A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with

Large Action Space
Zhaozhuo Xu Zhao Song Anshumali Shrivastava
Rice University Adobe Research Rice University

Abstract

Markov Decision Process (MDP) with large ac-
tion space naturally occurs in many applications
such as language processing, information re-
trieval, and recommendation system. There have
been various approaches to solve these MDPs
through value iteration (VI). Unfortunately, all VI
algorithms require expensive linear scans over the
entire action space for value function estimation
during each iteration. To this end, we present two
provable Least-Squares Value Iteration (LSVI) al-
gorithms with runtime complexity sublinear in
the number of actions for linear MDPs. We for-
mulate the value function estimation procedure
in VI as an approximate maximum inner product
search problem and propose a Locality Sensitive
Hashing (LSH) type data structure to solve this
problem with sublinear time complexity. Our ma-
jor contribution is combining the guarantees of
approximate maximum inner product search with
the regret analysis of reinforcement learning. We
prove that, with the appropriate choice of approx-
imation factor, there exists a sweet spot. Our
proposed Sublinear LSVI algorithms maintain the
same regret as the original LSVI algorithms while
reducing the runtime complexity to sublinear in
the number of actions. To the best of our knowl-
edge, this is the first work that combines LSH
with reinforcement learning that results in prov-
able improvements. We hope that our novel way
of combining data structures and the iterative al-
gorithm will open the door for further study into
the cost reduction in reinforcement learning.

Proceedings of the 26™ International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

1 INTRODUCTION

Reinforcement learning (RL) is an essential problem in
machine learning that targets maximizing the cumulative
reward when an agent is taking actions within an unknown
environment (Sutton and Barto, 2018). RL has been a trend-
ing topic over the last few years. We have seen a remark-
able growth of RL applications in Go (Silver et al., 2016),
robotics (Kober et al., 2013), dialogue systems (Li et al.,
2016) and recommendation (Zheng et al., 2018). In prac-
tical RL, most approaches (Watkins and Dayan, 1992; Sil-
ver et al., 2014; Jin et al., 2018) formulate the problem
as a Markov Decision Process (MDP). Next, they propose
iterative-type MDP solvers that modify the choice of ac-
tions at each step based on the agent interaction with the
environment. This iterative nature causes the training of RL
algorithms to be expensive. For instance, it takes around
three weeks to train the agent in AlphaGo (Silver et al.,
2016). Moreover, the training is conducted on 50 GPUs,
which means the training of RL on democratized compu-
tational resources is almost impossible. This expensive
training cost is even exaggerated in settings with large ac-
tion space. For instance, in news recommendation systems,
the action space is the billion-scale articles on the web. In
dialogue system, the action space is the vocabulary of En-
glish or French. With giant number of actions as choices,
even a linear scan over the action space would be extremely
expensive. Therefore, current MDP solvers cannot provide
real-time service in practice.

Given the efficiency bottleneck of RL algorithms, it is natu-
ral to ask the following question.

Is there any theoretical computer science (TCS) technique
that could improve the running time efficiency of
iterative-type MDP solvers with large action space?

The practical success of a typical TCS technique, Locality
Sensitive Hashing (LSH), shed lights on answering the ques-
tion. LSH is a randomized data structure with provable effi-
ciency in approximate nearest neighbor search (ANN) (In-
dyk and Motwani, 1998; Charikar, 2002; Datar et al., 2004;
Shakhnarovich et al., 2005; Andoni and Indyk, 2008; An-
doni, 2009; Andoni et al., 2014; Andoni and Razenshteyn,

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

2015; Andoni et al., 2015, 2017b; Christiani, 2017; Razen-
shteyn, 2017; Andoni et al., 2018; Wei, 2019; Dong et al.,
2020). Meanwhile, LSH could also be extended to maxi-
mum inner product search (Max-IP) (Shrivastava and Li,
2014). Moreover, in practical machine learning (ML), LSH
has been widely used in many fundamental learning prob-
lems to improve the practical running time of iterative-type
algorithms such as gradient descents (Chen et al., 2019),
back-propagation (Chen et al., 2020; Daghaghi et al., 2021;
Chen et al., 2021) and MCMC sampling (Luo and Shrivas-
tava, 2019). However, the current empirical combination of
LSH with iterative-type algorithms does not have theoretical
support. It is unknown to give a provable guarantee for the
impact of LSH over the total number of iterations and per
cost iteration of iterative-type algorithms.

Inspired by a large number of successes about using LSH to
tackle efficiency bottlenecks in practice, it is natural to ask
the following question.

Is there an interesting regime (e.g., some iterative-type
MDP solvers) where we can apply LSH to give provable
improvement?

In this work, we answer both questions by proposing a the-
oretical framework that combines LSH with MDP solver.
We focus on value iteration (VI) (Sutton and Barto, 2018;
Bradtke and Barto, 1996), a simple and flexible type of MDP
solvers that directly optimizes the maximum expected re-
ward based on the outcome of actions that the agent taken at
each step. Specifically, we study the VI algorithms for linear
MDP, where the reward is a linear function of the embedding
of state-action pair. In this setting, (Jin et al., 2020) have
provided theoretical guarantees for VI algorithms. However,
the running time efficiency of VI in linear MDP requires
improvement in practical scenarios. We identify that the
runtime complexity of VI in linear MDP is dominated by
the value function estimation procedure. Value function
estimation requires a linear scan over all the actions at each
step, which is unscalable in real RL tasks with large action
space. For instance, in news recommendation systems, the
action of an RL agent is recommending an article to the
users. The iterative-type VI algorithm scan over all articles
at each iteration to find the action that maximizes the ex-
pected reward. In practice, the scale of this search space is
in billions, so that linear scan is prohibitive. Therefore, re-
ducing the enormous overhead in value function estimation
over the large action space becomes a significant research
problem in VI

We focus on applying LSH techniques to reduce this value
function estimation overhead in the iterative-type VI algo-
rithm. However, combing LSH with any iterative-type VI
algorithm for linear MDP is challenging due to four major
reasons: (1) It remains unknown whether the linear scan
over all possible actions in VI could be formulated as an
ANN or Max-IP problem (2) LSH accelerate this linear scan

by introducing an error in estimating value function. This
approximation error would accumulate in the value iteration
and break the current upper bound for regret. (3) Although
LSH has demonstrated success in practical machine learning,
its theoretical efficiency guarantee in RL remains unknown.
(4) The VI algorithm would query LSH at each step. As the
query in each step depends on the previous step, the total
failure probability of LSH over this adaptive query sequence
could not be union bounded due to correlations.

In this work, we solve these challenges affirmatively by pre-
senting a VI algorithm for linear MDP that uses LSH type
approximate Max-IP data structure. We focus on the Least-
Squares Value Iteration (LSVI) (Bradtke and Barto, 1996)
and its extensions with Upper Confidence Bound (UCB)
exploration (LSVI-UCB (Jin et al., 2020)). These are two
typical VI algorithms with theoretical foundations as well
as practical insights to various RL settings (Gao et al., 2021;
Wang et al., 2020a). We connect the theory of Max-IP with
reinforcement learning by formulating the value function es-
timation in LSVI and LSVI-UCB as an approximate Max-IP
problem. Then, we propose Sublinear LSVI and Sublinear
LSVI-UCB, two algorithms with LSH that have value iter-
ation running time sublinear in the number of actions. For
LSVI-UCB, we extend the LSH type Max-IP data struc-
ture to approximate maximum matrix norm search so that
Sublinear LSVI-UCB could also enjoy the sublinear value it-
eration complexity over actions. Moreover, we theoretically
prove that, with our choice of approximation factor, both
Sublinear LSVI and Sublinear LSVI-UCB achieve the same
regret with their original versions. Furthermore, we identify
the potential risks of LSH type approximate Max-IP data
structure in iterative-type algorithm and propose a series of
techniques to reduce them.

2 RELATED WORK

Approximate Maximum Inner Product Search Max-
imum Inner Product Search (Max-IP) is a fundamen-
tal yet challenging problem in theoretical computer sci-
ence (Williams, 2005; Abboud et al., 2017; Chen, 2018;
Chen and Williams, 2019; Williams, 2018). Given a
query z € R? and a dataset Y C R? with n vec-
tors, the goal of Max-IP is to retrieve a z € Y so that
x|z = argmax_.cy x| y. The brute-force algorithm solves
Max-IP in O(dn) time for x by linear scanning over all ele-
ments in Y. To improve the Max-IP efficiency in practice,
approximation methods are proposed to achieve sublinear
query time complexity by returning point with a multiplica-
tive approximation ratio to the Max-IP solution.

Chen (Chen, 2018) show that for bichromatic Max-IP! with
two sets of 1 vectors from {0, 1}%, there is a n?~ (1) time al-

iGiven two n-point set A € R? and B € R?, the goal of
bichromatic Max-IP is to find b € B that maximize inner product
for every a € A.

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

gorithm with (d/logn)?(!) approximation ratio. Moreover,
Chen (Chen, 2018) show that this algorithm is conditionally
optimal as such a (d/logn)°(!) approximation algorithm
would refute Strong Exponential Time Hypothesis (SETH)
(Impagliazzo and Paturi, 2001).

Most previous approximate Max-IP approaches reduce the
Max-IP to nearest neighbor (NN) search problem and apply
approximate nearest neighbor (ANN) data structures such
as Locality Sensitive Hashing (LSH) (Shrivastava and Li,
2014, 2015a; Neyshabur and Srebro, 2015; Shrivastava and
Li, 2015b; Yan et al., 2018). Given a query x € R< and a
dataset Y C R with n vectors, the goal of (¢, 7)-ANN with
¢ > listoretrieve a z € Y so that ||z — z||2 < € r if there
minyey ||z — yl|2 < r. The LSH solves this problem with
query time in O(d - n*t°(M)). Here, p < 1 and it depends on
¢. For randomized LSH that is independent of data, Antoni,
Indyk and Razenshteyn (Andoni et al., 2018) show that p >
1/@2. To further reduce p, Antoni and Razenshteyn (Andoni
and Razenshteyn, 2015) proposes a data-dependent LSH
that achieves p = 1/(2¢% — 1) with preprocessing time and
space in O(n'*? 4 dn). Andoni, Laarhoven, Razenshteyn
and Waingarten (Andoni et al., 2017a) propose a improved
proposes a data-dependent LSH that solves (¢, 7)-ANN with
query time O(d - nPat°M), space O(n'*+reto() 4 dn) and
preprocessing time O(dn'+?«+°(1)) Andoni, Laarhoven,
Razenshteyn and Waingarten (Andoni et al., 2017a) also
states that forc > 1, > 0, p, > 0 and p, > 0, we
have @, /pg + (¢ — 1)\/pa > V/2¢> — 1. Moreover, if
we achieve p, = 0, we could reduce the preprocessing
overhead to O(n!*°(V) + dn) while achieving p, = 2 — .
These LSH approaches have concise theoretical guarantees
on the trade-off between search quality and query time for
Max-IP.

Meanwhile, other non-reduction approximate Max-IP ap-
proaches build efficient data structures such as quantiza-
tion codebooks (Guo et al., 2016, 2020), trees (Yu et al.,
2017), alias tables (Ding et al., 2019) and graphs (Morozov
and Babenko, 2018; Zhou et al., 2019; Tan et al., 2019).
However, there exists few theoretical guarantee on these
non-reduction approaches so that their evaluation is totally
empirical.

Locality Sensitive Hashing Applications In practice,
well-implemented LSH algorithms are developed (Lv et al.,
2007; Andoni et al., 2015) and have demonstrated their
superiority in tackling efficiency bottlenecks in practical
applications. In optimization, Chen et al. (2019) proposes
a LSH based approach to estimate gradients in large scale
linear models. Xu et al. (2021) proposes a LSH based Frank-
Wolfe algorithm that improves the running time over some
well-known conditional gradient methods. Moreover, this

iSETH (Strong Exponential Time Hypothesis) states that for
every € > 0 there is a k such that k-SAT cannot be solved in
O((2 — €)™) time.

idea has been extended to neural network training (Chen
et al., 2020, 2021). Further more, Besides deep learning,
Luo and Shrivastava (2019) also proposes a LSH method
for efficient MCMC sampling. Charikar and Siminelakis
(2017); Backurs et al. (2018); Siminelakis et al. (2019);
Backurs et al. (2019); Charikar et al. (2020) use LSH for
efficient kernel density estimation. Zandieh et al. (2020)
proposes a LSH based approach for kernel ridge regression.
Yang et al. (2021) proposes an LSH algorithm for efficient
linear bandits. Li and Li (2021) and Li et al. (2021) demon-
strate how to use LSH and improve the efficiency of large
scale statistical estimation. Coleman et al. (2022) presents
the strengh of LSH in large scale specie classification on
genomic sequence streams.

Provable Efficient Reinforcement Learning The theo-
retical analysis on the efficiency of modern reinforcement
learning (RL) approaches has drawn a lot of attention re-
cently (Jin et al., 2018; Bai et al., 2019; Song and Sun, 2019;
Jin et al., 2020; Yang and Wang, 2020; Cai et al., 2020; Wang
et al., 2020b; Zhang et al., 2020; Wang et al., 2020a; Du
et al., 2020; Feng et al., 2020; Du et al., 2021; Xiong et al.,
2021). Jin et al. (2018) presents the first Q-learning with
UCB exploration algorithm with provable sublinear regret.
Jin et al. (2020) proposes a provable RL algorithm namely
LSVI-UCB with linear function approximation that achieves
both polynomial runtime and polynomial sample complex-
ity. Gao et al. (2021) extends the LSVI-UCB proposed in
Jin et al. (2020) with policy switch limitation. Wang et al.
(2020a) studies the model-free version of LSVI-UCB. There
also exist other works that benefit the community with theo-
retical analysis on efficient RL (Du et al., 2020; Yang and
Wang, 2020; Cai et al., 2020).

Speedup Cost Per Iteration Recently, there have been
many works discussing how to improve the cost per itera-
tion for optimization problems (e.g., linear programming,
cutting plane method, maximum matching, training neural
networks) while maintaining the total number of iterations
in achieving the same final error guarantees. However, most
of these algorithms are built on sketching (Lee et al., 2019;
Jiang et al., 2020, 2021; Song et al., 2021; Song and Yu,
2021; Brand et al., 2021), sampling (Cohen et al., 2019;
Brand et al., 2020b; Dong et al., 2021), vector-maintenance
(Brand, 2020; Jiang et al., 2021), sparse recovery (Brand
et al., 2020b,a) techniques, none of them have used LSH.
We hope that our novel combination of data structures and
iterative algorithms will open the door for further study into
cost reduction in optimization.

3 BACKGROUND

In this section, we describe the background knowledge in
both LSH data structures and RL.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

3.1 Locality Sensitive Hashing

We present a well-known data structure called Locality Sen-
sitive Hashing (Indyk and Motwani, 1998) for approximate
nearest neighbor search and approximate maximum inner
produce search.

Definition 3.1 (Locality Sensitive Hashing). Let ¢ denote a
parameter such that ¢ > 1. Let r denote a parameter. Let
p1, P2 denote two parameters such that 0 < ps < p; < 1. A
Sunction family H is (r, - 7, p1, p2)-sensitive if and only if,
for any two vector x,y € R?, a function h chosen uniformly
from family H has the following properties:

* ifllz = ylla <7, then Prys[h(z) = h(y)] = p1,

o if[lx —ylla > T, then Prypoy[h(z) = h(y)] < po.

We want to remark that the original LSH definition supports
more general distance function than /5 distance. In our ap-
plication, ¢, distance is sufficient, therefore we only define
LSH based on /5 distance. It is well-known that an efficient
LSH family implies data structure (¢, r)-ANN.

Definition 3.2 (Approximate Near Neighbor (ANN)). Let
¢ > 1. Letr € (0,2). Given an n-vector dataset P C S%~!
on the sphere, (¢, r)-Approximate Near Neighbor Search
(ANN) aims at constructing a data structure such that, for
a query q € ST1 with the promise that there exists a data
vector p € P with ||p — q||2 <, the data structure reports
a data vector p’ € P with distance less than © - r from q.

In the reinforcement learning algorithm, we care about the
dual version of the problem (Definition 3.3),

Definition 3.3 (Approximate Max-IP). Letc € (0,1). Let
7 € (0,1). Given an n-vector dataset P C S%~! on the
sphere, the (c, T)-Maximum Inner Product Search (Max-IP)
aims at building a data structure such that, for a query
q € S?1 with the promise that there exists a datapoint p €
P with (p,q) > 7, the data structure reports a datapoint
p’ € P with similarity (p',q) > c- 7.

We briefly discuss the connection. Let us consider the dis-
tance function as Euclidean distance and similarity function
as inner product. We also assume all the points are from
unit sphere. In this setting, the relationship between two
problems are primal vs dual. For any two points x, y with
o = llylls = 1, we have [z — y|3 = 2 — 2(z, y). This
implies that r2 = 2—27. Further, if we have a data structure
for (¢,r)-ANN, it automatically becomes a data structure

for (¢, 7)-Max-IP with parameters 7 = 1 — 0.5r% and ¢ =
1—0.5¢2r2 1—c(1-0.57%) _ 1—cr
1—0.572 -

. This implies that 2 = == g

Our algorithmic result is mainly built on this data structure.
Theorem 3.4 (Andoni and Razenshteyn (Andoni and Razen-

shteyn, 2015)). Letr¢ > 1. Letr € (0,2). Let p =
52— + o(1). The (¢,7)-ANN (see Definition 3.2) on the

unit sphere S*=1 can be solved by a data structure using
O(d - n?) query time and O(n**? + dn) space.

Using the standard reduction, we can derive the following.

Corollary 3.5. Let c € (0,1). Let 7 € (0,1). The (c,7)-
Max-IP (see Definition 3.3) on a unit sphere S*~' can be
solved in preprocessing time/space O(n***+dn) and query
time O(d - n”), where p = 1712;7:4»7' +o(1).

Using Andoni et al. (2017a), we can improve the preprocess-
ing time and space to n't°(1) ++ dn while having a slightly
weaker p in query. We provide a detailed and formal version
of Corollary 3.5 in Theorem B.2. We present our main result
based on that. Moreover, it is reasonable for us to regard
d = n°") using Johnson-Lindenstrauss Lemma (Johnson
and Lindenstrauss, 1984).

Finally, to combine the maximum inner product search with
reinforcement learning algorithm to get sublinear time cost
per iteration, we still need to deal with many issues, such
as the inner product can be negative, 7 is arbitrarily close to
0, and 7 can arbitrarily close to 1. We will explain how to
handle these challenges in later section.

3.2 Reinforcement Learning

In this section, we introduce some backgrounds about re-
inforcement learning. We start with defining the episodic
Markov decision process. Let MDP(S, A, H, P,) denote
the episodic Markov Decision Process, where S denotes the
set of available states, A denotes the set of available actions,
H € N denotes the total number of steps in each episode,
P = {P,}}_, with P,[s'|s, a] denotes the probability of
transition from state s € S to state s’ € S when take ac-
tions a € A at step h, r = {r;,}fL, denotes the reward
obtained at each step. Here the reward r}, is a function that
maps S x A to [0.55, 11! In practice, we build an agent in
MDP(S, A, H,P,r) and play K episodes.

