
On the Accelerated Noise-Tolerant Power Method

Zhiqiang Xu
Machine Learning Department

Mohamed bin Zayed University of Artificial Intelligence
Abu Dhabi, UAE

zhiqiang.xu@mbzuai.ac.ae

Abstract

We revisit the acceleration of the noise-tolerant
power method for which, despite previous stud-
ies, the results remain unsatisfactory as they are
either wrong or suboptimal, also lacking general-
ity. In this work, we present a simple yet general
and optimal analysis via noise-corrupted Cheby-
shev polynomials, which allows a larger iteration
rankp than the target rankk, requires less noise
conditions in a new form, and achieves the opti-

mal iteration complexityΘ

(√
λk−λq+1

λk
log 1

ǫ

)

for someq satisfyingk ≤ q ≤ p in a certain
regime of the momentum parameter. Interest-
ingly, it shows dynamic dependence of the noise
tolerance on the spectral gap, i.e., from linear at
the beginning to square-root near convergence,
while remaining commensurate with the previ-
ous in terms of overall tolerance. We relate our
new form of noise norm conditions to the existing
trigonometric one, which enables an improved
analysis of generalized eigenspace computation
and canonical correlation analysis. We conduct
an extensive experimental study to showcase the
great performance of the considered algorithm
with a larger iteration rankp > k across different
applications.

1 INTRODUCTION

Power method is a classic algorithm for the dominant
eigenspace computation required in many problems of
machine learning and statistics. Recently, it has been
an emerging trend to demand noisy per-iteration updates
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caused by such factors as privacy constraint, missing en-
tries, sampling error, adversarial attack, and approxima-
tion error (Hardt and Roth, 2013; Mitliagkas et al., 2013;
Liang et al., 2014; Liu et al., 2015; Ge et al., 2016). For ex-
ample, for the privacy concern, we may want to add noises
to each power iteration to avoid the data privacy leakage.
Also, for the generalized eigenspace computation which
involves the inverse of a large matrix, we may approxi-
mate the multiplication of the inverse matrix with vectors to
avoid the costly matrix inversion for efficiency. This setting
is common in downstream machine learning applications
such as principal component analysis and canonical corre-
lation analysis. The noisy power method (Hardt and Price,
2014) is a meta algorithm for this purpose that can handle
varieties of noisesξ during power iterations. Both its con-
vergence rate and noise conditions (indicating noise toler-
ance level) linearly depend on the consecutive spectral gap
(λk − λk+1), whereλi represents thei-th largest eigen-
value of the input real symmetric matrixA ∈ R

n×n and
k is the target rank when a top-k eigenspace ofA, de-
noted asUk, is desired. Acceleration, as an appealing
feature, has been considered for the noisy power method
as well, via the use of a larger iteration rankp than target
rankk (Balcan et al., 2016), or the momentum underp = k
(Mai and Johansson, 2019), or the momentum underp ≥ k
(Xu and Li, 2022). A larger iteration rank leads to depen-
dence on a non-consecutive spectral gap which is an en-
larged spectral gap compared to the consecutive one, while
momentum yields square-root dependence on spectral gap.
However, these results are still unsatisfactory.Balcan et al.
(2016); Mai and Johansson(2019) considered only a sin-
gle type of acceleration. Unfortunately,Mai and Johansson
(2019) gave a wrong analysis1 which resulted in a wrong
noise tolerance bound that scales with

√
λk − λk+1 across

iterations. This contradicts the folklore that accelerated
methods have no better noise tolerance than their un-
accelerated counterparts (Hardt and Roth, 2013). Also, it
lacks generality as only a special kind of noise was dis-
cussed.Xu and Li (2022) combined both types of acceler-
ation, but only achieves a sub-optimal iteration complexity

1See SectionA of the Appendix for details.
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which has an extra logarithmic factor on the spectral gap,
and it lacks generality as well because it requires not two
as usual but three noise conditions, one of which is quite
restrictive for each iteration and thus limiting its applica-
bility.

In this work, we present a simple yet general and optimal
analysis for the accelerated noise-tolerant power method
with momentum underp ≥ k for t ≥ 1:

Xt+1Rt+1 = AXt − βXt−1R
−1
t + ξt ∈ R

n×p, (1)

where β > 0 is the momentum parameter,ξt is the
noise matrix for iterationt ≥ 0, andXt+1Rt+1 repre-
sents the QR factorization (Golub and Van Loan, 2013) of
the right-hand side that can keepXt+1 ∈ R

n×p column-
orthonormal andRt+1 ∈ R

p×p for all t ≥ 1. Since we
use the scaled Chebyshev acceleration (Xu et al., 2018), we
start the iteration by settingX0,X1 ∈ R

n×p to be Q-factor
matrices of the QR factorization of an entry-wise i.i.d. stan-
dard Gaussian matrixG ∈ R

n×p and 1
2AX0 + ξ0, respec-

tively, i.e.,

X0R0 = G, X1R1 =
1

2
AX0 + ξ0 ∈ R

n×p. (2)

To analyze the noise tolerance and convergence of Eq. (1),
our first key step is to establish the connection to its non-
orthonormal version:

X̂t+1 = AX̂t − βX̂t−1 + ξ̂t ∈ R
n×p, (3)

with initials

X̂0 = X0, X̂1 =
1

2
AX̂0 + ξ̂0, (4)

where bothX̂t andξ̂t are unnormalized and thus may ex-
plode or vanish in a certain norm as the iteration proceeds.
Thus, Eq. (3)-(4) are only used for theoretical analysis
rather than practice. The second key step is to haveX̂t

expressed as the noise-corrupted scaled Chebyshev matrix
polynomials2, i.e.,pt(A)X̂0 +

∑t−1
j=1 qj(A)ξ̂t−j−1, where

pt(x) is the scaled Chebyshev polynomials of the first kind
with q1(x) = x

2 andqt(x) has the same three-term recur-
rence aspt(x) but with a different second polynomial, i.e.,
q1(x) = x. This way, i.e., handling cumulative noises in-
stead of per-iteration noises in previous studies, eventually

2To understand this type of polynomials, let’s start from the
power method without considering noises and orthonormaliza-
tion for intuition, which can be written aŝXt+1 = AX̂t. By
induction, we havêXt = AtX̂0, where only monomialsAt are
present. Replacing monomials by the scaled Chebyshev polyno-
mials pt(A) gives us the momentum accelerated power method
in the same vein, i.e.,̂Xt+1 = pt(A)X̂t. Taking three-term re-
currencept+1(A) = Apt(A) − βpt−1(A), satisfied bypt(A),
and noises in each iteration into account, we have thatX̂t+1 =

AX̂t − βX̂t−1 + ξ̂t, which gives rise to the noise corrupted
Chebyshev polynomials. We can get back to its polymonial ex-
pression by induction (see Lemma 3.5).

gives us a new form of the noise norm condition. The third
key step is to extend the potential function inGu (2015)
to work under both the momentum setting and the noise
setting in order to figure out noise tolerance bounds and
convergence rate ofXt.

Our analysis is much simpler and more general while
achieving the optimal iteration complexity without the ex-
tra logarithmic factor. We further relate our new form
of the noise norm conditions to the existing trigonometric
one, which enables an improved analysis of the generalized
eigenspace computation and canonical correlation analysis
(CCA). Interestingly, the results show that the dependence
of the noise tolerance bounds on the non-consecutive spec-
tral gap varies with iterations from the linear dependency at
the beginning to the square-root dependency near the con-
vergence, but overall it remains commensurate with the ex-
isting results in terms of the noise tolerance (see Remark 1).
This is the first time to capture the spectral gap dependence
dynamics in theory, to the best of our knowledge. Since
there have been no experimental studies underp > k in the
noise setting so far, we conduct an extensive experimental
study to showcase the great performance of the considered
algorithm underp > k across applications. To summarize,
we make the following contributions in this work:

• We present a simple yet general and optimal analysis
that achieves the square-root dependence of the con-
vergence rate on the non-consecutive gap and needs
less noise conditions, that are in a new form while
maintaining commensurate tolerance, for the acceler-
ated noise-tolerant power method.

• We extend our analysis to the generalized eigenspace
computation and CCA and achieve improved results
of similar type.

• We conduct an extensive experimental study to show-
case the great performance of the accelerated noise-
tolerant power method underp > k across different
applications.

The rest of the paper is organized as follows. Section2
further differentiates our work from existing studies. We
then present our main results and their proofs in Section
3, and extend to two important applications in Section4.
Experiments are reported in Section5 after which the paper
is concluded in Section6.

2 RELATED WORK

In the noiseless case,Gu (2015) theoretically justified the
use of a larger iteration rank (i.e.,p > k) by showing
under mild conditions that the convergence depends on
(λk − λq+1) for somek ≤ q ≤ p that could be signifi-
cantly larger than(λk − λk+1). Their potential function is
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Table 1: Comparison with existing results.

T Cond 1:‖ξt‖ Cond 2:‖U⊤
q ξt‖ Cond 3∗

Balcan et al.(2016) O
(

λk

∆k,q+1
log 1

ǫ

)
O (∆k,q+1ǫ) O (∆k,q+1ǫ) No

Xu and Li (2022) O
(√

λk

∆k,q+1
log 1

∆q,q+1ǫ

)
O
(
∆k,q+1 sin θ̃t

)
O
(
∆k,q+1 cos θ̃t

)∗∗
Yes

This work∗∗∗ Θ
(√

λk

∆k,q+1
log 1

ǫ

)
O

(√
∆k,q+1

T−t+1

(√
β

λ+

1

)t√
β

)
O

(√
∆k,q+1

T−t+1

(
λ+
q

λ+

1

)t
λ+
q

)
No

∗ refers to a restrictive noise condition expressed not in norm; ∗∗ θ̃t is the largest principal angle induced by the augmented
anti-triangular matrix at thet-th iteration;∗∗∗when2

√
β is close toλq+1;

good for handling the last iterate directly, which amounts
to using monomials for analysis. By a different analy-
sis that aims to handle per-iteration noises,Balcan et al.
(2016) achieved such results for both convergence and
noise tolerance, where the noise norm conditions areǫ-
dependent. However, the initial noises are not necessar-
ily ǫ-small. Thus, bothXu and Li (2022) and our work
consider iteration-dependent noise conditions.Xu and Li
(2022) aimed to analyze per-iteration noises under the mo-
mentum acceleration, which however depends on the Schur
decomposition of an augmented anti-triangular block ma-
trix and gives rise to an extra logarithmic factor on an in-
termediate consecutive spectral gap in the iteration com-
plexity. Also, their analysis requires a third noise condi-
tion which is quite restrictive as it is not in the simple form
of noise norm like the other two, and empirically remains
uncorroborated. In contrast, our analysis has no such limi-
tations due to the focus on the last iterate and thus the cu-
mulative noises via the noise-corrupted Chebyshev polyno-
mial, and is supported well by our experimental study.

Xu et al. (2018) proposed scaled Chebyshev polynomials
for acceleration underp = k ≥ 1 for the noiseless case or
underp = k = 1 for a special setting of stochastic noises.
As noted inBalcan et al.(2016), stochastic analyses are or-
thogonal to and indeed cannot account for the noise models
considered inHardt and Price(2014); Balcan et al.(2016)
as well as our work. Further, to the best of our knowledge,
it has been unknown if their analysis can be applied to the
setting ofk > 1, not to mention the setting ofp > k. Gen-
erally, the analysis fromk = 1 to k > 1 needs significant
and nontrivial changes for the type of the considered prob-
lem. Table1 gives a succinct comparison, where notations
are given in Section1 and3.

3 ANALYSIS

Algorithm1 gives the pseudo code of the accelerated noise-
tolerant power method. In this section, we present our main
results and proofs for Algorithm1 which is given a pos-

Algorithm 1 ANPM

1: Input: positive semi-definite matrixA ∈ R
n×n, mo-

mentum parameterβ > 0, target rankk, iteration rank
p ≥ k, iteration numberT .

2: Output: approximate top-k eigenspace spanned by the
first k columns ofXT .

