaluate wk in (9b)
7: calculate hk

f in (9a)
8: update xk+1 = ProjX (xk − αhk

f )
9: end for

With the similar spirits of the existing works (Ghadimi and
Wang, 2018; Hong et al., 2020; Chen et al., 2021), we obtain
the UL gradient estimator hk

f at UL iteration k by setting
x = xk, approximating y∗(xk) by yk+1 in (6) and estimat-
ing P1 by Neumann series. Thus, hk

f is defined as

hk
f := ∇xf(x

k, yk+1; ξk) + wk (9a)

where wk is defined as (cf. (6) and (8))

wk :=
(
∇h(xk)⊤A†⊤∇yyg(x

k, yk+1;ϕk
(0))

−∇xyg(x
k, yk+1;ϕk

(0))
)

× V2

 c̃N

ℓg,1

N′∏
n=1

(
I− c̃

ℓg,1
V ⊤
2 ∇yyg

(
xk, yk+1;ϕk

(n)

)
V2

)V ⊤
2

×∇yf(x
k, yk+1; ξk)−∇h(xk)⊤A†⊤∇yf(x

k, yk+1; ξk)
(9b)

where c̃ ∈ (0, 1] is a given constant, N ′ is drawn uniformly
at random from {0, · · ·N − 1}, and {ϕk

(0), · · · , ϕ
k
(N ′)} are

i.i.d samples.

We can update xk+1 by projected SGD with estimator hk
f

in (9a) in the outer loop and update yk+1 by projected SGD
in the inner loop (5); see the full algorithm in Algorithm 1.

2.3 Theoretical analysis

For the analysis, we make the following assumptions.

Assumption 1. Assume that f,∇f,∇g,∇xyg,∇yyg, h
and ∇h are Lipschitz continuous with ℓf,0, ℓf,1, ℓg,1,
ℓg,2, ℓg,2, ℓh,0, ℓh,1, respectively.

Assumption 2. For any fixed x, assume that g(x, y) is µg-
strongly convex with respect to y ∈ Rdy .

Assumption 3. The stochastic estimators ∇f(x, y; ξ),
∇g(x, y;ϕ),∇xyg(x, y;ϕ) and ∇yyg(x, y;ϕ) are un-
biased estimators of ∇f(x, y),∇g(x, y),∇xyg(x, y)
and ∇yyg(x, y), and their variance are bounded by
σ2
f , σ

2
g,1, σ

2
g,2 and σ2

g,2, respectively.

Assumption 4. The set X is nonempty. For any x, the set
Y(x) is nonempty.

Assumption 1–3 are standard for stochastic bilevel optimiza-
tion (Ghadimi and Wang, 2018; Hong et al., 2020; Ji et al.,
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2021; Khanduri et al., 2021; Chen et al., 2021, 2022a; Li
et al., 2022a). Assumption 4 is to ensure the feasibility of
the problem (1). Since Ay = b has solution y if and only
if AA†b = b according to (James, 1978), Assumption 4
is equivalent to AA†(c − h(x)) = c − h(x). One suffi-
cient but not necessary condition for Assumption 4 is that
A is full row rank, which does not impose any additional
requirement on h(x). Another sufficient condition is ∀x,
c− h(x) ∈ Ran(A), e.g., h(x) = 0, c = 0, where A is not
necessarily full row rank.

One of the keys to establishing Õ(ϵ−2) convergence rate of
unconstrained bilevel optimization (Chen et al., 2021; Li
et al., 2022a) is to utilize the smoothness of y∗(x). Thanks
to the singular value decomposition, we can obtain the
smoothness of y∗(x) for linearly equality constrained LL
(1) in the next lemma, the proof of which is deferred to
Appendix C.1.

Lemma 3. Under Assumption 1–2 and 4, y∗(x) is Ly-
Lipschitz continuous and Lyx- smooth, where the constants
Ly and Lyx are specified in Appendix C.1.

However, due to the UL constraint, the proof for uncon-
strained stochastic bilevel optimization (Chen et al., 2021)
cannot be applied even with the smoothness of y∗(x) in
Lemma 3. For constrained UL with LL unconstrained
bilevel problem, the recent works (Hong et al., 2020; Chen
et al., 2022a) have leveraged the Moreau envelope technique
in (Davis and Drusvyatskiy, 2019) to develop projected im-
plicit SGD. However, when the stochastic gradient estimator
is biased, the bias term delays at a slower timescale. As a
result, existing methods either suffer from the suboptimal
O(ϵ−2.5) iteration complexity (Hong et al., 2020), or re-
quire an additional correction in the LL update to achieve
the O(ϵ−2) iteration complexity (Chen et al., 2022a). Ow-
ing to the special property of linear-equality constraits in
Lemma 1, we establish the O(ϵ−2) iteration complexity of
Algorithm 1 in the next lemma without resorting to Moreau
envelope technique. The proof is deferred to Appendix C.4.

Theorem 4 (Convergence of AiPOD). Under Assumption
1–4, if we choose N = O(logK) and

α = min

(
ᾱ1, ᾱ2,

ᾱ√
K

)
, β =

5LfLy + ηLyxC̃
2
f

µg
α

where ᾱ1, ᾱ2 are defined in (69) then for any S = O(1) in
Algorithm 1, we have

1

K

K−1∑
k=0

E
[
∥∇F (xk)∥2Px

]
= Õ

(
1√
K

)
.

Theorem 4 shows that Algorithm 1 achieves an ϵ- station-
ary point by Õ(ϵ−2) iterations, which matches the itera-
tion complexity of single level stochastic projected gradient
descent method (Davis and Drusvyatskiy, 2019) and the
unconstrained bilevel SGD method (Chen et al., 2021).

3 Extensions to Lazy Projections

In this section, we focus on the case when evaluating pro-
jection is expensive and then propose a projection efficient
method E-AiPOD to avoid frequent projection steps.

Besides the explicit projections for x- and y- updates in
Algorithm 1, calculating wk in (9b) also requires projecting
∇yyg(x

k, yk+1;ϕk
(n)) onto the null space of the LL prob-

lem, i.e. calculating V ⊤
2 ∇yyg(x

k, yk+1;ϕk
(n))V2. We use

the following ways to save projections.

Lazy LL projection. We leverage a recent breakthrough
of projected SGD called Proxskip (Mishchenko et al., 2022)
in the LL update which evaluates projection lazily with
probability 0 < p < 1. At each LL iteration s, we first
perform an SGD update corrected by the residual rk,s as

ŷk,s+1 = yk,s − β(∇yg(x
k, yk,s;ϕk,s)− rk,s). (10a)

With probability 1 − p, we skip the projection and keep
yk,s+1 = ŷk,s+1, rk,s+1 = rk,s; with probability p, we
update LL parameter yk,s and the residual rk,s as

yk,s+1 = ProjY(xk)

(
ŷk,s+1 − βrk,s/p

)
(10b)

rk,s+1 = rk,s + p(yk,s+1 − ŷk,s+1)/β. (10c)

In (10a), rk,s compensates the error of lazy projection and
is updated every 1/p rounds in expectation so that the cor-
rected gradient descent in (10a) can approximate the pro-
jected SGD update in (5). If the overall convergence rate
for AiPOD equipped with LL lazy projection mechanism
does not deteriorate, the expected number of projection
evaluations is reduced from KS to pKS.

Delay computation of wk and reduce UL projection. To
save UL projection, at upper iteration k, we calculate wk by
(9b) once and update xk by SGD T times, given by

xk,t+1 = xk,t − αhk,t
f , t = 0, · · · , T − 1, (11a)

with xk,0 = xk

where the estimator hk,t
f is defined below

hk,t
f :=∇xf(x

k,t, yk+1; ξk,t) + wk. (11b)

where wk is defined in (9b). Compared with hk
f in (9a),

hk,t
f can be regarded as the UL gradient estimator at xk,t

obtained by delayed Hessian inverse vector approximation
wk. After T rounds, we update xk+1 by

xk+1 = (1− δ)xk + δ ProjX (xk,T ) (12)

where δ ≥ 1 positively correlates to T so that scales the
projected descent stepsizes. In this way, we only project the
Hessian estimator to the null space to evaluate wk at t = 0
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Algorithm 2 E-AiPOD for constrained bilevel problem
1: Initialize: x0, y0, stepsizes {α, β, δ}, probability p, N
2: for k = 0 to K − 1 do
3: for s = 0 to S − 1 do ▷ set yk,0 = yk; rk,0 = rk

4: update ŷk,s+1 by (10a)
5: draw Bernoulli θk,s with p
6: if θk,s = 1 then
7: update yk,s+1 by (10b)
8: else
9: yk,s+1 = ŷk,s+1

10: end if
11: update rk,s+1 by (10c)
12: end for ▷ set rk+1 = rk,S and yk+1 = yk,S

13: compute wk defined in (9b).
14: for t = 0 to T − 1 do
15: calculate hk,t

f in (11b)
16: update xk,t+1 by (11a)
17: end for ▷ set xk,0 = xk

18: update xk+1 by (12)
19: end for

and project x sequence at the end of the T -loop. The error
resulting from the delayed wk will be shown to be bounded
by O(α2), which is not the dominating term in the analysis.

We summarize E-AiPOD in Algorithm 2 and characterize
its convergence rate by using a new Lyapunov function as

Vk := F (xk)

+
Lf

Lr

(
∥y∗(xk)− yk∥2 + β2

p2
∥rk − r∗(xk)∥2

)
(13)

where Lf and Lr are constants defined in Appendix C.1 and
C.2. The complexity bound of E-AiPOD is stated in the
following theorem.

Theorem 5 (Convergence of E-AiPOD). Under Assump-
tion 1–4, if we choose stepsizes such that αδT < ᾱ, where
ᾱ < 1 is a constant formally defined in (94), and let
β = O(αT ), p = O(

√
β), S = O(1), then the sequences

generated by Algorithm 2 satisfies

1

K

K−1∑
k=0

E
[
∥∇F (xk)∥2Px

]
≤ 2(V0 − F ∗)

αδTK
+ 2c1σ

2
g,1αδT

+ 2c2σ̃
2
fαδ +O(α2δ2T ) (14)

where c1 and c2 are constant formally defined in Appendix
D.3 and F ∗ is the lower bound of F (x).

With proper choices of α and δ, the four terms in (14) could
vanish simultaneously. The following corollary shows the
results for vanilla periodical projections when δ = 1.

Corollary 6 (Reduction of LL projection). Under the
same condition of Theorem 5, if we choose α = ᾱ

T
√
K

,

δ = 1, the convergence rate of Algorithm 2 is

1

K

K−1∑
k=0

E
[
∥∇F (xk)∥2Px

]
= Õ

(
1√
K

)
. (15)

Since K = Õ(ϵ−2) and p = O(
√
β) = O(K− 1

4 ), the total
number of evaluations of LL projection is reduced to

O(pK) = O(K
3
4 ) = Õ(ϵ−1.5). (16)

Corollary 6 implies that the convergence rate of E-AiPOD
is the same as that of AiPOD when δ = 1, but the LL pro-
jection complexity can be reduced to Õ(ϵ−1.5). Compared
with Proxskip (Mishchenko et al., 2022) which improves
the projection complexity on κ = ℓg,1/µg, we can further
achieve the reduction on ϵ owing to the smaller LL stepsize
β = O(1/

√
K). Besides, the next corollary shows the ben-

efit for enlarging δ, which further reduces the iteration and
projection complexity of E-AiPOD.
Corollary 7 (Reduction of UL projection). Under the
same condition of Theorem 5, if we choose α = ᾱ

T
√
K

,

δ =
√
T , and select LL batch size as O(T ) such that σ2

g =
O(1/T ), the convergence rate of E-AiPOD is

1

K

K−1∑
k=0

E
[
∥∇F (xk)∥2Px

]
= Õ

(
1√
TK

)
. (17)

As a result, the sample complexity for both the UL and LL
is TK = Õ(ϵ−2); the total number of the UL projections
reduces to O(K) = Õ(ϵ−2/T ); and, the total number of LL
projections reduces to O(pK) = O(K

3
4 ) = Õ(ϵ−1.5/T

3
4 ).

Corollary 7 implies with larger δ, increasing T can acceler-
ate the convergence rate and improve the projection com-
plexity without degrading the sample complexity for both
levels. Compared with the single level case, σ2

g can be seen
as the additional error caused by the LL stochasticity. The
idea behind reducing the UL projection complexity is to
reduce the variance of the averaged gradient estimator by
T gradient descent steps and use larger δ to balance the
projection stepsize. However, this can not reduce the vari-
ance of LL; see the different terms for σ̃2

f and σ2
g over T in

(14). Therefore, we need to increase the LL batch size cor-
respondingly to reduce σ2

g in bilevel problem. By virtual of
the faster rate, the sample complexity for LL is still Õ(ϵ−2).

4 Application to Federated Bilevel Learning

We consider the federated bilevel optimization (Tarzanagh
et al., 2022) in the consensus form

min
x∈X

F (x) =
1

M

M∑
m=1

fm (xm, y∗m(xm))

s.t. y∗(x) = argmin
y∈Y

1

M

M∑
m=1

gm(xm, ym) (18)
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Figure 1: Impact of p in E-AiPOD (left) and comparison between AiPOD and E-AiPOD (right). Here the running average
of error is defined as 1

K

∑K
k=1(∥∇F (xk)∥2Px

+ ∥yk+1 − y∗(xk)∥2).

where each client m ∈ [M ] := {1, · · ·M} maintains
its local model xm, ym and is only accessible to its in-
dividual function (fm, gm); x = [x1, · · · , xM ]⊤ and
y = [y1, · · · , yM ]⊤ are the collection of individual mod-
els; y∗(x) = [y∗1(x1), · · · , y∗M (xM )]⊤ is the optimal
LL model; and X = {x | x1 = · · · = xM} and Y =
{y | y1 = · · · = yM} denote the consensus set.

With Id ∈ Rd×d denoting as the identity matrix and 1M ∈
RM denoting as the all-1 vector, we can define the consensus
matrix A and calculate the orthogonal basis of its kernel as

A :=


1 −1

. . .
. . .
1 −1

⊗ Id, V2 :=
1M√
M

⊗ Id (19)

where ⊗ is the Kronecker product, A ∈ Rd(M−1)×dM and
V2 ∈ RdM×d. We can define B the same as A except for
dimension d. In the federated bilevel setting, with e =
c = h(x) = 0, the UL and LL constraint sets become
X = {x | Bx = 0} and Y = {y | Ay = 0}.

