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Abstract

We revisit the acceleration of the noise-tolerant
power method for which, despite previous stud-
ies, the results remain unsatisfactory as they are
either wrong or suboptimal, also lacking general-
ity. In this work, we present a simple yet general
and optimal analysis via noise-corrupted Cheby-
shev polynomials, which allows a larger iteration
rankp than the target rank, requires less noise
conditions in a new form, and achieves the opti-

mal iteration complexityd ( “;71‘1“ log%)

for someq satisfyingk < ¢ < p in a certain
regime of the momentum parameter. Interest-
ingly, it shows dynamic dependence of the noise
tolerance on the spectral gap, i.e., from linear at
the beginning to square-root near convergence,
while remaining commensurate with the previ-
ous in terms of overall tolerance. We relate our
new form of noise norm conditions to the existing
trigonometric one, which enables an improved
analysis of generalized eigenspace computation
and canonical correlation analysis. We conduct
an extensive experimental study to showcase the
great performance of the considered algorithm
with a larger iteration rank > k across different
applications.

INTRODUCTION

caused by such factors as privacy constraint, missing en-
tries, sampling error, adversarial attack, and approxima-
tion error Hardt and Roth2013 Mitliagkas et al, 2013
Liang et al, 2014 Liu et al, 2015 Ge et al,2016. For ex-
ample, for the privacy concern, we may want to add noises
to each power iteration to avoid the data privacy leakage.
Also, for the generalized eigenspace computation which
involves the inverse of a large matrix, we may approxi-
mate the multiplication of the inverse matrix with vectars t
avoid the costly matrix inversion for efficiency. This sedfi

is common in downstream machine learning applications
such as principal component analysis and canonical corre-
lation analysis. The noisy power methddiardt and Price
2014 is a meta algorithm for this purpose that can handle
varieties of noiseg during power iterations. Both its con-
vergence rate and noise conditions (indicating noise-toler
ance level) linearly depend on the consecutive spectral gap
(A — Mi+1), where),; represents the-th largest eigen-
value of the input real symmetric matrik € R™*™ and

k is the target rank when a tap-eigenspace ofA, de-
noted asUy, is desired. Acceleration, as an appealing
feature, has been considered for the noisy power method
as well, via the use of a larger iteration ramkhan target
rankk (Balcan et al.2016, or the momentum under= k

(Mai and Johansse2019, or the momentum under> k

(Xu and Li, 2022. A larger iteration rank leads to depen-
dence on a non-consecutive spectral gap which is an en-
larged spectral gap compared to the consecutive one, while
momentum yields square-root dependence on spectral gap.
However, these results are still unsatisfact@glcan et al.
(2016; Mai and Johansso(2019 considered only a sin-
gle type of acceleration. Unfortunateai and Johansson
(2019 gave a wrong analysisvhich resulted in a wrong

Power method is a classic algorithm for the dominantnoise tolerance bound that scales witfA, — A1 across
eigenspace computation required in many problems ofterations. This contradicts the folklore that acceledate

machine learning and statistics.

Recently, it has beemethods have no better noise tolerance than their un-

an emerging trend to demand noisy per-iteration updategccelerated counterpartdgrdt and Roth2013. Also, it

lacks generality as only a special kind of noise was dis-
cussedXu and Li (20229 combined both types of acceler-

Proceedings of the Jdnternational Conference on Artificial ation, but only achieves a sub-optimal iteration compiexit

Intelligence and Statistics (AISTATS) 2023, Valencia, iBpa
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which has an extra logarithmic factor on the spectral gapgives us a new form of the noise norm condition. The third
and it lacks generality as well because it requires not twdkey step is to extend the potential function@u (2019

as usual but three noise conditions, one of which is quiteéo work under both the momentum setting and the noise
restrictive for each iteration and thus limiting its applic  setting in order to figure out noise tolerance bounds and
bility. convergence rate &;.

In this work, we present a simple yet general and optimalOur analysis is much simpler and more general while
analysis for the accelerated noise-tolerant power methodchieving the optimal iteration complexity without the ex-

with momentum undep > k for¢ > 1:

X, 1Rip1 = AX; — BX; R+ € e R™P (1)

where 5 > 0 is the momentum parameteg, is the
noise matrix for iteration > 0, and X;,1R;;1 repre-
sents the QR factorizatiolsplub and Van Loan2013 of
the right-hand side that can ke&y 1, € R™*P column-
orthonormal andR;,; € RP*P forall ¢ > 1. Since we
use the scaled Chebyshev acceleratiunét al, 2018, we
start the iteration by settin,,, X; € R"*? to be Q-factor
matrices of the QR factorization of an entry-wise i.i.d nsta
dard Gaussian matrigg € R"™*? and%AXo +&,, respec-
tively, i.e.,

1
XoRo =G, XiRi= §AX0 +& eR™P. (2)

To analyze the noise tolerance and convergence of Bg. (

tra logarithmic factor. We further relate our new form

of the noise norm conditions to the existing trigonometric
one, which enables an improved analysis of the generalized
eigenspace computation and canonical correlation asalysi
(CCA). Interestingly, the results show that the dependence
of the noise tolerance bounds on the non-consecutive spec-
tral gap varies with iterations from the linear dependericy a
the beginning to the square-root dependency near the con-
vergence, but overall it remains commensurate with the ex-
isting results in terms of the noise tolerance (see Remark 1)
This is the first time to capture the spectral gap dependence
dynamics in theory, to the best of our knowledge. Since
there have been no experimental studies upderk in the
noise setting so far, we conduct an extensive experimental
study to showcase the great performance of the considered
algorithm undep > k across applications. To summarize,
we make the following contributions in this work:

our first key step is to establish the connection to its non-

orthonormal version:
Xt-ﬁ-l = AX; — X1 + Et e R™™P, (3)
with initials

N N 1 o~ -
Xo =Xy, X;= §AX0 + &, (4)

where both}A(t and/ét are unnormalized and thus may ex-

plode or vanish in a certain norm as the iteration proceeds.

Thus, Eq. )-(4) are only used for theoretical analysis
rather than practice. The second key step is to Raye

expressed as the noise-corrupted scaled Chebyshev matrix

polynomials, i.e..p, (A)Xo + Y7} ¢;(A)E,_;_,, where

pi(x) is the scaled Chebyshev polynomials of the first kind

with ¢1(z) = § andg(z) has the same three-term recur-
rence a®:(x) but with a different second polynomial, i.e.,
¢1(x) = z. This way, i.e., handling cumulative noises in-
stead of per-iteration noises in previous studies, evdlgitua

2To understand this type of polynomials, let’s start from the

power method without considering noises and orthonormaliz
tion for intuition, which can be written aX;,; = AX;. By

induction, we hav&X, = A'X,, where only monomial&* are
present. Replacing monomials by the scaled Chebyshev @olyn

» We present a simple yet general and optimal analysis
that achieves the square-root dependence of the con-
vergence rate on the non-consecutive gap and needs
less noise conditions, that are in a new form while
maintaining commensurate tolerance, for the acceler-
ated noise-tolerant power method.

» We extend our analysis to the generalized eigenspace
computation and CCA and achieve improved results
of similar type.

» We conduct an extensive experimental study to show-
case the great performance of the accelerated noise-
tolerant power method under > k£ across different
applications.

The rest of the paper is organized as follows. Secfion
further differentiates our work from existing studies. We
then present our main results and their proofs in Section
3, and extend to two important applications in Sectibn
Experiments are reported in Sectioafter which the paper

is concluded in Sectiof.

2 RELATED WORK

mials p:(A) gives us the momentum accelerated power method

in the same vein, i.eX; 1 = p:(A)X;. Taking three-term re-
currencep:+1(A) = Ap:(A) — Bp:—1(A), satisfied byp:(A),
and noises in each iteration into account, we have Xaat; =
AX,; — X1 + ét, which gives rise to the noise corrupted

In the noiseless cas§u (2015 theoretically justified the
use of a larger iteration rank (i.ep, > k) by showing
under mild conditions that the convergence depends on

Chebyshev polynomials. We can get back to its polymonial ex-(Ak — Ag+1) for somek < ¢ < p that could be signifi-

pression by induction (see Lemma 3.5).

cantly larger thar{\;, — \x+1). Their potential function is
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Table 1: Comparison with existing results.