3: QR factorize an entry-wise i.i.d. standard Gaussian
matrixG ∈ R

n×p such thatX0R0 = G

4: QR factorizeY = 1
2AX0 + ξ0 such thatX1R1 = Y

5: for t = 1, · · · , T − 1 do

6: Y = AXt − βXt−1R
−1
t + ξt for some noiseξt

7: QR factorizeY such thatXt+1Rt+1 = Y

8: end for

itive semi-definite matrixA ∈ R
n×n. All the missing

proofs can be found in Appendix. Before presenting our
main results, let’s introduce necessary notations.Λj =
diag(λ1, · · · , λj),Λ−j = diag(λj+1, · · · , λn),Uj =[
u1, · · · ,uj

]
, and U−j =

[
uj+1, · · · ,un

]
, whereuj

denotesA’s eigenvector of unit length corresponding to
the j-th largest eigenvalue.∆i,j = λi − λj , andθ(·, ·)
represents the largest principal angle between two sub-
spaces (Golub and Van Loan, 2013). We use matrix2-
norm throughout the paper. Specifically, we seek for a
top-k eigenspace of the given matrixA ∈ R

n×n with an
augmented matrix iterateXt ∈ R

n×p (p ≥ k), wherek
andp are referred to as the target rank and iteration rank,
respectively.

3.1 Main Results

Theorem 3.1 Let k ≤ q ≤ p and assume thatλq >
2
√
β ≥ λq+1 for A < 0 ∈ R

n×n. If the noise matrix
ξt ∈ R

n×p satisfies that





‖ξt‖ = O

(
1

(T−t+1)T

(√
β

λ+

1

)t√
β sin θ0

)

‖U⊤
q ξt‖ = O

(
1

(T−t+1)T

(
λ+
q

λ+

1

)t
λ+
q cos θ0

) ,
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whereλ+
j =

λj+
√
λ2
j
−4β

2 andθt = θ(Xt,Uq), then after

Algorithm1 runs forT = Θ
(√

λk

λk−2
√
β
log tan θ0

ǫ

)
itera-

tions3, we have thatsin θ(XT ,Uk) < ǫ.

It is worth mentioning that the noise conditions in the above
theorem are so general that they admit a wide range of noise
types including but not limited to those aforementioned as
long as their noise norms satisfy the conditions.

Remark 1 First, our iteration complexity above removes
the extra logarithmic factorlog 1

∆q,q+1
in Xu and Li(2022).

When 2
√
β is close toλq+1, T = O

(√
λk

∆k,q+1
log 1

ǫ

)
.

Second, we don’t need the third restrictive noise condi-
tion required inXu and Li (2022). Let’s now look at the
other two noise norm conditions in a new form here. On
one hand, one may think that the exponential factors de-
cay too fast compared to trigonometric ones. However,
Lemma3.2below indicates that the two forms are in fact on
the same order roughly, though exponential factors are on
the lower side. On the other hand, interestingly, as shown
in Table1 the dependence of our noise tolerance bounds
on the non-consecutive spectral gap varies with iterations
from the linear dependency at the beginning, i.e.,∆k,q+1,
to the square-root dependency near the convergence, i.e.,√
∆k,q+1 which could be much larger than∆k,q+1 as it is

small for real data (Musco and Musco, 2015). We haven’t
seen such dynamic dependence of the noise tolerance on
the spectral gap before. In this sense, overall the noise norm
conditions in one form may not dominate those in the other
form, or put another way, they largely remain commensu-
rate in terms of overall tolerance.

Lemma 3.2




sin θt = Ω

((√
β

λ+

1

)t
sin θ0

)

cos θt = Ω

((
λ+
q

λ+

1

)t
cos θ0

) .

Remark 2 One may worry about the momentum param-

eterβ whose optimal value
λ2
q+1

2 is not known. This is a
common issue with momentum acceleration. In practice,
a varyingβ can be used by setting2

√
βt to be theq-th

largest diagonal entry of̂Λp = X⊤
t (AXt + ξt) ∈ R

p×p

and2
√
βt < λq will always approximately hold. Theoret-

ically, our analysis and results for other values ofβ, given
in SectionC of Appendix, indicate that evenβ satisfy-
ing 2

√
β ≤ λq+1 converges faster than the un-accelerated

counterpart. Empirically, our experimental study shows
that such setting ofβ works quite well.

3For brevity, tan θ0 is not further bounded usingG in Eq.
(2). By Lemma 2.5 inHardt and Price(2014), tan θ(X0,Uq) ≤

ι
√

n√
p−√

q−1
with probability at least1− ι−Ω(p+1−q) − e−Ω(n).

Remark 3 For the target top-k eigenspace ofA, we only
need to take the firstk columns ofXT after convergence
(see Line 2 of Algorithm1), because the subspace spanned
by these columns ofXt (taking the firstk columns in both
sides of Eq. (6) and noting thatC−1

t in Eq. (5) is upper
triangular) will approach the space spanned by the top-k
eigenvectors. In fact, we can repeat the following proof
only with the firstk columns ofXt along a much simpler
path as the target rank and iteration rank are equal in this
case, and will have convergence of the firstk columns of
Xt to the target top-k eigenspace ofA.

3.2 Proof of Theorem 3.1

The road map of the proof is that we will derive the closed-
form expression for the unnormalized iterateX̂t which iso-
lates signal from cumulative noises, and then plug it into
the potential function for the last iterate so that we can find
out how much total noises can be tolerated without affect-
ing the linear convergence. We will also show that the up-
per bound on the convergence rate is actually tight.

We start from establishing the relationship between update
Eq. (1) and its unnormalized counterpart Eq. (3). LetCt =∏1
j=tRj for t ≥ 1, C0 = I, X̂0 = X0, and define

ξt = ξ̂tC
−1
t , (5)

for t ≥ 0. We then have the following lemma about the
connection betweenXt andX̂t.

Lemma 3.3 X̂t = XtCt holds fort ≥ 0.

Two sequences of scaled Chebysev polynomials of the first
and second kinds, each defined as follows by a three-term
recurrence with initial polynomials:

pt+1(x) = xpt(x) − βpt−1(x), p0(x) = 1, p1(x) =
1

2
x,

qt+1(x) = xqt(x)− βqt−1(x), q0(x) = 1, q1(x) = x,

where they differ only in their second polynomials, have
the following closed-form expressions.

Lemma 3.4





pt(x) = zt

[
1
2x
1

]
= (x+)t+(x−)t

2

qt(x) = zt

[
x
1

]
=
∑t
j=0(x

+)t−j(x−)j
,

where zt =
[
0 1

] [x −β
1 0

]t
, and x± =

x±
√
x2−4β

2

which is a conjugate pair when|x| < 2
√
β.

Define matrix polynomial

pt(A) =
∑n

j=1 pt(λj)uju
⊤
j = Unpt(Λn)U

⊤
n ,

wherept(Λn) = diag(pt(λ1), · · · , pt(λn)). Thus,

pt+1(A) = Apt(A)− βpt−1(A), p0(A) = I, p1(A) =
A

2
,

qt+1(A) = Aqt(A)− βqt−1(A), q0(A) = I, q1(A) = A.
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We then have the following lemma aboutX̂t’s closed-form
expression.

Lemma 3.5 X̂t = pt(A)X̂0 +

t−1∑

j=0

qj(A)ξ̂t−j−1.

By Lemma3.3and3.5, we can expressXt in a closed form:

Xt =


pt(A)X0 +

t−1∑

j=0

qj(A)ξ̂t−j−1


C−1

t . (6)

To analyze the convergence rate ofXt, we extend the
potential function for the noiseless power method under
p ≥ k ≥ 1 in Gu(2015), i.e.,

h̃T =

∥∥∥∥Λ
T
−q(U

⊤
−qX0)(U

⊤
q X0)

†
[
Λ−1
k

0

]∥∥∥∥ ,

where† represents the pseudo inverse of a matrix, to work
for simultaneous momentum acceleration and noise corrup-
tion in our setting, and get our potential function

hT =

∥∥∥∥(U
⊤
−qXT )(U

⊤
q XT )

†
[
Ik
0

]∥∥∥∥

=

∥∥∥∥(U
⊤
−qX̂T )(U

⊤
q X̂T )

†
[
Ik
0

]∥∥∥∥ ,

where the second equality has used Lemma3.3 and that
(U⊤

q XT )
† = CT (U

⊤
q X̂T )

† ∈ R
p×q. It is easy to see that

hT = h̃T if ξt ≡ 0 andβ = 0 since Eq. (1) recovers the
noiseless power method then. We now can expand the two
parts inside the norm in the following lemma.

Lemma 3.6 Let U⊤
q X0 = PΣQ⊤ be the compact SVD

of U⊤
q X0, whereP ∈ R

q×q is orthogonal,Σ ∈ R
q×q is

diagonal, andQ ∈ R
p×q is column-orthonormal. It holds

that
U⊤

−qX̂T = pT (Λ−q)U
⊤
−qX0 + Γ,

and(U⊤
q X̂T )

†
[
Ik
0

]
=

(
I+ (U⊤

q X0)
†Ω
)⊤

QP⊤
(
I+ 2sym(PQ⊤Ω⊤PΣ−1P⊤)

+PΣ−1P⊤ΩΩ⊤PΣ−1P⊤
)−1

PΣ−1P⊤
[
p−1
T (Λk)

0

]
,

wheresym(·) extracts the symmetric part of a matrix and

Γ =
T−1∑

t=0

qt(Λ−q)U
⊤
−q ξ̂T−t−1,

Ω = p−1
T (Λq)

T−1∑

t=0

qt(Λq)U
⊤
q ξ̂T−t−1,

represent the cumulative noises in the two parts inside the
norm of the potential function, respectively.

By Lemma3.6, we can write that

hT =
∥∥∥
(
pT (Λ−q)U

⊤
−qX0 + Γ

)(
I+ (U⊤

q X0)
†Ω
)⊤

QP⊤
(
I+ 2sym(PQ⊤Ω⊤PΣ−1P⊤)

+PΣ−1P⊤ΩΩ⊤PΣ−1P⊤
)−1

PΣ−1P⊤
[
p−1
T (Λk)

0

] ∥∥∥

≤ ‖p−1
T (Λk)‖

(
‖pT (Λ−q)‖‖U⊤

−qX0‖+ ‖Γ‖
)
‖Σ−1‖

(
1− 2‖Σ−1‖‖Ω‖ − (‖Σ−1‖‖Ω‖)2

)−1

(
1 + ‖(U⊤

q X0)
†‖‖Ω‖

)
. (7)

To further boundhT , we need the following lemma.

Lemma 3.7

‖p−1
T (Λk)‖ ≤ 2(λ+

k )
−T , ‖pT (Λ−q)‖ ≤ (

√
β)T ,

‖qt(Λ−q)‖ ≤ (t+ 1)(
√
β)t,

‖p−1
T (Λq)qt(Λq)‖ ≤ 2(t+ 1)(λ+

q )
t−T .

Assume that




‖ξ̂t‖ = O
(

1
(T−t+1)T

(√
β
)t+1

sin θ0

)
,

‖U⊤
q ξ̂t‖ = O

(
1

(T−t+1)T

(
λ+
q

)t+1
cos θ0

)
.

(8)

By Lemma3.7and the above assumption, we can boundΓ

andΩ in Lemma3.6as follows:

‖Γ‖ ≤
∑T−1

t=0 ‖qt(Λ−q)‖‖ξ̂T−t−1‖

≤∑T−1
t=0 (t+ 1)(

√
β)t (

√
β)T−t sin θ0
(t+2)T

≤ β
T
2 sin θ0, (9)

‖Ω‖ ≤∑T−1
t=0 ‖p−1

T (Λq)qt(Λq)‖‖U⊤
q ξ̂T−t−1‖

≤ 2
∑T−1
t=0 (t+ 1)(λ+

q )
t−T (λ+

q )T−t cos θ0
16(t+2)T

≤ 1

8
cos θ0. (10)

Also note that

‖U⊤
−qX0‖ = sin θ0, ‖(U⊤

q X0)
†‖ = cos−1 θ0. (11)

By Lemma3.7 and Eq. (9)-(11), hT in Eq. (7) can be
further bounded as follows:

hT ≤ 16

(√
β

λ+
k

)T
tan θ0 , ρ(T ).
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WhenT >
log( 16 tan θ0

ǫ )

log

(
λ
+
k√
β

) , we havehT ≤ ρ(T ) < ǫ. Since

log

(
λ+
k√
β

)
≥

−1 +
λ+

k√
β

λ+

k√
β

≥ 1

2

√
λk − 2

√
β

λk
,

we gethT < ǫ if T = O
(√

λk

λk−2
√
β
log tan θ0

ǫ

)
. By the

second proof of Lemma 2.3 inBalcan et al.(2016),

sin θ(XT ,Uk)

=
∥∥(I−XTX

⊤
T )Uk

∥∥

≤
∥∥∥∥Uk −XT (U

⊤
q XT )

†
[
Ik
0

]∥∥∥∥

=

∥∥∥∥U
⊤
q

(
Uk −XT (U

⊤
q XT )

†
[
Ik
0

])∥∥∥∥

+

∥∥∥∥U
⊤
−q

(
Uk −XT (U

⊤
q XT )

†
[
Ik
0

])∥∥∥∥

=

∥∥∥∥U
⊤
−qXT (U

⊤
q XT )

†
[
Ik
0

]∥∥∥∥
= hT < ǫ.