In this work, we focus on the linear Markov Decision Pro-
cess (linear MDP). In this setting, each pair of state and
action is represented as an embedding vector ¢(s, a), where
¢: S x A — R Moreover, the probability P}, [s'|s, a] for
state transition and function 7, are linear in this embedding
vector.

In the MDP framework, a policy 7 = {my,--- , 7} is
defined as sequence such that 7, : S — A for each step h.
7 (8) = a represents the action taken when we are at step
h and state s. Next, we represent the Bellman equation with
policy 7 as

Qh(s,a) = [rn +PrVii4](s, a),
Vi (s) = Q5 (s, mn(s))
iiNote that in standard reinforcement learning, we assume re-

ward is [0, 1], but it is completely reasonable to do a shift. We will
provide more discussion in Section 5.1.

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

Viiga(s) =0.

where Q™ (s, a) denotes the Q function for policy 7 when
taking action a at state s and V™ (s) denotes the value func-
tion of state s at step h. We use [P, V41](s, a) to represent
the expect value functions when taking action a at state s at
step h. For more definitions, please refer to Section A.

4 OUR RESULTS

We present the results in this section. We start with sum-
marizing all of our main results in Table 1. According
to Table 1, we reduce the value iteration complexity of
LSVI (Bradtke and Barto, 1996) and LSVI with upper con-
fidence bound (LSVI-UCB) (Jin et al., 2020), from linear
to sublinear in action space. Meanwhile, the total regret
is preserved as same as before. To achieve this, we pay
tolerable time to preprocess pairs of state-action into LSH
type approximate Max-IP data structure. In the following
section, we would elaborate on the details for these main
results.

4.1 Sublinear Least-Squares Value Iteration

In LSVI (Bradtke and Barto, 1996) with large action space,
the runtime in each value iteration step is dominated by
computing the estimated value function as below:

Vh(s) = aén,f;ifwh’(b(&a», (D
where Wy, is computed by solving the least-squares problem,
Acore 18 the core action set and ¢(s, a) is the embedding for
state-action pair. Eq. (1) is a standard Max-IP problem and
thus, takes O(Ad) to obtain the exact solution. In this work,
we relax Eq. (1) into an (¢, 7)-Max-IP problem, where ¢ €
(0, 1) is the approximation parameter and 7 is close to the
maxgcA,,..(Wr, #(s,a)). Then, we apply LSH type data
structure to obtain V},(s) such that

Vin(s) > ¢ max (@, d(s,a)).

aEAcore

Note that this operation takes o(A) - O(d) time.

Next, we present our main theorem for Sublinear LSVI in
Theorem 4.1, which gives the same O(LH?,/1/n) regret
as LSVI Bradtke and Barto (1996) and reduce the value
iteration complexity from O(HSdA) to O(HSd) - o(A).
Theorem 4.1 (Main result, convergence result of Sublin-
ear Least-Squares Value Iteration (Sublinear LSVI), an in-
formal version of Theorem C.2). Let MDP(S, A, H, P, r)
denote a linear MDP. Let p denote a fixed probability. Let
v = log(Hd/p). If we set approximate Max-IP parameter
¢ =1—0(y/t/n), then Sublinear LSVI has regret at most
O(H? \/%) with probability at least 1 — p. Moreover,
with SA'T°() 4 SdA preprocessing time and space, the
value iteration complexity of Sublinear LSVIis O(H SdA?)
where p =1 — O(:/n).

Note that we could improve the value iteration complexity
towithp =1 — @(\/%) by increasing the preprocessing
time and space to O(SA*? + SdA) using Theorem A.14.
We provide a detailed and formal version of Theorem 4.1 in
Theorem C.2.

Theorem 4.1 provide the theoretical guidance on the choice
of LSH parameters for LSVI. If we set the approximation
ratio ¢, we could anticipate the resulting regret and running
time before experiment.

4.2 Sublinear Least-Squares Value Iteration with UCB

We extend the Sublinear LSVI with UCB exploration in this
section. In LSVI-UCB (Jin et al., 2020) with large action
space, the runtime in each value iteration step is dominated
by computing the estimated value function as below:

Vh(SfTH-l) = glea} min{<w§§,¢(52+17a)>
+ 5 : ||¢(8;-L+17a’)||A}:11H}7 (2)

where wfb is computed by solving the least-squares problem,

¢(s},, 1, a) is the embedding for state-action pair and

k—1
A= lsh af)(s)T + - La.

T=1
Note that the complexity for Eq. (2) is O(Ad?).

The key challenge of the proposed Sublinear LSVI-UCB
is that Eq. (2) cannot be formulated as a Max-IP problem.
First, to deal with this issue, we propose a value function
estimation approach as below:

Vi(shq1) = rgleaj(min{“¢(5;+1aa)||252A;1+2w5w;§T7H}a

3

where [|¢(s],,, a)||252A;1+2w§w’;T is the upper bound of
<w2a¢(3£+1>a)> + 8- H‘b(siTH-laa)”A;l'

Next, we relax this maximum matrix norm search as a (¢, 7)-
Max-IP problem, where ¢ € (0,1) is the approximation
parameter and 7 is the maximum inner product for Eq. (3).
Then, we apply LSH type data structure to obtain V}, (s, ;)
such that

~

Vi(shy1) > c-max min{||¢(s], 1, a>||262A;1+2w§w§TvH}'

Note that this operation takes o(A) - O(d?) time complexity.

Using LSH data structure for maximum matrix norm search,
we present our main theorem for Sublinear LSVI-UCB in
Theorem 4.3, which gives the same O (v d3 H*K(2) regret
as LSVI-UCB (Jin et al., 2020) and reduce the value iteration
complexity from O(HKd?A) to O(HKd?A) - o(A). We
start with the setting up the parameters for our algorithm.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

Table 1: Comparison between our algorithms with previous results such as LSVI, LSVI-UCB, LGSC and MF. We compare our algorithm
with: (1) LSVI denotes the Least-Square Value Iteration algorithm (Bradtke and Barto, 1996) (2) LSVI-UCB denotes the Least-Square
Value Iteration algorithm with UCB in (Jin et al., 2020). Note that “V. Iter. C.” denotes the Value iteration complexity. Let .S denote
the number of available states. Let A denote the number of available actions. Let d denote the dimension of ¢(s, a). Let H denote the
number of steps per episode. Let K denote the total number of episodes. Let n be the quantity of times played for each core pair of
state-action. Let ¢ = log(Hd/p) and p is the failure probability. We ignore the big-Oh notation “O” in the table. Let p € (0, 1) denote
a parameter determined by data structure. In fact, the preprocessing time for Sublinear LSVI-UCB is O(SAHO(U + Sd*A). Since
K > S, we write the preprocessing time as O (K Altte® L g d>A). This table is a union of simplified version of Table 3 (both our

algorithm and LSVT have the exact dependence on another L, we omit here and discuss this dependence in Section C.) and Table 4.

Statement | Preprocess | #Regret | V.Iter. C. |
LSVI Bradtke and Barto (1996) | 0 H?\/u/n | HSdA
Ours Theorem 4.1 SATe() 1 SdA H?\/i/n HSdA?
LSVI-UCB | Jin et al. (2020) 0 VHAKd3:2 | HKd?A
Ours Theorem 4.3 KA + Kd?A | VHAKd32 | HKd*AP

Definition 4.2 (Sublinear LSVI-UCB Parameteres). Let
MDP(S, A, H,P, r) denote a linear MDP. For this MDP,
we set LSVI-UCB parameter A = 1. Letc = 1 — \/%
denote the approximate Max-IP parameter. Let p denote a

fixed probability. Let . = log(2dT/p).

Then, we present the Theorem.

Theorem 4.3 (Main result, convergence result of Sublin-
ear Least-Squares Value Iteration with UCB (Sublinear
LSVI-UCB), an informal version of Theorem D.12). With
parameters defined in Definition 4.2, Sublinear LSVI-UCB
(Algorithm 4) has total regret at most O(v d3 H* K 1?) with
probability at least 1 — p. Moreover, with O(K A*+to(1) ¢
Kd?A) preprocessing time and space, the value iteration
complexity of Sublinear LSVI-UCB is O(H K d* A), where
p=1-1/K.

Similarly, we could improve the value iteration complexity
towith p =1 — # by increasing the preprocessing time
and space to O(K A + KdA) using Theorem A.14. We
provide a detailed and formal version of Theorem 4.3 in
Theorem D.12.

Theorem 4.3 provides a LSH solution to one of the most
famous extensions of LSVI. Moreover, it provides a solution
to solve general similarity search in RL algorithms by trans-
forming it into Max-IP. With this result, we demonstrate
that our techniques is compatible with recent VI algorithms.

5 OUR TECHNIQUES

As mentioned in Section 3.1, we need to tackle five major
issues to use LSH based approximate Max-IP algorithm for
sublinear runtime time LSVI and LSVI-UCB in RL.

* How to prevent the maximum inner product between
query and data from being negative or arbitrary close to
0? If the maximum inner product is negative, Max-IP
data structures cannot be applied to solve this prob-

lem with theoretical guarantee. If the maximum inner
product is arbitrary close to 0, the query time of (¢, 7)-
Max-IP would be close to O(dn).

* How to prevent the maximum inner product between
query and data from being close to one? If 7 is close
to one, the time cost would also be O(dn) so that
(¢, 7)-Max-IP cannot reduce the time cost from linear
to sublinear.

* How to apply (¢, 7)-Max-IP for LSVI with UCB ex-
ploration? The estimated value function with an ad-
ditional UCB bonus term could not be written as an
inner product, which prevents Max-IP techniques from
accelerating the runtime efficiency.

* How to generalize the Max-IP data structure to support
maximum matrix norm search? Is Max-IP equivalent
to maximum matrix norm search?

* How to improve the running time while preserving
the regret? Although approximate Max-IP could ac-
celerate the computation for estimated value function,
it brings errors to the value function estimation and
thus, affects the total regret. Therefore, a key challenge
is quantifying the relationship between regret and the
approximation factor ¢ in (¢, 7)-Max-IP.

» How to handle the adaptive queries? The weight w,
in Eq. (1) and w! in Eq. (2) are dependent to h — 1
step. Therefore, the queries for (¢, 7)-Max-IP during
the Q-learning are adaptive but not arbitrary. Thus, we
could not union bound the failure probability of LSH
for (¢, 7)-Max-IP.

Next, we provide technical details on how we handle these
problems.

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

5.1 Avoid Negative Inner Product or Inner Product
Close to 0

In our setting, we assume the reward function r lies in
[0.55, 1]. This shift on the reward function would not af-
fect the convergence results of our Sublinear LSVI and
Sublinear LSVI-UCB. Moreover, it would benefits the
Max-IP by generating acceptable maximum inner product.
For Sublinear LSVI, as 7(s,a) € [0.55, 1], the optimal
value function V;*(s) > 0.55. Then according to Theo-
rem 4.1 the estimated ‘A/h(s) = maxgcA{Wh, P(s, a)) sat-
isfies |V;*(s) — Vi(s)| < e if we query each pair of state-
action from span matrix for n = O(e 2L?H*/) times. In
this way, we could assure the maximum inner product is
greater than 0.5 if we set e < 9.05. For Sublinear LSVI-
UCB, the Max-IP is applied on V},(s) = max,e 4 QF (s, a),
where Q% (s, a) is a Q function with additional UCB term.
From (Jin et al., 2020), we know that for all pair of state-
action ,Q¥(s,a) > Qj(s,a). Therefore, the maximum
inner product for Sublinear LSVI-UCB is always greater
than 0.5.

5.2 Avoid Inner Product Close to 1

In the optimization problem that could be accelerated by
Max-IP, the query and data vectors are usually not unit vec-
tors. To apply results in Section 3.1, we should demonstrate
how to transform both query and data vectors into unit vec-
tors. Moreover, we also modify the transformation to avoid
the inner product from being too close to 1.

In our work, we introduce a pair of asymmetric transforma-
tions as below. Given two vector z,y € R? with ||y|ls < 1
and ||z||2 < D,,, we apply the following transformations

Py)=[y" VI—wB 0],

]
Q@) = [22 o i-2SEE] L @

Using this transformations, we transform x, y into unit vec-
tors P(y) and Q(z). Therefore, the Max-IP of Q(x) with
respect to P(Y') is equivalent to the ANN problem of Q(x)
with respect to P(Y"), which could be solved via LSH.

Moreover, we show that

_ 0.8z Ty - 0.8 ||lz|l2]|¥ll2

T
P =0.8.
Q)" Ply) = =5 < ==
Further more, it is sufficient to show that
0.8 -2
argmax Q(z) " P(y) = argmax =0 ry
y y D,
= argmax zTy.
y

VNote that for any reward range [a, b], there exists a shift ¢ and
scaling « so that (a + ¢)/a = 0.55and (b + ¢)/a = 1.

If we perform maximum inner product search on Q(z) and
P(y) using the LSH data structures described in Section 3.1,
we have

T = max Q(z)"P(y) <0.8.

In this way, we could assure 7 is not close to 1 so that
we could reduce the runtime complexity of value function
estimation to be sublinear over actions.

5.3 Approximate Max-IP Data Structure for
LSVI-UCB

As shown in Section 4.2, Eq. (2) cannot be formulated
as a Max-IP problem. To overcome this barrier, we
bound the term Qy(s},,,,a) = {w, (s .a) + 3 -
(57415 a)||A;1 , H} by matrix norms. Then, we perform
the maximum matrix norm search for value function estima-
tion.

We start with the upper bound of w;gb(sﬁ L1a) +

B - ||qb(s;+1,a)||A;1. As both (wf,¢(s},,,a)) and
lp(sh41,a) ||A;1 are non-negative, we have

(wh, 6(sh1,0)) + B+ |9(sh11,0) [y 1
< \/2(wl¢(82+1, a))? 426 - |lo(sf 0, @)

= ||¢(szz+1va)||2,82A;1+2wﬁ(w;f)T

where the first step follows from a + b < v/2a? + 2b2.

Next, we lower bound the wj ¢(s} q,a) + B -
I6(6T01, Dl 25

wlcb(szﬂ, a)+ B |é(shyts a)HA,jl
> \J)l o(s]1,)2 + 82 650, 0

— ‘|¢(S;—l+1, a)HBQA;lerﬁ(wﬁ)T’

where the first step follows from the fact that both
wy) ¢(s},1,a) and [|¢(s] 1, a)||,-1 are non-negative and

h
a+b>+va®+b?ifa,b > 0, the second step is an reorga-
nization.

After we lower and upper bound wj ¢(s}.;,a) +
B - ||¢(s;+1,a)||A;1, we could also lower bound the

term {ngzS(s,TH_l, a) + B - [|o(s]41 a)||A;1 ,H} with
min{||p(sf, 1, a)||ﬁ2A;1+w,’§(w’;)T , H} and upper bound it
with min{||¢ (s}, a) H252A;1+2w;§(w;§)T H}.

Next we use this lower and upper bound and propose a mod-
ified value function estimation shown in Eq. (3). Therefore,
our problem becomes designing an approximate maximum

matrix norm search data structure. We will discuss this in
the following sections.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

5.4 Generalize the Approximate Max-IP Data
Structure for Max-MatNorm

In this section, we demonstrate how to extend Max-IP to
maximum matrix norm search for Sublinear LSVI-UCB
in this section. We first define the approximate Maximum
Matrix Norm problem. Let ¢ € (0,1) and 7 € (0, 1). Given
an n-point dataset Y C R?, the goal of the (¢, 7)-Maximum
Matrix Norm (Max-MatNorm) is to construct a data struc-
ture that, given a query matrix = € R4*9 with the promise
that there exists a datapoint y € Y with ||y||, > 7, it reports
a datapoint z € Y with ||z||, > ¢ - 7. We refer the readers
to Definition B.4 in the appendix for more details.

We solve the approximate maximum matrix norm by trans-
form it into an approximate Max-IP problem (see Defini-
tion 3.3). We start with showing the relationship between
Max-MatNorm and Max-IP as

Max-MatNorm(X,Y)? = maxy ' zy
yey

.
= a. eC eC
I;g(v (z), vec(yy),

where vec vectorizes d X d matrix z into a d? vector.

Next, we show that if we obtain z € Y by (c?, 7%)-Max-IP
so that

(vec(z), vec(zz ")) > 212,

we use z and obtain

2]l = \/<V€C($),V€C(ZZT)> > et

In other words, z is a candidate for (¢, 7)-Max-MatNorm.
In this way, we build a data-structure for (c2, 72)-Max-IP to
solve (¢, 7)-Max-MatNorm. We summarize our approach
for Max-MatNorm as three steps:

¢ Transform matrix z into vec(z) and y into vector
vec(yy).

* Transform vec(z) and vec(yy ") into unit vectors fol-
lowing Eq. (4).

* Use LSH to solve the Max-IP with respect to dataset
on the unit sphere.

5.5 Preserving Regret While Reducing the Runtime

In our work, we maintain the same regret with
LSVI (Bradtke and Barto, 1996) and LSVI-UCB (Jin
et al., 2020) by carefully setting the approximation param-
eter ¢ € (0,1) in Max-IP. For Sublinear LSVI, we set
¢ = 1 — 6(y/1/n) so that the final regret is as same as
LSVI (Bradtke and Barto, 1996). In Sublinear LSVI-UCB,
wesetc = 1 — \/% so that the final regret is as same
as LSVI-UCB (Jin et al., 2020). Because K, ¢ and n are
global parameter, we could set c in the preprocessing step
before value iteration. In this way, we show that our two
algorithms are novel demonstration of combining LSH with
reinforcement learning without losing on the regret.

We would like to emphasize the significance of these re-
sults. In machine learning with LSH, algorithms use LSH
data structures as a black box, which introduces extra hy-
perparameters to the learning procedure. In other words,
there would be multiple trials of training to find the best
hyperparameters. As a result, the efficiency improvements
or potential accuracy deductions remain unknown until all
trials are finished. In contrast, our method provides a specifi-
cation on the LSH parameters before performing an iterative
algorithm. Therefore, our results could avoid extensive LSH
parameter tuning in practice.

5.6 Handle Adaptive Queries in (c, 7)-Max-IP

In this section, we demonstrate our techniques to handle
the adaptive queries to the (¢, 7)-Max-IP data structures.
We use a quantization method to handle adaptive queries.
We denote () as the convex hull of all queries for (¢, 7)-
Max-IP. Our method contains two steps: (1) Preprocessing:
we quantize @ to a lattice () with quantization error \/d.
In this way, each coordinate would be quantized into the
multiples of A/d. (2) Query: given a query ¢ in the adaptive
sequence X C (), we first quantize it to the nearest qe @
and perform (¢, 7)-Max-IP. As each ¢ € @ is independent,
we could union bound the failure probability of adaptive
queries. On the other hand, this would generate an \ additive
error in the returned inner product. Our analysis indicates
that the additive error A could be handled without breaking
the regret.