T Cond 1:||&,|] Cond 2:[|[U, &, || Cond 3
Balcan et al(201§ O (A;’;H log %) O (Ag,g+1€) O (A g+1€) No
XuandLi(2022 O ( /52— log Aqim) 0 (Ak,qﬂ sin 9t) 0 (Ak,qﬂ cos 9t) t Yes
. VA% g1 t Ak g1 (AF
This work** e ( A;Zﬁ log%) O ( —— (A—Vf) \/B) O ( — (W) )\q*) No

* refers to a restrictive noise condition expressed not inmét 6, is the largest principal angle induced by the augmented
anti-triangular matrix at the-th iteration;***when2/3 is close to\,1;

good for handling the last iterate directly, which amountsAlgorithm 1 ANPM

to using monomials for analysis. By a different analy- 1. |nput: positive semi-definite matriA € R"*", mo-
sis that aims to handle per-iteration noisBslcan et al. mentum parametet > 0, target rankk, iteration rank
(2019 achieved such results for both convergence and >  iteration numbef’.

noise tolerance, where the noise norm conditionseare  2: Qutput: approximate tope eigenspace spanned by the
dependent. However, the initial noises are not necessar- first £ columns ofX .

ily e-small. Thus, bothXu and Li (2022 and our work
consider iteration-dependent noise conditioixsl and Li
(2022 aimed to analyze per-iteration noises under the mo-
mentum acceleration, which however depends on the Schu
decomposition of an augmented anti-triangular block ma-
trix and gives rise to an extra logarithmic factor on an in-
termediate consecutive spectral gap in the iteration com-'"
plexity. Also, their analysis requires a third noise condi- 8
tion which is quite restrictive as it is not in the simple form

of noise norm like the other two, and empirically remains. . . . . L
P 4 itive semi-definite matrixA € R™*". All the missing

uncorroborated. In contrast, our analysis has no such limi- ¢ be found in A dix. Bef '
tations due to the focus on the last iterate and thus the c(p'°°'S ¢an be o,un_ In Appendix. Before presenting our
ain results, let’s introduce necessary notatiods; =

mulative noises via the noise-corrupted Chebyshev polynor:n

[ [ i diag(A1,---, ), A—; = diag(A\j41, -, \),U; =
mial, and is supported well by our experimental study. ) 1N )y A —j j+1, ) , Uj
pp Yy p Yy [ul’,,, 7uj]1 andUij = [uj+17"' ’un}’ WherGUj

Xu et al. (2018 proposed scaled Chebyshev polynomialsdenotesA’s eigenvector of unit length corresponding to
for acceleration under = k > 1 for the noiseless case or the j-th largest eigenvalueA; ; = \; — A;, andd(-,)
underp = k = 1 for a special setting of stochastic noises. represents the largest principal angle between two sub-
As noted inBalcan et al(2016, stochastic analyses are or- spaces Golub and Van Loan2013. We use matrix2-
thogonal to and indeed cannot account for the noise modelsorm throughout the paper. Specifically, we seek for a
considered irHardt and Pric§2014; Balcan et al(2019  top-k eigenspace of the given matrix € R™*" with an

as well as our work. Further, to the best of our knowledgeaugmented matrix iterat&, € R"*? (p > k), wherek

it has been unknown if their analysis can be applied to theindp are referred to as the target rank and iteration rank,
setting ofk > 1, not to mention the setting of > k. Gen-  respectively.

erally, the analysis fromt = 1 to & > 1 needs significant

and nontrivial changes for the type of the considered prob3 1 M ain Results

lem. Tablel gives a succinct comparison, where notations

are given in Sectiof and3. Theorem 3.1 Let £ < ¢
2vB > Agy1 for A = 0
&, € R™*P satisfies that

3: QR factorize an entry-wise i.i.d. standard Gaussian
matrix G € R"*? such thatXoRg = G
: QR factorizeY = $AX, + &, suchtha;R; =Y
5.fort=1,---,T—1do
Y = AX, — 8X;_1R; ! + &, for some noisg,
QR factorizeY such thaX; 1R:11 =Y
end for

I

N o

and assume thak, >

<p
€ R™™ "  |f the noise matrix

3 ANALYSIS
_ 1 vB\* ;
Algorithm 1 gives the pseudo code of the accelerated noise- €1 =©O ((Tt+1)T (F) VBsin 90)

tolerant power method. In this section, we present our main - L -\ ’
results and proofs for Algorithrm which is given a pos- Ug &l =0 (T—t+1)T (f) a
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where/\j* _ Aﬁ\/;?*‘*ﬁ andé, = 6(X,, U,), then after Remark 3 Forthg target togs eigenspace oA, we only
o 5 N need to take the first columns ofX after convergence
Algorithm1 runs forT" = © ( N osvE 108 T 0) Itera-  (see Line 2 of Algorithn), because the subspace spanned
tions’, we have thatin (X, Uy,) < e. by these columns aX; (taking the firstc columns in both
sides of Eq. §) and noting thatC; ! in Eq. () is upper
Itis worth mentioning that the noise conditions in the abovetriangular) will approach the space spanned by thektop-
theorem are so general that they admit a wide range of noiseigenvectors. In fact, we can repeat the following proof
types including but not limited to those aforementioned aonly with the firstk columns ofX, along a much simpler
long as their noise norms satisfy the conditions. path as the target rank and iteration rank are equal in this
case, and will have convergence of the fitstolumns of
Remark 1 First, our iteration complexity above removes X; to the target top: eigenspace oA.

the extra logarithmic factdng Aqlqﬂ in Xu and Li(2022.

When2y/3 is close to\,11, T = O (,/ﬁ:+1 log %) 3.2 Proof of Theorem 3.1

Second, we don't need the third restrictive noise condi-The road map of the proof is that we will derive the closed-

tion required inXu and Li (2029. Let's now look at the form expression for the unnormalized iterag which iso-

other two noise norm conditions in a new form here. Onlates signal from cumulative noises, and then plug it into

one hand, one may think that the exponential factors dethe potential function for the last iterate so that we can find

cay too fast compared to trigonometric ones. Howeverput how much total noises can be tolerated without affect-

Lemma3.2below indicates that the two forms are in fact on ing the linear convergence. We will also show that the up-

the same order roughly, though exponential factors are oper bound on the convergence rate is actually tight.

the lower side. On the other hand, interestingly, as show

in Table 1 the dependence of our noise tolerance bound : .

on the non-consgcutive spectral gap varies with iteration ql (1) and its unnormalized counterpart Ea).(LetCt -

from the linear dependency at the beginning, i&,,1, j=tRjfort =1, Co =T, X, = Xy, and define

to the square-root dependency near the convergence, i.e., ¢, = gtct—17 (5)

v/Ap ¢+1 Which could be much larger thaky, .1 asitis ]

small for real dataNlusco and Musca2015. We haven't for ¢ = 0. We then have the following lemma about the

seen such dynamic dependence of the noise tolerance &@nnection betweeX; andX;.

the sp_ectra_l gap before. In this sense, overall the_ noisa nor| emma33 X, = X,C, holds fort > 0.

conditions in one form may not dominate those in the other

form, or put another way, they largely remain commensu-Two sequences of scaled Chebysev polynomials of the first

rate in terms of overall tolerance. and second kinds, each defined as follows by a three-term
recurrence with initial polynomials:

e start from establishing the relationship between update

Lemma 3.2 1
. pey1(w) = xpe(x) — Bpi—1(w), pol(x) =1, p1(z) = 2%
. — VBY g
sinfy = €2 <(/\f) 511190) qr1(2) = 2qi(2) = Bar-1(z), qo(z) =1, q1(2) =z,
+ t M . . . .
cosfy — x_i cos 0o where the_y differ only in their se(_:ond polynomials, have
Al the following closed-form expressions.
_, [37] _ @rrey

Remark 2 One may worry about the momentum param- pi(z) = 7 11 = 3

2
eter 3 whose optimal valué\qg—+1 is not known. Thisisa Leémma3.4

common issue with momentum acceleration. In practice, a1 () = 2 ﬁ] = Zzzo(ﬁ)tﬁ (=)

a varying3 can be used by settingy/3; to be theq-th t

largest diagonal entry ok, = X/ (AX; + &) € RP?  wherez, = [0 1] ﬁ _OB] ,andzt = ufvzz—w
and2./3; < A, will always approximately hold. Theoret- . . .

ically, our analysis and results for other valuessofjiven which is a conjugate pair whef| < 2v/5.

in SectionC of Appendix, indicate that evefi satisfy-  pefine matrix polynomial

ing 2/ < A\;+1 converges faster than the un-accelerated " . .
counterpart. Empirically, our experimental study shows pe(A) =25 pe(N)ujuy = Unpi(An) U,
that such setting of works quite well. wherep,(A,,) = diag(p: (A1), -, pe(An)). Thus,

3For brevity, tan 6, is not further bounded usin@ in Eq. A) = Ap,(A) — A A)=1 A) —
(2). By Lemma 2.5 irHardt and Pric€2014), tan 6(Xo, U,) < pei1(A) Pu(A) = Bpi-1(A), po(A) P1(A)

\/1777{/_% with probability at least — ,~?P+1-9) _ =), G+1(A) = Aq(A) — Bgr—1(A), qo(A) =1,q1(A) = A.