Therefore, the UL gradient in (6) can be specialized as
∇F (x) = [∇x1

F (x), · · · ,∇xM
F (x)]⊤ in the federated

bilevel setting (18), where

∇xmF (x) = ∇xmfm(xm, y∗m(xm))

+
∇y∗⊤m (xm)

M

M∑
m=1

∇ymfm(xm, y∗m(xm)) (20a)

with∇y∗m(xm) = −

(
1

M

M∑
m=1

∇yygm(xm, y∗m(xm))

)−1

×∇yxgm (xm, y∗m(xm)) . (20b)

Moreover, evaluating the projections in federated bilevel
learning is equivalent to averaging xm and ym, i.e.,

ProjX (x) = (x̄, · · · , x̄), with x̄ =
1

M

M∑
m=1

xm (21a)

ProjY(y) = (ȳ, · · · , ȳ), with ȳ =
1

M

M∑
m=1

ym. (21b)

With the above facts, we are able to apply E-AiPOD to the
federated bilevel setting, which is summarized in Algorithm
3 in Appendix.

Besides, the convergence of Algorithm 3 is inherited from
the result of E-AiPOD in Theorem 5 and the weighted
norm measure (4) in our analysis coincides with the mea-
sure in non-consensus form of federated bilevel learning
(Tarzanagh et al., 2022) (see the proof in Appendix E.2), so
we have the following corollaries and comparisons.

Corollary 8 (Convergence rate and sample complexity).
Under the same condition of Theorem 5, the convergence
rate of Algorithm 3 is

1

K

K−1∑
k=0

E
[∥∥∇F (xk)

∥∥2
Px

]
= Õ

(
1√
TK

)
.

Therefore, the sample complexity of Algorithm 3 for both
the UL and LL is TK = Õ(ϵ−2). Next we will leverage
Corollary 7 to establish communication complexity.

Corollary 9 (Communication complexity). Under the
same condition and parameter choices with Corollary 7,
the UL communication is reduced to O(K) = Õ(ϵ−2/T ) ,
while the LL communication is reduced to

O(pK) = O(K
3
4 ) = Õ(ϵ−1.5/T

3
4 ).

Compared with the state-of-the-art work FedNest
(Tarzanagh et al., 2022), the sample complexity of FedNest
and Algorithm 3 are the same, while the UL and LL com-
munication complexity of Algorithm 3 are reduced from
Õ(ϵ−2) to Õ(ϵ−2/T ) and Õ(ϵ−1.5/T

3
4 ), respectively. It is

worthy to mention that we simplify the local updates from
SVRG-type in FedNest to SGD-type in Algorithm 3 and our
communication gains do not require transmitting additional
messages besides local models in the communication
rounds (e.g., momentum variables in (Li et al., 2022b)).
Compared with Scaffnew (Mishchenko et al., 2022), we can
further reduce the LL communication complexity on ϵ since
we can tolerate O(1/

√
K) LL stepsize. Due to the space

limitation, we will defer the literature review of federated
bilevel learning in Appendix E.3 and provide a comparison
of communication complexity in in Appendix E.4.

5 Experiments

To validate the theoretical results and evaluate the empirical
performance of our methods, we conduct experiments in
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Figure 2: Federated hyper-representation learning: Impact of communication probability p (left) and comparison of our
algorithm with FedNest (right). The experiments are run on the MNIST dataset with non-i.i.d. distribution.
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Figure 3: Federated learning from imbalanced data: Impact of communication probability p (left) and comparison of our
algorithm with FedNest (right). The experiments are run on an imbalanced MNIST with non-i.i.d. distribution.

both synthetic tests and practical federated bilevel learning
tasks, which will be presented in this section.

Synthetic experiments. We first consider a special case
of the coupling equality-constrained bilevel problem

min
x∈X

sin (c⊤x+ d⊤y∗(x)) + ln (∥x+ y∗(x)∥2 + 1)

s.t. y∗(x) = argmin
y∈Y(x)

1

2
∥x− y∥2

where X = {x | Bx = 0} ⊂ R100, Y(x) = {y | Ay +
Hx = 0} ⊂ R100, and A,B,H, c, d are randomly gener-
ated non-zero matrices or vectors. To guarantee that Y(x)
and X are not singleton, the matrixes A and B are rank-
deficient matrices. In the simulation, we use the noisy gra-
dient where the Gaussian noise with zero mean and the
standard deviation of 0.1 is added. In this setting, Assump-
tions 1–4 are satisfied.

The test results are reported in Figure 1. In the left figure,
we test the impact of the probability p on the projection
complexity and the iteration complexity. It can be observed
that E-AiPOD with relatively small p has almost the same
iteration complexity (as indicated in the lower left figure)
while it significantly saves projection rounds (see upper left
figure). We also compare AiPOD and E-AiPOD in the right
figure. It can be observed that E-AiPOD is able to save
projection while maintaining the same iteration complexity

as that of AiPOD, which is aligned with our theory.

Federated representation learning. With additional de-
tails provided in Appendix F.2, in this part, we apply E-
AiPOD in Algorithm 2 to the federated representation learn-
ing task, which builds on the bilevel representation learning
(Franceschi et al., 2018). The goal is to learn a joint repre-
sentation model and a client-specific header while protecting
data privacy. The experimental results are reported in Figure
2. From the left figure of Figure 2, a relatively small value
of p helps save communication rounds while a too small
value of p might degrade performance. With a properly
chosen p = 0.1, it can be observed from the right figure that
E-AiPOD outperforms FedNest (Tarzanagh et al., 2022) in
terms of communication complexity.

Federated loss function tuning. With additional details
provided in Appendix F.3, in this part, we apply E-AiPOD to
the federated learning from imbalanced data task. The goal
is to learn a good model that guarantees both the fairness and
generalization from datasets with under-represented classes
(Li et al., 2021). The experimental results are reported in
Figure 3. From the left figure of Figure 3, a relatively small
value of p helps save communication rounds. With p =
0.3, it can be observed from the right figure that E-AiPOD
outperforms FedNest in terms of communication complexity.
Algorithms with a larger T have faster convergence at the
start, but achieve the same accuracy as those with T = 1.
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6 Conclusions

In this paper, we established the first finite-time conver-
gence of alternating projected SGD algorithm (AiPOD) for
equality-constrained bilevel problems which matches the
state-of-the-art result for alternating SGD in unconstrained
bilevel problem and also the single-level projected SGD.
We proposed a projection-efficient variant E-AiPOD for the
settings where evaluating projection is costly. E-AiPOD can
reduce the UL and LL projection complexity to Õ(ϵ−2/T )

and Õ(ϵ−1.5/T
3
4 ), respectively. We applied E-AiPOD to

federated bilevel setting and achieved the reduction in com-
munication complexity. Experiments verified our theoretical
results and demonstrated the effectiveness of our methods.
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A Preliminaries

Definition 10. Suppose L : Rd1 → Rd2 such that each of its first-order partial derivatives exist on Rd, then its Jacobian is
defined as

∇L =


∂L1

∂x1
· · · ∂L1

∂xd1

...
. . .

...
∂Ld2

∂x1
· · · ∂Ld2

∂xd1

 . (22)

Therefore, ∇h(x) and ∇y∗(x) can be written as

∇h(x) =


∂h1

∂x1
· · · ∂L1

∂xdx

...
. . .

...
∂Lmy

∂x1
· · · ∂Lmy

∂xdx

 , ∇y∗(x) =


∂y∗

1 (x)
∂x1

· · · ∂y∗
1 (x)

∂xdx

...
. . .

...
∂y∗

dy
(x)

∂x1
· · ·

∂y∗
dy

(x)

∂xdx

 . (23)

Definition 11. The Bregman divergence of a differentiable function L : Rd → R is defined as

DL(u, v) := L(u)− L(v)− ⟨∇L(v), u− v⟩.
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For an L-smooth and µ-strongly convex function L, we have

µ

2
∥u− v∥2 ≤ DL(u, v) ≤

L

2
∥u− v∥2 (24)

and

1

2L
∥∇L(u)−∇L(v)∥2 ≤ DL(u, v) ≤

1

2µ
∥∇L(u)−∇L(v)∥2. (25)

Moreover, for any u, v, we have ⟨∇L(u)−∇L(v), u− v⟩ = DL(u, v) +DL(v, u).

Lemma 12 (Closed form linear operator of projection). For any nonempty linear space C = {z | Az + b = 0}, the
projection operator has the following closed form

ProjC(x) = (I −A†A)x−A†b (26)

where A† is the Moore-Penrose inverse of A.

Proof. Case 1. We first consider the case where b = 0.

We denote P = I −A†A, then C = Ker(A). According to Proposition 3.3. in (Barata and Hussein, 2012), we know that P
is an orthogonal projection and

C = Ker(A) = Ran(P ), C⊥ = Ker(A)⊥ = Ran(A†)
(a)
= Ran(A†A) = Ran(I − P )

where (a) holds since A† = A†AA† (Barata and Hussein, 2012) and

∀z = A†Aw, z = A†(Aw) ⇒ Ran(A†A) ⊂ Ran(A†),

∀z = A†w, z = A†A(A†w) ⇒ Ran(A†) ⊂ Ran(A†A).

Thus, for any x, we can write x = Px + (I − P )x and Px ⊥ (I − P )x, which means Px is the orthogonal projection.
Then due to the uniqueness of the orthogonal decomposition, ProjC(x) = Px.

Case 2. We then consider the case when b ̸= 0.

For any z ∈ C, we have z +A†b ∈ Ker(A) since

A(z +A†b) = Az +AA†b = −b+AA†b
(a)
= 0

where (a) holds since C is nonempty if and only if AA†b = b (James, 1978). Similarly, we can prove for any z ∈ Ker(A),
z −A†b ∈ C. Thus, Ker(A) = C +A†b.

Moreover, since projection operator minimizes the distance to set C, we have

ProjC(x) = argmin
z∈C

∥z − x∥2 = argmin
z∈C

∥z +A†b− (x+A†b)∥2

(a)
=

{
argmin
w∈Ker(A)

∥w − (x+A†b)∥2
}

−A†b

= ProjKer(A)(x+A†b)−A†b

(b)
= P (x+A†b)−A†b

(c)
= (I −A†A)x−A†b

where (a) is due to Ker(A) = C + A†b, (b) comes from Case 1, and (c) is derived from the definition of P and
(I −A†A)A†b = (A† −A†AA†)b = 0.
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B Proof for Lemma 1

Lemma 13 (Stationarity measure under linear equality constraints). For any x ∈ X and any λ > 0, it holds that

∥∇F (x)∥2Px
= ∥λ−1(x− ProjX (x− λ∇F (x)))∥2

where Px = I −B†B.

Proof. For any λ, according to (26), we have

λ−1(x− ProjX (x− λ∇F (x))) = λ−1(x− (I −B†B)(x− λ∇F (x))−B†e)

= λ−1(x+ (I −B†B)λ∇F (x)− [(I −B†B)x+B†e])

= λ−1(x− ProjX (x)) + (I −B†B)∇F (x)

= (I −B†B)∇F (x)

where the first equality is due to X = {x|Bx = e} and (26) the last two equality holds since x ∈ X and (26). Then with
(I −B†B)2 = I −B†B and the definition of ∥ · ∥Px

, the proof is complete.

C Proof for Algorithm 1

In this section, we present the proof of Algorithm 1.

In this section, we define
Fs

k := σ{y0, x0, · · · , yk, xk, yk,1, · · · , yk,s} (27)

where σ{·} denotes the σ-algebra generated by the random variables. Then it follows that FS
k = σ{y0, x0, · · · , yk+1}.

C.1 Proof of Lemma 2 and Lemma 3

We restate Lemma 2 and Lemma 3 together in a more formal way.

Restatement of Lemma 2-3. Under Assumption 1–2 and 4, the gradient of y∗(x) can be expressed as

∇y∗(x) = −V2(V
⊤
2 ∇yyg(x, y

∗(x))V2)
−1V ⊤

2

(
∇yxg(x, y

∗(x))−∇yyg(x, y
∗(x))A†∇h(x)

)
−A†∇h(x) (28)

where V2 is the orthogonal basis of Ker(A) := {y | Ay = 0}. Moreover, y∗(x) is Ly Lipschitz continuous and Lyx smooth
with

Ly :=
ℓg,1 + (ℓg,1 + µg)∥A†∥ℓh,0

µg
,

Lyx :=
ℓg,2

(
1 + ∥A†∥ℓh,0

)
(1 + Ly)(1 +

ℓg,1
µg

) + (ℓg,1 + µg)∥A†∥ℓh,1
µg

. (29)

Proof. By singular value decomposition, we can decompose A = UΣV ⊤ with Σ =

[
Σ1 0

0 0

]
∈ Rmy×dy , and

orthogonal matrix U = [U1 U2] ∈ Rmy×my and V = [V1 V2] ∈ Rdy×dy . Also, by assuming Rank(A) = r, we know that
U1 ∈ Rmy×r, V1 ∈ Rdy×r and Σ1 ∈ Rr×r are full rank submatrix. Therefore, A can be decomposed by

A = [U1 U2]

[
Σ1 0

0 0

][
V ⊤
1

V ⊤
2

]
= [U1Σ1 0]

[
V ⊤
1

V ⊤
2

]
= U1Σ1V

⊤
1

and V2 is the orthogonal basis of Ker(A).

Next, if we define y0(x) := A†(c− h(x)), we can prove y0(x) ∈ Y(x) since

Ay0(x) = AA†(c− h(x)) = c− h(x)
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where the last equality holds due to Assumption 4. From the definition of y0(x) and (23), we know

∇xy0(x) = −A†∇h(x). (30)

Moreover, since V2 is the orthogonal basis of Ker(A), we know Y(x) = y0(x) + Ran(V2). Thus, let z∗(x) =
argminz g(x, y0(x) + V2z), then we have y∗(x) = y0(x) + V2z

∗(x).