We now need to convert noise conditions onξ̂t assumed in
Eq. (8) to those in terms ofξt with the following lemma.

Lemma 3.8 ‖Ct‖ = Θ
(
(λ+

1 )
t
)
.

It is easy to see that when the noise conditions onξt given
in Theorem3.1are satisfied, Eq. (8) will hold because both
‖ξ̂t‖ ≤ ‖ξt‖‖Ct‖ and‖U⊤

−qξ̂t‖ ≤ ‖U⊤
−qξt‖‖Ct‖ hold

by Eq. (5).

The remaining proof of Theorem3.1 is to show that the
above iteration complexity is tight. To this end, it suffices
to consider a special case whereA < 0 has eigenvalues

λ1 = · · · =λk > λk+1 ≥
· · · ≥ λq ≥ 2

√
β = λq+1 = · · · = λn ≥ 0,

andξt = 0. In this case, the equality above Eq. (7) be-
comes

hT =

∥∥∥∥pT (Λ−q)U
⊤
−qX0(U

⊤
q X0)

†
[
p−1
T (Λk)

0

]∥∥∥∥

≥ ‖pT (Λ−q)‖ σmin

(
U⊤

−qX0(U
⊤
q X0)

†
[
p−1
T (Λk)

0

])

= ‖pT (Λ−q)‖σmin

(
U⊤

−qX0(U
⊤
q X0)

†
[
I

0

]
p−1
T (Λk)

)

≥ ‖pT (Λ−q)‖σmin

(
p−1
T (Λk)

)

σmin

(
U⊤

−qX0(U
⊤
q X0)

†
[
I

0

])

≥
(√

β

λ+
k

)T
σmin

(
U⊤

−qX0(U
⊤
q X0)

†
[
I

0

])
,

where σmin(·) represents the smallest singular value
of a matrix and the exponential factor in the last
inequality can similarly give the iteration complexity√

λk

∆k,q+1
log 1

ǫ . Thus, in order to havehT < ǫ, we need

Ω
(√

λk

∆k,q+1
log 1

ǫ

)
iterations. This shows that the above

upper bound matches the lower bound.

4 APPLICATIONS

We now extend our general results in Section3.1to gener-
alized eigenspace computation and CCA.

4.1 Genearlized Eigenspace Computation

Given that each generalized eigenvectoruj of a pair of
real symmetric matrices(A,B) with B being positive
definite is an eigenvector of the real symmetric matrix
Ã = B−1/2AB−1/2 pre-multiplied byB−1/2 such that
u⊤
i Buj = δij (δij = 1 if i = j and 0 otherwise), based on

the accelerated noise-tolerant power method, we can first
write our iterate in two forms by Eq. (1) and Eq .(6), re-
spectively, as follows:





Xt+1Rt+1 = ÃXt − βXt−1R
−1
t +B

1
2 ξt ∈ R

n×p

Xt =
(
pt(Ã)X0 +

t−1∑

j=0

qj(Ã)B
1
2 ξ̂t−j−1

)
C−1
t ,

and then pre-multiply both sides of two equations above by
B− 1

2 to get that





B− 1
2Xt+1Rt+1 = B− 1

2 ÃXt − βB− 1
2Xt−1R

−1
t + ξt

B− 1
2Xt=

(
B− 1

2 pt(Ã)X0+

t−1∑

j=0

B− 1
2 qj(Ã)B

1
2 ξ̂t−j−1

)
C−1
t .

LettingZt = B− 1
2Xt, we can write that





Zt+1Rt+1 = B−1AZt − βZt−1R
−1
t + ξt (12)

Zt =
(
B− 1

2 pt(Ã)B
1
2Z0

+

t−1∑

j=0

B− 1
2 qj(Ã)B

1
2 ξ̂t−j−1

)
C−1
t ,

whereξt is the noise term caused by approximating the
term B−1AZt by a warm-started least-squares solver as
in Ge et al.(2016), andRt now makesZt B-orthonormal,
i.e., Z⊤

t BZt = I, through, e.g., the modified Gram-
Schmidt process with inner product〈, 〉B.

By the analysis of computingB−1AZt in Ge et al.(2016),
the ratio of final to initial error for the least-squares solver
can be bounded by constants, where the final error can be
expressed as‖ξt‖2B,F = ξ⊤t Bξt. However, the initial error
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is O
(
λ2
1 tan

2 θ(Zt,Uq)
)
. We can convert our noise con-

ditions in Theorem3.1 to be of similar trigonometric form
by Lemma3.2so that Theorem3.1can be applied together
with the approximation cost to get the total complexity of
the generalized eigenspace computation in Theorem4.1.
Details can be found in Appendix where the corresponding
algorithm is provided as well.

Theorem 4.1 Let k ≤ q ≤ p and assume thatλq >
2
√
β ≥ λq+1 andλn ≥ 0 for a pair of n × n real sym-

metric matrices(A,B) with B ≻ 0. After the update in

Eq. (12) runs for T = O
(

1√
ρ log

tan θ0
ǫ

)
iterations, we

have thatsin θ(ZT ,Uk) < ǫ in time complexity

O

(
nnz(B)p

√
κ(B)

ρ

(
log

1

cos θ0
log

pγ

ρ cos θ0

+ log
1

ǫ
log

pγ

ρ

)
+

nnz(A)p+ nnz(B)p2√
ρ

log
1

ǫ cos θ0

)
,

whereρ = λk−2
√
β

λk
, γ = λ1

λk
, κ(B) represents the condi-

tion number ofB, nnz(·) represents the number of nonzero
entries in a matrix, andθ0 = θ(Z0,Uq).

We can see that when2
√
β is close toλq+1 the above re-

sult improves overGe et al.(2016) in two ways, i.e., from

small ∆k,k+1 to large∆k,q+1 and from large
√
κ(B)

∆k,k+1
to

small
√

κ(B)
∆k,q+1

. Both ways together achieve an effect of

double acceleration.

4.2 Canonical Correlation Analysis

CCA aims to find twok-dimensional canonical subspaces,
one for each of datasetsX ∈ R

dx×n andY ∈ R
dy×n

with a bit abuse of notation thatX,Y without subscripts
represent input data here, such that data projections onto
their respective subspaces are maximally correlated. It is
a special case of generalized eigenspace computation with
real symmetric matrix pair given in the following form:

A =

[
Cxy

C⊤
xy

]
, B =

[
Cxx

Cyy

]
,

whereCxx = 1
nXX⊤ + rxI, Cyy = 1

nYY⊤ + ryI
andCxy = 1

nXY⊤ are the two auto-covariance matri-
ces and the cross-covariance matrix ofX,Y, respectively,
with r > 0 being regularization parameter for avoiding ill-
conditioning. We adopt the update equations inXu and Li
(2021) for CCA but with change fromp = k to p ≥ k as
follows:




Φt+1Rt+1 = C−1
xxCxy

(
C−1
yyC

⊤
xyΦt + ξ

1
t

)

−βΦt−1R
−1
t + ξ2t ∈ R

dx×p

Ψt+1St+1 = C−1
yyC

⊤
xy

(
C−1
xxCxyΨt + η1

t

)

−βΨt−1S
−1
t + η2

t ∈ R
dy×p,

(13)

which alternates betweenβ = 0 andβ > 0 while running
the update in Eq. (12) and merges the two alternating steps
into one step in terms of two iteratesΦt andΨt. For anal-
ysis, we need closed-form representations of both iterates
Φt andΨt like that below Eq. (12), which can be written
as:




Φt =
(
C

− 1
2

xx pt(Hyy)C
1
2
xxΦ0 +

t−1∑

j=0

C
− 1

2
xx qj(Hyy)

C
1
2
xx

(
C−1
xxCxy ξ̂

1

t−j−1 + ξ̂
2

t−j−1

))
C−1
φ,t

Ψt =
(
C

− 1
2

yy pt(Hxx)C
1
2
yyΨ0 +

t−1∑

j=0

C
− 1

2
yy qj(Hxx)

C
1
2
yy

(
C−1
yyC

⊤
xyη̂

1
t−j−1 + η̂

2
t−j−1

))
C−1
ψ,t,

where

Hxx = C
− 1

2
yy C⊤

xyC
−1
xxCxyC

− 1
2

yy ,

Hyy = C
− 1

2
xx CxyC

−1
yyC

⊤
xyC

− 1
2

xx .

Let the partial singular value decomposition of the
whitened empirical cross-covariance matrix, defined as
C = C

−1/2
xx CxyC

−1/2
yy , be ŮjΣjV̊

⊤
j with Ůj and V̊j

being C’s top-j left and right singular subspaces, re-
spectively, andΣj = diag(σ1, · · · , σj) havingC’s top-
j singular values on the diagonal. The solution to the
k-CCA problem then can be written as(Uk,Vk) =

(C
− 1

2
xx Ůk,C

− 1
2

yy V̊k).

Theorem 4.2 Let k ≤ q ≤ p and assume thatσ2
q >

2
√
β ≥ σ2

q+1. After the update in Eq. (13) runs for

T = O
(

1√
ρ log

1
ǫ cos θ0

)
, we have that

sinmax{θ(ΦT ,Uk), θ(ΨT ,Vk)} ≤ ǫ

in time complexity

O

(
nnz(X,Y)p

√
κ(X,Y)

ρ

(
log

1

cos θ0
log

pγ

ρ cos θ0

+ log
1

ǫ
log

pγ

ρ

)
+

nnz(X,Y)p2√
ρ

log
1

ǫ cos θ0

)
,

whereρ =
σ2
k−2

√
β

σ2
k

, γ =
σ2
1

σ2
k

, and

nnz(X,Y) = nnz(X) + nnz(Y),

κ(X,Y) = max {κ(Cxx), κ(Cyy)} ,
θ0 = max {θ(Φ0,Uq), θ(Ψ0,Vq)} .

When2
√
β is close toσ2

q+1, Theorem4.2 improves over
Xu and Li(2021) in two ways, i.e., from small(σ2

k−σ2
k+1)

to large (σ2
k − σ2

q+1) and having the additional factor
log 1

σ2
k
−σ2

k+1

removed.
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Figure 1: Performance of the ANPM underp > k in comparison with the ANPM underp = k for two settings ofβ and
the NPM underp > k, where i.i.d. zero mean Gaussian noises of varying varianceσt =

105

1.1t were injected into iterations.
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Figure 2: Performance of the ANPM for generalized eigenspace computation underp > k in comparison with the ANPM
underp = k, using dynamic momentum parameterβt, and GenELink in the same two settings of target rankk and iteration
rankp.

5 EXPERIMENTS

In this section, we conduct experiments to test the perfor-
mance of Algorithm1 underp ≥ k in different scenar-
ios including the accelerated noise-tolerant power method,
generalized eigenspace computation, and CCA. All algo-
rithms were implemented in Matlab and fed with the same
initial for each dataset in each setting. For benchmarking,
the ground-truth information is obtained using matlab’s
eigs function for the first two scenarios and svds function
for the last scenario. Target rankk and iteration rankp used
are shown on the figure legends, and we setq = p through-
out experiments. More experimental results are provided in
SectionD of Appendix.

5.1 ANPM

We test the performance of Algorithm1 using three real
data matrices downloaded from the sparse matrix collec-
tion4 with statistics given in Table2. Two settings of pa-

Table 2: Datasets for ANPM

Name n nnz(A)

hangGlider5 16011 162363
Boeing35 30237 1450163
Schenk65 48066 360428

rameterβ were tested: optimal2
√
β∗ = λq+1 and dy-

4https://sparse.tamu.edu/

namic2
√
βt which is set according to Remark 2. We com-

pare with the noisy power method (NPM). The results were
evaluated with measuresin θ(Xt,Uk) for which smaller is
better. We experimented with i.i.d. zero mean Gaussian
noises of varying varianceσt = 105

1.1t injected into itera-
tions. We can see from Figure1 that using a larger iteration
rank improves significantly, especially together with mo-
mentum acceleration, and even the NPM underp > k can
outperform the ANPM underp = k. Interestingly, two set-
tings ofβ perform almost equally well.

Table 3: Datasets for generalized eigenspace computation.