3

vl B
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We then have the following lemma abdXit’s closed-form By Lemma3.6, we can write that
expression.

hy = H (pT(A,q)Uiqxo + r) (I + (ijo)m)T

Lemma35 X, = p(A)Xo+ > ¢;(A)E
e 0 Z SRt QPT(I+2sym(PQTnTPz—1PT)
By Lemma3.3and3.5, we can expresX, in a closed form: + PE—lpTQQTPZ—IPT) -1
-1
_ —1pT [P (Ak)
X, = Xo—i—Zq] €, .|l © PY P [TO M

< |lppt (A AUl x r)=-"!
To analyze the convergence rate Xf, we extend the < llpr € k)H(”pT( 0= Xoll + ] ”)H I

potential function for the noiseless power method under

—1
p>k>1inGu(2015, ie. (1 — 2=l - (HE_IHHQH)Q)

- HATq(UTqXO)(UqTXO)T [Aﬂ ‘ , (L+ W7o 1), @)

To further bound.r, we need the following lemma.
wheret represents the pseudo inverse of a matrix, to work

for simultaneous momentum acceleration and noise corrug-emma 3.7
tion in our setting, and get our potential function . N
oz (ARl < 200) 77, llpr(A-g)ll < (VB)T,
‘ lar(A—g) ]l < (£ +1)(V/BY',
‘ , Pz (Ag)ar (Ag)ll < 2(t + 1)(AF)~7

by = H(Uiqxﬂ(UZ Xr)! [IS]

H U’ XT UTXT) [Ig]

where the second etluallty has used Lenfhiaand that ~Assume that
(U, Xp)t = Cp(U] Xp)T € RP*4, ltis easy to see that

PR 1 t+1 .
hr = hr if €&, = 0 andj = 0 since Eq. {) recovers the €1l =0 ((T—t+1)T (vVB) bmo@) ’ g
noiseless power method then. We now can expand the two ||UTE =0 ( 1 ()\+)t+1 o0 ) (8)
parts inside the norm in the following lemma. a st (T—t+1)T 0

Lemma 3.6 Let UTXO = PXQ" be the compact SYD By Lemma3.7and the above assumption, we can bolind

of U] X, WhereP € R7%9 js orthogonal,X € Rex7js  andQin Lemma3.6as follows:

diagonal, andQ € RP*? is column-orthonormal. It holds ~
that IT) < 3020 g (Aol 1&7— 1 |

U X7 =pr(A_)U! Xo+T, - Tt in
X1 =pr(A_yUL X, <+ 1) (B e
o LI
and (U] Xr)f M = < B sinfy, 9)
121 < S0 Ipr (A @ (AU &y |

T (ATt cos o

T— — a
<2 Zt:ol (t+1)(A)) 16(1+2)T

< % cos fy. (10)

.

(I + (Uon)Tn) QP’ (I +25ym(PQ QTPEIPT)

+szlannTszlpT)sz*lPT {p?(A’f)]
0

3

wheresym(-) extracts the symmetric part of a matrix and
Also note that

r = Z w(A_)UL Er_,y, [UT Xol| = sinfo, (U] Xo)!|| =cos 6. (11)
T-1
o T2 By Lemma3.7 and Eq. 9)-(11), hr in Eq. (7) can be
@ = pr(Ag) port 6(A)Uq rsoa; further bounded as follows:

hr < 16 </\—\/?

k

represent the cumulative noises in the two parts inside the

T
A
norm of the potential function, respectively. ) tanflo = p(T).
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WhenT > 2572 e havehy < po(T) < e Since  Where owin(-) represents the smallest singular value
log(%) of a matrix and the exponential factor in the last
inequality can similarly give the iteration complexity
)\+ .
| </\+) N _1+ﬁ N 1 [\ —2VB ’/Ak T log— Thus, in order to havér < ¢, we need
O - \+F P 77 . . .
& VB) T AL T2 Ak (,/ -log ¢ ) iterations. This shows that the above

upper bound matches the lower bound.

we gethy < eif T = O ( f log ““‘90) By the

second proof of Lemma 2.3 Balcan et al(2019, 4 APPLICATIONS
sin6(Xr, Uy) We now extend our general results in Sectihto gener-
= [|0-XrX7) Uy alized eigenspace computation and CCA.
I
_ T Tk
< ||Us =Xz (U, Xr) {0] ‘ 4.1 Genearlized Eigenspace Computation
= U;r (U,C — XT(U;FXT)T [I(;“D H Given that each generalized eigenveaigrof a pair of
real symmetric matrice$A,B) with B being positive
I definite is an eigenvector of the real symmetric matrix
+|uf U—XUTXT{D 9 y
H q( b= Xe(Uy Xa)' A = B Y/2AB~1/2 pre-multiplied byB~/2 such that
- o™ %o I, u/ Bu; = §;; (6;; = 1if i = j and 0 otherwise), based on
- —Xr(Ug X7) 0 the accelerated noise-tolerant power method, we can first
— hr<e write our iterate in two forms by Eq.1) and Eq .6), re-
= spectively, as follows:
We now need tq convert noise_ conditionsg_;rassumed in X 1Rys1 = AX, — BthlR_l + B%Et c RPXP
Eqg. @) to those in terms of, with the following lemma.
Lemma3.8 ||C;| = © ((\))). Xi= ( XO"’Z% )BYE, ;- 1)0 '

Itis easy to see that when the noise conditiong pgiven

in TheorenB.1are satisfied, Eq8] will hold because both

1€ < 1€ NIICell and [[UL &, < [TUL&,[l|Ct|l hold

by Eq. ©)- B X, 1Ryy1 = B 3AX, - fB 5 X, Ry !+,

The remaining proof of Theorer®.1 is to show that the -1

above iteration complexity is tight. To this end, it suffices B’%Xt:(B’%pt(A)XoJrZ Bféqj(A)B%/é\t,j,l) c;l.
j=

and then pre-multiply both sides of two equations above by
B~ to get that

to consider a special case wheke= 0 has eigenvalues

AL = = A > A 2 LettingZ, = B—2X,, we can write that
2N = 2/B =M1 == A 20, ) )
Zi 1Ryt1 =B AZ - B2y R, + (12)

and¢, = 0. In this case, the equality above Eq) pe- o

comes Z, = (B_Ept(A)BEZo

hr = pT(A—q)quXO(U;XO)T {pT (() k)] H —|—ZB 2q;(A B Et j— 1)Cil,

> |lpr(A—y)|| Fmin (Uquo(UqT Xo)f [pT (() ’“)D . . o
whereg, is the noise term caused by approximating the

- - [T term B~'AZ, by a warm-started least-squares solver as
= [pr(A-g)llomin { UZ,Xo(Uy Xo)" | 5| pr (Ak) in Ge et al(2016, andR, now makesZ, B-orthonormal,
s i.e., Z/ BZ, = 1, through, e.g., the modified Gram-
2 [lpr(A—g)llomin (p7" (Ax)) Schmidt process with inner produgch .

Omin <UTqu(UqTXo)T BD By the analysis of computinB ' AZ, in Ge et al (2016,
p the ratio of final to initial error for the least-squares swlv
> (ﬁ) o (UT Xo (U X,)f {ID can be bounded by constants, where the final error can be
— A\ mm a0 o) expressed a¢, || = &/ BE,. However, the initial error
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is O (A} tan®6(Z;,U,)). We can convert our noise con- which alternates betwegh= 0 and > 0 while running
ditions in Theoren8.1to be of similar trigonometric form the update in Eq.12) and merges the two alternating steps
by Lemma3.2so that Theorer3.1can be applied together into one step in terms of two iteratds and¥,. For anal-
with the approximation cost to get the total complexity of ysis, we need closed-form representations of both iterates
the generalized eigenspace computation in Theoteln &, and ¥, like that below Eq. 12), which can be written
Details can be found in Appendix where the correspondings:

algorithm is provided as well. 1

®, = (Corpi(H,,)C2® Co2¢;(H
t mmpt( yy) Tx O+Z T QJ( yy)

Theorem4.1 Let £ < ¢ < p and assume thak, > —
=

2v/B > Ag+1 and ), > 0 for a pair of n x n real sym- Lo 4l ~2 .
metric matrice A, B) with B > 0. After the update in Ci:(Cr Coy&ijr + ét—j—l))cdut
Eq. (12 runs forT = O( L log t‘““’o) iterations, we !

1 1 1
_ U, — (c‘f H,,)CZ,% + S CuZq;(Hy.
have thasin (Z, Uy,) < €in t|me complexity t vy Pt(Hee)Cy Wo 720 vy 4G (Haz)

1
Ii(B) Py Cﬁy(c Cmynt —j— 1+T’t J= 1))01/}1757
O | nnz(B)p (log log
p costly " pcosto where
, 1
+log log ]ﬁ) + nnz(A)p + nnz(B)p log —— H,. = Cyy QCT Cflcwycyz}v
P NG e cos by

H,, = Ci: C,,C,, 1CTC

wherep = W 7 = 4%, x(B) represents the condi-
tion number ofB, nnz(-) represents the number of nonzero | et the partial singular value decomposition of the
entries in a matrix, andy = 0(Zo, U). whitened empirical cross-covariance matrix, defined as
C = C../°C,,C,,"*, be U;E,; V] with U; and V;
being C’s top-j left and right singular subspaces, re-

N spectively, andx; = diag(oq,---,0;) having C’s top-
small Ay k11 to large Ay 11 and from largex=— to  j singular values on the diagonal. The solution to the

small ﬂ. Both ways together achieve an effect ofk CCA problem then can be written alUg, Vi) =
+1
(Cm Uk,Cw Vi).

double acceleration.