Since z∗(x) satisfies
∇zg(x, y0(x) + V2z

∗(x)) = V ⊤
2 ∇yg(x, y0(x) + V2z

∗(x)) = 0

then taking the gradient with respect to x of both sides, we get

0 = ∇x(V
⊤
2 ∇yg(x, y0(x) + V2z

∗(x)))

= ∇xyg(x, y0(x) + V2z
∗(x))V2 +

(
∇xz

∗(x)⊤V ⊤
2 +∇xy0(x)

⊤)∇yyg(x, y0(x) + V2z
∗(x))V2

= ∇xyg(x, y0(x) + V2z
∗(x))V2 +

(
∇xz

∗(x)⊤V ⊤
2 −∇⊤h(x)A†⊤)∇yyg(x, y0(x) + V2z

∗(x))V2

= ∇xyg(x, y
∗(x))V2 +

(
∇xz

∗(x)⊤V ⊤
2 −∇⊤h(x)A†⊤)∇yyg(x, y

∗(x))V2 (31)

where the third equality holds from (30). Then, rearranging (31), we get

∇z∗(x) = −
(
V ⊤
2 ∇yyg(x, y

∗(x))V2

)−1
V ⊤
2

(
∇yxg(x, y

∗(x))−∇yyg(x, y
∗(x))A†∇h(x)

)
(32)

and as a result of y∗(x) = y0(x) + V2z
∗(x), we have

∇y∗(x) = ∇y0(x) + V2∇z∗(x)

= −A†∇h(x)− V2

(
V ⊤
2 ∇yyg(x, y

∗(x))V2

)−1
V ⊤
2

(
∇yxg(x, y

∗(x))−∇yyg(x, y
∗(x))A†∇h(x)

)
. (33)

Next, utilizing the fact that V2 is the orthogonal matrix, we know µgIdy−r ⪯ V ⊤
2 ∇yyg(x, y)V2. Therefore, we have for any

x, y,

V2

(
V ⊤
2 ∇yyg(x, y)V2

)−1
V ⊤
2 ⪯ 1

µg
I. (34)

Besides, we have for any x, it follows that

∥∇yxg(x, y
∗(x))−∇yyg(x, y

∗(x))A†∇h(x)∥ ≤ (1 + ∥A†∥ℓh,0)∥∇2g(x, y∗(x))∥
≤ (1 + ∥A†∥ℓh,0)ℓg,1. (35)

As a result of (33), (34) and (35), ∇y∗(x) is bounded by

∥∇y∗(x)∥

≤
∥∥∥V2

(
V ⊤
2 ∇yyg(x, y

∗(x))V2

)−1
V ⊤
2

∥∥∥∥∇yxg(x, y
∗(x))−∇yyg(x, y

∗(x))A†∇h(x)∥+ ∥A†∇h(x)∥

≤ ℓg,1 + (ℓg,1 + µg)∥A†∥ℓh,0
µg

= Ly

which implies y∗(x) is Ly Lipschitz continuous.

Finally, we aim to prove the smoothness of y∗(x). Defining B1 = V ⊤
2 ∇yyg(x1, y

∗(x1))V2 and B2 =
V ⊤
2 ∇yyg(x2, y

∗(x2))V2, for any x1 and x2, we have

∥∇y∗(x1)−∇y∗(x2)∥

=
∥∥∥V2

(
V ⊤
2 ∇yyg(x1, y

∗(x1))V2

)−1
V ⊤
2

(
∇yxg(x1, y

∗(x1))−∇yyg(x1, y
∗(x1))A

†∇h(x1)
)

− V2

(
V ⊤
2 ∇yyg(x2, y

∗(x2))V2

)−1
V ⊤
2

(
∇yxg(x2, y

∗(x2))−∇yyg(x2, y
∗(x2))A

†∇h(x2)
) ∥∥∥

+ ∥A†(∇h(x1)−∇h(x2))∥
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≤ ∥V2B
−1
1 V ⊤

2 ∥∥∇yxg(x1, y
∗(x1))−∇yxg(x2, y

∗(x2)))∥
+ ∥V2B

−1
1 V ⊤

2 ∥∥∇yyg(x1, y
∗(x1))A

†∇h(x1)−∇yyg(x2, y
∗(x2))A

†∇h(x2)∥
+ ∥V2(B

−1
1 −B−1

2 )V ⊤
2 ∥∥∇yxg(x2, y

∗(x2))−∇yyg(x2, y
∗(x2))A

†∇h(x2)∥+ ℓh,1∥A†∥∥x1 − x2∥
(a)

≤ 1

µg
∥∇yxg(x1, y

∗(x1))−∇yxg(x2, y
∗(x2))∥

+
1

µg
∥∇yyg(x1, y

∗(x1))−∇yyg(x2, y
∗(x2))∥∥A†∥∥∇h(x1)∥

+
1

µg
∥∇yyg(x2, y

∗(x2))∥∥A†∥∥∇h(x1)−∇h(x2)∥

+
ℓg,1

(
1 + ∥A†∥ℓh,0

)
µ2
g

∥∇yyg(x1, y
∗(x1))−∇yyg(x2, y

∗(x2))∥+ ℓh,1∥A†∥∥x1 − x2∥

(b)

≤
ℓg,2

(
1 + ∥A†∥ℓh,0

)
(1 + Ly)(1 +

ℓg,1
µg

) + (ℓg,1 + µg)∥A†∥ℓh,1
µg

∥x1 − x2∥ (36)

where (a) comes from (34), (35) and the following fact

V2

(
B−1

1 −B−1
2

)
V ⊤
2

= V2B
−1
1 (B2 −B1)B

−1
2 V ⊤

2

= V2B
−1
1

((
V ⊤
2 ∇yyg(x2, y

∗(x2))V2

)
−
(
V ⊤
2 ∇yyg(x1, y

∗(x1))V2

))
B−1

2 V ⊤
2

= V2B
−1
1 V ⊤

2 (∇yyg(x2, y
∗(x2))−∇yyg(x1, y

∗(x1)))V2B
−1
2 V ⊤

2

so that

∥V2

(
B−1

1 −B−1
2

)
V ⊤
2 ∥ ≤ ∥V2B

−1
1 V ⊤

2 ∥∥∇yyg(x2, y
∗(x2))−∇yyg(x1, y

∗(x1))∥∥V2B
−1
2 V ⊤

2 ∥

≤ 1

µ2
g

∥∇yyg(x2, y
∗(x2))−∇yyg(x1, y

∗(x1))∥ (37)

and (b) comes from

∥∇2g(x1, y
∗(x1))−∇2g(x2, y

∗(x2))∥ ≤ ℓg,2 [∥x1 − x2∥+ ∥y∗(x1)− y∗(x2)∥]
≤ ℓg,2 (1 + Ly) ∥x1 − x2∥ (38)

from which the proof is complete.

C.2 Smoothness of F (x)

Lemma 14. Under Assumption 1–4, F (x) is smooth with constant LF which is defined as

LF := ℓf,1 (1 + Ly)
2
+ ℓf,0Lyx (39)

Proof. For any x1 and x2, we have that

∥∇F (x1)−∇F (x2)∥ = ∥∇xf(x1, y
∗(x1)) +∇⊤y∗(x1)∇yf(x1, y

∗(x1))

−∇xf(x2, y
∗(x2)) +∇⊤y∗(x2)∇yf(x2, y

∗(x2))∥
≤ ∥∇xf(x1, y

∗(x1))−∇xf(x2, y
∗(x2))∥

+ ∥∇⊤y∗(x1)∇yf(x1, y
∗(x1))−∇⊤y∗(x2)∇yf(x2, y

∗(x2))∥
≤ ℓf,1 (∥x1 − x2∥+ ∥y∗(x1)− y∗(x2)∥)

+ ∥∇y∗(x1)∥∥∇yf(x1, y
∗(x1))−∇yf(x2, y

∗(x2))∥
+ ∥∇yf(x2, y

∗(x2))∥∥∇y∗(x1)−∇y∗(x2)∥
(a)

≤
(
ℓf,1 (1 + Ly)

2
+ ℓf,0Lyx

)
∥x1 − x2∥ = LF ∥x1 − x2∥

where (a) comes frome the Lipschitz continuity of y∗(x),∇y∗(x) in Lemma 3 and the Lipschitz continuity of ∇f and f in
Assumption 1.
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C.3 Supportive lemmas for the proof of Theorem 4

For simplicity, we denote

∇f(x, y) = ∇xf(x, y) +
[(
∇h(x)⊤A†⊤∇yyg(x, y)−∇xyg(x, y)

)
×V2(V

⊤
2 ∇yyg(x, y)V2)

−1V ⊤
2 −∇h(x)⊤A†⊤]∇yf(x, y). (40)

Lemma 15 (Boundness of ∇f(x, y)). For any x, y, we have that ∥∇f(x, y)∥ ≤ ℓf,0 (1 + Ly).

Proof. Based on (34), we have that ∥∥∥V2

(
V ⊤
2 ∇yyg(x, y)V2

)−1
V ⊤
2

∥∥∥ ≤ 1

µg
. (41)

Then we can obtain the bound for ∇f(x, y) since

∥∇f(x, y)∥ ≤ ∥∇xf(x, y)∥+ ∥∇h(x)⊤A†⊤∇yyg(x, y)−∇xyg(x, y)∥
× ∥V2(V

⊤
2 ∇yyg(x, y)V2)

−1V ⊤
2 ∥∥∇yf(x, y)∥+ ∥∇h(x)⊤A†⊤∥∥∇yf(x, y)∥

≤ ℓf,0

(
1 +

ℓg,1
(
1 + ℓh,0∥A†∥

)
µg

+ ℓh,0∥A†∥

)
= ℓf,0 (1 + Ly)

from which the proof is complete.

Lemma 16 (Lipschitz continuity of ∇f(x, y)). Under Assumption 1–2 and 4, ∇f(x, y) is Lf Lipschitz continuous with
respect to y, where the constant is defined as

Lf :=
(
1 + ℓh,0∥A†∥

)(
ℓf,1 +

ℓg,1ℓf,1 + ℓf,0ℓg,2
µg

+
ℓf,0ℓg,1ℓg,2

µ2
g,1

)
. (42)

Proof. For simplicity, we define some notations first.

B1 = V ⊤
2 ∇yyg(x, y1)V2, B2 = V ⊤

2 ∇yyg(x, y2)V2,

C1 = ∇h(x)⊤A†⊤∇yyg(x, y1)−∇xyg(x, y1),

C2 = ∇h(x)⊤A†⊤∇yyg(x, y2)−∇xyg(x, y2).

For i = 1, 2, according to (34), we have the following bounds.

∥Ci∥ ≤
(
1 + ℓh,0∥A†∥

)
ℓg,1, ∥V2B

−1
i V ⊤

2 ∥ ≤ 1

µg
, ∥∇yf(x, yi)∥ ≤ ℓf,0. (43)

Besides, we can also bound their differences as

∥C1 − C2∥ ≤
(
1 + ∥A†∥ℓh,0

)
∥∇2g(x, y1)−∇2g(x, y2)∥ ≤

(
1 + ∥A†∥ℓh,0

)
ℓg,2∥x1 − x2∥

and

∥V2B
−1
1 V ⊤

2 − V2B
−1
2 V ⊤

2 ∥
(a)

≤ ∥V2B
−1
1 V ⊤

2 ∥∥V2B
−1
2 V ⊤

2 ∥∥∇yyg(x, y1)−∇yyg(x, y2)∥

≤ ℓg,2
µ2
g

∥y1 − y2∥

where (a) is due to

V2

(
B−1

1 −B−1
2

)
V ⊤
2

= V2B
−1
1 (B2 −B1)B

−1
2 V ⊤

2

= V2B
−1
1

((
V ⊤
2 ∇yyg(x, y2)V2

)
−
(
V ⊤
2 ∇yyg(x, y1)V2

))
B−1

2 V ⊤
2



Alternating Projected SGD for Equality-constrained Bilevel Optimization

= V2B
−1
1 V ⊤

2 (∇yyg(x, y2)−∇yyg(x, y1))V2B
−1
2 V ⊤

2 . (44)

Likewise, we have
∥∇yf(x, y1)−∇yf(x, y2)∥ ≤ ℓf,1∥x1 − x2∥. (45)

Thus, for any x, y1, y2, based on (43) and (45), we have

∥∇f(x, y1)−∇f(x, y2)∥
≤ ∥∇xf(x, y1)−∇xf(x, y2)∥+ ∥C1V2B

−1
1 V ⊤

2 ∇yf(x, y1)− C2V2B
−1
2 V ⊤

2 ∇yf(x, y2)∥
+ ∥∇h(x)∥∥A†∥∥∇yf(x, y1)−∇yf(x, y2)∥

(a)

≤ (1 + ℓh,0∥A†∥)ℓf,1∥y1 − y2∥+ ∥C1∥∥V2B
−1
1 V ⊤

2 ∥∥∇xf(x, y1)−∇xf(x, y2)∥
+ ∥C1∥∥∇xf(x, y2)∥∥V2B

−1
1 V ⊤

2 − V2B
−1
2 V ⊤

2 ∥+ ∥V2B
−1
2 V ⊤

2 ∥∥∇xf(x, y2)∥∥C1 − C2∥
(b)

≤
(
1 + ℓh,0∥A†∥

)(
ℓf,1 +

ℓg,1ℓf,1 + ℓf,0ℓg,2
µg

+
ℓf,0ℓg,1ℓg,2

µ2
g,1

)
∥y1 − y2∥ (46)

where (a) is due to

C1D1E1 − C2D2E2

=C1D1E1 − C1D1E2 + C1D1E2 − C1D2E2 + C1D2E2 − C2D2E2

=C1D1(E1 − E2) + C1E2(D1 −D2) +D2E2(C1 − C2) (47)

(b) comes from (43) and (45), from which the proof is complete.

To prove the bias and variance of gradient estimator hk
f , we leverage the following fact.

Lemma 17 ((Hong et al., 2020, Lemma 12)). Let Zi be a sequence of stochastic matrix defined recursively as Zi =
YiZi−1, i ≥ 0 with Z−1 = I ∈ Rd×d, Yi are independent, symmetric random matrix satisfying that

∥E [Yi] ∥ ≤ 1− µ, E
[
∥Yi − E [Yi] ∥2

]
≤ σ2.

If (1− µ)2 + σ2 < 1, then for any i > 0, it holds that

E
[
∥Zi∥2

]
≤ d

(
(1− µ)2 + σ2

)i
.

Based on this lemma, we can bound the second moment bound of Hessian inverse estimator.