Name n nnz(A) nnz(B)

Lapla3 5795 136565 141779
Lapla4 10891 259425 269639
Lapla5 18903 455337 489875

5.2 Genearlized Eigenspace Computation

We compare the ANPM in different settings, including the
advocated setting ofp > k, with the GenELinK algorithm
(Ge et al., 2016) for top-k generalized eigenspace compu-
tation (see Algorithm 2 in Appendix) on three datasets5

given in Table3, and use evaluation measuresin θ(Zt,Uk)
accordingly. For approximating the multiplication with in-
verse matrixB−1, we use the built-in MATLAB function
pcg (preconditioned conjugate gradients method) as the

5http://faculty.smu.edu/yzhou/data/matrices.htm

https://sparse.tamu.edu/
http://faculty.smu.edu/yzhou/data/matrices.htm
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Figure 3: Performance of the ANPM for CCA underp > k in comparison with three baselines, i.e., the trulyALS and
accALS fork = p and the CCALin which requiresp = 2k.

least-square solver with10 iterations for each run. Figure
2 shows their performance comparison, where we observed
similar patterns to those observed in Figure1 but with large
performance gaps.

Table 4: Datasets for CCA.

Name n dx dy

Mmill 3× 104 100 120
JW11 3× 104 273 112
MNIST 6× 104 392 392

5.3 CCA

We use three common datasets, described in Table4,
for CCA (Ge et al., 2016; Wang et al., 2016; Arora et al.,
2017; Xu and Li, 2019) with regularization parameters
rx = ry = 0.1. We compare the ANPM underp > k (see
Algorithm 3 in Appendix) to recent CCA algorithms in-
cluding CCALin (Ge et al., 2016) (which requiresp = 2k),
trulyALS underp = k (Xu and Li, 2019), and the latest ac-
cALS underp = k (Xu and Li, 2021). SVRG is used as the
least-squares solver running2 epochs for each CCA algo-
rithm. Each epoch runsn iterations with constant step-sizes
αφ = 1/maxi ‖xi‖22 for Φt andαψ = 1/maxi ‖yi‖22 for
Ψt, wherexi representsX’s i-th column. Two evaluation
measures aresin θu andsin θv, whereθu = θ(Φt,Uk) and
θv = θ(Ψt,Vk). Figure3 reports these algorithms’ perfor-
mance, which further confirms the advantage of the setting
of p > k.

Before closing this section, it is worth mentioning that we
also provided experiments about varying iteration rankp in
SectionD of Appendix which aim to investigate the trade-
off between convergence speedup and additional compu-
tational cost brought by our approach in terms of running

time. These experiments show that on our datasets using an
iteration rankp that is aboutk/2 larger than target rankk
often brings most significant performance gain, while fur-
ther increasingp may gain not more but probably less be-
cause additional computational cost starts to offset a large
part of the gain from less iterations due to faster conver-
gence. In addition, convergence to the exact optima needs
the noise conditions to be satisfied. Particularly, the noise
needs to vanish eventually by our theory, otherwise the con-
vergent point can only be within the noise ball around the
exact optima. In practice, the noise can’t completely van-
ish. The best case is that noise magnitude matches the ma-
chine precision, e.g.,10−16, where we may consider con-
vergence accuracy of10−16 achieves convergence to the
exact optima, as seen in a part of our experiments.

6 CONCLUSIONS

We present a general analysis for the accelerated noise-
tolerant power method under a larger iteration rank than
the target rank, which needs less noise conditions but can
achieve the optimal iteration complexity. The noise toler-
ance is characterized by two norm conditions in a new form
which we relate to the existing form. One interesting phe-
nomenon in theory is the dynamic spectral gap dependence
of the noise tolerance during iterations, varying from the
linear at the beginning to the square-root near the conver-
gence, while maintaining commensurate overall tolerance.
The analysis is much simpler than previous ones, as it only
needs to leverage the noise-corrupted scaled Chebyshev
polynomials. Further, it enables us to give an improved
analysis for generalized eigenspace computation and CCA.
We demonstrate that the accelerated noise-tolerant power
method with a larger iteration rank than the target rank per-
forms best in practice across applications.
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A A WRONG ANALYSIS

The analysis ofMai and Johansson(2019) is wrong in proofs of their Theorems 1-2, where Theorem 1 is aspecial case of
their Theorem 2. Let’s focus on their Theorem 2 whose proof isgiven in Appendix C, where Eq. (24) is the key to their
proof but does not hold actually. Let’s quote the part ofMai and Johansson(2019) where the wrong analysis originates as
follows:

“ Recall thatU is the matrix of top-k eigenvectors ofB−1A andV̄ =
[
ΛU⊤ U⊤]⊤ is the top-k eigenvectors

of the extended matrixC =

[
B−1A −βI

I 0

]
with Λ = diag(µ1, · · · , µk) being the corresponding matrix of

eigenvalues. Let

V = B−1/2V̄(I +Λ2)−1/2 andB =

[
B 0

0 B

]
,

thenV⊤BV = Ik. If we further letV⊥ be an orthogonal basis w.r.t.B of the orthogonal complement of
span(V), then one can decomposeC as

C = VΛV⊤B +V⊥Λ⊥V
⊤
⊥B, (24)

whereΛ⊥ = diag(µk+1, · · · , µ2d−k).”

Note thatB−1/2 is missing in the definition ofV given above their Eq.(24), which should be a typo otherwiseV⊤BV 6= Ik.

To see why it is wrong, let’s post-multiply both sides of Eq. (24) withB−1, and then we have

CB−1 = VΛV⊤ +V⊥Λ⊥V
⊤
⊥.

We now can see that the right-hand side is asymmetricmatrix but the left-hand sideCB−1 =
[
B

−1
AB

−1 −βB−1

B
−1

0

]
is

asymmetric. In addition, the right-hand side could be complex becauseΛ⊥ is complex (since2
√
β > |λk+1| there)

and transpose ofV⊥ is used instead of conjugate transpose, but the left-hand side is always real. Thus, their following
analysis is incorrect, due to the fact that this real asymmetric matrix is not a normal matrix and thus does not have a unitary
diagonalization. In fact, their analysis directly followsGe et al.(2016) where orthogonal diagonalization indeed holds

A = B
[
U U⊥

]
diag(Λ,Λ⊥)

[
U U⊥

]⊤
B

because the relevant matrixA is real symmetric. But now when momentum is considered, relevant matrixCB−1 becomes
real asymmetric and not normal.

B MISSING PROOFS

In this section, we provide all the missing proofs in the maintext. Particularly, we will restate Lemmas3.3, 3.5. 3.6, 3.8of
the main paper in the setting of generalized eigenspace computation where a pair of real symmetric matrices(A,B) with
B positive definite is considered, because it covers the standard case by settingB = I. In this setting,uj denotes(A,B)’s
eigenvector of unit length corresponding to thej-th largest eigenvalue and satisfiesu⊤

i Buj = δij , and

A = B
[
Uj U−j

]
diag(Λj ,Λ−j)

[
Uj U−j

]⊤
B

for any1 ≤ j ≤ n. It is worth noting in this case that following notations in Section4.1, Eqs. (1)-(4) become as follows

Zt+1Rt+1 = B−1AZt − βZt−1R
−1
t + ξt (14)

Z0R0 = G, Z1R1 =
1

2
B−1AZ0 + ξ0 ∈ R

n×p. (15)

Ẑt+1 = B−1AẐt − βẐt−1 + ξ̂t ∈ R
n×p, (16)

Ẑ0 = Z0, Ẑ1 =
1

2
B−1AẐ0 + ξ̂0, (17)
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whereRt makesZt B-orthonormal, i.e.,Z⊤
t BZt = I (or equivalently, the left-hand side of Eq. (14) is the QR-factorization

of the right-hand side in inner product〈, 〉B), and

ξt = ξ̂tC
−1
t (18)

with Ct =
∏1
j=tRj for t ≥ 1 andC0 = I.

Lemma 3.2 sin θ(Zt,Uq) = Ω((
√
β

λ+

1

)t sin θ(Z0,Uq)), cos θ(Zt,Uq) = Ω((
λ+
q

λ+

1

)t cos θ(Z0,Uq)).

Proof From the proof of Lemma3.6and with notations there, we have that

U⊤
−qBẐt = pt(Λ−q)U

⊤
−qBZ0 + Γ,

(U⊤
q BẐt)

† = (I+ (U⊤
q BZ0)

†Ω)⊤QP⊤(I+ 2sym(PQ⊤Ω⊤PΣ−1P⊤)

+PΣ−1P⊤ΩΩ⊤PΣ−1P⊤)−1PΣ−1P⊤p−1
t (Λq),

where

Γ =
∑t−1
i=0 qi(Λ−q)U

⊤
−qBξ̂t−i−1,

Ω = p−1
t (Λq)

∑t−1
i=0 qi(Λq)U

⊤
q Bξ̂t−i−1.

Then

‖Ct‖2 sin θ(Zt,Uq) = ‖U⊤
−qBZt‖2‖Ct‖2

≥ ‖U⊤
−qBZtCt‖2 = ‖U⊤

−qBẐt‖2
= ‖pt(Λ−q)U

⊤
−qBZ0 + Γ‖2

≥ ‖pt(Λ−q)U
⊤
−qBZ0‖2 − ‖Γ‖2

≥ σmin(pt(Λ−q))‖U⊤
−qBZ0‖2 −

t−1∑

i=0

‖qi(Λ−q)‖2‖ξ̂t−i−1‖B,2

≥ (
√
β)tmin

j>q
| cos(targ cos λj

2
√
β
)| · sin θ(Z0,Uq)

−c

t−1∑

i=0

(i + 1)(
√
β)i

(
√
β)t−i sin θ(Z0,Uq)

(T − t+ i+ 2)T

= c′(
√
β)t sin θ(Z0,Uq),

wherec, c′ are sufficiently small positive constants, and in the last inequality we have used Lemma3.7, Assumption (21)
in the proof of Theorem4.1, and that

pt(λj) =
(λ+
j )

t + (λ−
j )

t

2
= (
√
β)t cos(targ cos

λj

2
√
β
),

for λj ≤ 2
√
β. On the other hand, by Lemma3.7and Assumption (21), it holds that

‖Ω‖ ≤
t−1∑

i=0

‖p−1
t (Λq)qi(Λq)‖‖U⊤

q Bξ̂t−i−1‖2

≤ 2

t−1∑

i=0

(i+ 1)(λ+
q )

i−t (λ
+
q )

t−i cos θ(Z0,Uq)

16(T − t+ i+ 2)T

≤ 1

8
cos θ(Z0,Uq).
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By Lemma3.7, Eq. (24) in the proof of Theorem4.1, and the above inequality, we can write that

cos−1 θ(Zt,Uq) = ‖(U⊤
q BZt)

†‖2
= ‖Ct(U

⊤
q BẐt)

†‖2
≤ ‖Ct‖2‖(U⊤

q BẐt)
†‖2

≤ ‖Ct‖2‖(I+ (U⊤
q BZ0)

†Ω)⊤QP⊤(I+ 2sym(PQ⊤Ω⊤

PΣ−1P⊤) +PΣ−1P⊤ΩΩ⊤PΣ−1P⊤)−1PΣ−1P⊤p−1
T (Λq)‖2

≤ ‖Ct‖2‖p−1
T (Λq)‖2‖Σ−1‖2(1− 2‖Σ−1‖2‖Ω‖2 − (‖Σ−1‖2‖Ω‖)2)−1

(1 + ‖(U⊤
q BZ0)

†‖2‖Ω‖2)
≤ 8‖Ct‖2(λ+

q )
−t cos−1 θ(Z0,Uq).

Finally, by Lemma3.8,

sin θ(Zt,Uq) = Ω((

√
β

λ+
1

)t sin θ(Z0,Uq)),

cos θ(Zt,Uq) = Ω((
λ+
q

λ+
1

)t cos θ(Z0,Uq)).

�

Lemma 3.3 Ẑt = ZtCt holds fort ≥ 0.

Proof By Eq. (15), (17), and (18), we have

Z1 = (
1

2
B−1AZ0 + ξ0)R

−1
1 = (

1

2
B−1AẐ0 + ξ̂0)R

−1
1 = Ẑ1R

−1
1 .

Thus, the target equation holds fort = 0, 1. Assume it holds for(t− 1), t and considerXt+1. By Eq. (14), (16), (18), and
the hypothesis, we can write that

Zt+1 = (B−1AZt − βZt−1R
−1
t + ξt)R

−1
t+1

= (B−1AẐtC
−1
t − βẐt−1C

−1
t−1R

−1
t + ξ̂tC

−1
t )R−1

t+1

= (B−1AẐtC
−1
t − βẐt−1C

−1
t + ξ̂tC

−1
t )R−1

t+1

= (B−1AẐt − βẐt−1 + ξ̂t)C
−1
t R−1

t+1

= Ẑt+1C
−1
t+1.