6 CONCLUSION

In this paper, we study the value iteration algorithms for
solving linear Markov Decision Process (MDP) with large
action space. We identify that one of the major efficiency
bottlenecks for this setting is the value function estimation
procedure over all available actions. To tackle this issue, we
propose two provable Least-Squares Value Iteration (LSVI)
algorithms with runtime complexity sublinear in the number
of actions. By formulating the value function estimation
procedure in LSVI as an approximate maximum inner prod-
uct search problem, we bridge the gap between the regret
analysis in reinforcement learning and the theory of Locality
Sensitive Hashing (LSH) type data structure. The theoreti-
cal analysis indicates that with our choice of approximation
factor, there exists a LSVI algorithm that has the same or-
der of regret as the original LSVI algorithm while reducing
runtime complexity to sublinear in the number of actions.
Moreover, we show that our techniques could be extended to
one important LSVI variant: LSVI with Upper Confidence
Bound (UCB). In this way, our proposal could support more
sample-efficient VI algorithms. Although the implemen-
tation consumes energy, we hope our novel combination
of data structures and the iterative algorithm will inspire
further study into cost reduction in optimization.

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

7 ACKNOWLEDGEMENTS

Zhaozhuo Xu and Anshumali Shrivastava are supported by
the National Science Foundation IIS-1652131, BIGDATA-
1838177, AFOSR-YIP FA9550-18-1-0152, the ONR
DURIP Grant and the ONR BRC grant on Randomized
Numerical Linear Algebra.

References

Amir Abboud, Aviad Rubinstein, and Ryan Williams. Dis-
tributed pcp theorems for hardness of approximation in p.
In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 25-36. IEEE, 2017.

Alexandr Andoni. Nearest neighbor search: the old, the new,
and the impossible. PhD thesis, Massachusetts Institute
of Technology, 2009.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing
algorithms for approximate nearest neighbor in high di-
mensions. Communications of the ACM, 51(1):117, 2008.

Alexandr Andoni and Ilya Razenshteyn. Optimal data-
dependent hashing for approximate near neighbors. In
Proceedings of the forty-seventh annual ACM symposium
on Theory of computing (STOC), pages 793-801, 2015.

Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya
Razenshteyn. Beyond locality-sensitive hashing. In Pro-
ceedings of the twenty-fifth annual ACM-SIAM sympo-
sium on Discrete algorithms (SODA), pages 1018-1028.
SIAM, 2014.

Alexandr Andoni, Piotr Indyk, TMM Laarhoven, Ilya
Razenshteyn, and Ludwig Schmidt. Practical and op-
timal Ish for angular distance. In Advances in Neural In-
formation Processing Systems (NIPS), pages 1225-1233.
Curran Associates, 2015.

Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and
Erik Waingarten. Optimal hashing-based time-space
trade-offs for approximate near neighbors. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 47-66. SIAM, 2017a.

Alexandr Andoni, Ilya Razenshteyn, and Negev Shekel
Nosatzki. Lsh forest: Practical algorithms made the-
oretical. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 67-78. SIAM, 2017b.

Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Ap-
proximate nearest neighbor search in high dimensions. In
Proceedings of ICM, volume 7, 2018.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris
Siminelakis. Efficient density evaluation for smooth ker-
nels. In 2018 IEEE 59th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 615-626.
IEEE, 2018.

Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and
time efficient kernel density estimation in high dimen-
sions. Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2019.

Yu Bai, Tengyang Xie, Nan Jiang, and Yu Xiang Wang.
Provably efficient g-learning with low switching cost.
Advances in Neural Information Processing Systems
(NeurIPS), 32, 2019.

Omri Ben-Eliezer, Rajesh Jayaram, David P Woodruff, and
Eylon Yogev. A framework for adversarially robust
streaming algorithms. In Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS), pages 63-80, 2020.

Steven J Bradtke and Andrew G Barto. Linear least-squares
algorithms for temporal difference learning. Machine
learning, 22(1):33-57, 1996.

Jan van den Brand. A deterministic linear program solver in
current matrix multiplication time. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 259-278. SIAM, 2020.

Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai,
Richard Peng, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Bipartite matching in nearly-
linear time on moderately dense graphs. In 2020 IEEE
61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 919-930. IEEE, 2020a.

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao
Song. Solving tall dense linear programs in nearly linear
time. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 775—
788, 2020b.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri
Weinstein. Training (overparametrized) neural networks
in near-linear time. In 12th Innovations in Theoretical
Computer Science Conference (ITCS), 2021.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably
efficient exploration in policy optimization. In Interna-
tional Conference on Machine Learning (ICML), pages
1283-1294. PMLR, 2020.

Moses Charikar and Paris Siminelakis. Hashing-based-
estimators for kernel density in high dimensions. In 2017
IEEFE 58th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 1032-1043. IEEE, 2017.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris
Siminelakis. Kernel density estimation through density
constrained near neighbor search. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science
(FOCS), pages 172-183. IEEE, 2020.

Moses S Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing (STOC),
pages 380-388, 2002.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

Beidi Chen, Yingchen Xu, and Anshumali Shrivastava. Lsh-
sampling breaks the computation chicken-and-egg loop
in adaptive stochastic gradient estimation. arXiv preprint
arXiv:1910.14162, 2019.

Beidi Chen, Tharun Medini, James Farwell, sameh gob-
riel, Charlie Tai, and Anshumali Shrivastava. Slide : In
defense of smart algorithms over hardware acceleration
for large-scale deep learning systems. In Proceedings
of Machine Learning and Systems (MLSys), volume 2,
pages 291-306, 2020.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu,
Jonathan Lingjie Li, Tri Dao, Zhao Song, Anshumali
Shrivastava, and Christopher Re. MONGOOSE: A learn-
able LSH framework for efficient neural network training.
In International Conference on Learning Representations
(ICLR), 2021.

Lijie Chen. On the hardness of approximate and exact
(bichromatic) maximum inner product. In 33rd Computa-
tional Complexity Conference (CCC), 2018.

Lijie Chen and Ryan Williams. An equivalence class for or-
thogonal vectors. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 21-40. SIAM, 2019.

Tobias Christiani. A framework for similarity search with
space-time tradeoffs using locality-sensitive filtering. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 31—
46. SIAM, 2017.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving lin-
ear programs in the current matrix multiplication time. In
Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing (STOC), 2019.

Benjamin Coleman, Benito Geordie, Li Chou, RA Leo El-
worth, Todd Treangen, and Anshumali Shrivastava. One-
pass diversified sampling with application to terabyte-
scale genomic sequence streams. In International Con-
ference on Machine Learning, pages 4202-4218. PMLR,
2022.

Shabnam Daghaghi, Nicholas Meisburger, Mengnan Zhao,
and Anshumali Shrivastava. Accelerating slide deep learn-
ing on modern cpus: Vectorization, quantizations, mem-
ory optimizations, and more. Proceedings of Machine
Learning and Systems, 3, 2021.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S
Mirrokni. Locality-sensitive hashing scheme based on
p-stable distributions. In Proceedings of the twentieth
annual symposium on Computational geometry (SoCG),
pages 253-262, 2004.

Qin Ding, Hsiang-Fu Yu, and Cho-Jui Hsieh. A fast
sampling algorithm for maximum inner product search.
In The 22nd International Conference on Artificial In-
telligence and Statistics (AISTATS), pages 3004-3012.
PMLR, 2019.

Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear
time algorithm for linear programs with small treewidth:
A multiscale representation of robust central path. In
Proceedings of the 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC). arXiv preprint
arXiv:2011.05365, 2021.

Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner.
Learning space partitions for nearest neighbor search. In
International Conference on Learning Representations
(ICLR). arXiv preprint arXiv:1901.08544, 2020.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F
Yang. Is a good representation sufficient for sample ef-
ficient reinforcement learning? In International Confer-
ence on Learning Representations (ICLR), 2020.

Simon S Du, Sham M Kakade, Jason D Lee, Shachar Lovett,
Gaurav Mahajan, Wen Sun, and Ruosong Wang. Bilinear
classes: A structural framework for provable generaliza-
tioninrl. In /ICML, 2021.

Fei Feng, Ruosong Wang, Wotao Yin, Simon S Du, and Lin
Yang. Provably efficient exploration for reinforcement
learning using unsupervised learning. Advances in Neural
Information Processing Systems (NeurlPS), 33, 2020.

Minbo Gao, Tianle Xie, Simon S Du, and Lin F Yang.
A provably efficient algorithm for linear markov deci-
sion process with low switching cost. arXiv preprint
arXiv:2101.00494, 2021.

Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and
David Simcha. Quantization based fast inner product
search. In Artificial Intelligence and Statistics (AISTATS),
pages 482—490. PMLR, 2016.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David
Simcha, Felix Chern, and Sanjiv Kumar. Accelerating
large-scale inference with anisotropic vector quantiza-
tion. In International Conference on Machine Learning
(ICML), pages 3887-3896. PMLR, 2020.

Wassily Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):13-30, 1963.

Russell Impagliazzo and Ramamohan Paturi. On the com-
plexity of k-sat. Journal of Computer and System Sci-
ences, 62(2):367-375, 2001.

Piotr Indyk and Rajeev Motwani. Approximate nearest
neighbors: towards removing the curse of dimensionality.
In Proceedings of the thirtieth annual ACM symposium
on Theory of computing (STOC), pages 604—613, 1998.

Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai
Wong. An improved cutting plane method for convex
optimization, convex-concave games and its applications.
In Proceedings of the 52nd Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC), 2020.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie
Zhang. Faster dynamic matrix inverse for faster Ips. In

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

Proceedings of the 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC). arXiv preprint
arXiv:2004.07470, 2021.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and
Michael I Jordan. Is g-learning provably efficient?
Advances in Neural Information Processing Systems
(NeurIPS), 2018:4863-4873, 2018.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jor-
dan. Provably efficient reinforcement learning with linear
function approximation. In Conference on Learning The-
ory (COLT), pages 2137-2143. PMLR, 2020.

William B Johnson and Joram Lindenstrauss. Extensions
of lipschitz mappings into a hilbert space. Contemporary
mathematics, 26(189-206):1, 1984.

Jens Kober, J] Andrew Bagnell, and Jan Peters. Reinforce-
ment learning in robotics: A survey. The International
Journal of Robotics Research (IJRR), 32(11):1238-1274,
2013.

Francois Le Gall. Powers of tensors and fast matrix multi-
plication. In Proceedings of the 39th international sym-
posium on symbolic and algebraic computation (ISSAC),
pages 296-303. ACM, 2014.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empiri-
cal risk minimization in the current matrix multiplication
time. In International Conference on Computational
Learning Theory (COLT), 2019.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel
Galley, and Jianfeng Gao. Deep reinforcement learning
for dialogue generation. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing (EMNLP-IJCNLP), pages 1192-1202, 2016.

Ping Li, Xiaoyun Li, Gennady Samorodnitsky, and Weijie
Zhao. Consistent sampling through extremal process. In
Proceedings of the Web Conference 2021, pages 1317—
1327, 2021.

Xiaoyun Li and Ping Li. Rejection sampling for weighted
jaccard similarity revisited. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2021.

Chen Luo and Anshumali Shrivastava. Scaling-up split-
merge mcmc with locality sensitive sampling (Iss). In
Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), volume 33, pages 4464-4471, 2019.

Qin Lv, William Josephson, Zhe Wang, Moses Charikar,
and Kai Li. Multi-probe Ish: efficient indexing for high-
dimensional similarity search. In 33rd International Con-
ference on Very Large Data Bases (VLDB), pages 950—
961. Association for Computing Machinery, Inc, 2007.

Francisco S Melo and M Isabel Ribeiro. Q-learning with
linear function approximation. In International Confer-
ence on Computational Learning Theory (COLT), pages
308-322. Springer, 2007.

Stanislav Morozov and Artem Babenko. Non-metric similar-
ity graphs for maximum inner product search. Advances
in Neural Information Processing Systems (NeurIPS), 31:
47214730, 2018.

Vasileios Nakos, Zhao Song, and Zhengyu Wang. (nearly)
sample-optimal sparse fourier transform in any dimen-
sion; ripless and filterless. In 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS),
pages 1568-1577. IEEE, 2019.

Behnam Neyshabur and Nathan Srebro. On symmetric and
asymmetric Ishs for inner product search. In International
Conference on Machine Learning (ICML), pages 1926—
1934. PMLR, 2015.

Ilya Razenshteyn. High-dimensional similarity search and
sketching: algorithms and hardness. PhD thesis, Mas-
sachusetts Institute of Technology, 2017.

Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk.
Nearest-neighbor methods in learning and vision. In
Neural Information Processing, 2005.

Anshumali Shrivastava and Ping Li. Asymmetric Ish (alsh)
for sublinear time maximum inner product search (mips).
Advances in Neural Information Processing Systems
(NIPS), pages 2321-2329, 2014.

Anshumali Shrivastava and Ping Li. Improved asymmet-
ric locality sensitive hashing (alsh) for maximum inner
product search (mips). In Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence (UAI),
pages 812-821, 2015a.

Anshumali Shrivastava and Ping Li. Asymmetric minwise
hashing for indexing binary inner products and set con-
tainment. In Proceedings of the 24th international confer-
ence on world wide web (WWW), pages 981-991, 2015b.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris,
Daan Wierstra, and Martin Riedmiller. Deterministic
policy gradient algorithms. In International conference
on machine learning (ICML), pages 387-395. PMLR,
2014.

David Silver, Aja Huang, Chris J] Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, loannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with
deep neural networks and tree search. nature, 529(7587):
484-489, 2016.

Paris Siminelakis, Kexin Rong, Peter Bailis, Moses
Charikar, and Philip Levis. Rehashing kernel evalua-
tion in high dimensions. In International Conference
on Machine Learning (ICML), pages 5789-5798. PMLR,
2019.

Zhao Song and Wen Sun. Efficient model-free rein-
forcement learning in metric spaces. arXiv preprint
arXiv:1905.00475, 2019.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

Zhao Song and Zheng Yu. Oblivious sketching-based central
path method for solving linear programming problems.
In 38th International Conference on Machine Learning
(ICML), 2021.

Zhao Song, David Woodruff, Zheng Yu, and Lichen Zhang.
Fast sketching of polynomial kernels of polynomial de-
gree. In International Conference on Machine Learning,
pages 9812-9823. PMLR, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. On
efficient retrieval of top similarity vectors. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 5239-5249, 2019.

Roman Vershynin. Introduction to the non-asymptotic anal-
ysis of random matrices. arXiv preprint arXiv:1011.3027,
2010.

Ruosong Wang, Simon S Du, Lin Yang, and Russ R
Salakhutdinov. On reward-free reinforcement learning
with linear function approximation. In Advances in
Neural Information Processing Systems (NeurIPS), vol-
ume 33, pages 17816—17826. Curran Associates, Inc.,
2020a.

Ruosong Wang, Peilin Zhong, Simon S Du, Russ R
Salakhutdinov, and Lin F Yang. Planning with general ob-
jective functions: Going beyond total rewards. In Annual
Conference on Neural Information Processing Systems
(NeurlIPS), 2020b.

Christopher JCH Watkins and Peter Dayan. Q-learning.
Machine learning, 8(3-4):279-292, 1992.

Alexander Wei. Optimal las vegas approximate near neigh-
bors in £,,. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages
1794-1813. SIAM, 2019.

Ryan Williams. A new algorithm for optimal 2-constraint
satisfaction and its implications. Theoretical Computer
Science, 348(2-3):357-365, 2005.

Ryan Williams. On the difference between closest, fur-
thest, and orthogonal pairs: Nearly-linear vs barely-
subquadratic complexity. In Proceedings of the Tventy-
Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1207-1215. SIAM, 2018.

Virginia Vassilevska Williams. Multiplying matrices faster
than coppersmith-winograd. In Proceedings of the forty-
fourth annual ACM symposium on Theory of computing
(STOC), pages 887-898. ACM, 2012.

Zhihan Xiong, Ruoqi Shen, and Simon S Du. Random-
ized exploration is near-optimal for tabular mdp. arXiv
preprint arXiv:2102.09703, 2021.

Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava.
Breaking the linear iteration cost barrier for some well-
known conditional gradient methods using maxip data-
structures. Advances in Neural Information Processing
Systems, 34, 2021.

Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, and James
Cheng. Norm-ranging Ish for maximum inner product
search. Advances in Neural Information Processing Sys-
tems (NeurIPS), 31:2952-2961, 2018.

Lin Yang and Mengdi Wang. Reinforcement learning in
feature space: Matrix bandit, kernels, and regret bound. In
International Conference on Machine Learning (ICML),
pages 10746-10756, 2020.

Shuo Yang, Tongzheng Ren, Sanjay Shakkottai, Eric Price,
Inderjit S Dhillon, and Sujay Sanghavi. Linear bandit
algorithms with sublinear time complexity. arXiv preprint
arXiv:2103.02729, 2021.

Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, and Inderjit S Dhillon.
A greedy approach for budgeted maximum inner product
search. In Proceedings of the 31st International Confer-

ence on Neural Information Processing Systems (NIPS),
pages 5459-5468, 2017.

Amir Zandieh, Navid Nouri, Ameya Velingker, Michael
Kapralov, and Ilya Razenshteyn. Scaling up kernel ridge
regression via locality sensitive hashing. In International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), pages 4088—4097. PMLR, 2020.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost op-
timal model-free reinforcement learningvia reference-
advantage decomposition. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 33, 2020.

Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang,
Nicholas Jing Yuan, Xing Xie, and Zhenhui Li. Drn: A
deep reinforcement learning framework for news recom-
mendation. In Proceedings of the 2018 World Wide Web
Conference (WWW), pages 167-176, 2018.

Zhixin Zhou, Shulong Tan, Zhaozhuo Xu, and Ping Li.
Mobius transformation for fast inner product search on
graph. Advances in Neural Information Processing Sys-
tems (NeurIPS), 32, 2019.