We can see that wheh/3 is close to),; the above re-
sult improves ovefe et al.(2016 in two ways, i.e., from

, ) , Theorem4.2 Letk < ¢ < p and assume that} >
42 Canonical Correlation Analysis 2B > a§+1 After the update in Eq. 1Q) runs for

CCA aims to find twak-dimensional canonical subspaces, T = O ( log
one for each of datasel € R%*" andY € R *xn

with a bit abuse of notation th&,Y without subscripts sin max{0(®7, U),0(¥r, Vy)} <€
represent input data here, such that data projections onto

their respective subspaces are maximally correlated. It i{1 ime complexity

a special case of generalized eigenspace computation with

real symmetric matrix pair given in the following form: O nnz(X, Y)p “(X’Y)(log 1 log — 27
’ cos b pcos By

) we have that

€C0§0

P
C C
A_{T zy} B—{m } 1 X, Y)p? 1
C,y Cyy +log L log Zﬁ) " nnz(X,Y)p log
. - . - € P N/ € cos bty

whereC,, = 1XXT + 1,1, Cy = LYYT 41,1
andC,, = 1XY' are the two auto-covariance matri- —2vB o2
ces and the cross-covariance matrixXXofY, respectively, wherep = % o and
with » > 0 being regularization parameter for avoiding ill- nn2(X,Y) = nnz(X) + nnz(Y)
conditioning. We adopt the update equationXinand Li ’ ’
(2021 for CCA but with change fromp = ktop > k as R(X,Y) = max {k(Cua), K(Cyy)
follows: 0o = max {6(®o, U,),0(P,, V,)}.

&, 1Ry = C;1C,, (C;1CT &
it = G0l &) When2,/3 is close tos?, ;, Theoren¥.2 improves over
daxp q+1 p
_ﬂqulRt +& eR% 13) Xu and Li(202]) in two ways, i.e., from smallo} — o7, ;)
W18 = €y €L, (Cri Cay ¥y + 1) to large (o7 — 02,,) and having the additional factor
1
—BW, 1S; ' +n? € Rv><P, log 77— removed.
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Figure 1: Performance of the ANPM under> k in comparison with the ANPM under = & for two settings ofs and

the NPM undep > k, where i.i.d. zero mean Gaussian noises of varying varianee 110; were injected into iterations.
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Figure 2: Performance of the ANPM for generalized eigensgacnputation under > k& in comparison with the ANPM
underp = k, using dynamic momentum parameterand GenELink in the same two settings of target raakd iteration
rankp.

5 EXPERIMENTS namic2+/B; which is set according to Remark 2. We com-
pare with the noisy power method (NPM). The results were

In this section, we conduct experiments to test the perforevaluated with measusén 6(X;, Uy ) for which smaller is
mance of Algorithml underp > k in different scenar- better. We experimented with i.i.d. zero mean Gaussian
ios including the accelerated noise-tolerant power methochoises of varying variance; = 11% injected into itera-
generalized eigenspace computation, and CCA. All algotions. We can see from Figuiethat using a larger iteration
rithms were implemented in Matlab and fed with the samerank improves significantly, especially together with mo-
initial for each dataset in each setting. For benchmarkingmentum acceleration, and even the NPM under k can

the ground-truth information is obtained using matlab’soutperform the ANPM undey = k. Interestingly, two set-
eigs function for the first two scenarios and svds functiontings of 8 perform almost equally well.

for the last scenario. Target rakland iteration rank used

are shown on the figure legends, and wegsetp through-  Table 3: Datasets for generalized eigenspace computation.
out experiments. More experimental results are provided in Name n nnz(A)  nnz(B)

SectionD of Appendix.

Lapla3 5795 136565 141779
Laplad 10891 259425 269639
Lapla5 18903 455337 489875

51 ANPM

We test the performance of Algorithihusing three real
data matrices downloaded from the sparse matrix collec-

tion* with statistics given in Tabl€. Two settings of pa- Genearlized Eigenspace Computation

We compare the ANPM in different settings, including the

Table 2: Datasets for ANPM advocated setting of > k£, with the GenELinK algorithm

Name n nnz(A) (Ge et al, 2016 for top-« generalized eigenspace compu-
hangGlider5 16011 162363 tation (see Algorithm 2 in Appendix) on three data3ets
Boeing35 30237 1450163 given in Table3, and use evaluation measuia 6(Z;, Uy,)
Schenk65 48066 360428 accordingly. For approximating the multiplication with in

verse matrixB !, we use the built-in MATLAB function
rameterj3 were tested: optima?\/3* = \,+1 and dy- pcg (preconditioned conjugate gradients method) as the

*https://sparse. tanu. edu/ Shttp://facul ty. smu. edu/ yzhou/ data/ matri ces. ht m
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Figure 3: Performance of the ANPM for CCA under> & in comparison with three baselines, i.e., the trulyALS and
accALS fork = p and the CCALin which requires = 2k.

least-square solver with0 iterations for each run. Figure time. These experiments show that on our datasets using an
2 shows their performance comparison, where we observeiteration rankp that is about:/2 larger than target rank
similar patterns to those observed in Figlitaut with large  often brings most significant performance gain, while fur-

performance gaps. ther increasing may gain not more but probably less be-
cause additional computational cost starts to offset alarg
Table 4: Datasets for CCA. part of the gain from less iterations due to faster conver-
Name n d, d, gence. In addition, convergence to the exact optima needs
: ‘ the noise conditions to be satisfied. Particularly, theaois
Mmill 3x 10t 100 120 needs to vanish eventually by our theory, otherwise the con-
Jwil - 3x 10" 273 112 vergent point can only be within the noise ball around the
MNIST 6 x 10 392 392 exact optima. In practice, the noise can’t completely van-

ish. The best case is that noise magnitude matches the ma-
chine precision, e.g1,0~'%, where we may consider con-
vergence accuracy dfd ¢ achieves convergence to the
exact optima, as seen in a part of our experiments.

53 CCA

We use three common datasets, described in Tdble
for CCA (Ge et al, 2016 Wang et al. 2016 Arora et al,
2017 XuandLi 2019 with regularization parameters § CONCLUSIONS
ry =1, = 0.1. We compare the ANPM under> k (see
Algorithm 3 in Appendix) to recent CCA algorithms in-
cluding CCALIn Ge et al, 2016 (which require® = 2k),
trulyALS underp = k (Xu and Li, 2019, and the latest ac-
CALS undemp = k (Xu and Lj, 202]). SVRG is used as the
least-squares solver runniggepochs for each CCA algo-
rithm. Each epoch runsiterations with constant step-sizes
ay = 1/ max; [|x;]|3 for &, anda,, = 1/ max; ||y;||3 for
W,, wherex; representX’s i-th column. Two evaluation
measures arén 6,, andsin 6,,, whered,, = 6(®;, Uj,) and

0, = 6(¥, V). Figure3reports these algorithms’ perfor-
mance, which further confirms the advantage of the settin
ofp > k.

We present a general analysis for the accelerated noise-
tolerant power method under a larger iteration rank than
the target rank, which needs less noise conditions but can
achieve the optimal iteration complexity. The noise toler-
ance is characterized by two norm conditions in a new form
which we relate to the existing form. One interesting phe-
nomenon in theory is the dynamic spectral gap dependence
of the noise tolerance during iterations, varying from the
linear at the beginning to the square-root near the conver-

ence, while maintaining commensurate overall tolerance.

he analysis is much simpler than previous ones, as it only
needs to leverage the noise-corrupted scaled Chebyshev
Before closing this section, it is worth mentioning that we polynomials. Further, it enables us to give an improved
also provided experiments about varying iteration raimk ~ analysis for generalized eigenspace computation and CCA.
SectionD of Appendix which aim to investigate the trade- We demonstrate that the accelerated noise-tolerant power
off between convergence speedup and additional compunethod with a larger iteration rank than the target rank per-
tational cost brought by our approach in terms of runningforms best in practice across applications.
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A A WRONG ANALYSIS

The analysis oMai and Johanssof2019 is wrong in proofs of their Theorems 1-2, where Theorem 19pexcial case of
their Theorem 2. Let’s focus on their Theorem 2 whose progiisn in Appendix C, where Eq. (24) is the key to their
proof but does not hold actually. Let’s quote the pariiaii and Johanssof2019 where the wrong analysis originates as
follows:

“ Recall thatU is the matrix of topk eigenvectors oB~'A andV = [AUT UT] Tisthe topk eigenvectors
B 'A -1

I 0 ] with A = diag(u1,-- -, ux) being the corresponding matrix of

of the extended matriC = [
eigenvalues. Let

V=B VA4 A%V ands= |B 9
0 B
then V' BV = I. If we further letV, be an orthogonal basis w.r.t3 of the orthogonal complement of

span(V), then one can decompo€kas

C=VAV'B+V, A, V[B, (24)

whereA | = diag(pk+1,- -, p2d—k)

Note thatB—'/2 is missing in the definition oV given above their Eq.(24), which should be a typo otherMseé3V # I,.

To see why it is wrong, let’s post-multiply both sides of Eg4) with B~1, and then we have
CB'=VAV' +V A, V],

We now can see that the right-hand side isyaxmetricmatrix but the left-hand sid€B~! = [37;’}?71 750]371} is

asymmetric In addition, the right-hand side could be complex becahseis complex (since/3 > |\.11] there)
and transpose oY | is used instead of conjugate transpose, but the left-haledisialways real. Thus, their following
analysis is incorrect, due to the fact that this real asymmeitatrix is not a normal matrix and thus does not have a pnita
diagonalization. In fact, their analysis directly follo@® et al.(2016 where orthogonal diagonalization indeed holds

A=B[U U, ]diagA,A)[U U,]'B
because the relevant mateis real symmetric. But now when momentum is consideredvagliematrixCB~! becomes
real asymmetric and not normal.