By induction, it holds for allt ≥ 0. �

Lemma 3.4 pt(x) = at

[
1
2x
1

]
= (x+)t+(x−)t

2 , qt(x) = at

[
x
1

]
=
∑t
j=0(x

+)t−j(x−)j , whereat =
[
0 1

] [x −β
1 0

]t
,

andx± =
x±

√
x2−4β

2 which is a conjugate pair when|x| < 2
√
β.

Proof By the definition, we can write that

[
pt+1(x)
pt(x)

]
=

[
xpt(x)− βpt−1(x)

pt(x)

]
=

[
x −β
1 0

] [
pt(x)

pt−1(x)

]
= · · · =

[
x −β
1 0

]t [
p1(x)
p0(x)

]
.

Thus, we have that

pt(x) =
[
0 1

] [x −β
1 0

]t [ 1
2x
1

]
, qt(x) =

[
0 1

] [x −β
1 0

]t [
x
1

]
.
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Note that the2× 2 matrix has the following Jordan decomposition6:

[
x −β
1 0

]
=





[
x+ x−

1 1

] [
x+ 0
0 x−

] [
x+ x−

1 1

]−1

, |x| 6= 2
√
β

[
x
2 1
1 0

] [
x
2 1
0 x

2

] [
x
2 1
1 0

]−1

, |x| = 2
√
β

,

wherex± =
x±

√
x2−4β

2 are two eigenvalues of the2 × 2 matrix which are equal if|x| = 2
√
β and a conjugate pair if

|x| < 2
√
β, and|x±| =

{
sign(x±)x±, |x| ≥ 2

√
β√

β, |x| ≤ 2
√
β

. Note that

[
x
2 1
0 x

2

]t
= (

x

2
I+

[
0 1
0 0

]
)t =

t∑

j=0

(
t
j

)
(
x

2
)t−j

[
0 1
0 0

]j

=

(
t
0

)
(
x

2
)tI+

(
t
1

)
(
x

2
)t−1

[
0 1
0 0

]
= (

x

2
)t−1

[
x
2 t
0 x

2

]
.

We thus have that

[
0 1

] [x −β
1 0

]t
=





[
0 1

] [x+ x−

1 1

] [
x+ 0
0 x−

]t [
x+ x−

1 1

]−1

, |x| 6= 2
√
β

[
0 1

] [x
2 1
1 0

] [
x
2 1
0 x

2

]t [x
2 1
1 0

]−1

, |x| = 2
√
β

=





1
x+−x−

[
1 1

] [(x+)t 0
0 (x−)t

] [
1 −x−

−1 x+

]
, |x| 6= 2

√
β

[
1 0

]
(x2 )

t−1

[
x
2 t
0 x

2

]
(−1)

[
0 −1
−1 x

2

]
, |x| = 2

√
β

=





1
x+−x−

[
(x+)t − (x−)t, −(x+)tx− + x+(x−)t

]
, |x| 6= 2

√
β

(x2 )
t−1
[
t, x

2 − x
2 t
]
, |x| = 2

√
β

In turn, we get that

pt(x) =





1
x+−x−

[
(x+)t − (x−)t, −(x+)tx− + x+(x−)t

] [x
2
1

]
, |x| 6= 2

√
β

(x2 )
t−1
[
t, x

2 − x
2 t
] [x

2
1

]
, |x| = 2

√
β

=





1
x+−x− ((x2 − x−)(x+)t − (x2 − x+)(x−)t), |x| 6= 2

√
β

(x2 )
t−1(x2 t+

x
2 − x

2 t), |x| = 2
√
β

=





1
2 ((x

+)t + (x−)t), |x| 6= 2
√
β

(x2 )
t, |x| = 2

√
β

=
1

2
((x+)t + (x−)t),

6x± are the roots ofdet(

[

x −β
1 0

]

− λI) = 0, i.e.,λ2 − xλ+ β = 0. It is easy to check that

[

x −β
1 0

] [

x±

1

]

= x±
[

x±

1

]

holds.

Thus, we have the eigenvalue decomposition whenx+ 6= x−, where the eigenvector matrix is only non-singular but not orthogonal.
Whenx+ = x− which is x

2
, two eigenvectors collapse into a single one and we need a generalized eigenvector which can be generated

by solving(

[

x −β
1 0

]

− x+I)y =

[

x+

1

]

. The equation is satisfied byy =

[

1
0

]

. We thus have

[

x −β
1 0

]

y =

[

x+

1

]

+ x+y. Thus, we

have the Jordan decomposition whenx+ = x−.
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qt(x) =





1
x+−x−

[
(x+)t − (x−)t, −(x+)tx− + x+(x−)t

] [x
1

]
, |x| 6= 2

√
β

(x2 )
t−1
[
t, x

2 − x
2 t
] [x

1

]
, |x| = 2

√
β

=





1
x+−x− ((x − x−)(x+)t − (x− x+)(x−)t), |x| 6= 2

√
β

(x2 )
t−1(xt+ x

2 − x
2 t), |x| = 2

√
β

=





1
x+−x− ((x+)t+1 − (x−)t+1), |x| 6= 2

√
β

(x2 )
t−1(x2 + x

2 t), |x| = 2
√
β

=





1
x+−x− ((x+)t+1 − (x−)t+1), |x| 6= 2

√
β

(t+ 1)(x2 )
t, |x| = 2

√
β

=

t∑

j=0

(x+)t−j(x−)j .

�

Lemma 3.5 Ẑt = B− 1
2 pt(B

− 1
2AB− 1

2 )B
1
2 Ẑ0 +

∑t−1
j=0 B

− 1
2 qj(B

− 1
2AB− 1

2 )B
1
2 ξ̂t−j−1.

Proof First, we have that

pt+1(A) = Apt(A)− βpt−1(A), p0(A) = I, p1(A) =
A

2
,

qt+1(A) = Aqt(A) − βqt−1(A), q0(A) = I, q1(A) = A.

For our purpose, we need to replaceA with B− 1
2AB− 1

2 in above equations. By Eq. (17) and initials ofpt(B− 1
2AB− 1

2 )

andqt(B− 1
2AB− 1

2 ), the target equation holds fort = 0, 1. Assume it holds for(t− 1), t and consider̂Zt+1. By Eq. (16),
the hypothesis, and two matrix polynomials’ three-term recurrences as well as their initials above, we can write that

Ẑt+1 = B−1AẐt − βẐt−1 + ξ̂t

= B−1A

(
B− 1

2 pt(B
− 1

2AB− 1
2 )B

1
2 Ẑ0 +

t−1∑

j=0

B− 1
2 qj(B

− 1
2AB− 1

2 )B
1
2 ξ̂t−j−1

)

−β

(
B− 1

2 pt−1(B
− 1

2AB− 1
2 )B

1
2 Ẑ0 +

t−2∑

j=0

B− 1
2 qj(B

− 1
2AB− 1

2 )B
1
2 ξ̂t−j−2

)
+ ξ̂t

= B−1A

(
B− 1

2 pt(B
− 1

2AB− 1
2 )B

1
2 Ẑ0 +B− 1

2 q0(B
− 1

2AB− 1
2 )B

1
2 ξ̂t−1

+

t−1∑

j=1

B− 1
2 qj(B

− 1
2AB− 1

2 )B
1
2 ξ̂t−j−1

)

−β

(
B− 1

2 pt−1(B
− 1

2AB− 1
2 )B

1
2 Ẑ0 +

t−1∑

j=1

B− 1
2 qj−1(B

− 1
2AB− 1

2 )B
1
2 ξ̂t−j−1

)
+ ξ̂t

=

(
B−1AB− 1

2 pt(B
− 1

2AB− 1
2 )− βB− 1

2 pt−1(B
− 1

2AB− 1
2 )

)
B

1
2 Ẑ0 +B−1Aξ̂t−1

+

t−1∑

j=1

(
B−1AB− 1

2 qj(B
− 1

2AB− 1
2 )− βB− 1

2 qj−1(B
− 1

2AB− 1
2 )

)
B

1
2 ξ̂t−j−1 + ξ̂t

= B− 1
2 pt+1(B

− 1
2AB− 1

2 )B
1
2 Ẑ0 +B− 1

2 q1(A)B
1
2 ξ̂t−1

+

t−1∑

j=1

B− 1
2 qj+1(B

− 1
2AB− 1

2 )B
1
2 ξ̂t−j−1 +B− 1

2 q0(A)B
1
2 ξ̂t
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= B− 1
2 pt+1(B

− 1
2AB− 1

2 )Ẑ0 +

t∑

j=0

B− 1
2 qj(B

− 1
2AB− 1

2 )B
1
2 ξ̂t−j ,

which completes the proof, by induction. �

Lemma 3.6 LetU⊤
q BZ0 = PΣQ⊤ be the SVD ofU⊤

q Z0, whereP ∈ R
q×q is orthogonal,Λ ∈ R

q×q is diagonal, and
Q ∈ R

p×q is column-orthonormal. It holds that

U⊤
−qBẐT = pT (Λ−q)U

⊤
−qBZ0 + Γ,

(U⊤
q BX̂T )

† [Ik 0
]⊤

= (I+ (U⊤
q BX0)

†Ω)⊤QP⊤(I+ 2sym(PQ⊤Ω⊤PΣ−1P⊤)

+PΣ−1P⊤ΩΩ⊤PΣ−1P⊤)−1PΣ−1P⊤ [p−1
T (Λk) 0

]⊤
,

wheresym(·) extracts the symmetric part of a matrix and

Γ =

T−1∑

t=0

qt(Λ−q)U
⊤
−qBξ̂T−t−1, Ω = p−1

T (Λq)

T−1∑

t=0

qt(Λq)U
⊤
q Bξ̂T−t−1.

Proof First, it holds for any1 ≤ j ≤ n that

pt(B
− 1

2AB− 1
2 ) = B

1
2

[
Uj U−j

]
diag(pt(Λj), pt(Λ−j))

[
Uj U−j

]⊤
B

1
2 .

We then have that

U⊤
−qBẐT = U⊤

−qB

(
B− 1

2 pT (B
− 1

2AB− 1
2 )B

1
2Z0 +

T−1∑

t=0

B− 1
2 qt(B

− 1
2AB− 1

2 )B
1
2 ξ̂T−t−1

)

= pT (Λ−q)U
⊤
−qBZ0 + Γ.

Second, we can write that

(U⊤
q BẐT )

† =

(
U⊤
q B
(
B− 1

2 pT (B
− 1

2AB− 1
2 )B

1
2Z0 +

T−1∑

t=0

B− 1
2 qt(B

− 1
2AB− 1

2 )B
1
2 ξ̂T−t−1

))†

=

(
pT (Λq)U

⊤
q BZ0 +

T−1∑

t=0

qt(Λq)U
⊤
q Bξ̂T−t−1

)†

=

(
pT (Λq)U

⊤
q BZ0 +

T−1∑

t=0

qt(Λq)U
⊤
q Bξ̂T−t−1

)⊤((
pT (Λq)U

⊤
q BZ0 +

T−1∑

t=0

qt(Λq)U
⊤
q Bξ̂T−t−1

)

(
pT (Λq)U

⊤
q BZ0 +

T−1∑

t=0

qt(Λq)U
⊤
q Bξ̂T−t−1

)⊤
)−1

= (U⊤
q BZ0 +Ω)⊤((U⊤

q BZ0 +Ω)(U⊤
q BZ0 +Ω)⊤)−1p−1

T (Λq)

= (U⊤
q BZ0 +Ω)⊤(U⊤

q BZ0(U
⊤
q BZ0)

⊤ + 2sym(U⊤
q BZ0Ω

⊤) +ΩΩ⊤)−1p−1
T (Λq)

where the first equality is by Lemma3.5 and the third equality is by the definition of the matrix pseudo-inverse. Let
Ξ = U⊤

q BZ0(U
⊤
q BZ0)

⊤ and note thatU⊤
q BZ0 +Ω = U⊤

q BZ0 +U⊤
q BZ0(U

⊤
q BZ0)

†Ω. We then have that

(U⊤
q BẐT )

† = (I+ (U⊤
q BZ0)

†Ω)⊤(U⊤
q BZ0)

⊤Ξ−1/2(I+ 2Ξ−1/2sym(U⊤
q BZ0Ω

⊤)Ξ−1/2

+Ξ−1/2ΩΩ⊤Ξ−1/2)−1Ξ−1/2p−1
T (Λq)

= (I+ (U⊤
q BZ0)

†Ω)⊤QP⊤(I+ 2sym(PQ⊤Ω⊤PΛ−1P⊤)

+PΣ−1P⊤ΩΩ⊤PΣ−1P⊤)−1PΣ−1P⊤p−1
T (Λq).