Lemma 18. Let c̃ = µg

µ2
g+σ2

g,2
and for any k, denote the Hessian inverse estimator as

Hk
yy =

c̃N

ℓg,1

N ′∏
n=0

(
I − c̃

ℓg,1
V ⊤
2 ∇2

yyg
(
xk, yk+1;ϕk

(n)

)
V2

)
.

Then the second moment bound of Hk
yy can be bounded as

E
[
∥Hk

yy∥2|FS
k

]
≤ N(dy − r)

ℓg,1(µ2
g + σ2

g,2)
.

Proof. Let Yn = I − c̃
ℓg,1

V ⊤
2 ∇2

yyg
(
x, y;ϕ(n)

)
V2, we know that

∥E [Yn] ∥ ≤
(
1− c̃µg

ℓg,1

)
, E

[
∥Yn − E [Yn] ∥2

]
≤

c̃2σ2
g,2

ℓ2g,1

Moreover, since (
1− c̃µg

ℓg,1

)2

+
c̃2σ2

g,2

ℓ2g,1
= 1− 2c̃µg

ℓg,1
+

c̃2(µ2
g + σ2

g,2)

ℓ2g,1
= 1−

µ2
g

ℓg,1
(
µ2
g + σ2

g,2

) < 1



Quan Xiao⋆, Han Shen⋆, Wotao Yin†, Tianyi Chen⋆

which satisfies the condition in Lemma 17, we can then plugging Yn into Lemma 17 and achieves the second moment bound
for Hk

yy .

E
[
∥Hk

yy∥2|FS
k

]
= E

[
E
[
∥Hk

yy∥2|N ′,FS
k

]
|FS

k

]
≤ E

 c̃2N2(dy − r)

ℓ2g,1

(
1−

µ2
g

ℓg,1
(
µ2
g + σ2

g,2

))N ′ ∣∣∣N ′


≤ c̃2N(dy − r)

ℓ2g,1

N−1∑
n=0

(
1−

µ2
g

ℓg,1
(
µ2
g + σ2

g,2

))n

≤ c̃2N(dy − r)

ℓ2g,1

ℓg,1
(
µ2
g + σ2

g,2

)
µ2
g

(a)

≤ N(dy − r)

ℓg,1
(
µ2
g + σ2

g,2

) .
where r is rank of A and (a) comes from the choice of c̃.

Lemma 19 (Bias and variance of gradient estimator). Let c̃ = µg

µ2
g+σ2

g,2
and define

h̄k
f = E

[
hk
f

∣∣FS
k ],

then hk
f is a biased estimator of UL gradient which satisfies that

∥h̄k
f −∇f(xk, yk+1)∥ ≤ Lyℓf,0

(
1−

µ2
g

ℓg,1(µ2
g + σ2

g,2)

)N

=: bk (48)

E
[
∥hk

f − h̄k
f∥2|FS

k

]
≤ σ2

f +
4N(1 + ℓ2h,0∥A†∥2)(dy − r)(ℓ2g,1 + σ2

g,2)
(
2σ2

f + ℓ2f,0

)
ℓg,1(µ2

g + σ2
g,2)

=: σ̃2
f = O

(
Nκ2

)
. (49)

Proof. We first prove (48) by noticing that the error by finite updates can be bounded by∥∥∥∥∥V2

(
(I −D)−1 −

N−1∑
n=0

Dn

)
V ⊤
2

∥∥∥∥∥ =

∥∥∥∥∥V2

( ∞∑
n=N

Dn

)
V ⊤
2

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

n=N

(V2DV ⊤
2 )n

∥∥∥∥∥ (50)

≤
∞∑

n=N

∥V2DV ⊤
2 ∥n =

∥V2DV ⊤
2 ∥N

1− ∥V2DV ⊤
2 ∥

(51)

Thus, letting D = I − c̃
ℓg,1

V ⊤
2 ∇yyg(x, y)V2 and multiplying each side by c̃

ℓg,1
, we obtain that∥∥∥∥∥V2

((
V ⊤
2 ∇yyg(x, y)V2

)−1 − c̃

ℓg,1

N−1∑
n=0

(I − c̃

ℓg,1
V ⊤
2 ∇yyg(x, y)V2)

n

)
V ⊤
2

∥∥∥∥∥
≤

c̃∥V2

(
I − c̃

ℓg,1
∇yyg(x, y)

)
V ⊤
2 ∥N

ℓg,1

(
1− ∥V2

(
I − c̃

ℓg,1
∇yyg(x, y)

)
V ⊤
2 ∥
)

≤

(
1− c̃µg

ℓg,1

)N
µg

(52)

where the second inequality holds according to µgIdy−r ⪯ V ⊤
2 ∇yyg(x, y)V2. Then we have

∥∇f(xk, yk+1)− h̄k
f∥

≤
∥∥∇h(xk)⊤A†⊤∇yyg(x

k, yk+1)−∇xyg(x
k, yk+1)

∥∥ ∥∇yf(x
k, yk+1)∥

×

∥∥∥∥∥V2

((
V ⊤
2 ∇yyg(x

k, yk+1)V2

)−1 − c̃

ℓg,1

N−1∑
n=0

(I − c̃

ℓg,1
V ⊤
2 ∇yyg(x, y)V2)

n

)
V ⊤
2

∥∥∥∥∥
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≤

(
1 + ℓh,0∥A†∥

)
ℓg,1ℓf,0

(
1− c̃µg

ℓg,1

)N
µg

= Lyℓf,0

(
1− c̃µg

ℓg,1

)N

(53)

where the second term of (a) is derived from ∥X−1 − Y −1∥ ≤ ∥X−1∥∥X − Y ∥∥Y −1∥. Then plugging in the choice of c̃
to (53) results in (48).

The proof of (49) is based on Lemma 18. For ease of narration, we denote

∇h
xyg(x

k, yk+1;ϕk
(0)) := ∇h(xk)⊤A†⊤∇yyg(x

k, yk+1;ϕk
(0))−∇xyg(x

k, yk+1;ϕk
(0))

∇h
xyg(x

k, yk+1) := ∇h(xk)⊤A†⊤∇2
yyg(x

k, yk+1)−∇2
xyg(x

k, yk+1).

We notice that

E
[
∇h

xyg(x
k, yk+1;ϕk

(0))|F
S
k

]
= ∇h

xyg(x
k, yk+1)

and then the bias and variance of ∇h
xyg(x

k, yk+1;ϕk
(0)) can be bounded by

∥∇h
xyg(x

k, yk+1)∥2 ≤ 2(1 + ℓ2h,0∥A†∥2)ℓ2g,1 (54)

E
[
∥∇h

xyg(x
k, yk+1;ϕk

(0))−∇h
xyg(x

k, yk+1)∥2|FS
k

]
≤ ∥∇h(xk)⊤A†⊤∥2E

[
∥∇yyg(x

k, yk+1;ϕk
(0))−∇yyg(x

k, yk+1)∥2|FS
k

]
+ E

[
∥∇xyg(x

k, yk+1ϕk
(0))−∇xyg(x

k, yk+1)∥2|FS
k

]
≤ (1 + ℓ2h,0∥A†∥2)σ2

g,2. (55)

Thus adding (54) and (55), we arrive at the second moment bound for ∇h
xyg(x

k, yk+1;ϕk
(0)) as

E
[
∥∇h

xyg(x
k, yk+1;ϕk

(0))∥
2|FS

k

]
= ∥E

[
∇h

xyg(x
k, yk+1;ϕk

(0))|F
S
k

]
∥2 + E

[
∥∇h

xyg(x
k, yk+1;ϕk

(0))−∇h
xyg(x

k, yk+1)∥2|FS
k

]
≤ (1 + ℓ2h,0∥A†∥2)(2ℓ2g,1 + σ2

g,2). (56)

Then the variance of hk
f can be decomposed and bounded as

E
[
∥hk

f − h̄k
f∥2|FS

k

]
≤ E

[
∥∇xf(x

k, yk+1; ξk)−∇xf(x
k, yk+1)∥2|FS

k

]
+ ∥∇h(xk)A†∥E

[
∥∇yf(x

k, yk+1; ξk)−∇yf(x
k, yk+1)∥2|FS

k

]
+ E

[
∥∇h

xyg(x
k, yk+1;ϕk

(0))V2H
k
yyV

⊤
2 ∇yf(x

k, yk+1; ξk)

−∇h
xyg(x

k, yk+1)V2E[Hk
yy|FS

k ]V
⊤
2 ∇yf(x

k, yk+1)∥2|FS
k

]
(a)

≤ (1 + ℓh,0∥A†∥)σ2
f + 3E[∥∇h

xyg(x
k, yk+1;ϕk

(0))∥2|FS
k ]E[∥Hk

yy∥2|FS
k ]E[∥∇yf(x

k, yk+1; ξk)−∇yf(x
k, yk+1)∥2|FS

k ]

+ 3E[∥∇h
xyg(x

k, yk+1;ϕk
(0))∥2|FS

k ]E[∥∇yf(x
k, yk+1; ξk)∥2|FS

k ]E[∥Hk
yy − E[Hk

yy|FS
k ]∥2|FS

k ]

+ 3E[∥Hk
yy∥2|FS

k ]E[∥∇yf(x
k, yk+1; ξk)∥2|FS

k ]E[∥∇h
xyg(x

k, yk+1;ϕk
(0))−∇h

xyg(x
k, yk+1)∥2|FS

k ]

(b)

≤ (1 + ℓh,0∥A†∥)σ2
f +

3N(1 + ℓ2h,0∥A†∥2)(dy − r)

ℓg,1(µ2
g + σ2

g,2)

[
(2ℓ2g,1 + σ2

g,2)
(
2σ2

f + ℓ2f,0
)
+ (σ2

f + ℓ2f,0)σ
2
g,2

]
≤ (1 + ℓh,0∥A†∥)σ2

f +
6N(1 + ℓ2h,0∥A†∥2)(dy − r)(ℓ2g,1 + σ2

g,2)
(
2σ2

f + ℓ2f,0
)

ℓg,1(µ2
g + σ2

g,2)
=: σ̃2

f

where (a) comes from (47) and (A+B + C)2 ≤ 3(A2 +B2 + C2), and (b) comes from the second moment bound and
variance of ∇h

xyg(x
k, yk+1;ϕk

(0)), Hyy and ∇yf(x
k, yk+1; ξk).
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Lemma 20 (Descent of upper level). Suppose Assumption 1–2 hold, then the sequence of xk generated by Algorithm 1
satisfies

E[F (xk+1)]− E[F (xk)] ≤ −α

2
E
[
∥∇F (xk)∥2Px

]
+ αL2

fE
[
∥y∗(xk)− yk+1∥2

]
+ αb2k

−
(
α

2
− LFα

2

2

)
E
[
∥h̄k

f∥2Px

]
+

LFα
2σ̃2

f

2
(57)

where Px = I −B†B is the projection matrix of B and B† is the Moore-Penrose inverse of B.

Proof. Since X = {x | Bx = e}, for any x, we have that ProjX (x) = (I − B†B)x + B†e is a linear operator of x
according to (26). Thus, we have

xk+1 = ProjX (xk − αhk
f ) = (I −B†B)(xk − αhk

f ) +B†e

= (I −B†B)xk +B†e− (I −B†B)(αhk
f )

= ProjX (xk)− α(I −B†B)hk
f

= xk − α(I −B†B)hk
f (58)

where the last equality is due to xk ∈ X .

Taking the expectation of F (xk+1) conditioned on FS
k , we get

E
[
F (xk+1)|FS

k

] (a)

≤ F (xk) + ⟨∇F (xk),E
[
xk+1 − xk|FS

k

]
⟩+ LF

2
E
[
∥xk+1 − xk∥2|FS

k

]
= F (xk)− α⟨∇F (xk), (I −B†B)h̄k

f ⟩+
LF

2
α2E

[
∥(I −B†B)hk

f∥2|FS
k

]
(b)

≤ F (xk)− α

2
∥(I −B†B)∇F (xk)∥2 + α

2
∥(I −B†B)(∇F (xk)− h̄k

f )∥2

−
(
α

2
− LFα

2

2

)
∥(I −B†B)h̄k

f∥2 +
LFα

2σ̃2
f

2

(c)

≤ F (xk)− α

2
∥∇F (xk)∥2Px

+
α

2
∥∇F (xk)− h̄k

f∥2

−
(
α

2
− LFα

2

2

)
∥h̄k

f∥2Px
+

LFα
2σ̃2

f

2
(59)

where (a) comes from the smoothness of F , (b) is derived from 2a⊤b = ∥a∥2 + ∥b∥2 − ∥a − b∥2, E[∥X∥2|Y ] =
∥E[X|Y ]∥2 + E[∥X − E[X|Y ]∥2|Y ], (I −B†B)2 = I −B†B and Lemma 19, (c) is due to the definition of ∥ · ∥Px

and
∥I −B†B∥ ≤ 1.

Besides, we decompose the gradient bias term as follows

∥∇F (xk)− h̄k
f∥2 ≤ 2∥∇F (xk)−∇f(xk, yk+1)∥2 + 2∥∇f(xk, yk+1)− h̄k

f∥2

≤ 2∥∇f(xk, y∗(xk))−∇f(xk, yk+1)∥2 + 2b2k

≤ 2L2
f∥y∗(xk)− yk+1∥+ 2b2k. (60)

Plugging (60) to (59) and taking expectation, we get that

E[F (xk+1)]− E[F (xk)] ≤ −α

2
E
[
∥∇F (xk)∥2Px

]
+ αL2

fE
[
∥y∗(xk)− yk+1∥2

]
+ αb2k

−
(
α

2
− LFα

2

2

)
E
[
∥h̄k

f∥2Px

]
+

LFα
2σ̃2

f

2
.



Alternating Projected SGD for Equality-constrained Bilevel Optimization

Lemma 21 (Error of lower-level update). Suppose that Assumption 1–2 hold and β ≤ 1
ℓg,1

, then the error of lower-level
variable can be bounded by

E[∥yk+1 − y∗(xk)∥2] ≤ (1− βµg)
S E[∥yk − y∗(xk)∥2] + Sβ2σ2

g,1 (61a)

E[∥yk+1 − y∗(xk+1)∥2] ≤
(
1 + γ + ηLyxC̃

2
fα

2
)
E[∥yk+1 − y∗(xk)∥2]

+

(
L2
y +

Lyx

η

)
α2σ̃2

f +

(
L2
y +

Lyx

η
+

L2
y

γ

)
α2E

[
∥h̄k

f∥2Px

]
(61b)

where C̃2
f := 2b2k + 2ℓ2f,0

(
1 +

ℓg,1
µg

)2
+ σ̃2

f , γ and η are balancing constants will be chosen in the final theorem.