B MISSING PROOFS

In this section, we provide all the missing proofs in the ntait. Particularly, we will restate Lemmas3, 3.5. 3.6, 3.8 of

the main paper in the setting of generalized eigenspace awatign where a pair of real symmetric matri¢es, B) with

B positive definite is considered, because it covers the atdrmhse by settinB = I. In this settingu,; denotes A, B)’s
eigenvector of unit length corresponding to yhth largest eigenvalue and satisfigsBu; = §;;, and

. T

A=B [UJ Ufj] dlag(A]‘,A_j) [UJ Ufj} B

foranyl < j < n. Itis worth noting in this case that following notations iaciion4.1, Egs. (1)-(4) become as follows

Z; 1 Riy1 = BT'AZ, - BZ, RN +E, (14)
1

ZoRy = G, ZiR,= 5B*lAzO + &, € R™*P, (15)

Ziy1n = B 'AZ, - BZi 1 +E, € RV, (16)

~ ~ 1 ~ ~
Zo = Zo, Z1:§B*1AZO+§O, a7
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whereR; makesZ; B-orthonormal, i.e.Z, BZ; = I (or equivalently, the left-hand side of Eq.4) is the QR-factorization
of the right-hand side in inner produgt ), and

€& =€C;" (18)
with C; = ]_[;:t R;fort > 1andCy = 1.

Lemma3.2 sinf(Z;,U,) = Q((/\—‘/f)t sin0(Zo,Uy)), cos0(Z;, Uy) = Q((i—{)t cos0(Zy,Uy)).
1 1

Proof From the proof of Lemm&.6and with notations there, we have that
U/ BZ, = p(A_,)Ul BZ;+T,
(U BZ,)! = (I1+(U]BZy)'Q) QP (I+2sym(PQ Q' PE~'P)
+PE'PTQQPEIP)TIPE P Tp, (A,

where
I = Yiga(A UL BE |,
Q = p (M) YL ai(A)UJBE, ;.
Then
IC2sin0(Z,,Uy) = [[UL BZs]|Cil
> |[UT,BZCll, = U’ BZ|,

Ipe(A_g)U ,BZo + T2
Ipe(A—g) UL BZoll> — ||IT|2

Y

Y

t—1
Ounin (Pe(A—)) UL BZoll2 = > llai(A—g)2l|€,—i_1l|m.2
i=0

2\/%” - sin 6(Zo, U,)

t—1 gi
. i(VB)' " sin6(Zo, Uy)
—C%(l‘f'l)(\/g) (T—t—i—i-l-;)T

Y

(v/B) rjn>1£1 | cos(targ cos

= J(V/B)tsinb(Zo,U,),

wherec, ¢’ are sufficiently small positive constants, and in the lasgirality we have used Lemn3a7, Assumption 21)
in the proof of Theorer.1, and that

pi(Aj) = S92 57— (y/B)! cos(targ cos 2/\\'/%),

for \; < 24/B. On the other hand, by Lemn3a7 and AssumptionZ1), it holds that

t—1
120 < > llpr (Aai(A) U BE, i1 |12
i=0

t—1 i
(M)t cos0(Zg, Uy)
. i—t q
= 2;(”1)@;) 1%(T—t+i+2)T
1
< gCOS@(ZQ,Uq).
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By Lemma3.7, Eq. 4) in the proof of Theorem. 1, and the above inequality, we can write that

cos ' 0(Zy, Uy) = [(UyBZ)|2
|C(U) BZ,)|

< |Cul2|(Uy BZo) |
< [ICe2llX+ (U, BZo)'2) " QP T (1 + 2sym(PQ ' QT
PE PN+ PE'PQQ'PEPT)IPETIP T p (A2
< ICil2llpz (A 21Z 21 = 2= 2|22 = (=7 ll1€21)%)
(1+(U; BZo)'[2]|22)
< 8|[Cell2(A)) " cosTH 0(Zo, Uy).

Finally, by Lemma3.8,

0z, 0,) = (D) im0z, 0,)),
1
AL e

cosb(Z;,U,) = Q(()\—+) cos6(Zy,Uy)).
1

Lemma 3.3 Z = Z7,C,; holds fort > 0.

Proof By Eq. (15), (17), and (L8), we have

1. _ I ia5 2 \po 7 R—
Z, = (§B 'AZ + §o)R; L= (§B 'AZ +&0)R; L= Z,R, g

Thus, the target equation holds for 0, 1. Assume it holds foft — 1), ¢ and consideX; . By Eq. (L4), (16), (18), and
the hypothesis, we can write that

Ziy1 = (BT'AZ,— BZ R+ €)R,
= (BT'AZ/.C;' - Z1CL R 4+ €,CT R,
= (B'AZ.C;' - pZ, 1 C;t +EtC;1)R;+11
— (B'AZ, - $Zi 1 +€,)C 'R
= ZinC
By induction, it holds for alk > 0. =

1 byt _ _ _5"
Lemma 34 () = ac [ 4] = 25 00 = [}] = Shg(et) ey wherea = o 1 [ ]

rhy/x2—4

andz* = 5 % whichis a conjugate pair whel| < 2+/5.

Proof By the definition, we can write that

|:pt+1(x)] _ {Ipt(f) - ﬁptl(fﬂ)]

pe(7) pe(7)

I
—
— 8
o

sy
[E——
—
b
TE
_ e~
—~ 8
8 —
~
—

|

|
—
— 8
=

™
—

o~
SIS
=
—~
8 8
o
—

Thus, we have that
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Note that the2 x 2 matrix has the following Jordan decomposifion

o BB 2 AT e

xZ
20 U 0T =25
1 0/ [0 2][1 o -
wheregt = TEV748 V;CLM are two eigenvalues of thHex 2 matrix which are equal ifz| = 2+/8 and a conjugate pair if
4 [ sign(a®)zE, |x| > 2B
|x] < 2v/B, and|z=| = { 3. o] <2V - Note that

|-l -E0k o

=0

= (D (D -amf;

L tr o4 q-1

" 0] [“””1 ”Cl] . el £ 28
1

5

onig
R =

N8 o+
| I

We thus have that

[F e

0 0] D] ] mees
poaei e[l F] e
@) - @)~ et @), el £ 20
Gl 531, o] =208

In turn, we get that

~we +atoy] [§]. lel#2vB

—— — ——/— —— ——
8
i
| =
8
[
X
3
|
5

pi(r) = z

G 5-30 [, el = 2B

B = (3 —27)@h) = (5 —2F) (@), |2] #2VB
(5) (51 + 5 - 50) o = 2V
(@) + @), l=l#2vB

- = 2@+ ),
(5)% |z| = 2vB

62+ are the roots oflet( {916 —Oﬂ —AI) =0,i.e,\* — 2\ + B = 0. Itis easy to check th{tf _05] {xli] =gt {xﬂ holds.

Thus, we have the eigenvalue decomposition whén# 22—, where the eigenvector matrix is only non-singular but mthagonal.
Whenz™ = z~ which is 5, two eigenvectors collapse into a single one and we needexgéered eigenvector which can be generated
by solving( {916 —B

+ xt L e 1 x —f xt +
o|—7 Iy = e The equation is satisfied ljy = ol- We thus havi 1 o0lY=T|1 + a7y. Thus, we
have the Jordan decomposition wheh = z~.
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e (@) = @) e et @] ]l 2208
B 550 7] ol = 2B

(5 (et + 5 - 50) ke = 2vF
= (@) — (@)Y, 2| # 2vB
(5)1(% + 5t), ol =2V
A= (@) = (@)Y, ol # 2VB
(t+1)(2), 2| =2V

{ = (@ —a7)(@h) = (@ —aP)(@7)"), |of #2VP

=D @)y,
=0

Lemma35 Z, = B 3p,(B 2 AB 2)B:Z+ Y.\ B 3¢;(B"*AB~3)B3§, ; ;.

Proof First, we have that

peri(A) = Ap(A) ~ Bpi(A), po(A) =1, pi(A) =2

q+1(A) = Aq(A) = Bai-1(A), q@(A) =1, @(A)=A.

)

For our purpose, we need to replakewith B~2AB~2 in above equations. By Eq17() and initials ofpt(B*%AB*%)
andqt(B—%AB—%), the target equation holds for= 0, 1. Assume it holds foft — 1), ¢ and conside&;.. By Eq. (L6),

the hypothesis, and two matrix polynomials’ three-termureences as well as their initials above, we can write that

2t+1 = BflAzt - thfl + Et

t—1
= B*A(B—épt(B—éAB—é)B%Zo +> B—éqj(B—éAB—é)Bégt_j_l)
J=0

t—2
_B (B_;pt—l(B_;AB_é) %20 + ZB_2(Zj(B_éAB_é)B2£tj2) +£t

1 ~

= BlA(szt(B%AB%) %Zo+B 2q(B"TABT?)BIE,

t—1
+ Z B%QJ(B%AB%)B%Et—j—1>
=1
t—1

—B (B%pt_l(B%AB%)B%io + ZB%qj_l(B%AB%)B%Et_j_1> +E,

j=1
= (BlAB%pt(B%AB%) - ﬁB%pH(B%AB%)>B%ZO +B AL,
t—1 N N
+ (BlABéqAB%AB%) - ﬂBéqﬂ(B%AB%))B%eul +&,
7j=1
= B ip(B 2AB :)BZ) + B iqi(A)B,

t—1
+ Z Bf%QjJrl(Bi%ABi%)B%Etfjfl =+ Bi%QO(A)B%Et
J=1
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t
= B ip 1 (BT2AB 2)Zo+ » B 2¢;(BT:AB2)B¢,
=0

which completes the proof, by induction. O

Lemma3.6 LetU) BZ, = PXQ' be the SVD olJ] Z, whereP € R?*? is orthogonal, A € R?*? is diagonal, and
Q € RP*4 is column-orthonormal. It holds that

U  BZr = pr(A_,)UI BZ+T,
}T

(U;BX7)! [I 0] = (I+(U;BX)'Q)"QP"(I+2sym(PQ Q' PE~'P")

+PE'PTQQ PEPT) PR P [prl(Ay) 0]

3

wheresym(-) extracts the symmetric part of a matrix and
I'= ZQt U B€Tt17 QZPT ZQt UBéTtl

Proof First, it holds for anyl < j < n that

[N

p(B"2AB~}) =B? [U; U_;]diag(pi(A,),p:(A_;) [U; U_;]" B2,
We then have that

T—1
U’ BZ; = U B (B—%pT(B—éAB—é)B%zo+ ZB—%qt(B—%AB—é)BéZTH>
t=0
= pr(A-,)U BZ+T.