The proof completes by noting that [
Ik 0

]⊤
p−1
T (Λq) =

[
p−1
T (Λk) 0

]⊤
.

�
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Lemma 3.7
‖p−1
T (Λk)‖ ≤ 2(λ+

k )
−T , ‖qt(Λ−q)‖ ≤ (t+ 1)(

√
β)t,

‖pT (Λ−q)‖ ≤ (
√
β)T , ‖p−1

T (Λq)qt(Λq)‖ ≤ 2(t+ 1)(λ+
q )

t−T .

Proof Sinceλ1 ≥ · · · ≥ λk ≥ · · · ≥ λq > 2
√
β by the assumption of Theorem 3.1, then by Lemma3.4

‖p−1
T (Λk)‖ = max

1≤m≤k

2

(λ+
m)T + (λ−

m)T
≤ 2

(λ+
k )

T
.

Since2
√
β ≥ λq+1 ≥ · · · ≥ λn by the assumption of Theorem 3.1, then by Lemma3.4

‖qt(Λ−q)‖ = max
q+1≤m≤n

|∑t
j=0(λ

+
m)t−j(λ−

m)j |

≤ max
q+1≤m≤n

∑t
j=0 |λ+

m|t−j |λ−
m|j

= max
q+1≤m≤n

∑t
j=0(

√
β)t−j(

√
β)j = (t+ 1)(

√
β)t.

Similarly, we have that

‖pT (Λ−q)‖ = max
q+1≤m≤n

|(λ+
m)T + (λ−

m)T |/2

≤ max
q+1≤m≤n

(|λ+
m|T + |λ−

m|T )/2

= max
q+1≤m≤n

((
√
β)T + (

√
β)T )/2 = (

√
β)T ,

and

‖p−1
T (Λq)qt(Λq)‖ = max

1≤m≤q

∑t
j=0(λ

+
m)t−j(λ−

m)j

(λ+
m)T+(λ−

m)T

2

≤ 2 max
1≤m≤q

∑t
j=0(λ

+
m)t/(λ+

m)T

= 2 max
1≤m≤q

(t+ 1)(λ+
m)t/(λ+

m)T = 2(t+ 1)(λ+
q )
t−T .

�

Lemma 3.8 ‖Ct‖ = Θ((λ+
1 )

t).

Proof We can bound‖Ct‖ based on the connection defined in Eq. (18). By Lemmas3.3and3.5, we have that

ZtCt = B− 1
2 pt(B

− 1
2AB− 1

2 )B
1
2Z0 +

t−1∑

j=0

B− 1
2 qj(B

− 1
2AB− 1

2 )B
1
2 ξ̂t−j−1

= Unpt(Λn)U
⊤
nBZ0 +

t−1∑

j=0

Unqj(Λn)U
⊤
nBξ̂t−j−1.

Thus, by Lemma3.4and Eq. (8) in the main text which in the setting of generalized eigenspace computation is




‖ξ̂t‖B,2 = O( 1
(T−t+1)T (

√
β)t+1 sin θ(Z0,Uq))

‖U⊤
q Bξ̂t‖2 = O( 1

(T−t+1)T (λ
+
q )
t+1 cos θ(Z0,Uq))

,

it holds that

‖Ct‖2 = ‖ZtCt‖B,2 = ‖pt(Λn)U
⊤
nBZ0 +

∑t−1
j=0 qj(Λn)U

⊤
nBξ̂t−j−1‖2

≤ ‖pt(Λn)‖2 +
∑t−1
j=0 ‖qj(Λn)‖2‖ξ̂t−j−1‖B,2
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Algorithm 2 ANPM for Generalized Eigenspace Computation underp ≥ k.

1: Input: real matrices(A,B) ∈ R
n×n × R

n×n with A < 0,B ≻ 0, momentum parameterβ > 0, target rankk,
iteration rankp ≥ k, iteration numberT , a subroutineGSB that performs modified Gram-Schmidt process with inner
product〈, 〉B.

2: Output: approximate top-k eigenspace spanned by the firstk columns ofXT .

3: Sample an entry-wise i.i.d. standard Gaussian matrixG ∈ R
n×p

4: Z−1 = 0 andZ0 = GSB(G)
5: for t = 0, 1, · · · , T − 1 do

6: Ht = (Z⊤
t BZt)

−1(Z⊤
t AZt)

7: Z̃t+1 ≈ argminZ tr(12Z
⊤BZ− Z⊤AZt) with warm startZtHt

8: if t = 0 then
9: Zt+1 = GSB(

1
2 Z̃t+1) such thatZt+1Rt+1 = 1

2 Z̃t+1

10: else
11: Zt+1 = GSB(Z̃t+1 − βZt−1R

−1
t ) such thatZt+1Rt+1 = Z̃t+1 − βZt−1R

−1
t

12: end if
13: end for

= max
1≤m≤n

|(λ+
m)t + (λ−

m)t|
2

+
∑t−1

j=0 ‖ξ̂t−j−1‖B,2 · max
1≤m≤n

|∑j
s=0(λ

+
m)j−s(λ−

m)s|

≤ (λ+
1 )

t + 1
16

∑t−1
j=0

(λ+
q )t−j cos θ(Z0,Uq)

(T−t+j+2)T (j + 1)(λ+
1 )

j

≤ (λ+
1 )

t +
(λ+

1
)t cos θ(Z0,Uq)

16T

∑t−1
j=0

j+1
T−t+j+2 ≤ 2(λ+

1 )
t.

On the other hand, it holds that

‖Ct‖2 = ‖pt(Λn)U
⊤
nBZ0 +

∑t−1
j=0 qj(Λn)U

⊤
nBξ̂t−j−1‖2

≥ σmin(U
⊤
nBZ0)‖pt(Λn)‖2 −

∑t−1
j=0 ‖qj(Λn)‖2‖ξ̂t−j−1‖B,2

= max
1≤m≤n

|(λ+
m)t + (λ−

m)t|
2

−
∑t−1

j=0 ‖ξ̂t−j−1‖B,2 · max
1≤m≤n

|
∑j

s=0(λ
+
m)j−s(λ−

m)s|

= max{max
m≤q

(λ+
m)t + (λ−

m)t

2
,max
m>q

(
√
β)t cos(t arccos

λm

2
√
β
)}

−∑t−1
j=0 ‖ξ̂t−j−1‖B,2 · max

1≤m≤n
|∑j

s=0(λ
+
m)j−s(λ−

m)s|

=
(λ+

1 )
t + (λ−

1 )
t

2
−∑t−1

j=0 ‖ξ̂t−j−1‖B,2 · max
1≤m≤n

|∑j
s=0(λ

+
m)j−s(λ−

m)s|

≥ (λ+
1 )

t

2
−
∑t−1
j=0 ‖ξ̂t−j−1‖B,2 · max

1≤m≤n
|
∑j
s=0(λ

+
m)j−s(λ−

m)s|

≥ 1

2
(λ+

1 )
t − 1

16

∑t−1
j=0

(λ+
q )t−j cos θ(Z0,Uq)

(T−t+j+2)T (j + 1)(λ+
1 )

j

≥ 1

2
(λ+

1 )
t − (λ+

1
)t cos θ(Z0,Uq)

16T

∑t−1
j=0

j+1
T−t+j+2 ≥ 7

16 (λ
+
1 )

t.

Thus, we can write‖Ct‖2 = Θ((λ+
1 )
t). �

Theorem 4.1 Letk ≤ q ≤ p and assume thatλq > 2
√
β ≥ λq+1 andλn ≥ 0 for a pair ofn× n real symmetric matrices

(A,B) with B ≻ 0. After Algorithm2 or the update below

Zt+1Rt+1 = B−1AZt − βZt−1R
−1
t + ξt

runs forT = O( 1√
ρ log

tan θ0
ǫ ) iterations, we have thatsin θ(ZT ,Uk) < ǫ in time complexity

O(nnz(B)p

√
κ(B)

ρ
(log

1

cos θ0
log

γ

ρ cos θ0
+ log

1

ǫ
log

γ

ρ
) +

nnz(A)p+ nnz(B)p2√
ρ

log
1

ǫ cos θ0
),
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whereρ = λk−2
√
β

λk
, γ = λ1

λk
, κ(B) represents the condition number ofB, nnz(·) represents the number of nonzero entries

in a matrix, andθ0 = θ(Z0,Uq).

Proof Since the proof is quite similar to that of Theorem 3.1 in the main text, we focus on the differences. By Lemma
3.3and3.5, we can expressZt in a closed form:

Zt = (B− 1
2 pt(B

− 1
2AB− 1

2 )B
1
2Z0 +

t−1∑

j=0

B− 1
2 qj(B

− 1
2AB− 1

2 )B
1
2 ξ̂t−j−1)C

−1
t . (19)

Now consider

hT = ‖(U⊤
−qBZT )(U

⊤
q BZT )

† [Ik 0
]⊤ ‖ = ‖(U⊤

−qBẐT )(U
⊤
q BẐT )

† [Ik 0
]⊤ ‖.

By Lemma3.6, we can write that

hT = ‖(pT (Λ−q)U
⊤
−qBZ0 + Γ)(I + (U⊤

q BZ0)
†Ω)⊤QP⊤(I+ 2sym(PQ⊤Ω⊤

PΣ−1P⊤) +PΣ−1P⊤ΩΩ⊤PΣ−1P⊤)−1PΣ−1P⊤ [p−1
T (Λk) 0

]⊤ ‖
≤ ‖p−1

T (Λk)‖(‖pT (Λ−q)‖‖U⊤
−qBZ0‖+ ‖Γ‖)‖Σ−1‖

(1− 2‖Σ−1‖‖Ω‖ − (‖Σ−1‖‖Ω‖)2)−1(1 + ‖(U⊤
q BZ0)

†‖‖Ω‖). (20)

Assume that




‖ξ̂t‖B,2 = O( 1
(T−t+1)T (

√
β)t+1 sin θ(Z0,Uq)),

‖U⊤
q Bξ̂t‖2 = O( 1

(T−t+1)T (λ
+
q )
t+1 cos θ(Z0,Uq)).

(21)

By Lemma3.7and the above assumption, we can boundΓ andΩ in Lemma3.6as follows:

‖Γ‖ ≤
T−1∑

t=0

‖qt(Λ−q)‖‖ξ̂T−t−1‖B,2 ≤
T−1∑

t=0

(t+ 1)(
√
β)t

(
√
β)T−t sin θ(Z0,Uq)

(t+ 2)T

≤ (
√
β)T sin θ(Z0,Uq), (22)

‖Ω‖ ≤
T−1∑

t=0

‖p−1
T (Λq)qt(Λq)‖‖U⊤

q Bξ̂T−t−1‖2 ≤ 2

T−1∑

t=0

(t+ 1)(λ+
q )

t−T (λ
+
q )

T−t cos θ(Z0,Uq)

16(t+ 2)T

≤ 1

8
cos θ(Z0,Uq). (23)

Also note that

‖U⊤
−qBZ0‖ = sin θ(Z0,Uq), ‖(U⊤

q BZ0)
†‖ = ‖Σ−1‖ = cos−1 θ(Z0,Uq). (24)

By Lemma3.7and Eq. (22)-(24), hT in Eq. (20) can be further bounded as follows:

hT ≤ 16(

√
β

λ+
k

)T tan θ(Z0,Uq).

Thus, we gethT < ǫ if T ≥ 2
√

λk

λk−2
√
β
log(16ǫ tan θ(Z0,Uq)). Let orthonormalZ⊥

T be the orthogonal complement of

ZT in inner product〈, 〉B, i.e.,(Z⊥
T )

⊤BZ⊥
T = I and(Z⊥

T )
⊤BZT = 0.

sin θ(ZT ,Uk) = ‖(Z⊥
T )

⊤BUk‖2 = ‖(B 1
2Z⊥

T )
⊤(B

1
2Uk)‖2

= ‖(B 1
2Z⊥

T )(B
1
2Z⊥

T )
⊤(B

1
2Uk)‖2
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= ‖(I−B
1
2ZTZ

⊤
TB

1
2 )(B

1
2Uk)‖2 ≤ ‖B 1

2Uk −B
1
2ZT (U

⊤
q B

1
2ZT )

† [Ik 0
]⊤ ‖2

= ‖U⊤
q B

1
2 (B

1
2Uk −B

1
2ZT (U

⊤
q BZT )

† [Ik 0
]⊤

)‖2
+‖U⊤

−qB
1
2 (B

1
2Uk −B

1
2ZT (U

⊤
q BZT )

† [Ik 0
]⊤

)‖2
= ‖U⊤

−qBZT (U
⊤
q BZT )

† [Ik 0
]⊤ ‖ = hT < ǫ.