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

Appendix
Contents
1 INTRODUCTION
2 RELATED WORK

3 BACKGROUND
3.1 Locality Sensitive Hashing e e

3.2 Reinforcement Learning e e e e

4 OUR RESULTS
4.1 Sublinear Least-Squares Value Iteration

4.2 Sublinear Least-Squares Value Iteration with UCB

5 OUR TECHNIQUES
5.1 Avoid Negative Inner Product or Inner Product Closeto0
5.2 Avoid Inner Product Close to 1 e
5.3 Approximate Max-IP Data Structure for LSVI-UCB
5.4 Generalize the Approximate Max-IP Data Structure for Max-MatNorm
5.5 Preserving Regret While Reducing the Runtime
5.6 Handle Adaptive Queriesin (¢, 7)-Max-IP

6 CONCLUSION
7 ACKNOWLEDGEMENTS

A PRELIMINARIES
A1 BasicNotations e e
A.2 Notations and Definitions L L e e
A.3 Standard Properties of Linear MDP L
A4 Locality Sensitive Hashing L
A5 Probabilistic ToOIS

A.6 Inequalities L . e e e e

B DATA STRUCTURES
B.1 Existing Transformation from Primal to Dual,
B.2 Sublinear Max-IP Data Structure e
B.3 Sublinear Max-IP Data Structure for Maximum Matrix Norm Search
B.4 Transformation for Efficient Query

B.5 Sublinear Query Time: Part 1

W

O o0 0 NN N

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

B.6 Sublinear Query Time: Part2 L 23

C SUBLINEAR LEAST-SQUARES VALUE ITERATION 26
C.l1 Algorithm 26
C.2 ValueDifference 26
C.3 Regret AnalySis L 28
C4 Running Time Analysis e 31
C.5 CompariSON v v v it e e e e e e e e e e e e e e e 33

D SUBLINEAR LEAST-SQUARES VALUE ITERATION WITH UCB 34
D.1 Algorithm e e e e e 34
D.2 Notations for Proof of Convergence 35
D.3 Upper Bound on Weights in Sublinear LSVI-UCB 36
D4 Our Net Argument o ittt e e e e e e e e e e e e 37
D.5 Upper Bound on Fluctuations e 38
D.6 Upper Bound of Difference of Q Function, 39
D.7 Q Function Difference by Induction L 40
D.8 Recursive Formula 42
D.9 Regret AnalySis e e 43
D.10 Running Time Analysis e e 44
D.10.1 LSVI-UCB . . . oo 44

D.10.2 Sublinear LSVI-UCB o e 45

D11 CompariSOn v it e e e e e e 46

E MORE DATA STRUCTURES: ADAPTIVE Max-IP QUERIES 46
E.1 Sublinear LSVI with Adaptive Max-IP Queries 46
E.2 Sublinear LSVI-UCB with Adaptive Max-MatNorm Queries 48

Roadmap. Section A introduces the preliminaries of this work, including notations and definitions, Section B introduces
the LSH data structure in detail, Section C presents the results for Sublinear LSVI, Section D presents the results for
Sublinear LSVI-UCB, Section E shows how to process adaptive queries in Max-IP.

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

A PRELIMINARIES

Table 2: Notations related to reinforcement learning.

Notation | Meaning

S states space

A action space

Score core state set

Acore core action set

S # states

A # actions

H number of steps per episode

K number of episodes

s next state of state s

P state transition probability

Py [s'|s,a] | transition probability when we take action a € A at step h € [H] from state s € S.
ri(s,a) reward at step h given state s and action a

: .

b(s,a) feature map ¢(s,a) € RY

G unknown measure that P [s|s, a] = (¢(s, a), pp(s"))
Oy, unknown measure that 7, (s,a) = (¢(s, a), 0p)

) ® € RXM

n number of samples played given from each ¢;.

This section introduces the preliminaries for our work.

* In Section A.1, we present the basic notations used in our work.
¢ In Section A.2, we introduce several reinforcement learning.
* In Section A.3, we list the standard properties of linear MDP.

* In Section A.4, we introduces the definitions of Locality Sensitive Hashing data structures and their applications in
nearest neighbor search.

¢ In Section A.5, we list the probabilistic tools used in our work.

* In Section A.6, we list the inequalities to help the proof.

A.1 Basic Notations

We use Pr[] to denote probability and E[] to denote expectation if it exists.

For a matrix A, we use [|Al|p := (32, ; A?)!/? to denote the Frobenius norm of A, we use [|All1 := >, ;|4 ;] to
denote the entry-wise ¢; norm of A, we use ||A|| to denote the spectral norm of A. We say matrix A € R4*? is a positive

semidefinite matrix if for all x € R%, 27 Az > 0. We say matrix A € R?* is a positive definite matrix if for all z € R?,
T
z' Az > 0.

For a vector z, we use ||z||2 := (3, #2)'/2 to denote the £ norm of z, we use ||z||; := 3, |2;] to denote the ¢; norm of z,
we use ||z]| to denote the £, norm.

For a vector € R? and a psd matrix A € R4, we use ||| 4 := (z" Az)'/? to denote the matrix norm of x over A.

We use S?~! to denote the unit sphere.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

A.2 Notations and Definitions

In this section, we present the notation and definitions for reinforcement learning. We summarize our notations in Table 2.

We start with the definition of the Episodic Markov decision process.

Definition A.1 (Episodic Markov decision process (episodic MDP)). Let MDP(S, A, H, P,) denote the episodic Markov
decision process, where S denotes the set of available states, .4 denotes the set of available actions, H € N denotes the total
number of steps in each episode, P = {P,}/Z_ with P,[s'|s, a] denotes the probability of transition from state s € S to
state s’ € S when take actions a € A at step h, r = {r; }11_, denotes the reward obtained at each step. Here the reward 7y,
is a function that maps S x A to [0.55, 1]

Note that for any reward range [a, b], there exists a shift ¢ and scaling « so that (a + ¢)/a = 0.55 and (b + ¢)/a = 1 The
shift in reward is designed for sublinear runtime in maximum inner product search. We will provide more discussion in
Section B.5.

In this work, we focus on linear Markov decision process (linear MDP). In this setting, each pair of state-action is represented
as an embedding vector. Moreover, the transition probability P, [s'|s, a] and reward function 7, are linear in this embedding
vector.

Definition A.2 (Linear MDP (Bradtke and Barto, 1996; Melo and Ribeiro, 2007)). The MDP(S, A, H, P, r) becomes
a linear MDP if there exists a function ¢ : S x A — R and an unknown signed measure set y;, = (ug), e ,ugd))
over S such that the transition probability Pp,[s'[s,a] = (¢(s,a), un(s’)) at any step any h € [H]|. Here we assume
max(s g)esxA [|@(s,a)||2 < 1. Moreover, there exists a hidden vector §), € R? so that (s, a) = (¢(s,a),0)). Here we

assume maxper{]| (S)ll2, [10n]2} < V.

In the MDP framework, we define the policy 7 as a sequence of functions that map state to actions.

Definition A.3 (Policy). Given a MDP with form MDP(S, A, H,P,r), a policy m = {7y, -+ , 7y} is defined as sequence
such that 7}, : S — A for each step h. 7, (s) = a represents the action taken when we are at state s and step h.

Moreover, we use V,7(s) : S — R to define the value of cumulative rewards in expectation if the agent follows received
under a given policy 7 when the start state is s and the start step is h.

Definition A.4 (Value function). Given a MDP with form MDP(S, A, H,P, r), we let the value function be:

H

Vir(s) :=E [Z Th(Shy Th(sh))

h'=h

sh:s], Vs e S, h e [H].

Further more, we define the Q function Q7 (s,a) : S x A — R as the expected cumulative rewards if a agent follows
policy 7 and starts from takeing action a at state s and step h. This representation of Q7 (s, a) is also associated with the
well-known Bellman equation (Sutton and Barto, 2018).

Definition A.5 (Q-Learning). Let MDP(S, A, H,IP,r) denote an episodic MDP. We use a simplified notation
[PrVhi1](s,a) := By p,[s/|s,a][Va+1(5")]. Then, we represent the Bellman equation with policy 7 as

QZ(S,CL) = [rh + thhw—i-l](‘sv a)a Vhﬂ(s) = QZ(Svﬂh(s))a VI}T—H(S) =0.
Similarly, for optimal policy 7*, we have

Qi(s,0) = [+ BuVinl(s,0). Vi(s) = maxQi(s,a), Virga(s) =0.)
Note that as rj, € [0,1]. All QT and V;™ are upper bounded by H + 1 — h.

After formulate the MDP and its value functions, we start listing conditions on the space of state and action for the
convenience of our Sublinear LSVI and Sublinear LSVI-UCB. We first present the definition for the convex hull.

Definition A.6 (Convex hull). Given a set {x1,xs, - ,x,} C R that denotes as a matrix A € R4*", we define its convex
hull B(A) to be the collection of all finite linear combinations y that satisfies y = Y ;_, a; - x;, where a; € [0,1] for all
i€ nlandy;cp, ai = 1.

"Note that in standard reinforcement learning, we assume reward is [0, 1], but it is completely reasonable to do a shift. We will provide
more discussion in Section 5.1.

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

In this work, we focus on the Sublinear LSVI under continuous state and action space. Given the action space A and state
space S, we formulate ¢((S x A)) as the convex hull of ¢(Score X Acore), Where Score 18 core state set and Aoy is core
action set.

Definition A.7 (Core state and core action sets). Given a linear MDP with form MDP(S, A, H,P,r), we define set
Score C S as the core states set and Ao, C A as the core action set. We denote cardinality of Scope and Acoye as S and A.
Specifically, we have B(¢(Score X Acore)) = ¢(S X A). Without loss of generality, we let A > d.

In LSVI (Bradtke and Barto, 1996), the value iteration procedure requires a span matrix that contains state-action embeddings.
Moreover, there also exists a series of assumptions on the span matrix. We provide these assumptions as below:

Definition A.8 (Span matrix). Given a linear MDP with form MDP(S, A, H, P, r), we define the span matrix & € R4*M
as follows: in total M < d columns, the jth column is denoted as ¢; = ¢(s;, a;), where (s;,a;) € S x A. Moreover,
{¢1, P2, -+, dar} is the linear span of ¢(S x A). Specifically, P satisfies:

* P(s,a) = Z]A/il w;¢;, w; € Rforall (s,a) € S x A,
o rank(®) = M,
* maX(s a)eSx.A ||(I)_1¢(s7a)||1 < L.

Next, we follow Jin et al. (2020) and making assumptions for Sublinear LSVI-UCB. Given a linear MDP with form
MDP(S, A, H,P,r), we assume S is finite with cardinally S and .4 is finite with cardinally A.

A.3 Standard Properties of Linear MDP

We list the tools for analyzing linear MDPs properties from Jiang et al. (2021) in this section.
Lemma A.9 (Proposition 2.3 (Jin et al., 2020)). The Q function with form QJ, (s, a) in linear MDP could be represented it

as a inner product QF (s, a) = (¢(s,a),w]), where w] € R% is a weight vector.
Next, we show the upper bound of weight w}, for any policy 7.

Lemma A.10 (Lemma B.2 (Jin et al., 2020)). Given a linear MDP, let w}, denote the weight that achieves Q7 (s, a) =
(¢(s,a),w]) forall (s,a) € S x Aat step h € [H]. We show that for |wf ||z < 2H/d for any h € [H),

A4 Locality Sensitive Hashing

We define Locality Sensitive Hashing (LSH). These definitions are very standard, e.g., see Indyk and Motwani (Indyk and
Motwani, 1998).

Definition A.11 (Locality Sensitive Hashing). Let dist denote a metric distance. Let ¢ denote a parameter such that ¢ > 1.
Let p1, p2 denote two parameters such that 0 < py < py < 1. A family H is called (r,C - v, p1, p2)-sensitive if and only if,
for any two point x,y € RY, a function h chosen uniformly from the family H has the following properties:

o ifdist(z,y) <, then Prpoy[h(z) = h(y)] > p1,
o ifdist(x,y) > ¢ r, then Prpoylh(xz) = h(y)] < po.

We focus on situations where dist is #5 or cosine distance.

LSH is designed to accelerate the runtime of the Approximate Nearest Neighbor (ANN) problem. We start with define the
exact NN problem as:

Definition A.12 (Exact Nearest Neighbor (NN)). Given an n-point dataset Y C S~ on the sphere, the goal of the Nearest
Neighbor (NN) problem is to find a datapoint y € Y for a query x € S such that

NN(z,Y) :=mi —yll2.
(@,Y) = mip [lo =

Indyk and Motwani (1998) relax the NN problem in Definition A.12 as with approximation and define the Approximate
Nearest Neighbor (ANN) problem.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

Definition A.13 (Approximate Nearest Neighbor (ANN)). Let ¢ > 1. Let r € (0, 2). Given an n-point dataset P C S%~!
on the sphere, the (¢, r)-Approximate Near Neighbor Search (ANN) aims at developing a data structure that, given a query
q € S with the promise that there exists a datapoint p € P with ||p — q||2 < r, the data structure reports a datapoint
p' € P with distance less than © - r from q.

Then, the query complexity of ANN is reduced to sublinear by LSH following Theorem A.14 and Theorem A.15. Note that
here we write O(1/+/logn) as o(1).

Theorem A.14 (Andoni and Razenshteyn (Andoni and Razenshteyn, 2015)). Let¢ > 1 and r € (0,2). The (¢, r)-ANN on
a unit sphere S?=' can be solved by a data structure with query time O(d - n?), space O(n**? + dn) and preprocessing
time O(dn'™?), where p = 53— + o(1).

Theorem A.15 (Andoni, Laarhoven, Razenshteyn and Waingarten (Andoni et al., 2017a)). Let ¢ > 1. Let r € (0,2). There
exists a data structure that solves (¢,r)-ANN on the unit sphere S%=' with query time O(d - n?), space O(n'T°W) + dn)
and preprocessing time O(dn'T°M), where p = Z — 4 +o(1).

In this work, we focus on the Max-IP, which is a well-known problem in the field of computational complexity, we follow
the standard notation in this work Chen (2018). We define the exact and approximate Max-|P problem as follows:

Definition A.16 (Exact Max-IP). Given a data set Y C R?, we define Max-IP for a query point x € R¢ with respectto'Y’
as follows:

Max-IP(z,Y) := .
ax-IP(z,Y) r;lea;¢<x,y>

Definition A.17 (Approximate Max-IP). Let ¢ € (0,1) and 7 € (0,1). Given an n-point dataset Y C S%1, the (c,7)-
Max-IP aims at building a data structure that, given a query x € S~ with the promise that there exists a datapoint y € Y
with (x,y) > T, the data structure reports a datapoint z € Y with similarity (x, z) greater than c¢ - Max-IP(z,Y").

To solve (¢, 7)-Max-IP, we define a dual version of LSH data structure (Shrivastava and Li (Shrivastava and Li, 2014) call it
asymmetric LSH):

Definition A.18 (Locality Sensitive Hashing for similarity). Let ¢ denote a parameter such that ¢ € (0,1). Let T denote a
parameter such that T > 0. Let p1, p2 denote two parameters such that 0 < py < p1 < 1. Let sim(z, y) denote a binary
similarity function between x,y € RY. A family H is called (1, c - T, p1, p2)-sensitive if and only if, for any query point
x € R and a data point y € R?, h chosen uniformly from H has the following properties:

o ifsim(x,y) > 7 then Pry[h(z) = h(y)] > p1,
e ifsim(z,y) < ¢ 7 then Prp oy [h(z) = h(y)] < p2.

It is shown from Shrivastava and Li (2014) that LSH type data structure with asymmetric transformations could achieve
sublinear runtime complexity of (¢, 7)-Max-IP.

A.5 Probabilistic Tools

Lemma A.19 (Hoeffding bound (Hoeffding, 1963)). Let x1,- - - , z,, be n independent bounded variables in |a;,b;). Let,
then we show the Hoeffding bound over x = >, x; as:

Prlle — Elz]| >] < 2exp (= Zn—l(zbt—a)Q)

A.6 Inequalities

In this sections, we present the supporting inequalities for our work.

Fact A.20 (Lemma D.1 in Jin et al. (2020)). Given a matrix Ay = NIz + 2221 (bi(bj with ¢; € R* and X\ > 0, we show
that:

t

ool (h) e < d.

=1

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

Lemma A.21 (Lemma D.4 in Jin et al. (2020)). Let V denote a function family that maxycy zes |V (z)| < H. Let G
denote the e-covering number of V. Let S denote a state space. Let {F,}2°, denote the filtration of S. Let {x,}2°, denote
a random process defined on S. Let {$, }2°, denote a real valued random process in R%. Moreover, ¢, € F,_; and we

have upper bound ||¢-||2 < 1. Given a matrix Aj, € R¥* so that Ay, = N4 + Zle br01, for any § > 0, for any k > 0,
forany V€V, we have

k 2
H 3 6. (V(e,) —E[V(z,) | ff_l})HAil < 4H?(dlog(1 + k/A) + log(G. /5)) + 8k2e2/ .

B DATA STRUCTURES

This section presents the data Structures for our work.

* In Section B.1, we introduce the transformations that build primal-dual connections between approximate Max-IP and
ANN.

* In Section B.2, we present our data structure that achieves sublinear query time in approximate Max-IP.
* In Section B.3, we show how to perform approximate Max-MatNorm via approximate Max-IP data structure.
* In Section B.4, we present our efficient transformations for Max-IP in optimization.

* In Section B.5, we formally provide the theoretical results of sublinear approximate Max-1P using one LSH data
structure.

* In Section B.6, we provide the theoretical results of sublinear approximate Max-I1P using another LSH data structure.

B.1 Existing Transformation from Primal to Dual

In this section, we show a transformation that builds the connection between Max-IP and NN. Under this asymmetric
transformation, NN is formulated as a dual problem of Max-IP.

We start with presenting the asymmetric transformation.

Definition B.1 (Asymmetric transformation (Neyshabur and Srebro, 2015)). Let Y € R? and ||y|s < 1forally € Y. Let
r € R% and ||z||o < D,. We define the following asymmetric transform:

Py) = [y7 VI-TlE 0] . ©)

-
0 \/1-lzDz"[3

)
=
|
—
—
8
>
8
—_
—

Therefore, we have

1Q(z) = P(y)ll5 =2 —2D;*(z,y), argmax(w,y) = argmin [|Q(x) — P(y)|*.
yeY yey
In this way, we regard Max-IP as the primal problem and NN as a dual problem.

B.2 Sublinear Max-|P Data Structure

In this section, we show the theorem that provides sublinear query time for Max-IP problem using LSH type data structure.

Theorem B.2 (Formal statement of Corollary 3.5). Let ¢ € (0,1) and 7 € (0, 1). Given a set of n-points Y C S?~! on the
sphere, one can build a data structure with preprocessing time Tinix and space Sspace SO that for any query x € S we
take O(d - nP) query time:

o if Max-IP(z,Y") > 7, then we output a vector in Y which is a (¢, 7)-Max-IP with respect to (x,Y") with probability at
least 0.9%, where p := f(c,7) + o(1).

YTt is obvious to boost probability from constant to & by repeating the data structure log(1/4) times.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

e otherwise, we output fail.

Further,

o If Tinit = O(dn'*?) and Sspace = O(n**? + dn), then f(c,7) = -7

1—2c7471"°

o If Tinie = O(dn't°W) and Sqpace = O(n'T°M) 4 dn), then f(c,) 20=r (1-7)!

T (=crn)? ~ U=cr)?"

Proof. We start with showing that for any two points x,y with ||z||2 = ||y||2 = 1, we have ||z — y||3 = 2 — 2(z,y). This
implies that 72 = 2 — 27 for a (¢,7)-ANN and a (¢, 7)-Max-IP on z, Y.

Further, if we have a data structure for (¢, r)-ANN, it automatically becomes a data structure for (¢, 7)-Max-IP with

1-0.5¢2r

2 . . .
parameters 7 = 1 — 0.572 and ¢ = 5.2 - Lhis implies that

o 1—c(1—0.5r?) _l—er
0.5r2 1—71°

Next, we show how to solve (¢, 7)-Max-IP by solving (¢, r)-ANN using two different data structures.