Second, we can write that
T-1 R t
<UZ B(B ipr(B :AB :)B:Zo+ ) B—%qt(B—%AB—5>BééTt1)>
t=0

(U, BZz)'

T—1 1
- < r(Ag)U;BZo+ Y (A UB§Tt1>

t=0
T-1 T-1
- <pT(A JU,BZo+ > ai(A)U;BEp 1> < JUIBZo+ > (AU, BE; ;)
t=0 t=0
T-1 T
(pr(Ag)U, BZo+ > q(A)U, BEs_, ) >
t=0

= (U,;BZ+ Q)" ((U;BZo+ Q)(U, BZo + Q) ") 'pr'(A,)
= (U,BZo+ Q)" (U, BZo(U, BZ)" + 2sym(U, BZoQ") + QQ ") 'p' (Ag)

where the first equality is by Lemnia5 and the third equality is by the definition of the matrix psetdverse. Let
= = U, BZ¢(U, BZ;) " and note thalll BZ, + @ = U, BZ, + U, BZ(U, BZ;)'Q. We then have that

(UJBZ7)! = (I+ (U] BZ)'Q) (U] BZy) &2 /21 + 287/ %sym(U, BZ,Q" )=~/
+E_1/2QQTE_1/2)_IE_1/2]?;1(Aq)

I+ (U,BZ)'Q)" QP (I+2sym(PQ ' Q'PA'PT)
+PE'PTQQ PETIPT)TIPETIP T (A).

The proof completes by noting that
T -1

L 0] prt(Ay) = [prt(Ax) 0]
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Lemma 3.7
o7 (Al <200) 77, lla(A—pll < (t+ 1) (VB),
(

VBT, lpr (A (Al < 20t + ()T

Proof Since\; > --- >\, > .-+ > )\, > 2/f by the assumption of Theorem 3.1, then by Lenna

- 2 2
= < .
Iy (A)ll = max, LT+ 0T = 7

Since2/3 > A\g41 > - -+ > )\, by the assumption of Theorem 3.1, then by Lenfina

— t +\t—d(\—)J
lae(A—g)ll = q_’_?%%sfganj:O()\m) (A )|
t =3\ |7
S q_’_?%%’%(San:O')\m' |/\m|
= max YU (VB)I(VBY = (t+ 1))
g+1<m<n
Similarly, we have that
_ +\T —\T
Ipr(A-g)l = max_ ()T + () 7172
+|T —T
< max (N7 AG[T)/2
= max (VB +(/B/2=WDBT,
g+1<m<n
and
~ o) I (Ag)
”pTl(Aq)qt(Aq)H = 12172‘§q J()\;;)TJ’,()\;.L)T
2
t +\t +\T
S 21?7%%((1 Zj:O()\m) /()\m)
= 2 max (t+ 1AL/ N)T =2(t + 1)(/\;r)t*T.
1<m<q

Lemma3.8 |G| = O((A])Y).

Proof We can bound C;|| based on the connection defined in Etg)( By Lemmas3.3and3.5, we have that

t—1
Z,C, = B ip(B PAB¥)BiZ,+Y B i¢(B IAB1)BYE,
=0
t—1 =R
= U,pe(An)UBZo+ Y Ungi(A)UBE, ;.
=0

Thus, by Lemma&.4and Eq. (8) in the main text which in the setting of generaligggenspace computation is
1€ 1.2 = O(ir=rryr (VB) ' sin0(Zo, Uy))
UG BE, |2 = O(m(/\ﬂtﬂ cos(Zo, Uy))

q

it holds that

|1Z:CillB.2 = [p:(An) U, BZo + Y'—¢ 4;(A)UTBE, 5 4l2
pe(An)llz + 3576 s (An)2lI€, ;1 |82

ICell2

IN
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Algorithm 2 ANPM for Generalized Eigenspace Computation under k.
1: Input: real matriceA,B) € R™*™ x R™*™ with A = 0,B > 0, momentum parametet > 0, target rankk,

iteration rankp > k, iteration numbef’, a subroutmeZ}SB that performs modified Gram-Schmidt process with inner

product(, )g
Output: approximate topg: eigenspace spanned by the fiestolumns ofX .

Sample an entry-wise i.i.d. standard Gaussian mé&irig R"*?
Z_1=0 andZo = GSB(G)
fort=0,1,---,7T—1do
H; = (Z/BZ;) ' (Z, AZ;)
Zyi1 ~ argming tr(1ZTBZ — Z" AZ,) with warm startz, H,
if t = 0then .
Zt+1 = GSB(%Zt+1) such thaZtJrlRtJrl =
else . )
Ziy1 = GS(Zss1 — BZi—1R; ') suchthaZys 1 Rivy = Zeq — BZi 1Ry
end if
. end for

15
52Li11

i el
W ke o

|()‘7T1)t + (/\r_n)t| - N ] j—s()\— \S
= max Ol Pl e s max | SO0 (00"

1<m<n 2
t—1 (AF)"77 cos0(Zo,Uy)

D)+ 5 b Qo oot 4 )y

A 0s 0(Zo,
(AF)! 4 QIeobola) soi -t < ().

IN

A

On the other hand, it holds that

[[pe(A )UTBZO + Z] =04 (An)U;erEt—j—l ll2
omin(U, BZo)|[pe(An)ll2 — 3525 llg; (An)l|2l1€:— ;-1 |8,

AP+ (ML) L o
1%&%&%‘22% 1€i—j—1llB.2 - 1glax |ZJ_O()\+)J (A2)%

= max{lnr%)q( w, Igllg);(\/g)t cos(t arccosz/\—m\/ﬁ)}

~ 0B - max |21 TR
)\Jr t+ AT t PR
= B stig s
()\;r)t t—1 /¢ J +\j—s(\— s
5~ T & alm e max [T ()

[Cell2

Y

J +\j—s —\s
glg;nlzs:o@m) (An)l

1

Y

1 t—1 (AT cos 0(Zo,Uy) , . ;
> SO = 1§ Xin a0+ D)

1 (A])* cos 6(Z0,U,) 11
> Sy - QLemdZeU) st B> Loty

Thus, we can writd C, || = ©((\])?). H

Theorem 4.1 Letk < ¢ < p and assume that, > 2\/3 > \,41 and)\,, > 0 for a pair of n x n real symmetric matrices
(A, B) with B - 0. After Algorithm2 or the update below

Zi 1Ry =B 'AZ, — BZ, R +E€,

runs for? = O( = log tan "“) iterations, we have thain 0(Zr, Uy) < e in time complexity

B 1 1 A B)p? 1
O(nnz(B)p K(B) (log log b + log = log 1) + nnz(A)p + nnz(B)p log
p cos b pcos by € p VP ecosfy

),
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wherep = 2= Q\F, v = M , £(B) represents the condition numberBf nnz(-) represents the number of nonzero entries
in a matrix, and90 = H(ZO, U,).

Proof Since the proof is quite similar to that of Theorem 3.1 in theimiext, we focus on the differences. By Lemma
3.3and3.5, we can expres#; in a closed form:

t—1
Z,= (B ip, (B 2AB2)B2Z+ Y B 2¢;(B"*AB 2)B2§, ; ,)C; . (19)
7=0

Now consider

T T

hr = H(quBZT)(U;rBZT)T I, 0] | = ||(UIqBZT)(UqTBzT)T L. o] |.

By Lemma3.6, we can write that

hr = |l(pr(A—g)U ,BZo+T)(I+ (U, BZ)'Q)'QP" I+ 2sym(PQ' Q'
PX 'PH+PX 'P'QQ'PE'PT)'PEIPT [prl(A) of I
< Az A Ulpr (A=) UL BZo|| + [T I=71
(1 =2[=7Ylel - (=)~ 1 + [1(Ug; BZ) i) (20)
Assume that
18132 = O( =ty (VB) ' sin6(Zo, Uy)), on
|\U;B§t||2 = O(z—ioyr (AT cos 0(Zo, Uy)).
By Lemma3.7 and the above assumption, we can bolirehd(2 in Lemma3.6 as follows:
. (\/B)T‘tsinﬁ(zo,Uq)
Tl < Z lae(A-)IEr Iz < g (t+ 1) T oT
< (VB)sinb(Zy,U,), (22)
T—-1 T-1 —
~ ATt cos(Zo, Uy,)
< -1 T < + t—T( q ) -4
20 < 3 I (e (A IV  BEr-il €23 (t+ 1) TR
< écosH(ZO,Uq). (23)
Also note that
IULBZo|| = 5inf(Zo, Uy), [I(U; BZo)|| = S| = cos™" 6(Zo, Uy). (24)

By Lemma3.7and Eq. 22)-(24), hr in Eq. (20) can be further bounded as follows:

16()\—\/?

k

hr )E tan 6(Zo, U,).