Note that‖ξ̂t‖B,2 ≤ ‖ξt‖B,2‖Ct‖2 and‖U⊤
q Bξ̂t‖2 ≤ ‖U⊤

q Bξt‖2‖Ct‖2 hold by Eq. (18). When the noise conditions in
terms ofξt satisfy 




‖ξt‖B,2 = O( 1
(T−t+1)T (

√
β

λ+

1

)t
√
β sin θ(Zt,Uq))

‖U⊤
q Bξt‖ = O( 1

(T−t+1)T (
λ+
q

λ+

1

)tλ+
q cos θ(Zt,Uq))

, (25)

Assumption21will be satisfied by Lemma3.8and3.2.

Note that noiseξt is generated from approximatingB−1AZt by a warm-started least-squares solver. The approximation
Z̃t+1 in Algorithm 2 can be written as

Z̃t+1 = B−1AZt + ξt.

For simplicity, we followGe et al.(2016) to use accelerated gradient descent as our least-squares solver for minimizing
the following least-squares problem

f(Z) = tr(
1

2
Z⊤BZ− Z⊤BZt)

with warm startZtHt, whereHt = (Z⊤
t BZt)

−1(Z⊤
t AZt). It suffices for

‖ξt‖B,2 = O(
1

(T − t+ 1)T
min{

√
β sin θ(Zt,Uq), λ

+
q cos θ(Zt,Uq)})

to meet the accuracy designated by Eq. (25). To get the complexity of solving this least-squares problem to the above
accuracy, we need to figure out both the initial and final errors. By the analysis inGe et al.(2016), we can have any error
(f(Z)−min f(Z)) expressed as

f(Z)−min f(Z) =
1

2
‖Z−B−1AZt‖2B,F

and the initial error bounded asf(ZtHt)−min f(Z) ≤ 4pλ2
1 tan

2 θ(Zt,Up). The final error is

f(Z̃t+1)−min f(Z) =
1

2
‖Z̃t+1 −B−1AZt‖2B,F =

1

2
‖ξt‖2B,F ≤ p

2
‖ξt‖2B,2.

Noting that we can write thattan θ(Zt,Up) ≤ τ tan θ(Zt,Uq) for some positive constantτ , the final to initial error can
be bounded as follows

f(Z̃t+1)−min f(Z)

f(ZtHt)−min f(Z)
= O(

λ2
k

λ2
1T

2
min{cos2 θ(Zt,Uq),

cos4 θ(Zt,Uq)

sin2 θ(Zt,Uq)
}).

=

{
O(( ργ )

2 cos4 θ(Z0,Uq)), θ(Zt,Uq) is large
O(( ργ )

2), θ(Zt,Uq) is small
, O(δ).

SinceT (δ) = nnz(B)
√

κ(B) log 1
δ is the complexity of AGD, we have the total complexity

1√
ρ

(
nnz(A)p+ nnz(B)p+ np2

)
log

1

ǫ cos θ0

+
1√
ρ

(
log

1

cos θ0
· T ((

ρ

γ
)2 cos4 θ0) + log

1

ǫ
· T ((

ρ

γ
)2)

)

+
1√
ρ

(
nnz(B)p2 + np2

)
log

1

ǫ cos θ0
,

where three parts represent complexities of computingHt, solving least-squares, andB-orthonormalization, respectively.
Plugging the formula ofT (δ) gives us the simplified complexity in Theorem4.1. �
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Algorithm 3 ANPM for CCA underp ≥ k.

1: Input: data matrices(X,Y), block sizek, momentum parameterβ, target rankk, iteration rankp ≥ k, iteration
numberT , a subroutineGSB that performs modified Gram-Schmidt process with inner product〈, 〉B.

2: Output: approximate top-k canonical subspaces spanned by the firstk columns ofΦT andΨT , respectively.

3: Setdx × p matricesΦ−1 = 0, Φ0 = Φ̃(Φ̃⊤CxxΦ̃)−
1
2 , anddy × p matricesΨ−1 = 0, Ψ0 = Ψ̃(Ψ̃⊤CyyΨ̃)−

1
2 ,

whereΦ̃ andΨ̃ are entry-wise i.i.d. standard normal matrices of sizedx × p anddy × p, respectively

4: for t = 0, 1, · · · , T − 1 do {Perform plain alternating least-squares updates}

5: Φ̂t ≈ arg min
Φ∈Rdx×k

lt(Φ) which starts from the initial Φt(Φ
⊤
t CxxΦt)

−1(Φ⊤
t CxyΨt) to approximately mini-

mize lt(Φ) = 1
2n‖X⊤Φ−Y⊤Ψt‖2F + rx

2 ‖Φ‖2F
6: Ψ̂t ≈ arg min

Ψ∈R
dy×k

ht(Ψ) which starts from the initial Ψt(Ψ
⊤
t CyyΨt)

−1(Ψ⊤
t C

⊤
xyΦt) to approximately mini-

mize ht(Ψ) = 1
2n‖Y⊤Ψ−X⊤Φt‖2F +

ry
2 ‖Ψ‖2F

# Perform faster alternating least-squares updates

7: ̂̂Φt ≈ arg min
Φ∈Rdx×k

l̂t(Φ) which starts from the initial Φ̂t(Φ̂
⊤
t CxxΦ̂t)

−1(Φ̂⊤
t CxyΨ̂t) to approximately mini-

mize l̂t(Φ) = 1
2n‖X⊤Φ−Y⊤Ψ̂t‖2F + rx

2 ‖Φ‖2F
8: if t = 0 then
9: Φt+1 = GSCxx

( 1
2
̂̂Φt) such that Φt+1Rt+1 = 1

2
̂̂Φt

10: else
11: Φt+1 = GSCxx

( ̂̂Φt − βΦt−1R
−1
t ) such that ( ̂̂Φt − βΦt−1R

−1
t ) = Φt+1Rt+1

12: end if

13: ̂̂Ψt ≈ arg min
Ψ∈R

dy×k
ĥt(Ψ) which starts from the initial Ψ̂t(Ψ̂

⊤
t CyyΨ̂t)

−1(Ψ̂⊤
t C

⊤
xyΦ̂t) to approximately mini-

mize ĥt(Ψ) = 1
2n‖Y⊤Ψ−X⊤Φ̂t‖2F +

ry
2 ‖Ψ‖2F

14: if t = 0 then
15: Ψt+1 = GSCyy

( 1
2
̂̂Ψt) such that Ψt+1St+1 = 1

2
̂̂Ψt

16: else
17: Ψt+1 = GSCyy

( ̂̂Ψt − βΨt−1S
−1
t ) such that ( ̂̂Ψt − βΨt−1S

−1
t ) = Ψt+1St+1

18: end if

19: end for

Theorem 4.2 Letk ≤ q ≤ p and assume thatσ2
q > 2

√
β ≥ σ2

q+1. After Algorithm3 or the update below

{
Φt+1Rt+1 = C−1

xxCxy

(
C−1
yyC

⊤
xyΦt + ξ1t

)
− βΦt−1R

−1
t + ξ2t ∈ R

dx×p

Ψt+1St+1 = C−1
yyC

⊤
xy

(
C−1
xxCxyΨt + η1

t

)
− βΨt−1S

−1
t + η2

t ∈ R
dy×p,

runs forT = O( 1√
ρ log

1
ǫ cos θ0

), we have thatsinmax{θ(ΦT ,Uk), θ(ΨT ,Vk)} ≤ ǫ in time complexity

O(nnz(X,Y)p

√
κ(X,Y)

ρ
(log

1

cos θ0
log

γ

ρ cos θ0
+ log

1

ǫ
log

γ

ρ
) +

nnz(X,Y)p2√
ρ

log
1

ǫ cos θ0
),

wherennz(X,Y) = nnz(X) + nnz(Y), κ(X,Y) = max{κ(Cxx), κ(Cyy)}, ρ =
σ2
k−2

√
β

σ2
k

, γ =
σ2
1

σ2
k

, and θ0 =

max{θ(Φ0,Uq), θ(Ψ0,Vq)}.

Proof The proof works by repeating the proof of Theorem4.1twice with (A,B) = (CxyC
−1
yyC

⊤
xy,Cxx) and(A,B) =

(C⊤
xyC

−1
xxCxy,Cyy), respectively, except for the handling of noise terms because of two sources of noise for each step.

We take as an example the case of(A,B) = (CxyC
−1
yyC

⊤
xy,Cxx), where it holds that

Cxy = Cxx

(
UjΣjV

⊤
j +U−jΣ−jV

⊤
−j
)
Cyy,



Zhiqiang Xu

and

CxyC
−1
yyC

⊤
xy = Cxx

(
UjΣ

2
jU

⊤
j +U−jΣ

2
−jU

⊤
−j
)
Cxx.

In this case, the noise for each step is(C−1
xxCxyξ

1
t + ξ

2
t ), due to the two least-squares approximations, i.e.,

Ψ̂t = C−1
yyC

⊤
xyΦt + ξ1t ,

̂̂Φt = C−1
xxCxyΨ̂t + ξ2t .

It suffices to assume that the final approximation accuraciesfor two least-squares problems in Lines 5 and 7 of Algorithm
3 satisfy

ht(Ψ̂t)−minht(Ψ) =
1

2
‖Ψ̂t −C−1

yyC
⊤
xyΦt‖2Cyy ,F =

1

2
‖ξ1t‖2Cyy ,F ≤ p

2
‖ξ1t‖2Cyy ,2,

l̂t( ̂̂Φt)−min l̂t(Φ) =
1

2
‖ ̂̂Φt −C−1

xxCxyΨ̂t‖2Cxx,F =
1

2
‖ξ2t‖2Cxx,F ≤ p

2
‖ξ2t ‖2Cxx,2,

where

‖ξ1t‖Cyy,2 = O(
1

(T − t+ 1)T
min{

√
β sin θt, (σ

2
q )

+ cos θt}),

‖ξ2t‖Cxx,2 = O(
1

(T − t+ 1)T
min{

√
β sin θt, (σ

2
q )

+ cos θt}),

θt = max{θ(Φt,Uq), θ(Ψt,Vq)} , and(σ2
j )

± =
σ2
j±

√
σ4
j
−4β

2 . By Lemmas 3.2-3.3 inXu and Li (2021), we have the
following initial errors

ht(ΨtHΨt
)−minht(Ψ) =

1

2
‖ΨtHΨt

−C−1
yyC

⊤
xyΦt‖2Cyy ,F = O(pσ2

1 tan
2 θt),

l̂t(Φ̂tHΦ̂t
)−min l̂t(Φ) =

1

2
‖Φ̂tHΦ̂t

−C−1
xxCxyΨ̂t‖2Cxx,F = O(p(σ2

1 + ‖ξ1t‖2Cyy,2) tan
2 θt),

whereHΨt
= (Ψ⊤

t CyyΨt)
−1(Ψ⊤

t C
⊤
xyΦt) andH

Φ̂t
= (Φ̂⊤

t CxxΦ̂t)
−1(Φ̂⊤

t CxyΨ̂t). Thus, we can bound the final to
initial error ratio as follows

ht(Ψ̂t)−min ht(Ψ)

ht(ΨtHΨt
)−minht(Ψ)

= O(
σ2
k

σ2
1T

2
min{cos2 θt,

cos4 θt

sin2 θt
}),

l̂t( ̂̂Φt)−min l̂t(Φ)

l̂t(Φ̂tHΦ̂t
)−min l̂t(Φ)

= O(
σ2
k

σ2
1T

2
min{cos2 θt,

cos4 θt

sin2 θt
}).

We then can similarly have the following complexity

O(nnz(X,Y)p

√
κ(X,Y)

ρ
(log

1

cos θ0
log

γ

ρ cos θ0
+ log

1

ǫ
log

γ

ρ
) +

nnz(X,Y)p2√
ρ

log
1

ǫ cos θ0
).

�

C MOMENTUM PARAMETER IN OTHER RANGES

For ease of exposition, we consider the case of Section 3.1 ofthe main text, but it is straightforward to extend to the
generalized eigenspace computation. In this case, we can resume the proof in Section 3.1 of the main text from Eq. (20)
for each case ofβ > 0.