Part 1. If we initialize the data-structure following Theorem A.14, we show that the (¢, 7)-Max-IP on a unit sphere S¢~!
can be solved by solving (¢, r)-ANN with query time O(d - n”), space O(n'*? + dn) and preprocessing time O(dn'*?),
where

1 1—7
_ 1) = - N=e —— 1).
P=s@_1 oW 211—_°:—1+0() T —2er - oW

Thus, f(c,7) = ==

1—2¢m+71°

Part 2. If we initialize the data-structure following Theorem A.15, we show that the (c, 7)-Max-IP on a unit sphere S%~! can
be solved by solving (¢, r)-ANN with query time O(d - n”), space O(n'*t°(!) 4 dn) and preprocessing time O(dn'*+°()),
where

2 1 2(1—171)2 (1—71)*

p:?*g}+0(1): (1—ecr)2 (1—c7’)4+0(1)'

_)2 _)4
Thus, f(c,7) = ?ﬁmé — ((11_CT))4.

O

In practice, we tune parameter 7 close to Max-IP(z,Y") to achieve higher ¢. Moreover, Theorem B.2 could be applied
to general Max-IP problem. To do this, we first apply asymmetric transformation in Definition B.1 and transfer it to a
(¢, 7)-Max-IP problem over Q(x) and Q(Y"). Then, we solve this (¢, 7)-Max-IP problem by solving its dual problem, which
is (¢,7)-ANN. Finally, the solution to the (¢,r)-ANN would be the approximate solution to the original Max-IP(z,Y").
Meanwhile, it is reasonable for us to regard d = n°(!) using Johnson-Lindenstrauss Lemma Johnson and Lindenstrauss
(1984).

B.3 Sublinear Max-|P Data Structure for Maximum Matrix Norm Search

In this section, we extend LSH type Max-IP data structure for maximum matrix norm search.

Definition B.3 (Exact Maximum Matrix Norm (Max-MatNorm)). Given a data set Y C R® and a query matrix x € R4¥¢,
we define Maximum Matrix Norm as follows:

Max-MatNorm(z,Y") := max ||y||-
yey

Next, we define the approximate version of the Maximum Matrix Norm.

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

Definition B.4 (Approximate Max-MatNorm). Let ¢ € (0,1) and 7 € (0,1). Let vec denote the vectorization of d X d
matrix into a d* vector. Given an n-point dataset Y C R® and yy' € S4* -1 forall y € Y, the goal of the (¢, T)-

. . . 2 p— . .
Max-MatNorm is to cosntruct a data structure that, given a query matrix x € R%*?% and vec(x) € ST ~! with the promise
that there exists a datapoint y € Y with ||y||. > 7, it reports a datapoint z € Y with ||z||, > ¢ - Max-MatNorm(z,Y").

Next, we show the relationship between Max-MatNorm and Max-IP
Lemma B.5 (Relation between Max-MatNorm and Max-IP). We show that

Max-MatNorm(X,Y)? = meaii((vec(x), vec(yy ")
y

where vec vectorizes d X d matrix into a d? vector.

Proof. We show that
Max-MatNorm(z, Y)? = max ||y
yey

= maxy ' zy
yeY

= ?eaiz((\/ec(x), vec(yy)

where the first step follows the definition of Max-MatNorm, the second step follows from the definition of ||y||2, the third
step decomposes the quadratic form into a inner product.

O

Next, we present our main theorem for Max-MatNorm(z,Y").

Theorem B.6. Let c denote a parameter such that ¢ € (0,1). Let T denote a parameter such that T € (0,1). Let vec
2

denote the vectorization of d x d matrix into a d* vector. Given a n-points setY C R and yy™ € ST~ forally € Y,

one can construct a data structure with Tinix preprocessing time and Sepace SO that for any query matrix x € R4%4 ith

vec(x) € S?* =1, we take query time complexity O(d?n” -log(1/6)):

* if Max-MatNorm(x,Y") > 7, then we output a vector in' Y which is a (¢, 7)-Max-MatNorm with respect to (x,Y)
with probability at least 1 — &, where p == f(c,T) + o(1).

* otherwise, we output fail.
Further,

¢ If7idnit = O(d2n1+p : log(l/(s)) and Sspace = O((n1+P + d2n) . log(l/(s)), then f(C7 T) = 1-72

1—c2724-72"

o I Tt = O(d2n+°M) 1og(1/6)) and Sspace = O((n' o) +d2n) -log(1/5)), then f(e,7) = 24500 — (U=r)

= =222~ (1-c2r2)2-

Proof. We start with showing that if we have a (¢2, 7%)-Max-IP data structure over vec(x) and every vec(yy '),y € Y, we
would obtain a z € Y such that

(vec(z),vec(zz ")) > ¢? Iz?ea};dvec(x% vee(yy ")), 0

we could use it and derive the following propriety for z:

Izl = \/<vec(x),vec(zz—r)>

> \/02 r;lgzc(vec(:r), vee(yy 1))

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

= cg?% \/(VeC(Cﬂ), vec(yy)

= cma [y

where the second step follows from Eq. (7).
Therefore, z is the solution for (¢, 7)-Max-MatNorm(z,Y").
Next, we show how to retrieve z via two data structures used for (¢, 7)-Max-IP(z,Y") in Theorem B.2.

Part 1. If we initialize the data structure following Theorem A.14, we can construct a data structure with O((n'™* +
d?n) - log(1/6)) preprocessing time and O((n'*? + d?n) - log(1/6)) space so that for any query matrix = € R?*¢ with
vec(z) € S¥~1, we take query time complexity O(d2n? - log(1/6)) to retrieve z. Here p = % + o(1) and we are

able to improve the failure probability to § by repeating the LSH for log(1/§) times.

Part 2. If we initialize the data structure following Theorem A.15, we can construct a data structure with O((n!T°(}) 4

d?n) -1log(1/6)) preprocessing time and O((n'*°() 4 dn) - log(1/4)) space so that for any query matrix = € R4*¢ with
2\2 2\4

vec(z) € S4°~1, we take query time complexity O(d*n? -1og(1/9)) to retrieve z. Here p = (21(71;:2))2 — (5:;2)4 +0o(1)

and we also improve the failure probability to ¢ by repeating the LSH for log(1/6) times.

O

Moreover, Theorem B.6 could be applied to general Max-MatNorm problem. To do this, we first apply transform (¢, 7)-
Max-MatNorm problem into a (¢, 72)-Max-IP problem using Lemma B.5. Next, we apply transformations in Definition B.1
and transfer the (2, 72)-Max-IP problem to a (c?, 7%)-Max-IP problem over Q(x) and Q(Y). Then, we solve this (c?,72)-
Max-IP problem by solving its dual problem, which is (¢, 7)-ANN. Finally, the solution to the (¢, r)-ANN would be the
approximate solution to the original Max-MatNorm(z,Y").

B.4 Transformation for Efficient Query

In the optimization problem that could be accelerated by (¢, 7)-Max-IP, the query and data vectors are usually not unit
vectors so that we apply transformations in Definition B.1 to map both query and data vectors into unit vectors. However, if
the mapped inner product is too close to 1. The formulation of p would break and the time complexity would be linear. To
avoid this, we propose a new set of asymmetric transformations:

Definition B.7 (Efficient asymmetric transformation). Let Y € R? and ||y||o < 1forally € Y. Let x € R and ||z||2 < D,.
We define the following asymmetric transform:

T NzI2 T
P)=[y" VI—TWB 0, Q@ =[" o /100

Next, we use Lemma B.8 to show how to enforce 7 to be away from 1 via our efficient asymmetric transformation.

Lemma B.8. Given the transformation P and () defined in Definition B.7, we show that both Max-IP(Q(x), P(Y')) and
NN(Q(x), P(Y)) are equivalent to Max-IP(x,Y). Moreover,

Max-IP(Q(z), P(Y)) < 0.8.

Proof. Using transformations in Definition B.7, for all y € Y, we have

08Ty _ o lelalule

x T

Q)" P(y) <08

where the third step follows from ||z||s < D, and ||y|j2 < 1.
Next, we show that Max-IP(Q(x), P(Y")) is equivalent to Max-IP(x,Y").

T (8 s
P = _— = .
arg max Q(:L') (y) al‘g I;laX D aI‘g I;lax<x7 y>

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

Further more, NN(Q(x), P(Y")) (see Definition A.12) is equivalent to Max-IP(z,Y").

Q@) = P(y)lz =2 = 16D, (z,y), argmin[|Q(x) — P(y)[* = arg max(z.y).

B.5 Sublinear Query Time: Part 1

In this section, we show that p is strictly less than 1 using LSH in Andoni and Razenshteyn (2015).

Lemma B.9. If LSH data structure’s parameters c and 7 satisfy that ¢ € [0.5,1) and T € [0.5,1) then, we could upper
bound p as:

p<l-— % + O(1/+/logn)

where vy =1 —c.

Proof. We can upper bound p as follows:

1-—
A y— + O(1/+/logn)

2ct+ T

2 2ct
:1—17—7 O(1/+/logn)

2cT +

=1-(1-¢)- T %er 7 27+ +O0(1/+/logn)
gl—(l—c)-T+O(1/\/logn) by 7> 0.5
<l-(1-¢)- f—l-Ol/\/logn by <1

:1—%4—0 (1/+/logn)

where the second and third steps are reorganizations, the forth step follows from 7 > 0.5, the fifth step follows from 7 < 1
and ¢ > 0.5, the last step is a reorganization.

Therefore, we complete the proof. O

For Sublinear LSVI, we set ¢ = 1 — CyL+/t/n and and 7 > 0.5 by shifting the reward function. In this way, we have

CoL+/t/n 1 1
<1l- (0] <1—-CoL+/ 8
where the first step follows from v = 1 — ¢ = CyL+/1/n, the second step follows from 2 7C0L/t/n > Q(\/@)
For Sublinear LSVI-UCB, we setc = 1 — \/% and 7 > 0.5 by shifting the reward function. In this way, we have
1 1 1
<1- +0 <l-—= 9
P VK (\/logA) I K ©)

where the first step follows fromy =1 —c = f the second step follows from \ﬁ > Q \/101?).

Therefore, we show that sublinear value iteration can be achieved while preserving the same regret.

B.6 Sublinear Query Time: Part 2

In this section, we show that p is strictly less than 1 using LSH in Andoni et al. (2017a).

Using Andoni et al. (2017a), the p for LSH based Max-IP data structure with parameters ¢ and 7 becomes

C2(1— 7)? B (1-7)*
S (I—er)?2 (1—cr)d

+0o(1)

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

where is a function over ¢ and 7.

To upper bound the p, we start with showing that it is decreasing as 7 increase when ¢ € [0.5,1) and 7 € [0.5,1).
Lemma B.10. Let ¢ € [0.5,1) and 7 € [0.5,1). We show that function

20—-7)* (1-71)*

fler) = 1—cr? (1—en®

is decreasing as T increase.

Proof. We take the derivative of f(c, 7) in 7 and get

4(c—1)2%(1 — V)71(er +7—2)
(I —ecr)®

where the second step follows from ¢ € [0.5,1) and 7 € [0.5, 1).

<0,

0
Ef(ca T) = -
Thus, f(e,) is decreasing as 7 increase when ¢ € [0.5,1) and 7 € [0.5,1).

Next, we have our results in upper bounding p.

Lemma B.11. IfLSH data structure’s parameters c and 7 satisfy that ¢ € [0.5,1) and 7 € (0.5, 1) then, we could upper
bound p as:

2
p<1l-— ’yz + O(1/+/logn),

where v =1—c.

Proof. Lety =1 — ¢, we have

2

ngQ—E%—FO(l/\/logn)
)2)4
— AT s ou i)

(1—ecr7)
0.5 00625 _
< _ /
S T0507 (1=0s501 T OWVlesn)
0.5 0.0625
0540577 (054051 T OW/Vieen)
2 1

= T+ — T+ + O(1/+/logn)

244 292 —1
_Lrerr sy + O(1/+/logn)

(1+)4
144y +292
o + O(1/+/logn)
(L)t

492 + 473 + A4

=1—-——F——+0(1/y/logn
o (1/v/1og)
<1l- (1+ 7 +0(1/4/logn) byy >0
<1——+O(1/\/10gn) by v < 1,
where the second step follows from ¢> t—‘:, the third step follows from that p is monotonic decrease as 7 increase and

7 > 0.5, the forth to eighth steps are reorganizations, the ninth step follows from v = 1 — ¢ > 0, the tenth step follows from
y=1—c<1.

O

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

For Sublinear LSVI, we set ¢ = 1 — CyL+/t/n and and 7 > 0.5 by shifting the reward function. In this way, we have

CEL* 1 1
<1-= O <1—<CgL%/n, 10
p 4, 1Ol FgA) gCol t/n (10)
where the first step follows from v = 1 — ¢ = CyL+/1/n, the second step follows from § C3L%1/n > \/1;@)'

For Sublinear LSVI-UCB, we setc = 1 — \/% and 7 > 0.5 by shifting the reward function. In this way, we have

1 1 1
<1--—+0 <1- 1
P i PO e SK (ah

where the first step follows fromy =1 —c = \/% the second step follows from 8%(> Q(\/b%gA).

Therefore, we show that sublinear value iteration can be achieved while preserving the same regret.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

C SUBLINEAR LEAST-SQUARES VALUE ITERATION
This section presents the Sublinear Least-Squares Value Iteration (Sublinear LSVI)

* In Section C.1, we introduce the Sublinear LSVI algorithm.

* In Section C.2, we provide the upper bound of the difference between the optimal value function and the estimated
value function.

* In Section C.3, we present the regret analysis of Sublinear LSVI.
* In Section C.4, we perform a runtime analysis on the building blocks of Sublinear LSVI to analyze its efficiency.

* In Section C.5, we compare Sublinear LSVI with LSVI (Bradtke and Barto, 1996) in regret and value iteration
complexity.

C.1 Algorithm

We present our Sublinear LSVI algorithm in Algorithm 1. We summarize our algorithm as several steps: (1) sample
collection: we query a pair of state and action in the span matrix for n times at each step and observe its reward and next
state, (2) data structure construction, we preprocess the embeddings for state and action pairs and build a nearest neighbor
data structure, (3) we perform least-squares solver to estimate the weight in the linear MDP model, (4) we use LSH for value
function estimation, (5) we construct policy based on the estimated value function.

C.2 Value Difference

In this section, we provide the tools for regret analysis. The goal of this section is to prove Lemma C.1.

Lemma C.1. Let MDP(S, A, H,P, r) denote a linear MDP. Let V}*(s) be the optimal value function defined in Defini-
tion A.5. Let V; (s) be the estimated value function defined in Definition A.5. We show that via Algorithm 1, the difference
Vi (s) — Vi (s) is upper bounded by:

Vi(s) = Va(s) < E [XH: (B — Bo)Vra) (s an)lss = 5| + = H(H + 1), (12)
h=1
where c is the parameter for Max-IP.
Proof. We start with lower bounding V}, (s) as
Vi(s) 2 c- max (@n, ¢(s, a))
= cmax @h(s, a), (13)

where the first step follows from Theorem B.2, the second step follows from the definition of @h(s, a) in Definition A.5 and
the definition of convex hull.

Next, we upper bound V;*(s) — Vi(s) as

Vii(s) = Vi(s) = max @} (s, a) — Vi(s)
< max @j(s, a) — cmax Qn(s, a)
< Qp(s,7"(s)) — cmax Qn(s, a)
< Qi (5,7 () — cQn(s, 7 (s))
= C(QZ(S, T (s)) — @h(sm*(S))) + (1= c)Qj(s,7"(s))

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

Algorithm 1 Sublinear LSVI

1: data structure LSH
22 INITS CRYLneN,deN,ce (0,1), 7€ (0,1))

> Theorem B.2

3: > |S| = n, ¢, 7 is the approximate Max-IP parameter and d is the dimension of data
4: QUERY(z € R%)
5: end data structure
6:
7: procedure SUBLINEARLSVI(Score, Acores N €N, H € Ny spy € (0,1), 7sn € (0,1))
8: > Score and A qre are in Definition A.7
9: /*Collect Samples*/
10: for step i € [H] do
11: Dy, 0
12: forj=1,---,M do > For each column in the span matrix defined in Definition A.8
13: fori=1,--- ,ndo > Play n times
14: Query (s;,a;) at step h, observe the next state s”;.
15: > s, a; defined in Definition A.8
16: Dy, < Dp U {(sj,a;,8%)} > |Dy| = Mn
17: end for
18: end for
19: end for
20: /*Preprocess data and build a nearest neighbor data structure®/
21: > This step takes O(S - (A7 + dA))
22: for s € S.ore do
23: D, + {¢(s,a)| Va € Acore}
24: static LSH LSH;,
25: LSH,.INIT(®,, A, d, cLsH, TLSH)
26: end for
27: /*Precompute A matrix*/ > This step takes O(Md? + d*)
28: A+n Zjvil B(sj,a;)p(s;,a;5)"
29: Compute Agl
30: /*Update value function®/ > This step takes O(H (d> + Md 4+ Mn + SdA?P))
31: forsteph=H,...,1do
3: R D D) (rh(S, i) + vhﬂ(s'/))
33: for all s € S¢ore do
34: a < LSH,.QUERY (W)
35: Vi(s) < (Wh, ¢(s,a))
36: end for
37 end for
38: /#Construct policy*/ > This step takes O(H SdA)
39: policy 7 <)
40: forsteph=1,...,H do
41: Th(s) < argmax,c 4. (Wp, @(s,a)) forall s € Score
42: end for
43 return 7
44: end procedure
< (@45, () = Quls 7" ()) + (L=)(H +1)
< (@05, () = Quls, ™ () + (L=) (H + 1=), (14)

where the first step follows from V;*(s) = max,c 4 Q% (s, a), the second step follows from Eq. (13), the third step follows

from maxqe 4 Q7 (s, a) = Q} (s, 7*(s)) and the forth step follows from

maxgea Qn(s,a) > Qn(s,7*(s)), the fifth step is an reorganization, the sixth step follows the upper bound for @} in

Definition A.5, the seventh step follows from ¢ € (0, 1) and c is close to 1.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

Next, we can write the difference Q5 (s, a) — @h(s, a) as

Qi (s,a) — Qn(s,a) = [rn + PuVi1)(s,a) — [rn + PpVisa](s, a)

[Pth*Jrl](sv a) - [@h‘/}thl](sﬂ a’)

= [PaVii1)(5, @) — [P Vira](s, @) + [Pa Vi) (s.a) — [Br Viga)(s, @)
=

Py, (Virer — Ve) (s,@) + [(Br, — Bp)Vig1)(s, @), (15)

where the first step follows from the definition of Q},(s, a) in Definition A.5, the second step follows from eliminating

the common term 74 (s, a), the third step follows from inserting an additional term [P, Vj,11](s, a), and the last step is a
reorganization.

Combining Eq. (14) and Eq. (15), we have
Vii(s) = Vi(s)
< (Qi(s, () = Quls, 7 () + (L=) (H + 1= h)
= [Bu(Virs1 — V)]s, 7 (5)) + [P~ Br)Viga](s, 7 (5)) + (1 —) (H + 1~ h)
=E [(Vﬁkﬂ — Vir1)(sn41) ‘ sp = 8} +E [[(Ph —Pp)Vis1](sh. an) ’ Sh = 8}
(1—¢)(H+1-h)
= (Viter = V) + E [= B)Vasa (s an) | s = 3]
+(1—-¢)(H+1-h),

where the first step follows the Eq. (14), the second step follows the Eq. (15), the third step rewrites both terms into an
expectation over 7*, and the last step follows the definition of V', ; and Vi 1.