Proof. First, since the lower-level objective function is strongly-convex and smooth, when 0 ≤ β ≤ 1
ℓg,1

, we have the
following fact

∥y1 − β∇yg(x, y1)− (y2 − β∇yg(x, y2))∥2

= ∥y1 − y2∥2 + β2∥∇yg(x, y1)−∇yg(x, y2))∥2 − 2β⟨y1 − y2,∇yg(x, y1)−∇yg(x, y2)⟩
≤ (1− βµg)∥y1 − y2∥2 − 2βDg((x, y1), (x, y2)) + β2∥∇yg(x, y1)−∇yg(x, y2))∥2

≤ (1− βµg)∥y1 − y2∥2 (62)

where the first inequality is according to (24) and the last inequality is due to (25) and β ≤ 1
ℓg,1

.

Then, for each lower-level update, we obtain that

E[∥yk,s+1 − y∗(xk)∥2|Fk,s]

= E[∥ProjY(xk)(y
k,s − β∇yg(x

k, yk,s;ϕk,s))− ProjY(xk)(y
∗(xk)− β∇yg(x

k, y∗(xk)))∥2|Fk,s]

≤ E[∥yk,s − β∇yg(x
k, yk,s;ϕk,s)− y∗(xk) + β∇yg(x

k, y∗(xk))∥2|Fk,s]

≤ E[∥yk,s − β∇yg(x
k, yk,s)− y∗(xk) + β∇yg(x

k, y∗(xk))∥2|Fk,s]

+ β2E[∥∇yg(x
k, yk,s;ϕk,s)−∇yg(x

k, yk,s)∥2|Fk,s]

≤ (1− βµg)∥yk,s − y∗(xk)∥2 + β2σ2
g,1 (63)

where the first inequality is due to y∗(xk) = ProjY(xk)(y
∗(xk)− β∇yg(x

k, y∗(xk))) and the last inequality is obtained by
(62) with x = xk, y2 = y∗(xk), y1 = yk,s, and Assumption 3. Taking expectation of both sides in (63), one have

E[∥yk,s+1 − y∗(xk)∥2] ≤ (1− βµg)E[∥yk,s − y∗(xk)∥2] + β2σ2
g,1. (64)

Thus, (61a) can be obtained by telescoping (64).

On the other hand, we have

∥yk+1 − y∗(xk+1)∥2 = ∥yk+1 − y∗(xk)∥2 + ∥y∗(xk)− y∗(xk+1)∥2︸ ︷︷ ︸
J1

+ 2 ⟨yk+1 − y∗(xk), y∗(xk)− y∗(xk+1)⟩︸ ︷︷ ︸
J2

.

Since y∗(x) is Ly Lipschitz continuous, J1 can be bounded by

E [J1] ≤ L2
yE
[
∥xk+1 − xk∥2

]
(a)
= α2L2

yE
[
E
[
∥(I −B†B)hk

f∥2
]
|FS

k

]
(b)

≤ α2L2
y

(
E
[
∥h̄k

f∥2Px

]
+ σ̃2

f

)
(65)

where (a) comes from (58), (b) holds since E[∥C∥2|D] = ∥E[C|D]∥2 + E[∥C − E[C|D]∥2|D] and Lemma 19.
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On the other hand, we can decompose J2 by two terms as follows.

J2 = −⟨yk+1 − y∗(xk),∇y∗(xk)⊤(xk+1 − xk)⟩︸ ︷︷ ︸
J2,1

−⟨yk+1 − y∗(xk), y∗(xk+1)− y∗(xk)−∇y∗(xk)⊤(xk+1 − xk)⟩︸ ︷︷ ︸
J2,2

.

Moreover, the conditional expectation of J2,1 can be bounded by

E[J2,1|FS
k ] = −⟨yk+1 − y∗(xk),E[∇y∗(xk)⊤(xk+1 − xk)|FS

k ]⟩
≤ −α⟨yk+1 − y∗(xk),∇y∗(xk)⊤(I −B†B)h̄k

f ⟩
(a)

≤ γ

2
∥yk+1 − y∗(xk)∥2 +

α2L2
y

2γ
∥h̄k

f∥2Px
(66)

where (a) comes form Young’s inequality and the boundedness of ∇y∗(xk). Then taking expectation of (66), we obtain that

E[J2,1] ≤
γ

2
E[∥yk+1 − y∗(xk)∥2] +

α2L2
y

2γ
E[∥h̄k

f∥2Px
]. (67)

Based on the smoothness of y∗(x) and Jensen inequality, J2,2 can be bounded by

E[J2,2] ≤ E
[
∥yk+1 − y∗(xk)∥∥y∗(xk+1)− y∗(xk)−∇y∗(xk)⊤(xk+1 − xk)∥2

]
≤ Lyx

2
E
[
∥yk+1 − y∗(xk)∥∥xk+1 − xk∥2

]
(a)

≤ ηLyxα
2

2
E[∥yk+1 − y∗(xk)∥2∥hk

f∥2] +
Lyxα

2

2η
E
[
∥hk

f∥2Px

]
≤ ηLyxα

2

2
E
[
∥yk+1 − y∗(xk)∥2E[∥hk

f∥2|FS
k ]
]
+

Lyxα
2

2η
E
[
E
[
∥hk

f∥2Px
|FS

k

]]
≤ ηLyxα

2

2
E
[
∥yk+1 − y∗(xk)∥2

(
∥h̄k

f∥2 + σ̃2
f

)]
+

Lyxα
2

2η

(
E[∥h̄k

f∥2Px
] + σ̃2

f

)
≤ ηLyxα

2

2
E
[
∥yk+1 − y∗(xk)∥2

(
2∥h̄k

f −∇f(xk, yk+1)∥2 + 2∥∇f(xk, yk+1)∥2 + σ̃2
f

)]
+

Lyxα
2

2η

(
E[∥h̄k

f∥2Px
] + σ̃2

f

)
(b)

≤ ηLyxα
2

2

(
2b2k + 2ℓ2f,0 (1 + Ly)

2
+ σ̃2

f

)
E
[
∥yk+1 − y∗(xk)∥2

]
+

Lyxα
2

2η

(
E[∥h̄k

f∥2Px
] + σ̃2

f

)
. (68)

where (a) comes from the update (58), Young’s inequality and ∥hk
f∥Px

= ∥(I − B†B)hk
f∥ ≤ ∥hk

f∥ and (b) holds from
Lemma 15 and Lemma 19. Then denoting C̃2

f := 2b2k + 2ℓ2f,0 (1 + Ly)
2
+ σ̃2

f and combining (65), (67) and (68), we get

E[∥yk+1 − y∗(xk+1)∥2] ≤
(
1 + γ + ηLyxC̃

2
fα

2
)
E[∥yk+1 − y∗(xk)∥2] +

(
L2
y +

Lyx

η

)
α2σ̃2

f

+

(
L2
y +

Lyx

η
+

L2
y

γ

)
α2E

[
∥h̄k

f∥2Px

]
.

This completes the proof.

C.4 Proof of Theorem 4

We first restate a formal version of Theorem 4 as follows.
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Restatement of Theorem 4. Under Assumption 1–4, defining the constants as

ᾱ1 =
1

2LF + 4LfLy +
4LfLyx

ηLy

, ᾱ2 =
µg

ℓg,1(5LfLy + ηLyxC̃2
f )

(69)

and choosing

α = min

(
ᾱ1, ᾱ2,

ᾱ√
K

)
, β =

5LfLy + ηLyxC̃
2
f

µg
α, N = O(logK)

then for any S ≥ 1 in Algorithm 1, we have

1

K

K−1∑
k=0

E
[
∥∇F (xk)∥2Px

]
= O

(
1√
K

)
where Px = I − B†B is the projection matrix on Ker(B) and ∥x∥Px

=
√
x⊤Pxx is the weighted Euclidean norm

associated with Px.

Proof. According to Lemma 21 and plugging (61b) into (61a), we get that

E[∥yk+1 − y∗(xk+1)∥2] ≤
(
1 + γ + ηLyxC̃

2
fα

2
)
(1− βµg)

S E[∥yk − y∗(xk)∥2]

+
(
1 + γ + ηLyxC̃

2
fα

2
)
Sβ2σ2

g,1 +

(
L2
y +

Lyx

η

)
α2σ̃2

f

+

(
L2
y +

Lyx

η
+

L2
y

γ

)
α2E

[
∥h̄k

f∥2Px

]
. (70)

We can define Lyapunov function as

Vk := F (xk) +
Lf

Ly
∥y∗(xk)− yk∥2

Using Lemma 19–21, we get

E
[
Vk+1

]
− E

[
Vk
]
≤ −α

2
E
[
∥∇F (xk)∥2Px

]
+ αL2

f (1− βµg)
S E
[
∥yk − y∗(xk)∥2

]
+ αb2k

−
(
α

2
− LFα

2

2

)
E
[
∥h̄k

f∥2Px

]
+

LFα
2
kσ̃

2
f

2

+
Lf

Ly

[(
1 + γ + ηLyxC̃

2
fα

2
)
(1− βµg)

S − 1
]
E
[
∥yk − y∗(xk)∥2

]
+

Lf

Ly

(
1 + γ + LyLfα+ ηLyxC̃

2
fα

2
)
Sβ2σ2

g,1

+
Lf

Ly

(
L2
y +

Lyx

η

)
α2σ̃2

f +
Lf

Ly

(
L2
y +

Lyx

η
+

L2
y

γ

)
α2E

[
∥h̄k

f∥2Px

]
≤ −α

2
E
[
∥∇F (xk)∥2Px

]
+

Lf

Ly

(
1 + γ + LyLfα+ ηLyxC̃

2
fα

2
)
β2Sσ2

g,1

+ αb2k +

[
LF

2
+

Lf

Ly

(
L2
y +

Lyx

η

)]
α2σ̃2

f

−
[
α

2
−
(
LF

2
+ LfLy

(
1 +

1

γ

)
+

LfLyx

ηLy

)
α2

]
E
[
∥h̄k

f∥2Px

]
−

(
Lfµgβ

Ly
− αL2

f − Lfγ

Ly
−

ηLfLyxC̃
2
fα

2

Ly

)
E
[
∥yk − y∗(xk)∥2

]
(71)

Selecting γ = 4LfLyα, (71) can be simplified by

E[Vk+1]− E[Vk] ≤ −α

2
E
[
∥∇F (xk)∥2Px

]
+

Lf

Ly

(
1 + 5LfLyα+ ηLyxC̃

2
fα

2
)
β2Sσ2

g,1
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+ αb2k +

[
LF

2
+

Lf

Ly

(
L2
y +

Lyx

η

)]
α2σ̃2

f

−
[
α

4
−
(
LF

2
+ LfLy +

LfLyx

ηLy

)
α2

]
E
[
∥h̄k

f∥2Px

]
−

(
Lfµgβ

Ly
− 5αL2

f −
ηLfLyxC̃

2
fα

2

Ly

)
E
[
∥yk − y∗(xk)∥2

]
(72)

Let α ≤ 1, then the sufficient condition of making the last two terms negative becomes

α ≤ min

 1

2LF + 4LfLy +
4Lfµgℓg,1

Ly

,
µgβ

5LfLy + ηLyxC̃2
f

 . (73)

Since we also need β ≤ 1
ℓg,1

, then the sufficient condition for (73) becomes

α ≤ min

 1

2LF + 4LfLy +
4Lfµgℓg,1

Ly

,
µg

ℓg,1(5LfLy + ηLyxC̃2
f )

 , β =
5LfLy + ηLyxC̃

2
f

µg
α.

Denoting

ᾱ1 =
1

2LF + 4LfLy +
4LfLyx

ηLy

, ᾱ2 =
µg

ℓg,1(5LfLy + ηLyxC̃2
f )

and choosing α = min
(
ᾱ1, ᾱ2,

ᾱ√
K

)
, β =

5LfLy+ηLyxC̃
2
f

µg
α, then (72) becomes

α

2
E[∥∇F (xk)∥2Px

] ≤
(
E[Vk]− E[Vk+1]

)
+ c1Sα

2σ2
g,1 + c2α

2σ̃2
f + αb2k (74)

where c1 and c2 are defined as

c1 =
Lf

Ly

(
1 + 5LfLyα+ ηLyxC̃

2
fα

2
)(5LfLy + ηLyxC̃

2
f

µgβ

)2

c2 =
LF

2
+

Lf

Ly

(
L2
y +

Lyx

η

)
.

Telescoping (74) and dividing both sides by 1
2

∑K−1
k=0 α leads to∑K−1

k=0 αE
[
∥∇F (xk)∥2Px

]∑K−1
k=0 α

≤
V0 +

∑K−1
k=0 αb2k + c1Sασ

2
g,1 + c2ασ̃

2
f

1
2

∑K−1
k=0 α

Let ᾱ, S = O(1) and N = O(logK), then we know σ̃2
f = O(N) = O(logK), and thus,

1

K

K−1∑
k=0

E
[
∥∇F (xk)∥2Px

]
≤

V0 +
∑K−1

k=0 αb2k + c1Sασ
2
g,1 + c2ασ̃

2
f

1
2

∑K−1
k=0 α

= O
(
log(K)√

K

)
= Õ

(
1√
K

)
.

Therefore, Algorithm 1 achieves an ϵ-stationary point by Õ(ϵ−2) iterations, which matches the iteration complexity of
single level gradient descent method.

D Proof of Algorithm 2

In this section, we present the proof of Algorithm 2. We define

F̃ t
k := σ{y0, x0, · · · , yk+1, xk,1, · · · , xk,t} (75)

where σ{·} denotes the σ-algebra generated by the random variables. Then it follows that F̃0
k = σ{y0, x0, · · · , yk+1}.
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D.1 Descent of upper level

First, we notice that the update of xk+1 can be written as

xk+1 (a)
= (1− δ)xk + δ ProjX

(
xk − α

T−1∑
t=0

hk,t
f

)
(b)
= (1− δ)xk + δ(I −B†B)

(
xk − α

T−1∑
t=0

hk,t
f

)
+ δB†e

= (1− δ)xk + δ ProjX (xk)− αδ

T−1∑
t=0

(I −B†B)hk,t
f

(c)
= xk − αδ(I −B†B)

(
T−1∑
t=0

hk,t
f

)
(76)

where (a) comes from the update rule in 2, (b) is derived from the closed form of Proj(·) on the linear space X = {x |
Bx = e}, and (c) holds since xk ∈ X .