Thus, we getiyr < eif T' > 2,/ 2\/_ log(18 tan 6(Zy, U,)). Let orthonormalz be the orthogonal complement of
Zr ininner product, )g, i.e.,(Z+ )TBZ% =TIand(Z+) ' BZr = 0.

H(z%)TBUkHz: I(B2Z#)T (BEU)|»
= |(B2Z$)(B:Z7) (B:Uy)|2

sin 6(Zr, Uy,)
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T

(T — B%ZTZ’_—ZEB%)(B%UIC)HQ <|B2U; - B%ZT(U;B%ZT)T [Ir 0]
= |U]B:(BiU, — B:Z1(U]BZ)! [I, 0]7)]

+[|UT,B¥ (B2 U, — B3 Z¢ (U] BZr)' [I, 0]")]2

UL BZr(U] BZr) [T, 0] ||=hr <e.

ll2

Note that||¢,||s.> < ||,
terms of¢, satisfy

B,2[|C¢||2 and||U] BE,||> < |[U] BE,||2| C:|l» hold by Eq. (8. When the noise conditions in

1€:lB.2 = O(W(A—Vf)t\/ﬁsme(zt,Uq))
>\+
||U;B€t” = O(m(ﬁ)%\; cos(Z,Uy))

Assumption21 will be satisfied by Lemma&.8and3.2

(25)

Note that nois&, is generated from approximatifg~' AZ, by a warm-started least-squares solver. The approximation
Z. ;1 in Algorithm 2 can be written as

Zi1 =B 'AZ, + ¢,

For simplicity, we followGe et al.(2016 to use accelerated gradient descent as our least-squdves for minimizing
the following least-squares problem

f(Z) = tr(%ZTBZ —7Z"BZ,)

with warm startz, H;, whereH,; = (Z BZ,)"'(Z AZ;). It suffices for

1€

1 . .
B2 = O( Tmln{\/ﬁsmH(Zt,Uq),)\;r cosf(Z,,Uy)})

(T—t+1)

to meet the accuracy designated by Eg5)( To get the complexity of solving this least-squares pgablto the above
accuracy, we need to figure out both the initial and final str8y the analysis iGe et al.(2016, we can have any error
(f(Z) — min f(Z)) expressed as

£(2) ~ min §(Z) = 5|7~ B AZ ¢

and the initial error bounded &4Z;H;) — min f(Z) < 4p)? tan® 6(Z;, U,,). The final error is

~ . 1, = _ 1 P
[(Ziy1) —min f(Z) = 5|\Zt+1 ~B'AZp = §||§t| Br < §H£t| Bo-

Noting that we can write thatn 6(Z,, U,) < 7tan6(Z;, U,) for some positive constant the final to initial error can
be bounded as follows

f(Zy11) — min f(Z) _ AR cos* 0(Z, Uy)

F(ZH,) — win [(Z) v min{eos” 0(Z:, Ug), 5 0(Z, U,) )
- O((g)2 cos*0(Zo, Uy,)), 0(Z:,U,)islarge , O(s
B { O((£)%), 0(Z;,U,)is small — (9)-

Since7 (§) = nnz(B),/k(B)log % is the complexity of AGD, we have the total complexity

% (nnz(A)p + (B + npz) log

L oe — 1 (P2 cos oo £ T (P2
= (108 o T cost )+ hox - T(LP))

1
+— ( nnz(B)p? +np2> lo
\/ﬁ< ") ’

where three parts represent complexities of compuipgsolving least-squares, aftorthonormalization, respectively.
Plugging the formula of (§) gives us the simplified complexity in Theorefi O

€ cos By

ecosfy’
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Algorithm 3 ANPM for CCA underp > k.

1: Input: data matricegX,Y), block sizek, momentum parametet, target rankk, iteration rankp > k, iteration
numberT’, a subroutin€zSg that performs modified Gram-Schmidt process with inner poo( )5
2: Output: approximate topgs canonical subspaces spanned by the fistlumns of®, and ¥, respectively.

3: Setd, x p matrices®_; = 0, &, = &(®' C,,P) 2, andd, x p matrices¥_; = 0, ¥, = \il(\ilTny\fl)*%,
where® and ¥ are entry-wise i.i.d. standard normal matrices of size< p andd,, x p, respectively
4: fort =0,1,--- ,T — 1 do {Perform plain alternating least-squar es updates}
>, ~ argq)éﬂ%i?xk 1,(®) which starts from the initial ®;(®, C,,®;)"'(®/ C,,¥,) to approximately mini-

mizel,(®) = o | XT® - Y (2 + || ®|%

6 W, ~ arg _ rﬁgxk hi(¥) which starts from the initial ¥,(¥, C,,¥,)~! (¥ C] ®,) to approximately mini-
mize ht(\Il)E: =Y T® - XT3 + 2|3
# Perform faster alternating least-squares updates

7: :f>t ~~ argq)elﬁgl)(k/l;(q?) which starts from theinitial <f>t(<f>tTCm<f>t)fl(</I\>tTCzy\flt) to approximately mini-
mizel (@) = 5| X' & — Y |7 + (|8

8 ift=0then

9 ¢t+1 = GSCI ( % ) such that i’t+1Rt+1 %325
10. €else .
11: (I>t+1 = GSCmr(ét — ﬁét—lRt_ ) such that ( ﬁ@t 1Rt ) ét-ﬁ-lRt-ﬁ—l
12:  endif
13 U, ~arg min_ ht(\Il) which starts from theinitial \i/t(\i/jcyy\i:t)*l(\i/jcgﬁt) to approximately mini-
WeRdy (
mize h, (¥) = %HYT\II —XT®,|% + 2| ¥|%
14.  ift=0then N
15 ‘I’t+1 GSC ( % ) SJCh tha.t \I't+1St+1 = %‘I’t
16: €lse R
17 ‘I’tJrl = GSny(‘I’t — ﬂ‘I’tflst_ ) such that ( ﬂ‘I’t 1S ) ‘I’tJrlStJrl
18:  endif
19: end for

Theorem 4.2 Letk < ¢ < p and assume tha:tg > 2B > 02+1. After Algorithm3 or the update below

{ @ 1R = C;lCuy (C1CL & + &) — BB, 1R, + & € REXP
U, 1841 = C,lCl (C1C,, U, +nf) — B, 1S, + 07 € RU>P,

runs for? = O( 1 = log ), we have thagin max{0(®r, Uy),(¥r, Vi) } < eintime complexity

ecos@

X, Y 1 1 X,Y)p? 1
K:( ) )(log log ’Y Og_10g1)+ HHZ( ) )p

X, Y 1
O(mmz(X, Y)p pcos by + € p NG 8 ccos 0o

)7

cos by

wherennz(X,Y) = nnz(X) + mnz(Y), #(X,Y) = max{x(Cys),c(Cyy)}. p = U’“f‘/_ v = Z—;, and§, =
max{@({)o,Uq),G(\Ilo,Vq)}.

Proof The proof works by repeating the proof of Theoréritwice with (A, B) = (C,,C,,/C,,, C..) and(A, B)

(C;yC 1C,y, Cy,), respectively, except for the handling of noise terms bseai two sources of noise for each step.
We take as an example the cas¢ Af B) = (C,,,C,C], . C..), where it holds that

xy?

Czy - Cmm (U E VT + U*JE V ) CUU’
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and
—1 T 277 T 2 T
C.,C,,C,,=Cu (UijUj + U,jz_jU_j) C...

Y
In this case, the noise for each steg@;,,' C,,&; + &7), due to the two least-squares approximations, i.e.,

\/I\’t = Cy_ylc;ry@t + {%7 q)t = C;mlcmy‘i’t + S?

It suffices to assume that the final approximation accurdordsvo least-squares problems in Lines 5 and 7 of Algorithm
3 satisfy

1, = _ 1 P
S8 - C i &, r = 51, » < IR, o

ht(‘i\’t) — min ht(‘I’)

~ A

1,(®;) — minl,(®)

1,2 _ ~ 1 P
5”‘1% —CCoyWille, p = 5”5;2”20“,1? < 5”5?”%:“,2’

where
1 . .
1€ llc,,2 = 0(7(11 —yoy min{\/fBsin 0, (02)* cosby}),
1 . .
I€le..a = Ol min{y/Fsindi (o3)* costr),

6, = max{0(®,U,),0(¥,, V,)} , and(02)* = 22V By | emmas 3.2-3.3 iku and Li (2021, we have the
following initial errors

: 1 _
hi(¥,;Hy,) — min hy (V) SI1¥He, - C,, C.,®/&,, r = O(po? tan® 0;),

B . 1. - - A
(®Hg,) —mink(®) = J[®Hg, ~ C..CoyWillE,, r = O(of + [I€;[IE,, 2) tan® 6),

whereHy, = (¥ C,,¥;)" ' (¥/C,, &) andHg = (®] C,.®,)"'(®] C,,¥,). Thus, we can bound the final to
initial error ratio as follows

ht(‘/I\lt) — min I’Lt(\II) 0'13 . 2 COS4 915
= —_— S 9
he(,Hey,) — min hy () (G minteos™ 0, 2iag ).
1,(®,) — minl,(® 2 ‘9
= i( ) — min t(A ) = Of ng min{cos? 6;, C.OSQ L.
lt(i’tH;I;t) — min lt(¢) UlT Sin et
We then can similarly have the following complexity
K(X,Y) 1 5 1. v, nnz(X,Y)p? 1
@) X, Y 1 log — log = 1 .
(nnz(X, Y)p (log cosfy ~ pcosby +log e 08 p) + N/ %8 ccos 0o

C MOMENTUM PARAMETER IN OTHER RANGES

For ease of exposition, we consider the case of Section 3theofain text, but it is straightforward to extend to the
generalized eigenspace computation. In this case, we sameethe proof in Section 3.1 of the main text from E2Q) (
for each case of > 0.