Using induction from 1 to H, we have

M=

Vi'(s) =Vi(s) < E [EH: [(Ph — Pn)Viya)(sn, an) ‘ s1= 5} +(1-¢

(H+1-h)
h=1 h=1
1 1-c
- [Z Py — Pp)Vag1)(sn, an) ‘ = 5} + H(H +1),
h=1
where the second step is a reorganization. O

C.3 Regret Analysis

The goal of this section is to prove Theorem C.2.

Theorem C.2 (Convergence Result of Sublinear Least-Squares Value Iteration (Sublinear LSVI), a formal version of
Theorem 4.1). Given a linear MDP with form MDP(S, A, H, P, r) with core sets Score, Acore defined in Definition A.7,
if we chose n = O(C? - e 2L?H*.), where « = log(Hd/p) and Cj, is a constant, the Sublinear LSVI (Algorithm 1) with
approximate Max-IP parameter ¢ = 1 — O(L - y/1/n) has regret at most O(LH?+/1/n) with probability at least 1 — p

Proof. We have two definitions for @h(s, a). The first definition is given by Definition A.1, it says

~

Qn(s,a) =rn(s,a) + [Ph - Vasil(s, a). (16)

The second definition is given by Definition A.2, it says

~

Qn(s,a) = ¢(s,a) Wy (17)

Given the second definition, our goal is to derive P,.

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

To do this, we write @h(& a) as

Qn(s,a)
:(ﬁ(S,G)T’l/ﬁh
=o(s.a) AT Y 6(5.4) (ral3.0) + T (51))
(8,a,8,")€Dy,
=o(s.a) AT Y 0(5.a) (9(5,@) O + Vi (50)
(8,a,51")EDy,
=¢(s,a) AT Y 4(5,0)8(5,0) O+ d(s.a) AL YT B(5,a) Vi (s))
(8,a,8,")€Dy, (8,a,51")EDy,
= (s,0) O+ (s,0) AT Y B(38,a) Vi (8))
($,a,8,")EDy,
= ¢(s,0)" O + / (e(s:)TAT D0 65,@)0(5',51")) Vs ()
(8,a,51")EDy,
SCCORY ECODN SIS SR CONER) AR (18)
(5,a,51")€Dy,

where the first step follows the definition of @h(s, a) in Definition A.5, the second step follows the definition of Wy, in
Algorithm 4, the third step follows the definition of reward r;, in Definition A.2, the forth step is an reorganization, the
fifth step follows from A~! (s yep, D8, @) (s, a) T = 1, the sixth step rewrites the second term in a integral format,
where d(z, y) is a Dirichlet function, the last step follows the definition of reward 7, in Definition A.2.

By comparing Eq. (18) with Eq. (16), we should define]f"h(s’|s, a) as
Bu(s's.0) = o(s.)A™" D7 o(5a)(s",8)). (19)

(5,a,81")€Dn
Combining Eq. (19) with the definition of [P, Vi41](s, @) in Definition A.5.

PrVisal(s,0) = é(s,a)TAT D" 638, @)Vaga (1) (20)

(8,a,51")€Dp

In the next a few paragraphs, we will explain how to rewrite [(Pp, — @h)‘/}h.l,_]_] (s,a).
[(Ph — Bp) Viry1](s, a)

— (s,a)" / D ()da(s") — B Vi (s,)

= ¢(s,a)" / Viia(s)du(s) = o(s,0) TAT D" (5,a) Vg (51)

(8,a,51")€Dy,

—6(sa)TAT Y G060 [Tha()da(s)

(3,a,5,")€Dy,
—o(s,a) AN DT 65,0 Vaga(s))
($,a,5,")EDy,
—6a) A S 960 (060 [Tan(du(s) ~ (1)
($,a,5") €D
=d(s,a)TAT D 93 d)(/‘/}h+1(sl)¢($a a)"dp(s') - ‘7h+1(=§l/))
(8,a,51")€Dy

—o(0)"A Y 0 [T (ORI 8,81d Toa (51)

(8,6,51")€Dn

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

=6(s.a) AT Y 06, a) BV ()13, = T (s))) D

(5,a,81")€Dx

where the first step follows the definition of P, [s'|s;, a;] = ¢(s;, ai)un(s’), the second step follows Eq. (20), the third step
adds the A~1 250,57 eD, P8, a)o(3, @) " = I, to the left term, the forth and fifth steps are reorganizations, the sixth step
follows the definition of P, in Definition A.2, the last step follows the definition of expectation.

Next, we rewrite Y . - ep, @(3,4) as

M M
Z d(8,a) = nZd)(sj,aj) = nZd)j, (22)
j=1 j=1

(5,a,s;")€D},

where the first steps follows from Algorithm 1 that for each ¢(sj,a;), we query it n times and put all
{(sj,a;,851), -+, (85, a;,8},)} in Dy, the second step follows by ¢; = ¢(s;, a;) in Definition A.7.

Next, we rewrite A as

A= > dsa)es,a)"

(é,(‘l,,s’l/)EDh
=nY_ dsj a)dsi,a;)

=ndd ', (23)

where the first steps follows by the definition of A in Algorithm 1,the second steps follows from Algorithm 1 that for each
#(sj,a;), we query it n times and put all {(s;,a;, s};), -, (sj,a;,8},)} in D, the third step follows from the definition
of ® in Definition A.7.

Combining Eq. (23) with Eq. (21), we get

(P — Pr)Visil(s,a) = ¢(s,0) T (n@D 7)™ Z IE a)(Vi (s)]$,] - ‘7h+1(8§)>~ (24)

(8,a,5,")€Dn

Next, we further bound (P, — Pp,)Vis1](s, a) as:

[(Bh — i) Vi (5.,)
=0(s,0) @) 3 65,0 (ElVasa ()]sl = Vi (5)))
(s'(zs',’)EDh

— ¢(s,a)T (n®DT)" nz¢ Z(E[Vm(s'nsj,aﬂ—Vm(s;-z))
=1

:¢(s,a)T(<p<pT)*1qu(sj,aj)(E[VhH()s;,a;] — 1217,+1))

- n
Jj=1

= ¢(s, ‘I)(I)T Z¢J(Vh+1 Nsj,as] — ZVh—i‘l 71)

where the first step follows from Eq. (24), the second steps follows from Algorithm 1 that for each ¢(s;, a;), we query
it n times and put all {(s;, a;, s}1), -, (85, a;, s},)} in Dy, the third step is an reorganization, the last step follows the
definition of ¢; in Definition A.7.

For each j € [M], we define random variable

Zj = E[Vii1(s' Neés] —

> i 5

3\'—‘

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

By Hoefding Inequality in Lemma A.19, we can show

|zj| < Co-H-~/t/n

For convenient, we define vector z € RM tobe z := [z1,--- , 2a/].
Now, we can upper bound [(P), — P,)Vi41](s, a) as follows:
[(Bh = Pr)Vigal(s,a) = 6(s,0) T (BBT) 71Dz
= ¢(s,a)" (27) "2
= (@o(s, a))
< |197(s,)1 - [|2]loo
<L-Cy-H-+/t/n, (25)

where the first step follows the Z;‘i 1 @;2z; = ®z, the second step is an reorganization, the third step follows the holders
inequality, the last step uses the bound for ||®~'¢(s, a)||; in Definition A.7, Definition A.8 and ||z;]|2.

Combining Eq. (25) with Lemma C.1, we could upper bound V;*(s) — Vi (s)

—C

Vi'(s) — {Z (B, — Pp) Vi1l (sn, an)|s1 = S} + ! -H(H+1)

1-—

<H-L-Cy -H- L/TL-i-T H(H +1)
1-—

=L-Cy-H*- L/H+T H(H+1)

<L-Cy-H* \/u/n+ (1 -c)H?

<2CoLH?*\/1/n

€,

IN |

where the first step follows from Lemma C.1, the second step follows the upper bound of [(P), — E\Dh)‘/}thl] (s,a)in Eq. 25,
the third step is an reorganization, the forth step follows from H > 1 so that H2 > H, the fifth step follows from
1 — ¢ = CyL+/1/n, the sixth step follows from n = O(CZ - e=2L? H*.). Here we choose c that maintain the level of regret.

O

C.4 Running Time Analysis

Lemma C.3. The running time of pre-computing A= takes

O(Md? + d¥).

Proof. 1t takes O(Md?) to sum up every ¢(s;,a;)d(sj,a;) . It takes O(d) constant to multiply the sum results by
n. Computing the inverse matrix of A takes O(d*). Combining the complexity together, we obtain the pre-computing
complexity O(Md? + d*). O

Lemma C.4. The running time of updating value takes
O(H - (d* + Md + Mn + SdA*)).

Further more,

o [finitialize the LSH data-structure using Theorem A.14, p = 1 — iC'oLw /i/n.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

Algorithm 2 LSVI (Bradtke and Barto, 1996)

1: procedure LSVI(S, A, N € N, H € N) > S and A are in Definition A.2
2: /*Collect Samples*/
3 for h € [H] do
4 Dyp 0
5 forj=1,--- ,Mdo > For each element in the span set defined in Definition A.8
6: for/=1,--- ,ndo > Play n times
7 Query (s;,a;) at step h, observe the next state s”;.
8 > s;, a; defined in Definition A.8
9: Dy, <= Dp U {(sj,a;,87)} > |Dp| = Mn
10: end for
11: end for
12: end for
13: /*Precompute A matrix*/ > This step takes O(Md? + d*)
4 AenY é(sga5)(s5,05) " > A € Rixd
15: Compute A1
16: /*Update value function*/ > This step takes O(H (d*> + Md + Mn + SAd))
17: forh=H,...,1do
18: Wy, + A Z (s,0,5) €Dy, 98, 0) (’“h(57d) + Vh+1(8'l/))
19: for all s € Scorc do
20: Vi(s) < maxge .., (Wh, P(s,a))
21: end for
22: end for
23: /*Construct policy*/ > This step takes O(H S Ad)

24: policy 7 <
25: forh=1,...,H do

26: Th(s) <= argmax,c 4 (Wp, P(s,a)) forall s € S
27: end for
28: return 7

29: end procedure

o [finitialize the LSH data-structure using Theorem A.15, p = 1 — %C§L2L/n.

Proof. We can rewrite wy, as follows:

B=A" Y 6(3,a) (mul3.a) + P ()

(5,4 s‘l/)GDh

=A" ng o(s5,a5)(rn(s;,a;) E Vh+1]l
Jj=1

where the second step follows the definition of Dy,.

For each of the H step,

o It takes O(SdAP) to compute Vh(;) for each state s; € Score. If we initialize the LSH data-structure using

Theorem A.14, we determine p = 1 — fC’oL t/n using Lemma B.9. If we initialize the LSH data-structure using
Theorem A.15, we determine p = 1 — fC'O L?1/n using Lemma B.10.

« It takes O(Mn) to compute 7(s;,a;) + = 3", IA/hH(s;l) for the total n number of s7; observed by (s;, a;).
* It takes O(Md) to sum up the M dimensional vector ¢(s;, a;)(rn(sj,a;) + L 31", ‘A/;H_l(s;l)).

o It takes O(d?) to multiply A with the sum of vectors.

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

* All other operations take O(d).

Combining the complexity together and multiply by H steps, we finish the proof. O

Lemma C.5. The running time of constructing policy takes

O(HSdA)
Proof. For each step, it takes O(SdA) to find the optimal action. Thus, it takes O(H SdA) for inference. O

C.5 Comparison

In this section, we show the comparison between our Sublinear LSVI with LSVI Bradtke and Barto (1996).
We start with presenting the LSVI algorithm in Algorithm 2.

Next, we show the comparison results in Table 3.

Table 3: Comparison between Our Sublinear LSVI with LSVI. Let S and A denote the cardinality of S..c and Ao Let d
denote the dimension of ¢ (s, a). Let H be the number of steps played in each episode. Let n denote the quantity of times
played for each pair of core state-action. Let L denote the constant in Definition A.8. Let ¢ = log(Hd/p) and p is the failure
probability. Let p; =1 — %CoL\/L/in be the parameter of data structures in Theorem A.14 and p =1 — éC’gL% /n be
the parameter of data structure Theorem A.15. This table is a detailed version of corresponding part of Table 1.

Algorithm | Preprocess #Value Iteration | Regret

Ours O(SdAY™rY)y | O(HSdAPY) O(CoLH?\/1/n)
Ours O(SdA™ M) | O(HSdAP?) O(CoLH?\/t/n)
LSVI 0 O(HSdA) O(CoLH?\/1/n)

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

D SUBLINEAR LEAST-SQUARES VALUE ITERATION WITH UCB
This section extend the Sublinear LSVI with UCB exploration.

* In Section D.1, we present the Sublinear LSVI-UCB algorithm.

* In Section D.2, we define several simplified notations for the convenience of proof.

* In Section D.3, we provide the upper bound of weight estimated by Sublinear LSVI-UCB.

* In Section D.4, we introduce a modified version of net argument for Sublinear LSVI-UCB.

* In Section D.5, we upper bound the fluctuation on the value function when performing Sublinear LSVI-UCB Algorithm.

* In Section D.6, we provide the upper bound on the difference between the estimated Q function and the actual Q
function.

¢ In Section D.7, we given the upper bound on the difference between the estimated Q function and the actual Q function
at the first step using induction.

¢ In Section D.8, we introduce the recursion formula for the regret analysis.
¢ In Section D.9, we formally provide the regret analysis of LSVI-UCB.
¢ In Section D.10, we analyze the runtime Sublinear LSVI-UCB by calculating the time complexity for each block.

* In Section D.11, we compare Sublinear LSVI-UCB with LSVI-UCB (Jin et al., 2020) in terms of regret and value
iteration complexity.

In the following sections we show how to tackle the problem and provide our Sublinear LSVI-UCB. Moreover, we provide
the regret analysis of our Sublinear LSVI-UCB.

D.1 Algorithm

In LSVI-UCB (Jin et al., 2020) with large action space, the runtime in each value iteration step is dominated by by computing
the estimated value function as below:

‘7h(5;;+1) = gleaj(min{(wﬁ, ¢(S;+1a a)) + - H(ZS(S}TH-M a)HA;1,H} (26)

where w¥ is computed by solving the least-squares problem and ¢(s7, 41, @) is the embedding for a pair of state-action. The
complexity for Eq. (26) is O(d?A)

The key challenge of Sublinear LSVI-UCB here is that Eq. (2) cannot be formulated as a Max-IP problem.

To handle this, we demonstrate how to develop Sublinear LSVI-UCB algorithm. We start with bounding the Q function in
Jin et al. (2020) as

Lemma D.1. We show that

min{||¢(sf41, G)Hﬁz/\;l-s-w’;(wQ)TzH} < Qn(shy1,a) < min{|[é(sy 4, G)HQBZA;I.FQHJQ(U}Q)MH}~
Proof. We start with rewriting Qp (s}, .1, a),
Qn(sh41, @) = min{wy ¢(sf11,a) + B+ ¢(s] 41,)| -1, HY.

Next, we show that

wyy @(sh41,0) + B+ 16(s741,a)llp-1 < \/2(wl¢(82+1, a))? + 257 - [|o(s] 11, a)Hi;I

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

= [|¢(sh41> G)H252A;1+2w,’§(w§)T7

where the first step follows from Cauchy-Schwartz inequality, the second step is an reorganization.

Next, we show that

w}—l—¢(52+1aa) +8- ||¢(S;+1a CL)HA;I > \/(w}—y,r(b(S;-H»p a))?+ 32 H¢(571;+1a a)”i;l

= ||¢(5;+17a)”gZA;ler;g(w’;)T’

where the first step follows from the fact that both w;, ¢(s} 1, a) and ||¢(s], ., a)|| A+ are non-negative, the second step is
an reorganization.

Finally, consider the propriety of min function, we finish the proof of the lemma.

O
Algorithm 3 Modified LSVI-UCB
I: fork=1,..., K do
2: Initialize the state to s}.
3 forh=H,...,1do
4 /*Compute A, '*/ > This step takes O(Kd? + d*)
5: Ay 3021 6(sT,) (5T, af) T + A+ Ta,
6: Compute A
7 /* Value Iteration*/ > This takes O(AK d?)
— k—1 T T T T i T
8 wh = A 3002 6k ap) - (ru(shs af) + Vi (sf44))
9: forr=1,--- ,k—1do
10: for a € Ado
11 Qh(S}TLJrlv a) < rnin{||¢(s}rl+1, a)||252A;1+2w§wﬁTaH}-
12: end for
13: Vi(sh) < maxqe a4 Qr(s],, a)
14: a], < argmaxge Qp(s, a) > aj, is the maximum value action taken at state s7 .
15: end for

16: end for
17: /* Construct Policy*/
18: forh=1,...,Hdo

19: Given state s}, take action aj, and observe s ;.
20: end for
21: end for

Next, we present a modified version of LSVI-UCB in Algorithm 3. The major difference between our modified
version of LSVI-UCB and Jin et al. (2020) lies in in Line 11 of Algorithm 3. Here we choose Qp(s}, +1,a) —
min{||¢(s;+1,a)||2B2A;1+2wﬁ(w§)T,H}, which is the upper bound of min{w, ¢(s}, ,a) + B - [|¢(s} 1, a)HA;17H}
according to Lemma D.1.

Based on Algorithm 3, we propose our Sublinear LSVI-UCB in Algorithm 4, which reduce the value iteration complexity to
sublinear in actions. Note that to let p strict less than 1, we set ¢? € [0.5,1) and 72 € [0.5,0.8]) following Lemma B.9.

D.2 Notations for Proof of Convergence

Next, we start the regret analysis of our Sublinear LSVI-UCB. We first define a series of notations. At episode k, we first
estimate the weight wﬁ and matrix AZ. Next, we use them to estimate Q function Qﬁ. Then, using our LSH data structures,
we obtain the value function th(s) following line 25 of Algorithm 4. We also obtain the corresponding action associated
with the value function and form the polity 7, following Line 30 of Algorithm 4. We also simplify (,ZS(SZ, aﬁ) as qﬁﬁ.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

Algorithm 4 Sublinear LSVI-UCB

1: data structure MATRIXLSH

2:

R A A

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

INIT(S CRY, neN,deN,ce (0,1), 7 € (0,1))

> Theorem B.6

> |S| = n, ¢, 7 is the approximate Max-MatNorm parameter and d is the dimension of data

QUERY(z € R%)

end data structure

/*Preprocess ¢(s, a) and build a LSH data structure*/
for s € S do
O, «+ {¢(s,a)| Va € A}
static MATRIXLSH MATLSH,
MATLSH . INIT(®,, A, d, cMatLSH, TMatLSH)
end for

fork=1,..., K do
Initialize state to s¥.
forh=H,...,1do
/*Compute A, '/
Ap = E 21 o(sh,a)é(sh,ap) T + A 1g.
Compute A,:l
/* Value Iteration*/
wh e A 0025 6 af) - (57, aF) + Vi (s740)
forr=1,--- ,k—1do
aj, < MATLSH,.QUERY (262A; " + 2wfwl ™)
Vi(sh) < min{||¢ (s}, 1, a2)||2ﬁ2A;1+2w}’§wh‘T H}
end for
end for
/* Construct Policy*/
forsteph=1,...,H do
Take action aj at s}, and observe s} _ ;.
end for
end for

33: end procedure

: procedure SUBLINEARLSVI-UCB(S, A, N € N, H € N, ematisn € (0,1), Tmatsh € (0, 1))

> This step takes O(S - (A7 + d?A))

> This step takes O(Kd? + d*)

> This takes O(Kd>Ar)

D.3 Upper Bound on Weights in Sublinear LSVI-UCB

In this section, we show how to bound the weights wZ in Algorithm 4 using Lemma D.2. The weight we would like to bound
is different from Jin et al. (2020). But the bound inequalities is very standard and similar to the proof in Jin et al. (2020).