We first quantify the bias induced by querying Hessian inverse vector product at different point.

Lemma 22 (Error of using delayed Hessian vector product). Define

G(x, y, x̃) := ∇xf(x, y) +
[(
∇h(x̃)⊤A†⊤∇yyg(x̃, y)−∇xyg(x̃, y)

)
×V2(V

⊤
2 ∇yyg(x̃, y)V2)

−1V ⊤
2 −∇h(x̃)⊤A†⊤]∇yf(x̃, y)

as the gradient estimator using Hessian vector product at point x̃. We have

∥G(x, y, x̃)∥ ≤ ℓf,0(1 + Ly)

∥G(x, y, x̃)−∇f(x, y)∥ ≤ LG∥x− x̃∥

where LG :=
(1+ℓh,0∥A†∥)ℓg,1

µg

(
ℓf,1 +

ℓf,0ℓg,2
µg

+
µgℓg,2
ℓg,1

)
+ (ℓh,0ℓf,1 + ℓh,1(ℓg,1 + ℓf,0)) ∥A†∥.

Proof. First, since G(x, y, x̃) only differs from ∇f(x, y) at the evaluation point x̃ of Hessian vector product, the bound for
∥G(x, y, x̃)∥ can derived the same way as ∇f(x, y) following Lemma 15, that is

∥G(x, y, x̃)∥ ≤ ℓf,0(1 + Ly).

Next, for any x, y, x̃, we have that

∥G(x, y, x̃)−∇f(x, y)∥
≤ ∥

(
∇h(x̃)⊤A†⊤∇yyg(x̃, y)−∇xyg(x̃, y)

)
V2(V

⊤
2 ∇yyg(x̃, y)V2)

−1V ⊤
2 ∇yf(x̃, y)

−
(
∇h(x)⊤A†⊤∇yyg(x, y)−∇xyg(x, y)

)
V2(V

⊤
2 ∇yyg(x, y)V2)

−1V ⊤
2 ∇yf(x, y)∥

+ ∥∇h(x̃)⊤A†⊤∇yf(x̃, y)−∇h(x)⊤A†⊤∇yf(x, y)∥
≤ ∥∇h(x)⊤A†⊤∇yyg(x, y)−∇xyg(x, y)∥

× ∥V2(V
⊤
2 ∇yyg(x̃, y)V2)

−1V ⊤
2 ∇yf(x̃, y)− V2(V

⊤
2 ∇yyg(x, y)V2)

−1V ⊤
2 ∇yf(x, y)∥

+ ∥V2(V
⊤
2 ∇yyg(x̃, y)V2)

−1V ⊤
2 ∇yf(x̃, y)∥

× ∥∇h(x̃)⊤A†⊤∇yyg(x̃, y)−∇xyg(x̃, y)−∇h(x)⊤A†⊤∇yyg(x, y) +∇xyg(x, y)∥
+ ∥∇h(x̃)⊤A†⊤∥∥∇yf(x̃, y)−∇yf(x, y)∥+ ∥∇h(x̃)⊤A†⊤ −∇h(x)⊤A†⊤∥∥∇yf(x, y)∥

(a)

≤ ℓg,1
(
1 + ℓh,0∥A†∥

) (
∥V2(V

⊤
2 ∇yyg(x̃, y)V2)

−1V ⊤
2 ∥∥∇yf(x̃, y)−∇yf(x, y)∥

+ ∥∇yf(x, y)∥∥V2((V
⊤
2 ∇yyg(x̃, y)V2)

−1 − (V ⊤
2 ∇yyg(x, y)V2)

−1)V ⊤
2 ∥
)

+ ∥∇xyg(x̃, y)−∇xyg(x, y)∥+ ∥∇h(x̃)⊤A†⊤∇yyg(x̃, y)−∇h(x)⊤A†⊤∇yyg(x, y)∥
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+ ℓh,0ℓf,1∥A†∥∥x̃− x∥+ ℓh,1ℓf,0∥A†∥∥x− x̃∥
(b)

≤

[(
1 + ℓh,0∥A†∥

)
ℓg,1

µg

(
ℓf,1 +

ℓf,0ℓg,2
µg

+
µgℓg,2
ℓg,1

)
+ (ℓh,0ℓf,1 + ℓh,1(ℓg,1 + ℓf,0)) ∥A†∥

]
∥x− x̃∥

where (a) and (b) hold similarly with the derivation of (36).

Lemma 22 shows the bias induced by evaluating the Hessian inverse vector product at different point can be controlled by
the point difference.

Then we have the following lemma which is a counterpart of Lemma 19.

Lemma 23 (Bias and variance of gradient estimator). Let c̃ = µg

µ2
g+σ2

g,2
and define

h̄k,t
f := E[hk,t

f |F̃ t
k],

then hk,t
f is a biased estimator of upper level gradient which satisfies that

∥h̄k,t
f −G(xk,t, yk+1, xk)∥ ≤ bk (77)

E
[
∥hk,t

f − h̄k,t
f ∥2|F̃ t

k

]
≤ σ̃2

f = O
(
Nκ2

)
(78)

E

∥∥∥∥∥ 1T
T−1∑
t=0

(hk,t
f − h̄k,t

f )

∥∥∥∥∥
2

|F̃0
k

 ≤
σ̃2
f

T
. (79)

Proof. We omit the proof of (77) and (78) since they are almost the same with the proof of Lemma 19, and only prove (79).
For (79), we have

E

∥∥∥∥∥ 1T
T−1∑
t=0

(hk,t
f − h̄k,t

f )

∥∥∥∥∥
2

|F̃0
k

 =
1

T 2
E

E
∥∥∥∥∥

T−1∑
t=0

hk,t
f − h̄k,t

f

∥∥∥∥∥
2

|F̃T−1
k

 |F̃0
k


(a)
=

1

T 2
E

E
∥hk,T−1

f − h̄k,T−1
f ∥2 +

∥∥∥∥∥
T−2∑
t=0

hk,t
f − h̄k,t

f

∥∥∥∥∥
2

|F̃T−1
k

 |F̃0
k


=

1

T 2
E
[
∥hk,T−1

f − h̄k,T−1
f ∥2|F̃0

k

]
+

1

T 2
E

∥∥∥∥∥
T−2∑
t=0

hk,t
f − h̄k,t

f

∥∥∥∥∥
2

|F̃0
k


(b)
=

1

T 2

T−1∑
t=0

E
[
∥hk,t

f − h̄k,t
f ∥2|F̃0

k

]
≤

σ̃2
f

T

where (a) is due to hk,T−1
f − h̄k,T−1

f is independent with
∑T−2

t=0 hk,t
f − h̄k,t

f when given F⋆
k,T−1 and (b) follows from

applying the previous procedure T − 1 times.

We then state a lemma controlling the drifting error of lazy projections.

Lemma 24 (Drifting error of upper level). Under Assumption 1–4, it holds that for any t,

E
[
∥xk,t − xk∥2

]
≤ α2t2C̃2

f

where C̃2
f = 2b2k + 2ℓ2f,0 (1 + Ly)

2
+ σ̃2

f .

Proof. For any t, we know that

E
[
∥xk,t+1 − xk,t∥2

]
= E

[
∥xk,t+1 − xk,t∥2

]
= E

[
∥xk,t − αhk,t

f − xk,t∥2
]
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= α2E
[
∥hk,t

f ∥2
] (a)

≤ α2C̃2
f . (80)

where C̃2
f = 2b2k +2ℓ2f,0 (1 + Ly)

2
+ σ̃2

f and (a) is derived similarly from the bound for E
[
∥hk

f∥2
]

in (68) based on Lemma
22 and Lemma 23.

Then for any t, it holds that

E
[
∥xk,t − xk∥2

]
= E

[
∥xk,t − xk,t−1 + xk,t−1 − xk,t−2 + · · · − xk∥2

]
≤ t

t−1∑
τ=0

E
[
∥xk,τ+1 − xk,τ∥2

]
≤ α2t2C̃2

f

which completes the proof.

Lemma 25. Under Assumption 1–4 and let N = O(logα−1), it holds that

E

∥∥∥∥∥ 1T
T−1∑
t=0

h̄k,t
f −∇f(xk, yk+1)

∥∥∥∥∥
2
 ≤ O

(
α2T 2

)
. (81)

Proof. For any t, we have that

E
[
∥h̄k,t

f −∇f(xk, yk+1)∥2
]

≤ 3E[∥h̄k,t
f −G(xk,t, yk+1, xk)∥2] + 3E[∥G(xk,t, yk+1, xk)−∇f(xk,t, yk+1)∥2]

+ 3E[∥∇f(xk,t, yk+1)−∇f(xk, yk+1)∥2]
(a)

≤ 3b2k + 3L2
GE[∥xk,t − xk∥2] + 3L2

fE[∥xk,t − xk∥2]
(b)

≤ 3b2k + 3α2(L2
G + L2

f )t
2C̃2

f

(c)

≤ O(α2t2) (82)

where (a) is due to Lemma 22, (b) comes from Lemma 24 and (c) holds by (48) and N = O(logα−1). Thus, we have

E

∥∥∥∥∥ 1T
T−1∑
t=0

h̄k,t
f −∇f(xk, yk+1)

∥∥∥∥∥
2
 ≤ O

(
α2T 2

)
. (83)

which results from (82) and the fact that for any vector sequence {zt}T−1
t=0 ,∥∥∥∥∥ 1T

T−1∑
t=0

zt

∥∥∥∥∥
2

=
1

T 2

∥∥∥∥∥
T−1∑
t=0

zt

∥∥∥∥∥
2

≤ 1

T

T−1∑
t=0

∥zt∥2

Lemma 26 (Descent of upper level). Under Assumption 1–4 and define

¯̄hk
f :=

1

T

T−1∑
t=0

h̄k,t
f

it holds that

E
[
F (xk+1)

]
≤ E[F (xk)]− αT

2
E[∥∇F (xk)∥2Px

]−
(
αT

2
− α2LFT

2

2

)
E[∥¯̄hk

f∥2Px
] +

α2LFT σ̃
2
f

2

+ αTL2
yE
[
∥yk+1 − y∗(xk)∥2

]
+O(α3T 3).
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Proof. First, we have

E

∥∥∥∥∥ 1T
T−1∑
t=0

hk,t
f

∥∥∥∥∥
2

Px

 = E

∥∥∥∥∥ 1T
T−1∑
t=0

hk,t
f − h̄k,t

f + h̄k,t
f

∥∥∥∥∥
2

Px


(a)
= E

∥∥∥∥∥ 1T
T−1∑
t=0

h̄k,t
f

∥∥∥∥∥
2

Px

+ E

∥∥∥∥∥ 1T
T−1∑
t=0

hk,t
f − h̄k,t

f

∥∥∥∥∥
2

Px


(b)

≤ E
[
∥¯̄hk

f∥2Px

]
+

σ̃2
f

T
(84)

where (a) follows from E[∥X + Y ∥2] = E[∥X∥2] + E[∥Y ∥2] when X and Y are independent and (b) results from (79).

Moreover, it follows that

E

[
⟨∇F (xk), (I −B†B)

1

T

T−1∑
t=0

hk,t
f ⟩

]
= E

[
1

T

T−1∑
t=0

E
[
⟨∇F (xk), (I −B†B)hk,t

f ⟩|F̃ t
k

]]

= E

[
⟨∇F (xk), (I −B†B)

1

T

T−1∑
t=0

h̄k,t
f ⟩

]
= E

[
⟨∇F (xk), (I −B†B)¯̄hk,t

f ⟩
]
. (85)

Taking the expectation of F (xk+1), we get

E
[
F (xk+1)

] (a)

≤ E
[
F (xk)

]
+ E

[
⟨∇F (xk), xk+1 − xk⟩

]
+

LF

2
E
[
∥xk+1 − xk∥2

]
(b)

≤ E[F (xk)]− αδTE

[
⟨∇F (xk), (I −B†B)

1

T

T−1∑
t=0

hk,t
f ⟩

]
+

LF

2
α2T 2δ2E

[
∥ 1
T

T∑
t=0

hk,t
f ∥2Px

]
(c)

≤ E[F (xk)]− αδTE
[
⟨∇F (xk), (I −B†B)¯̄hk,t

f ⟩
]
+

LF

2
α2T 2δ2E

[
∥¯̄hk,t

f ∥2Px

]
+

LF

2
α2Tδ2σ̃2

f

(d)

≤ E[F (xk)]− αδT

2
E[∥∇F (xk)∥2Px

]−
(
αδT

2
− α2LFT

2δ2

2

)
E[∥¯̄hk

f∥2Px
]

+
αδT

2
E
[
∥∇F (xk)− ¯̄hk,t

f ∥2
]
+

α2δ2LFT σ̃
2
f

2

≤ E[F (xk)]− αδT

2
E[∥∇F (xk)∥2Px

]−
(
αδT

2
− α2δ2LFT

2

2

)
E[∥¯̄hk

f∥2Px
] +

α2δ2LFT σ̃
2
f

2

+ αδTE
[
∥∇F (xk)−∇f(xk, yk+1)∥2

]
+ αδTE

[
∥∇f(xk, yk+1)− 1

T

T−1∑
t=0

h̄k,t
f ∥2

]
(e)

≤ E[F (xk)]− αδT

2
E[∥∇F (xk)∥2Px

]−
(
αδT

2
− α2δ2LFT

2

2

)
E[∥¯̄hk

f∥2Px
] +

α2δ2LFT σ̃
2
f

2

+ αTδL2
yE
[
∥yk+1 − y∗(xk)∥2

]
+O(α3T 3δ)

where (a) comes from the smoothness of F and the update (76), (b) is derived from (76), and (c) results from (84) and (85),
(d) comes from 2a⊤b = ∥a∥2 + ∥b∥2 −∥a− b∥2 and ∥I −B†B∥ ≤ 1, (e) is derived from Lipschitz continuity of ∇f(x, y),
F (x) = ∇f(x, y∗(x)) and Lemma 25. This completes the proof.