1) When2+/3 > A, Algorithm 1 is not guaranteed to converge. The reason islksifs.
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2)

Proof In this case, we have that

2 A
—1 2 - c T m _1 27 < T
e Bl =y, e Jeos(Tarccos(32) ™ lpr(E-0)l < (VB
where we have used the equivalent expressiopf@r) when|z| < 4,/3. Even if the noise is well conditioned such
that all the relevant factors are properly bounded in E) &s in the case considered in the main text, we can only
get that

2 A
hr < o/B) —— max cos(Tarc cos(—==))|~*
’ (V) (VB)T mi2v/B>Am > | cos( (2\/3))|
< 2 m:2\/rﬁnza;(m2>\k | cos(Tarc cos(;\%))rl,
wherec is a constant. In this case, there is no guaranteeithat O(e) can be achieved. Thusin (X, Uy) < €
is not guaranteed sine 0(X, Ug) < hy. O
When)\; > 2/3 > )\, we havesin (X, Uy,) < e for
T>2 /\710 (—Gtanﬁ(X U,))
= Ak — 2\/3 g 05

if it holds that

+
)‘q

1€l = O(er=gyr () VB sin (X0, Uy))
U, &1l = O(W(T)HWJ cos 0(Xo, Uy))

Proof In this case, results in Lemn3a7 become as follows.

7' () < ﬁ lorE_l < VBT, la(E_g)l < (t+ DA,
k

i) 05
e TR + o))
e e DiORTORY 0805
T A TR+ n)T) mizvBeaa, ()T + Q)T
max{ max 7@4_1)(/\:2) max ZE:O'AEP jl/\r_nlj}

man>2vB (AT TmaavBeanzag [3(AR)T + (Am) D)
2(t+1) Yo (VB!

: max - S
m:2vB>An > (v/B)T| cos(Tarc cos 555 )|

7" (Bq)a: (Bq)ll = |

1}

IN

= max{ max

M:Am >2v/B ()\+ )T
2t +1) t+1

T max — )
(VB) m:2vB>Am>X, (v/B)T | cos(Tarc cos 2\”/%)|

=)

IN

ax{

IN

t+1 =T max 2, max cos(Tarc cos
(/B T max(2, | maxJeos(Tarccos S

We now assume that
1€l = O(z=ryr (VB)F! sin6(Xo, Uy)),
HUJgtH = O(m(\/ﬁ)tﬂ cos 0(Xo, Ug)),

and can bound and2 in Lemma3.6 as follows.

IT < S lae(S—g)llEr_il
< YT+ 1)(V/B) - WA U0 < (/B)T sin (X0, U,).

A
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A

12 < S e (S)a(E) UL €ry |l

T=t cos ,Ugq
< 2 (e 1) (V)T WL et e D) < (1/8) cos (X, Uy).

Thus, we can havkr in Eqg. (20) bounded as

hr < 16(A ¥ tan 0(Xo, U,)

Vo
Jr
k

again. Similarly, we havein (X, Uy) < hy < e for

Ak
T>2,/————1o
v 8(—

To convert noise conditions, noting> 2 we have that

16 tan 6(Xo, Uy)).

=3 cos O(X Uy ;

G < ) + & Cimy e dBe. 0l (4 1) (A )Y
cos B(X U

< ()4 BlleontXoUy) st Il < oAt

and||C;| > L(A])" similarly. Thus, we can write the final noise condition as

1€l = (m( 2)'v/Bsin0(Xo, Uy))
U &l = (m( 2)1\/B cos (Xo, Uy))

3) When),4+1 > 2¢/3, we havesin (X7, Uy) < e for
AF 16
T> "k log(— tan0(X,,U,))
M= A € !

AF .
€11 = O(ﬁm(/\q—lf)tz\trl sin 6(Xo, Uy))

U &l = (W( )t/\+0059(X07 a))

Proof In this case, results in Lemn3a7 become as follows.

2
) <
Pl < o
L+ \T
(Sl < e SO+ 00
_ - )\Jr T+ A~ T
< max{(A q+1) ,(\/_) }—( q+1) ,
+ t— J
lae(B-g) < +§Ig§<nZIA )|
t
_ AT (A J, /\+ t— J
max{m:krﬂfgﬂg( W TR, max IJZ) )1}
< max{(t+ 1)\ )" t+ DB =+ DA,
Zt oNR)EI(NL)! Zt‘:o(/\Jr)t
—1 _ J= m J m — +\t—=T
lpr™ (Bg)a:(Bg)|| = max LM+ 0T = 228, o0 (t+1)(A)
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We now assume that
1€ = ((TT()\;H)HISine(Xo,Uq)),
[Ug &l = O(zirmyr (A cos 8(Xo, Uy)),

and can bound and2 in Lemma3.6 as follows.

T < S laE-g)llEr—o i
T-1 (A )Tt sin (X U) .
< -0 (t+1)()\;+l)t. a+1 e > (/\;'+1)T51n9(X0,Uq).
121 < X5 Ipr' (B (Z) U] &ryi |
T— _ (AT cos 0(Xo0,U,)
< 2y )T Rl e BT (1/8) cos B(Xo, Uy)-

Thus, we can haver in Eq. 20) bounded as

hr

/\Jr
16( qH) tan 6(Xo, Uy).
A

WhenT > log™ " (Af /Af1) log(16 tan (X0, Uy)/€), we havehr < e. Noting that

A >—1+/\+/)\q+1 M A
Mo TN A

q+1
M= A VB - [N 48 gy
)\k+«/)\2—4 Ak

log

we getsin (X, Uy) < hp < eforT > log(18 tan 6(X,, U,)). To convert noise conditions, we have that

Ak = >‘q++1
t—1 >\+)t 7 cos0(Xo,Uy) , . ;
IC < D'+ 15 Zico ““a—imrar = (1 + DAY
cos 0(Xo,U,
< () + et i <o),

and||C;| > & (A])! similarly. Thus, the final noise condition is

A
€01l = O(z=trmyr (S5) Mg sin0(Xo, Uy))

HUqTétH = O(%JA)T()j) Ay cos0(Xo, Ug))

D MORE EXPERIMENTS

More experiments are provided here to cover more settings.

D.1 ANPM

Two noise settings are considered. First, noise variandering iterations is considered. Three values of fixed venea
are usedo € {10719,1078,10-5}. The performance of the algorithms is reported in Figyreshere we can see that
the ANPM withp > k runs fastest across datasets for each noise variance yaja@, the twog settings of the ANPM
perform almost equally well. We also observe that the itenaérror at convergence is positively correlated with,reve
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Figure 4: Performance of the ANPM (Algorithm 1) under noiséfixed variance across iterations.

roughly matching, the noise levelfor both types of algorithm, that is, more noises lead to apwisolution with a larger
error. NPM withp > k works better than ANPM witlp = & on the first dataset, but is worse on the other two datasets.

Second, as in the main text, we test the algorithms with sai$erarying variance injected into iterations for two more
initial noise variancessq € {10,103}. Again, the noise variance keeps decreasing with iteratisrfollows:o; = 3%
The convergence curves of the algorithms are plotted inrEiguWe can also see the ANPM with> k performs best.

Next, we check the performance of the ANPM with> £ for different values of in two noise variance settings (fixed or
dynamic noise variance). Figurés’ show that increasing does not always mean better performance. It depends on three
factors, i.e., gaﬁ\%, iteration rankp, and noise type, where performance increases with thedicgiifbut decreases
with the second one.

D.2 ANPM for Genearlized Eigenspace Computation

We also check the performance of the ANPM with- £ for generalized eigenspace computation for differentesiofp,
report the algorithm performance in FiguBewhere we have similar observations as with Figu&s

D.3 ANPM for CCA

For the case of CCA, we test other valuepdbr the ANPM withp > £ and report the performance in Figuge
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Figure 5: Performance of the ANPM (Algorithm 1) under noisésarying variance.
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Figure 6: Performance of the ANPM (Algorithm 1) with varyipginder noises of fixed variance across iterations.
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Figure 7: Performance of the ANPM (Algorithm 1) with varyipginder noises of varying variance.
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Figure 8: Performance of the ANPM (Algorithm 2) with varyipdor generalized eigenspace computation.
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Figure 9: Performance of the ANPM (Algorithm 3) with varyipdor CCA.
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