1) When2
√
β ≥ λk, Algorithm 1 is not guaranteed to converge. The reason is as follows.
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Proof In this case, we have that

‖p−1
T (Σk)‖ =

2

(
√
β)T

max
m:2

√
β≥λm≥λk

| cos(T arc cos( λm

2
√
β
))|−1, ‖pT (Σ−q)‖ ≤ (

√
β)T ,

where we have used the equivalent expression forpt(x) when|x| < 4
√
β. Even if the noise is well conditioned such

that all the relevant factors are properly bounded in Eq. (20) as in the case considered in the main text, we can only
get that

hT ≤ c(
√
β)T

2

(
√
β)T

max
m:2

√
β≥λm≥λk

| cos(T arc cos( λm

2
√
β
))|−1

≤ 2c max
m:2

√
β≥λm≥λk

| cos(T arc cos( λm

2
√
β
))|−1,

wherec is a constant. In this case, there is no guarantee thathT = O(ǫ) can be achieved. Thus,sin θ(XT ,Uk) < ǫ
is not guaranteed sincesin θ(XT ,Uk) < hT . �

2) Whenλk > 2
√
β ≥ λq, we havesin θ(XT ,Uk) < ǫ for

T ≥ 2

√
λk

λk − 2
√
β
log(

16

ǫ
tan θ(X0,Uq))

if it holds that 



‖ξt‖ = O( 1
(T−t+1)T (

√
β

λ+

1

)t+1
√
β sin θ(X0,Uq))

‖U⊤
q ξt‖ = O( 1

(T−t+1)T (
λ+
q

λ+

1

)t+1λ+
q cos θ(X0,Uq))

.

Proof In this case, results in Lemma3.7become as follows.

‖p−1
T (Σk)‖ ≤ 2

(λ+
k )

T
, ‖pT (Σ−q)‖ ≤ (

√
β)T , ‖qt(Σ−q)‖ ≤ (t+ 1)(

√
β)t,

‖p−1
T (Σq)qt(Σq)‖ = max

1≤m≤q
|
∑t

j=0(λ
+
m)t−j(λ−

m)j

1
2 ((λ

+
m)T + (λ−

m)T )
|

= max{ max
m:λm≥2

√
β

∑t
j=0(λ

+
m)t−j(λ−

m)j

1
2 ((λ

+
m)T + (λ−

m)T )
, max
m:2

√
β>λm≥λq

|
∑t

j=0(λ
+
m)t−j(λ−

m)j

1
2 ((λ

+
m)T + (λ−

m)T )
|}

≤ max{ max
m:λm≥2

√
β

2(t+ 1)(λ+
m)t

(λ+
m)T

, max
m:2

√
β>λm≥λq

∑t
j=0 |λ+

m|t−j |λ−
m|j

| 12 ((λ
+
m)T + (λ−

m)T )| }

= max{ max
m:λm≥2

√
β

2(t+ 1)

(λ+
m)T−t , max

m:2
√
β>λm≥λq

∑t
j=0(

√
β)t

(
√
β)T | cos(T arc cos λm

2
√
β
)|
}

≤ max{ 2(t+ 1)

(
√
β)T−t , max

m:2
√
β>λm≥λq

t+ 1

(
√
β)T−t| cos(T arc cos λm

2
√
β
)|
}

≤ (t+ 1)(
√
β)t−T max{2, max

m:2
√
β>λm≥λq

| cos(T arc cos λm

2
√
β
)|−1

︸ ︷︷ ︸
τ

}.

We now assume that




‖ξ̂t‖ = O( 1
(T−t+1)T (

√
β)t+1 sin θ(X0,Uq)),

‖U⊤
q ξ̂t‖ = O( 1

τ(T−t+1)T (
√
β)t+1 cos θ(X0,Uq)),

and can boundΓ andΩ in Lemma3.6as follows.

‖Γ‖ ≤ ∑T−1
t=0 ‖qt(Σ−q)‖‖ξ̂T−t−1‖

≤ ∑T−1
t=0 (t+ 1)(

√
β)t · (

√
β)T−t sin θ(X0,Uq)

(t+2)T ≤ (
√
β)T sin θ(X0,Uq).
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‖Ω‖ ≤ ∑T−1
t=0 ‖p−1

T (Σq)qt(Σq)‖‖U⊤
q ξ̂T−t−1‖

≤ 2
∑T−1
t=0 τ(t + 1)(

√
β)t−T · (

√
β)T−t cos θ(X0,Uq)

16τ(t+2)T ≤ (1/8) cos θ(X0,Uq).

Thus, we can havehT in Eq. (20) bounded as

hT ≤ 16(

√
β

λ+
k

)T tan θ(X0,Uq)

again. Similarly, we havesin θ(XT ,Uk) ≤ hT < ǫ for

T ≥ 2

√
λk

λk − 2
√
β
log(

16

ǫ
tan θ(X0,Uq)).

To convert noise conditions, notingτ ≥ 2 we have that

‖Ct‖ ≤ (λ+
1 )

t + 1
16

∑t−1
j=0

(
√
β)t−j cos θ(X0,Uq)
τ(T−t+j+2)T (j + 1)(λ+

1 )
j

≤ (λ+
1 )

t +
(λ+

1
)t cos θ(X0,Uq)

16T

∑t−1
j=0

j+1
T−t+j+2 ≤ 2(λ+

1 )
t,

and‖Ct‖ ≥ 7
16 (λ

+
1 )

t similarly. Thus, we can write the final noise condition as




‖ξt‖ = O( 1
(T−t+1)T (

√
β

λ+

1

)t
√
β sin θ(X0,Uq))

‖U⊤
q ξt‖ = O( 1

τ(T−t+1)T (
√
β

λ+

1

)t
√
β cos θ(X0,Uq))

.

�

3) Whenλq+1 > 2
√
β, we havesin θ(XT ,Uk) < ǫ for

T ≥ λ+
k

λ+
k − λ+

q+1

log(
16

ǫ
tan θ(X0,Uq))

if 



‖ξt‖ = O( 1
(T−t+1)T (

λ+

q+1

λ+

1

)tλ+
q+1 sin θ(X0,Uq))

‖U⊤
q ξt‖ = O( 1

2(T−t+1)T (
λ+
q

λ+

1

)tλ+
q cos θ(X0,Uq))

.

Proof In this case, results in Lemma3.7become as follows.

‖p−1
T (Σk)‖ ≤ 2

(λ+
k )

T
,

‖pT (Σ−q)‖ ≤ max
q+1≤m≤n

1

2
|(λ+

m)T + (λ−
m)T |

= max{ max
m:λm≥2

√
β 1

2
((λ+

m)T+(λ−
m)T )

, max
m:2

√
β>λm

1

2
|(λ+

m)T + (λ−
m)T |}

≤ max{(λ+
q+1)

T , (
√

β)T } = (λ+
q+1)

T ,

‖qt(Σ−q)‖ ≤ max
q+1≤m≤n

t∑

j=0

|λ+
m)t−j(λ−

m)j |

= max{ max
m:λm≥2

√
β

t∑

j=0

(λ+
m)t−j(λ−

m)j , max
m:2

√
β>λm

|
t∑

j=0

(λ+
m)t−j(λ−

m)j |}

≤ max{(t+ 1)(λ+
q+1)

T , (t+ 1)(
√
β)T } = (t+ 1)(λ+

q+1)
T ,

‖p−1
T (Σq)qt(Σq)‖ = max

1≤m≤q

∑t
j=0(λ

+
m)t−j(λ−

m)j

1
2 ((λ

+
m)T + (λ−

m)T )
≤ 2 max

1≤m≤q

∑t
j=0(λ

+
m)t

(λ+
m)T

= (t+ 1)(λ+
q )
t−T .
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We now assume that




‖ξ̂t‖ = O( 1
(T−t+1)T (λ

+
q+1)

t+1 sin θ(X0,Uq)),

‖U⊤
q ξ̂t‖ = O( 1

(T−t+1)T (λ
+
q )

t+1 cos θ(X0,Uq)),

and can boundΓ andΩ in Lemma3.6as follows.

‖Γ‖ ≤ ∑T−1
t=0 ‖qt(Σ−q)‖‖ξ̂T−t−1‖

≤
∑T−1

t=0 (t+ 1)(λ+
q+1)

t · (λ+

q+1
)T−t sin θ(X0,Uq)

(t+2)T ≤ (λ+
q+1)

T sin θ(X0,Uq).

‖Ω‖ ≤ ∑T−1
t=0 ‖p−1

T (Σq)qt(Σq)‖‖U⊤
q ξ̂T−t−1‖

≤ 2
∑T−1
t=0 (t+ 1)(λ+

q )
t−T · (λ+

q )T−t cos θ(X0,Uq)

16τ(t+2)T ≤ (1/8) cos θ(X0,Uq).

Thus, we can havehT in Eq. (20) bounded as

hT ≤ 16(
λ+
q+1

λ+
k

)T tan θ(X0,Uq).

WhenT > log−1(λ+
k /λ

+
q+1) log(16 tan θ(X0,Uq)/ǫ), we havehT < ǫ. Noting that

log
λ+
k

λ+
q+1

≥
−1 + λ+

k /λ
+
q+1

λ+
k /λ

+
q+1

=
λ+
k − λ+

q+1

λ+
k

=
λk − λq+1 +

√
λ2
k − 4β −

√
λ2
q+1 − 4β

λk +
√
λ2
k − 4β

>
λk − λq+1

λk
,

we getsin θ(XT ,Uk) ≤ hT < ǫ for T ≥ λ+

k

λ+

k
−λ+

q+1

log(16ǫ tan θ(X0,Uq)). To convert noise conditions, we have that

‖Ct‖ ≤ (λ+
1 )

t + 1
16

∑t−1
j=0

(λ+
q )t−j cos θ(X0,Uq)

(T−t+j+2)T (j + 1)(λ+
1 )

j

≤ (λ+
1 )

t +
(λ+

1
)t cos θ(X0,Uq)

16T

∑t−1
j=0

j+1
T−t+j+2 ≤ 2(λ+

1 )
t,

and‖Ct‖ ≥ 7
16 (λ

+
1 )

t similarly. Thus, the final noise condition is





‖ξt‖ = O( 1
(T−t+1)T (

λ+

q+1

λ+

1

)tλ+
q+1 sin θ(X0,Uq))

‖U⊤
q ξt‖ = O( 1

(T−t+1)T (
λ+
q

λ+

1

)tλ+
q cos θ(X0,Uq))

.

�

D MORE EXPERIMENTS

More experiments are provided here to cover more settings.

D.1 ANPM

Two noise settings are considered. First, noise varianceσ during iterations is considered. Three values of fixed variance
are used:σ ∈ {10−10, 10−8, 10−5}. The performance of the algorithms is reported in Figure4, where we can see that
the ANPM withp > k runs fastest across datasets for each noise variance value.Again, the twoβ settings of the ANPM
perform almost equally well. We also observe that the iteration error at convergence is positively correlated with, even
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Figure 4: Performance of the ANPM (Algorithm 1) under noisesof fixed variance across iterations.

roughly matching, the noise levelσ for both types of algorithm, that is, more noises lead to an output solution with a larger
error. NPM withp > k works better than ANPM withp = k on the first dataset, but is worse on the other two datasets.

Second, as in the main text, we test the algorithms with noises of varying variance injected into iterations for two more
initial noise variances:σ0 ∈ {10, 103}. Again, the noise variance keeps decreasing with iterations as follows:σt = σ0

1.1t .
The convergence curves of the algorithms are plotted in Figure5. We can also see the ANPM withp > k performs best.

Next, we check the performance of the ANPM withp > k for different values ofp in two noise variance settings (fixed or
dynamic noise variance). Figures6-7 show that increasingp does not always mean better performance. It depends on three
factors, i.e., gapλk−λp+1

λk
, iteration rankp, and noise type, where performance increases with the first factor but decreases

with the second one.

D.2 ANPM for Genearlized Eigenspace Computation

We also check the performance of the ANPM withp > k for generalized eigenspace computation for different values ofp,
report the algorithm performance in Figure8, where we have similar observations as with Figures6-7.

D.3 ANPM for CCA

For the case of CCA, we test other values ofp for the ANPM withp > k and report the performance in Figure9.
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Figure 5: Performance of the ANPM (Algorithm 1) under noisesof varying variance.
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Figure 6: Performance of the ANPM (Algorithm 1) with varyingp under noises of fixed variance across iterations.
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Figure 7: Performance of the ANPM (Algorithm 1) with varyingp under noises of varying variance.
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Figure 8: Performance of the ANPM (Algorithm 2) with varyingp for generalized eigenspace computation.
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Figure 9: Performance of the ANPM (Algorithm 3) with varyingp for CCA.
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