D.2 Error of lower-level upate

Lemma 27 (Lipschitz continuity and smoothness of the r∗(x)). The projection offset r∗(x) is Lr-Lipschitz continuous
and Lrx-smooth with constants, respectively, defined as

Lr := ℓg,1 (1 + Ly) , Lrx := ℓg,2(1 + Ly)
2 + ℓg,1Lyx.
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Proof. Recall the definition of r∗(x) := ∇yg(x, y
∗(x)), then for any x1, x2,

∥r∗(x1)− r∗(x2)∥ ≤ ∥∇yg(x1, y
∗(x1))−∇yg(x2, y

∗(x2))∥
≤ ℓg,1 (∥x1 − x2∥+ ∥y∗(x1)− y∗(x2)∥)
≤ ℓg,1 (1 + Ly) ∥x1 − x2∥ = Lr∥x1 − x2∥.

Using the chain rule, we can obtain the gradient of r∗(x) as

∇r∗(x) = ∇yxg(x, y
∗(x)) +∇yyg(x, y

∗(x))∇y∗(x).

According to the Lipschitz continuity of ∇y∗(x) and ∇2g, we get for any x1, x2

∥∇r∗(x1)−∇r∗(x2)∥ ≤ ∥∇yxg(x1, y
∗(x1))−∇yxg(x1, y

∗(x1))∥
+ ∥∇yyg(x1, y

∗(x1))∇y∗(x1)−∇yyg(x2, y
∗(x2))∇y∗(x2)∥

≤ ℓg,2(1 + Ly)∥x1 − x2∥+ ∥∇yyg(x1, y
∗(x1))∥∥∇y∗(x1)−∇y∗(x2)∥

+ ∥∇y∗(x2)∥∥∇yyg(x1, y
∗(x1))−∇yyg(x2, y

∗(x2))∥
≤
(
ℓg,2(1 + Ly)

2 + ℓg,1Lyx

)
∥x1 − x2∥ = Lrx∥x1 − x2∥

from which the proof is complete.

Lemma 28 (Error of lower-level upate). Suppose that Assumption 1–4 hold and β ≤ 1
ℓg,1

, then the error of lower-level
update can be bounded by

E
[
∥yk+1 − y∗(xk)∥2 + β2

p2
∥rk+1 − r∗(xk)∥2

]
≤ (1− ν)

S E
[
∥yk − y∗(xk)∥2 + β2

p2
∥rk − r∗(xk)∥2

]
+ Sβ2σ2

g,1

(86a)

E[∥yk+1 − y∗(xk+1)∥2] ≤
(
1 + γT + 2ηLyxC̃

2
fT

2α2
)
E[∥yk+1 − y∗(xk)∥2]

+

(
L2
y +

Lyx

η

)
α2T σ̃2

f +

(
L2
y +

Lyx

η
+

L2
y

γ

)
α2T 2E

[
∥¯̄hk

f∥2Px

]
(86b)

E[∥rk+1 − r∗(xk+1)∥2] ≤
(
1 + γT + 2ηLrxC̃

2
fT

2α2
)
E[∥rk+1 − r∗(xk)∥2]

+

(
L2
r +

Lrx

η

)
α2T σ̃2

f +

(
L2
r +

Lrx

η
+

L2
r

γ

)
α2T 2E

[
∥¯̄hk

f∥2Px

]
(86c)

where C̃2
f is defined in Lemma 21, ν := min

{
βµg, p

2
}

, γ and η are the balancing constants will be chosen in the final
theorem.

Proof. First, for a given xk, defining ν := min
(
βµg, p

2
)

and applying Lemma C.1 and Lemma C.2 in (Mishchenko et al.,
2022), we can obtain that

E
[
∥yk,s+1 − y∗(xk)∥2 + β2

p2
∥rk,s+1 − r∗(xk)∥2 | Fk,s

]
≤(1− ν)

[
∥yk,s − y∗(xk)∥2 + β2

p2
∥rk,s − r∗(xk)∥2

]
+ β2σ2

g,1. (87)

Then taking expectation of the both sides of (87) and telescoping it, we can arrive at (86a).

Next, proof of (86b) and (86c) are similar with only difference on Lipschitz constant, so that we only prove (86c). For (86c),
we have

∥rk+1 − r∗(xk+1)∥2 = ∥rk+1 − r∗(xk)∥2 + ∥r∗(xk)− r∗(xk+1)∥2︸ ︷︷ ︸
J1

+ 2 ⟨rk+1 − r∗(xk), r∗(xk)− r∗(xk+1)⟩︸ ︷︷ ︸
J2

.
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Since r∗(x) is Lr Lipschitz continuous according to Lemma 27, J1 can be bounded by

E [J1] ≤ L2
rE
[
∥xk+1 − xk∥2

]
(a)
= α2δ2L2

rE

[
∥
T−1∑
t=0

hk
f∥2Px

]
(b)

≤ α2δ2L2
r

(
T 2E

[
∥¯̄hk

f∥2Px

]
+ T σ̃2

f

)
(88)

where (a) comes from (58), (b) is attained by (84).

On the other hand, we can decompose J2 by two terms as follows.

J2 = −⟨rk+1 − r∗(xk),∇r∗(xk)⊤(xk+1 − xk)⟩︸ ︷︷ ︸
J2,1

−⟨rk+1 − r∗(xk), r∗(xk+1)− r∗(xk)−∇r∗(xk)⊤(xk+1 − xk)⟩︸ ︷︷ ︸
J2,2

.

Moreover, the conditional expectation of J2,1 can be bounded by

E[J2,1] = −E[⟨rk+1 − r∗(xk),∇r∗(xk)⊤(xk+1 − xk)]⟩

= −δE[⟨rk+1 − r∗(xk),∇r∗(xk)⊤(I −B†B)(

T−1∑
t=0

hk,t
f )⟩]

= −δE

[
T−1∑
t=0

E[⟨rk+1 − r∗(xk),∇r∗(xk)⊤(I −B†B)hk,t
f ⟩|F̃ t

k]

]
≤ −αδTE[⟨rk+1 − r∗(xk),∇r∗(xk)⊤(I −B†B)¯̄hk

f ⟩]
(a)

≤ γ

2
E[∥rk+1 − r∗(xk)∥2] + α2δ2T 2L2

r

2γ
E[∥¯̄hk

f∥2Px
] (89)

Based on the smoothness of r∗(x) in Lemma 27 and Young’s inequality, J2,2 can be bounded by

E[J2,2] ≤ E
[
∥rk+1 − r∗(xk)∥∥r∗(xk+1)− r∗(xk)−∇r∗(xk)⊤(xk+1 − xk)∥2

]
≤ Lrx

2
E
[
∥rk+1 − r∗(xk)∥∥xk+1 − xk∥2

]
≤ ηLrxα

2δ2

2
E[∥rk+1 − r∗(xk)∥2∥

T−1∑
t=0

hk,t
f ∥2Px

] +
Lrxα

2δ2

2η
E

[
∥
T−1∑
t=0

hk,t
f ∥2Px

]

≤ ηLrxα
2δ2T

2
E

[
∥rk+1 − r∗(xk)∥2

T−1∑
t=0

E[∥hk,t
f ∥2|F̃ t

k]

]
+

Lrxα
2δ2T 2

2η

(
E
[
∥¯̄hk

f∥2Px

]
+

σ̃2
f

T

)

≤ ηLrxα
2δ2TE

[
∥rk+1 − r∗(xk)∥2

T−1∑
t=0

(E[∥h̄k,t
f ∥2|F̃ t

k] + σ̃2
f )

]
+

Lrxα
2δ2T 2

2η

(
E[∥¯̄hk

f∥2Px
] +

σ̃2
f

T

)
(a)

≤ ηLrxα
2δ2C̃2

fT
2E
[
∥rk+1 − r∗(xk)∥2

]
+

Lrxα
2δ2T 2

2η

(
E[∥¯̄hk

f∥2Px
] +

σ̃2
f

T

)
(90)

where (a) comes from

E[∥h̄k,t
f ∥2|F̃ t

k] ≤ 2E[∥h̄k,t
f −G(xk,t, yk+1, xk)∥2|F̃ t

k] + 2E[∥G(xk,t, yk+1, xk)∥2|F̃ t
k]

≤ 2b2k + 2ℓ2f,0(1 + Ly)
2

and C̃2
f = 2b2k + 2ℓ2f,0(1 + Ly)

2 + σ̃2
f .
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Then combining (88), (89) and (90), we get

E[∥rk+1 − r∗(xk+1)∥2] ≤
(
1 + γ + 2ηLrxC̃

2
fT

2α2δ2
)
E[∥rk+1 − r∗(xk)∥2] +

(
L2
r +

Lrx

η

)
α2δ2T σ̃2

f

+

(
L2
r +

Lrx

η
+

L2
r

γ

)
α2δ2T 2E

[
∥¯̄hk

f∥2Px

]
.

which completes the proof for (86b). With similar proof for (86c), we can prove (86b).

D.3 Proof of Theorem 5

We first restate the Theorem 5 in a formal way as follows.

Restatement of Theorem 5. Under Assumption 1–4, defining the constants as

ᾱ1 =
1

2LF + 4LfLr +
4LfLrx

Lr
+

(5LfLy+ηLyxC̃2
f)

(
1+4LfLr+

4LfLrx

ηLr

)
µ2
g

,

ᾱ2 =
µg

ℓg,1(5LfLr + ηLrxC̃2
f )

and choosing

α = min

(
ᾱ1, ᾱ2,

ᾱ√
K

)
, β =

5LfLr + ηLrxC̃
2
f

µg
α, N = O(logK)

then for any S ≥ 1, we have

1

K

K−1∑
k=0

E
[
∥∇F (xk)∥2Px

]
= Õ

(
1√
K

)
.

Proof. First, without loose of generality, we can assume that ℓg,1 ≥ 1 so that Lr ≥ Ly, Lrx ≥ Lyx and plugging (86b),
(86c) into (86a) in Lemma 28, we get that

E
[
∥yk+1 − y∗(xk+1) +

β2

p2
∥rk+1 − r∗(xk+1)∥2∥2

]
≤
(
1 + γ + 2ηLrxC̃

2
fα

2δ2T 2
)
(1− ν)

S E
[
∥yk − y∗(xk) +

β2

p2
∥rk − r∗(xk)∥2∥2

]
+
(
1 + γ + 2ηLrxC̃

2
fα

2δ2T 2
)
Sβ2σ2

g,1 +

(
L2
r +

Lrx

η

)(
1 +

β2

p2

)
α2δ2T σ̃2

f

+

(
L2
r +

Lrx

η
+

L2
r

γ

)(
1 +

β2

p2

)
α2δ2T 2E

[
∥h̄k

f∥2Px

]
. (91)

Then using Lyapunov function defined in (13) and applying (91), Lemma 26 and Lemma 28, we get

E
[
Vk+1

]
− E

[
Vk
]

≤ −αδT

2
E
[
∥∇F (xk)∥2Px

]
+ αδTL2

fE
[
∥yk+1 − y∗(xk)∥2

]
+O(α3T 3δ)

−
(
αδT

2
− LFα

2δ2T 2

2

)
E
[
∥¯̄hk

f∥2Px

]
+

LFα
2δ2T σ̃2

f

2

+
Lf

Lr

[(
1 + γ + 2ηLrxC̃

2
fα

2δ2T 2
)
(1− ν)

S − 1
]
E
[
∥yk − y∗(xk)∥2 + β2

p2
∥rk − r∗(xk)∥2

]
+

Lf

Lr

(
1 + γ + 2ηLrxC̃

2
fα

2δ2T 2
)
Sβ2σ2

g,1 +
Lf

Lr

(
L2
r +

Lrx

η

)(
1 +

β2

p2

)
α2δ2T σ̃2

f

+
Lf

Lr

(
L2
r +

Lrx

η
+

L2
r

γ

)(
1 +

β2

p2

)
α2δ2T 2E

[
∥¯̄hk

f∥2Px

]
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≤ −αδT

2
E
[
∥∇F (xk)∥2Px

]
+

Lf

Lr

(
1 + γ + LrLfαδT + 2ηLrxC̃

2
fα

2δ2T 2
)
β2Sσ2

g,1 +O(α3T 3δ)

+

[
LF

2
+

Lf

Lr

(
L2
r +

Lrx

η

)(
1 +

β2

p2

)]
α2Tδ2σ̃2

f

−
[
αδT

2
−
(
LF

2
+ LfLr

(
1 +

1

γ

)(
1 +

β2

p2

)
+

LfLrx

ηLr

(
1 +

β2

p2

))
α2δ2T 2

]
E
[
∥h̄k

f∥2Px

]
−

(
Lfν

Lr
− αδTL2

f − Lfγ

Lr
−

2ηLfLrxC̃
2
fα

2δ2T 2

Lr

)
E
[
∥yk − y∗(xk)∥2 + β2

p2
∥rk − r∗(xk)∥2

]
. (92)

Selecting γ = 4LfLrαδT, p =
√
βµg , (92) can be simplified by

E[Vk+1]− E[Vk]

≤ −αδT

2
E
[
∥∇F (xk)∥2Px

]
+

Lf

Lr

(
1 + 5LfLrαδT + 2ηLrxC̃

2
fα

2δ2
)
β2Sσ2

g,1 +O(α3T 3δ)

+

[
LF

2
+

Lf

Lr

(
L2
r +

Lrx

η

)(
1 +

β

µg

)]
α2δ2T σ̃2

f

−
[
αδT

4
−
(
LF

2
+ LfLr +

LfLrx

ηLr

)
α2δ2T 2 − βαδT

4µg
−
(
LfLr +

LfLrx

ηLr

)
βα2δ2T 2

µg

]
E
[
∥h̄k

f∥2Px

]
−

(
Lfµgβ

Lr
− 5αδL2

fT −
2ηLfLrxC̃

2
fα

2δ2T 2

Lr

)
E
[
∥yk − y∗(xk)∥2 + β2

p2
∥rk − r∗(xk)∥2

]
. (93)

Let αδT ≤ 1 and since we also need β ≤ 1
ℓg,1

, then the sufficient condition of making the last two terms negative becomes

αδ ≤ ᾱ

T
, β =

5LfLr + 2ηLrxC̃
2
f

µg
αδT

where

ᾱ1 =
1

2LF + 4LfLr +
4LfLrx

ηLr
+

(5LfLy+ηLyxC̃2
f)

(
1+4LfLr+

4LfLrx

ηLr

)
µ2
g

,

ᾱ2 =
µg

ℓg,1(5LfLr + ηLrxC̃2
f )

, ᾱ = min (ᾱ1, ᾱ2) . (94)

Then (93) becomes

αδT

2
E[∥∇F (xk)∥2Px

] ≤
(
E[Vk]− E[Vk+1]

)
+ c1Sα

2δ2T 2σ2
g,1 + c2α

2δ2T σ̃2
f +O(α3δ3T 2) (95)

where c1 and c2 are defined as

c1 =
LfS

Lr

(
1 + ηLrxC̃

2
f ᾱ

2
)(5LfLr + 2ηLrxC̃

2
f

µg

)2

c2 =
LF

2
+

Lf

Lr

(
L2
r +

Lrx

η

)
(96)

Telescoping (95) and dividing both sides by αδTK leads to

1

K

K−1∑
k=0

E
[
∥∇F (xk)∥2Px

]
≤ 2(V0 − F ∗)

αδTK
+ 2c1σ

2
g,1αδT + 2c2σ̃

2
fαδ +O(α2δ2T ).