Lemma D.2. The weight w’ in Algorithm 4 at episode k € [K) and step h € [H] satisfies:

Proof. 1If we perform v

wkle < 2H\/dk/X.

T

wf where v € R? could be any vector in R¢, we could bound |v T wF| as

k—1
o wkl = [0 (AR Y 67 (r(sh aR) + Vi (shan))|
T=1
k—1
< T h Y or(
=1

(k. 07) + max Qn1 (s741.,0)) |

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

k—1
=203 [T (AR) o
T=1

k-1

k—1 1/2
<20 (3 oT (A ™0) - (S (en) T (AR '0h)) /
S 2H|‘U||2\/ma

where the first step follows from the definition of w in Algorithm 4, the second step follows from the definition of ‘7h+1 in

Algorithm 4, the third step follows from Definition A.2 that 7(s, a) + Vy1(s) < 2H forall s € S and a € A, the forth step
is a reorganization, the fifth step follows Cauchy—Schwarz inequality, the last step follows from Lemma A.20.

Next, we rewrite ||wf |2 = max,.|,,=1 [vTw}], in this way,

will2 = max) loTwk| < 2H\/dk/\,

CHIGIPES

where the last step follows from [vTw}| < 2H\/dk/\.

D.4 Our Net Argument

We present our net argument to support the proof in the this section. We start with defining the covering number of euclidean
ball.

Lemma D.3. Let B denote a Euclidean ball in R®. B has radius greater than 0. For any € > 0, we upper bound the
e-covering number of B by (1 + 2R /¢)%.

This is a standard statement. We reder readers to Vershynin (2010) for more details.

Next, we upper bound the covering number of a function V(s) = min { l6(s, a)ll g2 A1 4w > H} The V we would like to
bound is different from Jin et al. (2020). But the net argument is very standard and similar to proof in Jin et al. (2020).

Lemma D.4 (Our Net Argument). Let A € R4*? denote a invertible matrix whose minimum eigenvalue is greater than a
constant \. Let w denote a vector such that |{w|z < L. Let 3 € [0, B]. Let max(s qyesx.A ||¢(s,a)|2 < 1. Let V denote
a famility of functions such that V : S — R for any V € V Let N. denote the e-covering number of V. The e-covering
number is defined on distance dist(V, V') = maxges |V (s) — V'(s)|. If for any V' € V, we have the form

V(s) = min { |65, @)l g2 7, H }- @)

Then we have

log N, < dlog(1 +4L/e) + d?log (1 + 8d1/232/()\62)>.
Proof. For given two arbitrary functions Vi, Vo € V, we have

dist(Va, V2) < sup (1165, @)l e g = 19050 gza5)
s,a

< o (1805285t = 19013205 sy)

< sup \JIOT(BAT +wiw] — BEA — wawn)g)
¢:||#ll2<1

< s ((w-w)To)+ sup (T8I - 5305)0
o:lloll2<1 ¢:]|pll2<1

s — wall + /118347 — B2A5 "o

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

< fhwn = wall + /1820 — 3385, (28)

where the first step follows the definition of V4 and V5 in Eq. (27), the second step follows from the fact that || (s, a)||2 < 1
in Definition A.2, the third step step follows from the fact that for any z,y > 0, we have |\/z — VIl < V/|z — yl, the forth
step follows from /2 +y < \/x + /y for any z,y > 0, the fifth step follows from the fact that the Frobenius norm of
matrix is greater than the ¢5 norm.

Next, we denote C,, as the (¢/2)-cover of a ball {w € R? | |w||s < L}. Using Lemma D.3, we show that it can be upper
bound as: |C,,| < (1 +4L/¢)%.

Similarly, we denote Cy as the (e2/4)-cover of a ball {32A~1 € R4 | ||32A~Y||p < d'/2B2)\~'}. Here we define the
ball in || - || . Using Lemma D.3, we show that it can be upper bound as: |Cx| < (1 4 8d'/2B2/(\e2))?".

Using, Eq. (28), we know that given any V4 € V, we could find a Vo, € V with form Vi(s) =
|¢(s,a)||B§A;1+w2w;,H} where wy € C,, and ,8§A2_1 € Ca, such that dist(V;,V5) < e. Therefore, N, <
|Ci]| - |C.4]- Using this inequality, we have

min {

log Ne < log |Cal + log |Cu|
< dlog(1 4 4L/¢) + d*log(1 + 8d*/2B?/(\é?)).

Thus, we conclude the proof. O

D.5 Upper Bound on Fluctuations

We present a concentration lemma so that the fluctuations in LSVI-UCB is upper bounded in this section. The analysis is
very standard and similar to proof in Jin et al. (2020). However, we improve the proof of Jin et al. (2020) with more detailed
constant dependence.

Lemma D.5. Let Cg > 1 denote a fixed constant. Let § = Cg - dH+/t. Let . = log(2dT'/p). We show that for any
probability p € [0, 1] that is fixed, if we have an & event satisfying that for all k € [K| and h € [H]:

k—1
| 2 6 (Va(shan) = BuViEal(shah) |, -, <30+ dHfo+log(5C5)
=1 h
Then, we have
Pr[¢] > 1 —p/2.

Proof. We show that any fixed € > 0, we have

H kz_‘i O (Vike1 (shyr) — [PuVial(s7, a7)) H
=1

2

(-

Hv 1/232 2.2
QWGWWMM+m4H? %%wm@+wﬁ 8k?c

o -)H%@m0+ 2

< 4H?(dlog(1 + k) + dlog(1 + 8y/k3/d) + d* log(1 + 8C3d*° K?1) + log(2/p)) + 8d* H?

<30 - d*H?1og(10CzdT /p)

=30 - d*H?(1 + log(5C%)), (29)
where the first step follows from combining Lemmas A.21 and D.4,the second step follows from A = 1, ¢ = dH/K, and
B = Cg - dH+/t, the third step follows from Cg > 1 and « = log(2dT/p), the last step follows from ¢ = log(2dT'/p).

Thus, we complete the proof. O

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

D.6 Upper Bound of Difference of Q Function

In this section, we bound like to bound the difference between the () function Qﬁ (see Section A.1) selected by Algorithm 4
and the value function Q7 (see Definition A.4) of any policy 7. We bound the their difference by bounding (¢(s, a), wy) —
Q7 (s, a). The analysis is very standard and similar to proof in Jin et al. (2020). However, we improve the proof of Jin et al.
(2020) with more detailed constant dependence.

Lemma D.6. Let A = 1 in Algorithm 4. Let v = log(2dT/p). We show that for any policy w that is fixed, for all s € S,
a € A h € [H|andk € [K], on the event defined in Lemma D.5, we show that exists an absolute constant Cg > 100
such that

(@(s, a),wi) — QR (s,a) = [Pa(Vity — Viia)l(s,a) < CpdHVe- [[6(s, a) | ak)1
Proof. We start with rewriting Q7 (s, a) as

QR (s, a) = <¢(Sv a’)7 wg> = Th(sa a) + [th}al](sa a)'
where the first step follows from Proposition A.9, and the second step follows from Eq. (5).

Next, we show that

N

—1

why = wp = (M) R0, + Vit (sh4)) — wh,
1

-
k—1

= (AR (= Ak + D0 00 (Vi (sin) — PV (570 a7))

T=1

=p1+p2+ps.

where the first step follows from the definition of w, the second step follows from the definition of w. the last step follows
from

p1i= — A(A}) "
k—1

P2 = (A]fl)fl gb;; (V;f_,_l(sz_,_l) - [thiﬁi—l](szv a;rz))
T=1
k-1

pai= (AR D S PA Vil — Vin))(sh, af)

3
Il
-

Next, we upper bound p;, p2 and ps separately.
We upper bound p; as,
[(6(s,a), a1)l = X~ [{d(s, a), (A}) ™ wf)]
<A flwppllz - [lo(s, a)ll ax)-1
< 2HVAX - | §(s,a)l| g+
<2HVd - |[¢(s, a) || (ak)-1, (30)

where the second step follows from |{(a, b)

| < |lall2 - ||b]|2, and the third step follows from |[wf |2 < 2Hy/d/X (see
Lemma D.2), and the last step follows from A =

1.
We upper bound ps as,

[(6(s,), q2)| < 30-dH /v +10g(5Cs)||¢(s, @)l ax)-1, €2y

where the first step follows from Lemma D.5 on the event £.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

We upper bound g3 as,
k—1
(905, = (805,00, (A 3 GRIPA R, — V]G h))
=1

k—1
= <¢(S,a)7 (AT D dh(en)T /(th-&-l - Vh”+1)(8’)duh(5’)>
T=1

=q1 + q2,

where the first step is a reorganization, the second step decomposes the right hand side as:

q -

(o0, [070 = Ve (s)).
= = M0, (D) [~ V) ())

Then, we rewrite g1 = P, (V,¥, | — V™,)(s, a) following Definition A.2.

Next, we upper bound g2 as

la2| < 2HVd||6(s, @)l (ag)-1, (32)
where the first step follows from Lemma D.2.
Finally, because (¢(s,a), wf) — Q¥ (s,a) = (¢(s,a), p1 + p2 + p3), we have

[{6(s,a), wi) — QF (s,a) = Pr(Vi'y — Vil1)(s,)|
= <¢(S7a)7p1 +p2 + Q2>

< (2HVd +30 - dH\ /1 +10g(5C3) + 2HVd) - |$(s, @)l (1)1

< dH(304/¢+10g(5Cs) +4) - [[6(s, a)ll ag)-1

where the second step follows from combining Eq. (30), Eq. (31) and Eq. (32), the third step follows fromd > 1, H > 1.

Finally, we choose an absolute constant C'z that satisfies:

30(y/¢ + log(5Cs) +4) < Cgv/t. (33)

Note that . = log(2dT'/p) > 4, as long as Cg > 100 the above inequality holds
Finally, with this choice of C3, we finish the proof. O

D.7 Q Function Difference by Induction

In this section, we build a connection between Q% (s, a) selected by Algorithm 4 and Q% (s, a). We show in Lemma D.7
that Q7 (s, a) is upper bounded by Q% (s, a) plus an error term related to the parameter c for approximate Max-MatNorm in
Algorithm 4.

Lemma D.7. Let Q% (s, a) denote the estimated Q function for state s when taking action a at the first step. Let Q% (s, a)
denote the optimal Q function for state s when taking action a at the first step. Let H denote the total steps. Let c is the
parameter for approximate Max-MatNorm. We show that using Sublinear LSVI-UCB (see Algorithm 4), we have

1— H
Qi (s,a) — Qf(s,a) <H —c 1_CC)

Proof. We start with bounding on the relationship between Q% (s, a) and Q} (s, a).

<¢(Sa a)v w£> + 5”@5(8, a)”(Afb)*l Z Q;(& CL) + [Ph(vhk+1 - V};k+1)](57 a’)a (34)

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

where the first step follows Lemma D.5.

Next, when h = H, as the value functions are all zero in H + 1 step, we have
QIIC{(Sv CL) > <¢(Sa a)v wlIC{> + ﬂ||¢(8a (1) ||(A’;1)*1
> Qy(s,a), (35)
where the first step follows from Lemma D.1, the second step follows from Lemma D.6.
Next, we have
k > *
max Qf (s, @) = max Qy (5, a)
> Vi (s), (36)

where the first step follows from Eq. (35), the second step follows from the definition of V7 (s) in Definition A.4.
Next, when h = H — 1, we bound [P, (VE — V)] (s,a) as

Pu(VE = Vip))(s. @) = [Pa(cmax @ (s,0) = Vil (5,0)
el (max Q% (5,0) = Vil (5,0) = (1 = PWVi](5,0)
el (max @ (5,0) = Vil(s,0) = (1 =) - 1

(-0, (37)

v IV

Y

where the first step comes from the property of data structure MATRIXLSH in Algorithm 4, the second step is an
reorganization, the third step follows the definition of V};(s) in Definition A.4, the last step follows the Eq. (36).

Next, we have

Qb _1(s,a) = (@(s,), why_y) + Bllé(s,)l us, ys

> Q;{fl(sva) + []P)h(VI]fT - VI;)}(&G)
> Qu1(s,a) —(1—¢)-1, (38)

where the first step follows from the Lemma D.1, the second step follows from Eq. (34) ,and the third step follows Eq. (37).
Next, we have
e Qfy_ (5,0) 2 max @y, (5,0) = (1 - ¢)
>Via(s)—(1=¢)- 1, 39)
where the first step follows from Eq. (38), and the second step follows the definition of Q%;_, (s, @) in section A.1.

Next, when h = H — 2, we lower bound [IP’MVg?1 —Vi_ (s, a) as

[Ph(VI]}A = Vi_)l(s,a) > [Ph(cgleaj(Qllcifl(s?a) = Vi_1)l(s,a)
c[Pn(max Qr—1(s,a) = Vi_)I(s,a) = (1 =) - [PaV_)](s,a)
el (max @y (s.0) = Vii_))(s.@) — (1=) -2

—c(l—¢)-1=(1-¢)-2, (40)

(AVARAY,

v

where the first step comes from the MATRIXLSH in Algoritm 4, the second step is an reorganization, the third step follows
the definition of V() in section A.1, the last step follows the Eq. (39).

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

Next, we have
Qb _a(s,a) > ((s,a), wir_o) + Blo(s,)y,)
> Ql_a(s,a) + [Pr(VE_y = Vi _1)](5,0)
> Qps(s,0) —c(l—¢)- 1= (1-¢)-2, 1
where the first step follows from the Lemma D.1, the second step follows from Eq. (34) ,and the third step follows Eq. (40).

using induction from H to 1, we have

H
Qi(5.0) 2 Qi(s,0) = (1=) D H(H +1- 1)
h=1
. H —cH —c+ i+t
= Qi) =~ (-~

H—cH —c+ A+t

= Qis,0) - T
. H—cH —c+cfit!

Ql(sva) 1—¢ + 1—c
. o — HH1

=Qi(s,a) — (H - 17_6)
N 1—cH

=Qi(s,a)— (H —c 1_0), 42)

where the first step follows the induction rule, the remain steps are reorganizations.

. . —_ -H .
We notice from Lemma D.7 that there exists a term H — ¢ 11 ~—. Here we use Fact D.8 to bound this term.

FactD.8. Let H € N. Let c =1 — ~, forany v € (0,1/(10H)), then we have

1_H
H—c
1

<2vH 2,
Proof. First, by definition v = 1 — ¢ € (0, 1), then we can rewrite LHS as
1—cH

1-c

H—c¢ =H-(1-y)(1-010-7")/

<H-(1-y)1-e 7))y

< H — (1-7)(H - 0.5(H?))
= H(1— (1 - 7)1 - 0.5(H7)))
< H - (2H7) = 2yH?,

where the second step follows from (1 — v)/7 < e~ the third step follows from 1 — =% > x — 0.522, Va € [0,1/10].
O

D.8 Recursive Formula

In this section, we bound the difference between QF (s¥, a) and Q7*(s¥, a) in a recursive formula.

Lemma D.9 (Recursion). Let §) denote the difference Qf (s, a) — Q7" (sk,a). Let (f,, = E[0F ,|sf, a] — 6y, denote
the error between expectation and observed difference. Let 3 = CgdH /1. Given the event £ defined in Lemma D.5, we
bound 8} — 6F , for any k € [K] and h € [H] as

5 — 6% o < Chiy + 28116058,) ar 1.

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

Proof. We bound the 7 as
0, = Qi (s.a) — Qi* (s, a)
< [Pr(Vir = Virt))(s, @) + 2C3dHV/|(s, a) | (k-
= (b 0k + 28116(s, a)l ax)-
where the second step follows from Lemma D.6, the third step follows from [P, (V,F, | — V;™F)](s,a) = (Fyq 4 05,4

Thus, we finish the proof.
O

As our algorithm have the same upper bound on recursion with Jin et al. (2020), the upper bound on ¢ ,’f 41 inJin et al. (2020)
could also be used in our analysis. We state the bound as

Lemma D.10 (Jin et al. (2020)). Let C,]f+1 = IE[(;}]LFI sk, a] — 5,’§+1. With probability at least 1 — p/2, we show that

K H
SN Gk <2HVT.

k=1h=1

We could also upper bound 3" 1, ST [(s, o) (ak)-1 following Jin et al. (2020).

Lemma D.11 (Jin et al. (2020)). Let a¥* € A denote the optimal action at state s§ € S. Given, AZ estimated in each step,
we have

K H
ZZW’Sual H(Ak < H- W

k=1h=1

D.9 Regret Analysis

In this section, we prove main theorem in Theorem D.12.

Theorem D.12 (Convergence Result of Sublinear Least-Squares Value Iteration with UCB (Sublinear LSVI-UCB), a formal
version of Theorem 4.3). In a linear MDP in Definition A.2, we set \ = 1. Let Cz > 100 denote a fixed constant and
v = log(2dT /p). If we set approximate Max-MatNorm parameter c = 1 — \/—‘? then for any p € (0, 1) that is fixed, with

probability 1 — p, Sublinear LSVI-UCB (Algorithm 4) has the cumulative regret at most O(Cg - Vd3H3T1?).

Proof. We start with upper bounding the regret as:

K
Regret(K) =) (Vi (s}) = V™ (s1))
k=1

K
= Z (TeajcQ (s a) — raneale (sha))
k=

K
<3 (mapitehet) - @ kot

K
Z(Ql(slv) - Q1 (slval) +2vH?)

H K H
SUHKH? 4+ N ¢F+28Y) llélsh, al)lax)-1, (43)

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

where the first step follows the definition of regret, the second steps follows from the definition of value function in
Deﬁmtlon A4, the third step follows from that max,e 4 QT* (s¥,a) > Q7" (s¥, a¥*), where a¥* is the optimal action chosen
at state s¥, the forth step follows from Lemma D.7, the fifth step is a follows the definition of 6,’? and ¢ ;j as in Lemma D.9,
the sixth step follows from Lemma D.9.

Next, with probability 1 — p, we show that

K H K H
Regret(K)§27KH2+ZZ§L“+2§ZZ p(s, af* ||(A") 1
=1

k=1h=1 k=1h

<2yKH?+2HVTi + 2ﬁZ Z lp(sF, af™)llax) -1

k=1h=1

< 2KvH? +2HVT.+ BHV2dK.

= 2KyH? + 2HVT1 + Cg - V23 HAK 2

<2WVHAK:2 + 2VH3 K1 + Cp - V2 HYK 2

< 20pVd3HAK 12, (44)

where the second step follows from Lemma D.10, the third step follows from Lemma D.11, the forth step from 5 =
Cg - dH /1, the fifth step follows from v = \/% the sixth step is a reorganizationm the seventh step follows from Cg > 100.

Thus, we finish our proof.

O

D.10 Running Time Analysis

We present the running time analysis of our Sublinear LSVI-UCB. We first introduce the running time of each procedure of
LSVI-UCB in Section D.10.1. Next, we introduce the running time of Sublinear LSVI-UCB in Section D.10.2. Therefore,
we could compare their efficiency in the next section.

D.10.1 LSVI-UCB

First, we show the LSVI-UCB algorithm in Algorithm 5

Lemma D.13. The running time of pre-computing A= in Algorithm 5 takes time
O(Kd* + d¥),

where w ~ 2.373 is the exponent of matrix multiplication Williams (2012); Le Gall (2014).

Proof. Tt takes O(Kd?) to compute and sum up every ¢(s},a])¢(s],a})". Computing the inverse matrix of A takes
O(d¥). All other operations take O(d). Combining the complexity together, we obtain the pre-computing complexity
O(Kd? + d*). O

Lemma D.14. The running time of value iteration in Algorithm 5 takes
O(HKd*A).
Proof. For each of the H step,

* It takes O(Kd*A) to compute 17h+1(s,:+1) for each state s7, ;.
* It takes O(Kd) to sum up ¢(s],, a}) - (rn(s],aj) + ‘7h+1(s;+1)).
o It takes O(d?) to multiply A with the sum of vectors.

* All other operations take O(d).

Combining them together, we have O(HKd?A). O

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

Algorithm 5 LSVI-UCB (Jin et al., 2020)
I: fork=1,..., K do

2: Initialize the state s%.

3 forh=H,...,1do

4 /*Compute A, '*/ > This step takes O(Kd? + d*)

5: A += 327 O(s7 ap)d(sh, af) T + A Ta.

6: Compute A,:l

7 /* Value Iteration*/ > This step takes O(Kd?A)
— k—1 T T T T i T

8 wy Ah1 > or1 O(shoaf) - (ru(shs af) + Vi (sfiq))

9: forr=1,--- ,k—1do

10: for a € Ado

1 Qn(sf 41, 0) + min{(wy, ¢(s] 1, a)) + B 6(s] 1, @) o1, H}.

12: end for

13: Vi(s}) < max, Qn(s},a)

14: aj, < argmax, Qn(s,a) > aj, is the maximum value action taken at state s7 .

15: end for

16: end for

17: /* Construct Policy*/
18: forh=1,...,H do

19: Take action aﬁ, and observe 52 G-
20: end for
21: end for

D.10.2 Sublinear LSVI-UCB

In this section, we show the runtime analysis of our Sublinear LSVI-UCB in Algorithm 4.

Lemma D.15. The running time of pre-computing A~ in Algorithm 4 takes
O(Kd?* 4 dv),
where w ~ 2.373 is the exponent of matrix multiplication (Williams, 2012; Le Gall, 2014).

Proof. 1t takes O(Kd?) to compute and sum up every ¢(s},a])¢(s],a;)". Computing the inverse matrix of A takes
O(d¥). All other operations take O(d). Combining the complexity together, we obtain the pre-computing complexity
O(Kd? + d*). O

Lemma D.16. The running time of value iteration in Algorithm 4 takes

O(HKd2A?),

Further more,

I] , —q1_ 1
If initialize the LSH data-structure using Theorem A.14, p = 1 i

o [finitialize the LSH data-structure using Theorem A.15, p =1 — &.
Proof. For each of the H step,

s It takes O(Kd?A”) to compute ‘7h+1(8;; 41) for each state s} ;. If we initialize the LSH data-structure using

Theorem A.14, we determine p = 1 — ﬁ using Lemma B.9. If we initialize the LSH data-structure using

Theorem A.15, we determine p = 1 — 8%(using Lemma B.10.

o It takes O(Kd) to sum up ¢(sp,a},) - (rn(sh,a}) + ‘7h+1(82+1)).

o It takes O(d?) to multiply A with the sum of vectors.

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

* All other operations take O(d).

D.11 Comparison

In this section, we show the comparison between our Sublinear LSVI-UCB with LSVI-UCB (Jin et al., 2020). We show the
comparison results in Table 4.

Table 4: Comparison between Our Sublinear LSVI-UCB with LSVI-UCB (Jin et al., 2020). Let S denote the quantity
of available states and A denote the quantity of available actions. Let d denote the dimension of ¢(s, a). Let H denote
the number of steps per episode. Let K denote the total number of episodes. Let « = log(2Hd/p) and p is the failure

probability. Let p; = 1 — ﬁ be the parameter determined by data structure in Theorem A.14 and po = 1 — 8%(be the

parameter determined by data structure Theorem A.15. Since K > S, we write the preprocessing time as O(K d? A +o(M),
This table is a detailed version of corresponding part of Table 1.

Algorithm | Preprocess #Value Iteration | Regret

Ours O(Kd?A**rr) | O(HKd?ArPY) | O(CyVd3HAK.2)
Ours O(Kd>A'+°W) | O(HKd?Ar?) | O(CpVd3HAK(2)
LSVI 0 O(HKd?A) O(CyVd3HAK (2)

E MORE DATA STRUCTURES: ADAPTIVE Max-IP QUERIES

In this section, we show how to tackle the adaptive Max-IP queries in RL. In both Sublinear LSVI and Sublinear LSVI-UCB,
the queries for (¢, 7)-Max-IP during the value iteration are adaptive but not arbitrary. Thus, we could not union bound the
failure probability of LSH for (¢, 7)-Max-IP. In this work, we present a quantization method to union bound the failure
probability of adaptive Max-IP queries. This section is organized as:

* In Section E.1, we introduce the LSH data structure for adaptive Max-IP queries and theoretical guarantee of Sublinear
LSVI with this data structure.

* In Section E.2, we present the LSH data structure for adaptive Max-MatNorm queries and theoretical guarantee of
Sublinear LSVI-UCB with this data structure.

E.1 Sublinear LSVI with Adaptive Max-IP Queries

In this section, we show how to tackle adaptive Max-IP queries in Sublinear LSVI. We start with defining the quantized
approximate Max-IP.

Definition E.1 (Quantized approximate Max-IP). Let ¢ € (0,1) and 7 € (0,1). Let A > 0. Given an n-point dataset
Y C S, the goal of the (c, T, \)-Max-IP is to build a data structure that, given a query x € S~ with the promise that
there exists a datapoint y € Y with (x,y) > 7, it reports a datapoint z € Y with similarity (x,z) > ¢ - Max-IP(z,Y) — A.

Next, we show a standard way of performing approximate Max-IP via LSH. We denote () as the convex hull of all queries
for (¢, 7)-Max-IP and denote its maximum diameter in ¢5 distance as Dx. Our quantization method*" contains two steps:
(1) Preprocessing: we quantize () to a lattice @ with quantization error A\/d. In this way, each coordinate would be
quantized into the multiples of \/d. (2) Query: given a query x € (), we first quantize it to the nearest ¢ € @ and perform
(¢, 7)-Max-IP. As each g € @ is independent, we could union bound the failure probability of adaptive queries. On the
other hand, this would generate an A additive error in the returned inner product.

Next, we show our theorem for (¢, 7, A)-Max-IP over adaptive queries in Theorem E.2.

Theorem E.2 (A modified version of Theorem B.2). Let ¢ € (0,1), 7 € (0,1) and A € (0,1). Given a set of n-points
Y c S% 1 on the sphere, one can construct a data structure with preprocessing time Tini - K and space Sspace -+ k $0 that for
every x € S in an adaptive query sequence X = {1,129, ,x7}, we take O(dn” - k) query time:

ViiThis is a standard trick in the field of sketching and streaming (Nakos et al., 2019; Ben-Eliezer et al., 2020).

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

* if Max-IP(z,Y") > 7, then we output a vector in' Y which is a (¢, T, \)-Max-IP with respect to (x,Y) with probability
at least 1 — 5, where p = f(c,7) + o(1).

e otherwise, we output fail.

where k := dlog(ndDx /(X)) and p € (0,1). We use Dx to represent maximum diameter in Uy distance of all queries in
X.

Further more,

o If Tinir = O(dn'*?) and Sepace = O(n**? + dn), then f(c,7) = 1_12;:+T.

o If Tonit = O(dn'*+°(M)) and Sspace = O(n*+°M) 4 dn), then f(c,7) = ?i::gj _ =n?

(1—cT)4"

Proof. The failure probability for an adaptive sequence X is equivalent to the probability that at least one query ¢ € @ fail
in solving all x number of (¢, 7)-Max-IP. We bound this failure probability as

~ D 1
Pr[3ge Q s.tall (¢, 7)-Max-IP fail] = n - (dTX)d . (1—0)” <4,

where the last step follows from x := d log(% /).

For the success queries, it introduces a A error in the inner product. Thus, the results is (¢, 7, A\)-Max-IP. Then, following
Theorem B.2, we finish the proof. O

Next, we show a modified Version of Theorem C.2 with (¢, 7, \)-Max-IP.

Theorem E.3 (Modified Version of Theorem C.2). Let MDP(S, A, H,P,) denote a linear MDP with core sets Score,
Acore (see Definition A.7) and span matrix ® (see Definition A.8). If we query each ¢(s;, a;) in the jth row of ® for
n = O(e 2L>H*.) times, where ¢ = log(Hd/p), the output policy of Sublinear LSVI with (¢, 7, A\)-Max-IP parameter
¢c=1—CoL-+/t/nand A = CoLH - \/t/n would be e-optimal with probability at least 1 — p. In other words, the regret
of Sublinear LSV is at most O(CoLH 2 \/%) Moreover, with Tinit - & preprocessing time and Sspace - £ space, the value
iteration complexity of Sublinear LSVIis O(HSdA” - k), where := dlog(ndDx /(A\d)), Dx is the maximum diameter
of weight.

Further more,

¢ If Tinie = O(SdA'*) and Sqpace = O(SA'HP + SdA), then p =1 — %.

2,

o Tf Trnie = O(SdA+W) and Sypace = O(SAI+() 4 SdA), then p = 1 — S0L

Proof. We start with showing the modified version of value difference. Because the quantization transforms (¢, 7)-Max-IP
into a (¢, 7, A)-Max-IP with a A additive error, we rewrite the value difference as:

H H
Vi (s) = Tals) < E [S8 =)Vl (snan) | 1= s] + (1=) Y (H+1=h) + A~ H
h=1 h=1
H
= E [Z[(Ph — B)Vhs1](5h, an) ‘ 51 = s} +1 5 CHH+1)+N-H (45)

-~

=1

where the first step adds A error over each step based on Lemma C.1, and the second step is a reorganization.
Next, we bound the V{*(s) — Vi (s) as:

H

~ ~ 1—c
Vi(s) = Vals) < E | Y [P = Bu) Vsl (s an)lss = 5| + —— - H(H + 1)+ X H
h=1

A Tale of Two Efficient Value Iteration Algorithms for Solving Linear MDPs with Large Action Space

1_
<H- L Cy-H- L/n+TC.H(H+1)+A-H

—L-Cy H?- L/n+1;C~H(H+1)+)\-H
<L-Co-H* \/in+(1—c)H* + X - H
<2C0LH?*\/i/n+X-H

< 3CoLH?\/i/n

€,

IN

where the first step follows from Eq. (45), the second step follows the upper bound of [(P;, — @h)‘/}h_i'_l](s, a) in Eq. (25),
the third step is an reorganization, the forth step follows from H > 1 so that H?> > H, the fifth step follows from
1 — ¢ = CyL+/t/n, the sixth step follows from A = CoLH - \/1/n, the seventh step follows from n = O(C3 - e 2L2H*.).

Using Theorem E.2, we derive the preprocessing time, space and query time for value iteration in Sublinear LSVI. Because
the value iteration complexity dominates Sublinear LSVI, the final runtime complexity is O(H SdA” - k) with p strictly
smaller than 1. O

E.2 Sublinear LSVI-UCB with Adaptive Max-MatNorm Queries

In this section, we show how to tackle adaptive Max-MatNorm queries in sublinear LSVI-UCB.

We start with defining the quantized approximate Max-MatNorm.

Definition E.4 (Quantized Approximate Max-MatNorm). Let ¢ € (0,1) and 7 € (0,1). Let A > 0. Given an n-point
dataset Y C S%1, the goal of the (c, T, \)-Max-MatNorm is to build a data structure that, given a query x € S?!

with the promise that there exists a datapoint y € Y with (x,y) > T, it reports a datapoint z € Y with similarity
(x,z) > ¢+ Max-MatNorm(z,Y) — A

Next, we present how to extend quantized approximate Max-1P to approximate Max-MatNorm.

Theorem E.5 (A modified version of Theorem B.6). Let ¢ € (0,1), 7 € (0,1) and A € (0,1). Let vec denote the

2
vectorization of d x d matrix into a d* vector. Given a set of n-points Y and yy' € S* ~! for all y € Y, one can
construct a data structure with with Tiix - k preprocessing time and Sspace * K Space so that for every query x € RI*4 with

vee(z) € S¥ L in an adaptive sequence X = {x1,xy,- - , 7}, we take query time O(d?n” - k):
¢ if Max-MatNorm(z,Y) > 7, then we output a vector in' Y which is a (¢, T, \)-Max-MatNorm with respect to (x,Y")
with probability at least §, where p := f(c,T) 4 o(1).
e otherwise, we output fail.
where k := dlog(ndDx /(\d)) and p € (0,1). We use Dx to represent maximum diameter in {5 distance of all queries in
X after vectorization.

Further more,

2

o If Tonit = O(d?>n'**) and Sspace = O(n'*° + d?n), then f(c,7) = —25%

1—c272472"

* If Tinie = O(d*n* M) and Sspace = O(n'*+°M) + d®n), then f(c,) = (21(71;2:22))22 B (§£;;—j%§4'

Proof. We start with applying (c?, 72, \)-Max-IP data structure over vec(z) and vec(Y'Y "). Then, we would obtain a
z € Y that

(vec(z),vec(zz ")) > ¢? Iynea})/((vec(x), vec(yy ') — A) (46)

we could use it and derive the following propriety for z:

Zhaozhuo Xu, Zhao Song, Anshumali Shrivastava

lzlla = 1/ tvec(z), vee(z2T)

> \/02 max{vec(z), vec(yyT)) — A

yey

> \/(32 max(vec(z), vec(yyT)) — VA

yey

> cmax \/<VGC((E),VGC(ny)> - A

— ~A
cg}nea;(I\yllz ;

where the second step follows from Eq. (46), the third step follows from Cauchy-Schwartz inequality, the forth follows from
A € (0, 1), the last step is a reorganization.

Thus, z is the solution for (¢, 7, A)-Max-MatNorm(z, Y"). Next, applying Theorem E.2 , we finish the proof.
O

Theorem E.6 (Modified Version of Theorem D.12). Let MDP(S, A, H, P,) denote a linear MDP. For any probability
p € (0,1) that is fixed, if we set approximate Max-MatNorm parameter ¢ = 1 — ﬁ, quantization error A < v H2K and
Sublinear LSVI-UCB parameter 8 = ©(dH+/t) with ¢ = log(2dT/p), then the Sublinear LSVI-UCB (Algorithm 4) has
regret at most O(Cz - vV d® H* K 1?) with probability 1 — p. Moreover, with Tini - £ preprocessing time and Sspace - < Space,
the value iteration complexity of Sublinear LSVI-UCB is O(H Kd? A? - k), where := dlog(ndDx /(\J)), Dx is the
maximum diameter of weight.

Further more

o If Tinit = O(Kd?A'*) and Sspace = O(K AP + Kd?A), then p =1 — ﬁ

o If Tiie = O(Kd? A1*°W) and Space = O(K AW + Kd2A), then p =1 — k.

Proof. We start with showing the modified version of Q-function difference Q% (s,a) — Q¥ (s, a). Because the quantization
transforms (c, 7)-Max-IP into a (c, 7, \)-Max-IP with a) additive error, we rewrite the Q% (s, a) — Q% (s, a) as:

"
Qi(s,0) — @ (s,) < (I — -

)+ HA.

— C
Next, we could upper bound the regret with probability 1 — p as:

Regret(K) < 2KyH? + 2HVT. + BHV2dK 1 + H\
= 2KyH? + 2HVTu + Cg - V243 H*K 2 + H\
= 2VHAK 2 + 2VH3 K1+ Cg - V283 HAK (2 + HA
= 3VHK + 2VH3K. + Cs - V23 HAK (2
<203VAPHAK 2,

where the first step follows from Eq. (44), the second step follows from 8 = Cjs - dH+/¢, the third step follows from
v = \/%, the forth step is a reorganization follows from A < v H2K, the last step follows from Cs > 100.

Using Theorem E.5, we derive the preprocessing time, space and query time for value iteration in Sublinear LSVI-UCB.
Because the value iteration complexity dominates LSVI-UCB, the final runtime complexity is O(H Kd?A? - k) with p
strictly smaller than 1. We alternate the S in preprocessing and space by K since K > S. Note that to let p strict less than 1.
We set ¢2 € [0.5,1) and 72 € [0.5,1). O

	INTRODUCTION
	RELATED WORK
	BACKGROUND
	Locality Sensitive Hashing
	Reinforcement Learning

	OUR RESULTS
	Sublinear Least-Squares Value Iteration
	Sublinear Least-Squares Value Iteration with UCB

	OUR TECHNIQUES
	Avoid Negative Inner Product or Inner Product Close to
	Avoid Inner Product Close to
	Approximate Data Structure for LSVI-UCB
	Generalize the Approximate Data Structure for
	Preserving Regret While Reducing the Runtime
	Handle Adaptive Queries in

	CONCLUSION
	ACKNOWLEDGEMENTS
	PRELIMINARIES
	Basic Notations
	Notations and Definitions
	Standard Properties of Linear MDP
	Locality Sensitive Hashing
	Probabilistic Tools
	Inequalities

	DATA STRUCTURES
	Existing Transformation from Primal to Dual
	Sublinear Data Structure
	Sublinear Data Structure for Maximum Matrix Norm Search
	Transformation for Efficient Query
	Sublinear Query Time: Part 1
	Sublinear Query Time: Part 2

	SUBLINEAR LEAST-SQUARES VALUE ITERATION
	Algorithm
	Value Difference
	Regret Analysis
	Running Time Analysis
	Comparison

	SUBLINEAR LEAST-SQUARES VALUE ITERATION WITH UCB
	Algorithm
	Notations for Proof of Convergence
	Upper Bound on Weights in Sublinear LSVI-UCB
	Our Net Argument
	Upper Bound on Fluctuations
	Upper Bound of Difference of Q Function
	Q Function Difference by Induction
	Recursive Formula
	Regret Analysis
	Running Time Analysis
	LSVI-UCB
	Sublinear LSVI-UCB

	Comparison

	MORE DATA STRUCTURES: ADAPTIVE QUERIES
	Sublinear LSVI with Adaptive Queries
	Sublinear LSVI-UCB with Adaptive Queries