This completes the proof.
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E Application on federated bilevel learning

In this section, we present the pseudo-code of E-AiPOD on federated bilevel learning and some omitted derivations.

E.1 Pseudo-code of Algorithm 2 on federated bilevel learning

In federated bilevel setting, if we plug V2 in (19) to (9a), then we obtain wk = [wk
1 , · · · , wk

M ] with

wk
m =−∇xyg(x

k
m, yk+1

m ;ϕk
(0))

 c̃N

ℓg,1

N′∏
n=1

(
I − c̃

Mℓg,1

M∑
i=1

∇yyg(x
k
i , y

k+1
i ;ϕk

(n))

)( 1

M

M∑
i=1

∇yf(x
k
i , y

k+1
i ; ξki )

)
. (97)

To avoid transmission of Hessian, which is highly expensive, we can calculate wk
m by communicating Hessian-vector

product purely. We detail the full procedure in Algorithm 4. Note that the output of Algorithm 4 is exactly wk
m. We set the

number of LL loop S = 1 and summarize the E-AiPOD on federated bilevel learning in Algorithm 3.

Algorithm 3 E-AiPOD in federated bilevel learning: blue part denotes the LL update; red part is the UL update

1: Initialization: {x0
m, y0m}m∈[M ], stepsizes {α, β, δ}, projection probability p, N .

2: for k = 0 to K − 1 do
3: for all workers m ∈ [M ] in parallel do ▷ LL update
4: update ŷk+1

m = ykm − β(∇ygm(xk
m, ykm;ϕk

m)− rkm)
5: draw a Bernoulli θk ∈ {0, 1} with probability p
6: if θk,s = 1 then
7: update yk+1

m = 1
M

∑M
i=1

(
ŷk+1
i − β

p r
k
i

)
▷ Communicate to server and average

8: update rk+1
m = rkm + p

β (y
k+1
m − ŷk+1

m )
9: else

10: set yk+1
m = ŷk+1

m , rk+1
m = rkm

11: end if
12: end for
13: for all workers m ∈ [M ] in parallel do ▷ UL update
14: calculate wk

m by (97) ▷ Call Algorithm 4
15: for t = 0 to T − 1 do
16: update xk,t+1

m = xk,t
m − α(∇xfm(xk

m, yk+1
m ; ξk,tm ) + wk

m) ▷ Initialize xk,0
m = xk

m

17: end for
18: set ∆k

m = xk,T
m − xk

m

19: end for
20: update xk+1

m = xk
m + δ

∑M
m=1 ∆

k
m ▷ Communicate to server

21: end for

E.2 Equivalence between our metric with metric in federated bilevel learning

In this section, we prove the equivalence of our measure in (4) with the measure of FedNest in federated bilevel setting.

According to Lemma 12, and X = {x | Bx = 0} in federated bilevel setting, we know

(I −B†B)∇F (x) = ProjX (∇F (x)). (98)

Then according to (21a) and (20a), we obtain

(I −B†B)∇F (x) =
1

M

M∑
m=1

∇xmfm(xm, y∗m(xm)) +

(
1

M

M∑
m=1

∇xmymgm(xm, y∗m(xm))

)

×

(
1

M

M∑
m=1

∇ymymgm(xm, y∗m(xm))

)−1(
1

M

M∑
m=1

∇ymfm(xm, y∗m(xm))

)
. (99)
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Algorithm 4 Efficient calculation of {wk
m}m∈[M ]: green part denotes the communication round

1: Initialization: {xk
m, yk+1

m }m∈[M ], constant c̃ ≤ 1, ℓg,1, N .
2: Draw N ′ ∈ {0, · · ·N − 1} uniformly
3: for all workers m ∈ [M ] in parallel do
4: update vkm,0 = ∇yfm(xk

m, yk+1
m ;ϕk

m,0)
5: end for
6: update vk0 = c̃N

ℓg,1M

∑M
m=1 v

k
m,0 ▷ Communicate to server

7: for n = 1 to N ′ do
8: for all workers m ∈ [M ] in parallel do
9: update vkm,n = (I − c̃

ℓg,1
∇yygm(xk

m, yk+1
m ;ϕk

m,n))v
k
n−1

10: end for
11: vkn = 1

M

∑M
m=1 v

k
m,n ▷ Communicate to server

12: end for ▷ Set vk = vkN ′

13: for all workers m ∈ [M ] in parallel do
14: wk

m = −∇xyg(x
k
m, ykm;ϕk

(0))v
k.

15: end for

On the other hand, the gradient of the objective in FedNest is

1

M

M∑
m=1

∇xfm(x, y∗(x)) +

(
1

M

M∑
m=1

∇xygm(x, y∗(x))

)
(100)

×

(
1

M

M∑
m=1

∇yygm(x, y∗(x))

)−1(
1

M

M∑
m=1

∇ymfm(x, y∗(x))

)
. (101)

We find that (101) is the same as (99), if replacing gm(x, y∗(x)), fm(x, y∗(x)) by gm(xm, y∗m(xm)), fm(xm, y∗m(xm)).
Moreover, since E[∥∇F (x)∥2Px

] = E[∥(I −B†B)∇F (x)∥2], the measure E[∥∇F (x)∥2Px
] in our analysis coincides with

the gradient norm measure in FedNest.

E.3 Additional related works on federated bilevel learning

Federated learning and the Federated average (FedAvg) algorithm were first introduced by (McMahan et al., 2017). The
convergence rate of FedAvg has has been thoroughly investigated by (Stich, 2019; Stich and Karimireddy, 2020; Yu et al.,
2019; Woodworth et al., 2020; Yang et al., 2021a); see a survey (Kairouz et al., 2021). Later on, (Mitra et al., 2021)
applied variance reduction techniques to tackle the heterogeneous data and obtain the linear convergence for strongly
convex objectives. Very recently, Mishchenko et al. (2022) has first theoretically achieved the optimal complexity for
strongly convex objectives without assuming any similarity. Meanwhile, Tarzanagh et al. (2022) first proposed the federated
bilevel framework owing to the vast potential applications with the nested structure and achieved Õ(ϵ−2) rate of both
sample complexity and communication complexity. Later on, Li et al. (2022b) enhanced the convergence rate to Õ(ϵ−1.5)
by momentum-based variance-reduction technique but it required additional transmission of momentum parameters and
bounded data similarity assumption. Huang et al. (2022) introduced a finite-sum framework to learn adaptively weighted
node in federated learning via deterministic bilevel optimization. Recent advances on decentralized bilevel optimization (Lu
et al., 2022; Yang et al., 2022; Gao et al., 2022a) and (Chen et al., 2022b) focus on different settings. While it is not the
focus here, it would be interesting to extend E-AiPOD to the decentralized settings in future work.

E.4 Comparison with the state-of-the-art work on federated bilevel learning

In this section, we compare the theoretical results of our methods in federated bilevel learning settings over the state-of-the-art
works in Table 2. Note that the communication complexity of FedBiOAcc in (Li et al., 2022b) inherits from its non-periodic
counterpart SUSTAIN (Khanduri et al., 2021), whose sample complexity is Õ(ϵ−1.5) owing to the momentum.
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AiPOD E-AiPOD FedNest FedBiOAcc
y-update AvgSGD Scaffnew variance reduction momentum
x-update AvgSGD FedAvg variance reduction momentum

communicated parameters x, y x, y x, y x, y and momentums
UL communication Õ(ϵ−2) Õ(ϵ−2/T ) Õ(ϵ−2) Õ(ϵ−1.5)

LL communication Õ(ϵ−2) Õ(ϵ−1.5/T
3
4 ) Õ(ϵ−2) Õ(ϵ−1.5)

Table 2: Communication comparison of AiPOD, E-AiPOD in our paper and the state-of-the-art works on stochastic federated
bilevel learning (FedNest in (Tarzanagh et al., 2022), FedBioAcc in (Li et al., 2022b)) to achieve ϵ stationary point. AvgSGD
means FedAvg with averaging period 1 and Scaffnew denotes (Mishchenko et al., 2022).

F Additional Details of Experiments

In this section, we will report the detailed settings of the experiments in Section 5. In the federated bilevel learning
experiments, the number of workers is set as M = 50 and each local network is a 2-layer multilayer perceptron with hidden
dimension 200. The hyper-parameters are found by measuring both the convergence speed and the stability of the algorithm
via a grid search, and we report them here.

F.1 Synthetic task

E-AiPOD: The projection probability is set as p = 0.3 in the right figures, the total number of iterations is K = 400/p,
the number of UL iterations is T = 2 in the left figures, the number of LL iterations is S = 5, the step sizes are set as
α = 0.02, β = 0.01, the noise has mean 0 and std 0.1. AiPOD is a special case of E-AiPOD with p = 1.

F.2 Federated representation learning

In this section, we apply E-AiPOD in Algorithm 2 to the federated representation learning task. The classic machine
learning approach learns a data representation and a downstream header jointly on the training data set. While the bilevel
representation learning (Franceschi et al., 2018) seeks to learn a data representation on the validation set and a header on
the training data set, the procedure can then be formulated as a bilevel problem. In a federated representation learning
setting with M = 50 clients, the validation and training data sets are distributed among clients, and the goal is to learn a
representation and header respectively on the joint validation and training data set while protecting data privacy. Formally,
the problem can be formulated as a case of (18), given by

min
x∈X

1

M

M∑
m=1

fce(xm, y∗m(x);Dm
val),

s.t. y∗(x) = argmin
y∈Y

1

M

M∑
m=1

fce(x, ym;Dm
tr ) + 0.05∥ym∥2,

where x is the parameters of the representation layer; y is the parameter of the classifier layer; Dm
tr and Dm

val are, respectively,
the training and validation set of client m; X and Y are the consensus sets defined in (18). The cross-entropy loss fce is
defined as

fce(x, y;D) := − 1

|D|
∑
dn∈D

log
exp

(
hln(x, y; dn)

)∑C
c=1 exp (hc

(
x, y; dn)

)
where C is the number of classes, dn is the n-th data from class ln in data set D and h(x, y; dn) =
[h1(x, y; dn), ..., hC(x, y; dn)]

⊤∈RC is the output of the model with parameter (x, y) and input dn.

Hyperparameters. E-AiPOD: The communication probability is set as p = 0.1 in Figure 2 (right), S = 20, α = 0.01, β =
0.05, Neumann iteraion N ′ = 5, and the batch size is 256. FedNest (notations in Tarzanagh et al. (2022)): Choose LL
iteration number τ = 10 and episode T = 1 so that the communication frequency is 0.1 per LL iteration, which is the same
as the choice of p for E-AiPOD. The UL iteration numbers are specified in Figure 2, and we set α = 0.01, β = 0.02 (under
T = 1) or β = 0.01 (under T = 5), N ′ = 5 and batch size as 256.
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F.3 Federated loss function tuning

In this subsection, we apply E-AiPOD to the federated learning from imbalanced data task, where the goal is to learn a good
model that guarantees both the fairness and generalization from datasets with under-represented classes (Li et al., 2021).
In the UL, the loss-tuning parameters are trained to improve generalization and fairness, while the model parameters are
trained on a possibly imbalanced data-set in the LL. The method was later extended to the federated setting in (Tarzanagh
et al., 2022). Formally, the problem can be written as a case of (18), given by

min
x∈X

1

M

M∑
m=1

fup
vs (y

∗
m(x);Dm

val),

s.t. y∗(x) = argmin
y∈Y

1

M

M∑
m=1

f low
vs (x, ym;Dm

tr ),

where the number of clients is M = 50, x is the loss-tuning parameters and y is the parameter of the neural network. Here
Dm

tr and Dm
val are respectively the training and validation set of client m and X ,Y are the consensus sets defined in (18).

The numbers of data of different classes are imbalanced in the training data-set {Dm
tr }Mm=1. Introduced in (Kini et al., 2021),

the so-called vector-scaling loss f low
vs is defined as

f low
vs (x, y;D) := − 1

|D|
∑
dn∈D

ωln log
exp (δlnhln(y; dn) + τln)∑C
c=1 exp (δchc(y; dn) + τc)

where N is the data set size, C is the number of classes, dn is the n-th data with label class ln in data set D and
h(y; dn) = [h1(y; dn), ..., hC(y; dn)]

⊤ ∈ RC is the logit output of the neural network with parameter y and input dn.
Define x = (ω, δ, τ) where ω := [ω1, ..., ωC ]

⊤ ∈ RC and δ, τ can be defined similarly. The upper-level loss fup
vs is a special

case of f low
vs with δ = 1,τ = 0 and ω is a fixed class weight vector for the validation data set.

Hyperparameters. E-AiPOD: Communication probability p = 0.3 in Figure 2 (right), S = 20, α = 0.01, β = 0.04,
N ′ = 3, and batch size 256. FedNest: Choose LL iteration number τ = 3 and episode T = 3 and thus the communication
frequency is 0.3 per LL iteration, which is the same as p = 0.3. The UL iteration numbers are specified in Figure 2. Set
α = 0.01, β = 0.02, N ′ = 3, and batch size as 256.
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