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Abstract

We study the problem of online dynamic pricing
with two types of fairness constraints: a procedu-
ral fairness which requires the proposed prices to
be equal in expectation among different groups,
and a substantive fairness which requires the ac-
cepted prices to be equal in expectation among dif-
ferent groups. A policy that is simultaneously pro-
cedural and substantive fair is referred to as dou-
bly fair. We show that a doubly fair policy must
be random to have higher revenue than the best
trivial policy that assigns the same price to differ-
ent groups. In a two-group setting, we propose an
online learning algorithm for the 2-group pricing
problems that achieves Õ(

√
T ) regret, zero pro-

cedural unfairness and Õ(
√
T ) substantive unfair-

ness over T rounds of learning. We also prove two
lower bounds showing that these results on regret
and unfairness are both information-theoretically
optimal up to iterated logarithmic factors. To the
best of our knowledge, this is the first dynamic
pricing algorithm that learns to price while satis-
fying two fairness constraints at the same time.

1 Introduction
Pricing problems have been studied since Cournot (1897).
In a classical pricing problem setting such as Kleinberg
and Leighton (2003); Broder and Rusmevichientong (2012);
Besbes and Zeevi (2015), the seller (referred as “we”) sells
identical products in the following scheme.

Online pricing. For t = 1, 2, . . . , T :
1. The customer valuates the product as yt.
2. The seller proposes a price vt concurrently without knowing yt.
3. The customer makes a decision 1t = 1(vt ≤ yt).
4. The seller receives a reward (revenue) rt = vt · 1t.

Here T is the time horizon known to the seller in advance1,
1Here we assume T known for simplicity of notations. In fact,
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and yt’s are drawn from a fixed distribution independently.
The goal is to approach an optimal price that maximizes
the expected revenue-price function. In order to make
this, we should learn gradually from the binary feedback
and improve our knowledge on customers’ valuation distri-
bution (or so-called “demands” (Kleinberg and Leighton,
2003)).

In recent years, with the development of price discrimi-
nation and personalized pricing strategies, fairness issues
on pricing arose social and academic concerns (Kaufmann
et al., 1991; Chapuis, 2012; Richards et al., 2016; Eyster
et al., 2021). Customers are usually not satisfied with price
discrimination, which can lead to reduced willingness to
purchase and a damaged reputation for the seller. In the
online pricing problem defined above, when we are selling
identical items to customers from different groups (e.g., di-
vided by gender, race, age, etc.), it can be unfair to offer
different optimal price to each group: Optimal prices in
different groups are not necessarily the same, and unfairness
occurs if different customers are provided or buying the
same item with different prices. Inspired by the concept of
procedural and substantive unconscionability (Elfin, 1988),
we define a procedural unfairness measuring the difference
of proposed prices between the two groups, and a substan-
tive unfairness measuring the difference of accepted prices
between the two groups. Given these notions, our goal is
to approach the optimal pricing policy that maximizes the
expected total revenue with no procedural and substantive
unfairness.

The concept of procedural fairness has been well established
in Cohen et al. (2022) as “price fairness”, while the con-
cept of the substantive fairness is new to this paper. In
fact, both procedural and substantive fairness have signif-
icant impacts on customers’ experience and social justice.
For instance, these notions help prevent the following two
scenarios:

• Perspective buyers who are women found that they
are offered consistently higher average price than
men for the same product.

if T is unknown, then we may apply a “doubling epoch” trick as
Javanmard and Nazerzadeh (2019) and the regret bounds are the
same.
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• Women who have bought the product found that
they paid a higher average price than men who have
bought the product.

Therefore, a good pricing strategy has to satisfy both proce-
dural and substantive fairness.

However, these constraints are very hard to satisfy even
with full knowledge on customers’ demands. If we want
to fulfill those two sorts of fairness perfectly by proposing
deterministic prices for different groups, the only thing we
can do is to trivially set the same price in all groups and to
maximize the weighted average revenue function by adjust-
ing this uniformly fixed price with existing methods such
as Kleinberg and Leighton (2003). Consider the following
example:

Example 1. Customers form two disjoint groups, where
30% customers are in Group 1 and the rest 70% are in Group
2. For each price in {$0.625, $0.7, $1}, customers in two
groups have different acceptance rates:

Acceptance Rate $0.625 $0.7 $1
G1 (30%) 3/5 1/2 1/2
G2 (70%) 4/5 4/5 1/2

The figure below shows the expected revenue functions of
prices in each group, where the red dashed line is their
weighted average by population.

Price

Expected 
Revenue

$0.625 $0.7 $1

$0.5

k=4/5

k=3/5

k=1/2

Group 1

Group 2

Weighted Average

In Example 1, the only way to guarantee both fairness con-
straints is to propose the same price for both groups, and
the optimal price is $1 whose expected revenue is $0 .5 as
is shown in the figure.

However, if we instead propose a random price distribution
to each group and inspect those fairness notions in expec-
tation, then there may exist price distributions that satisfy
both of the fairness constraints and achieve higher expected
revenue than any fixed-price strategy. Here a price distribu-
tion is the distribution over the prices for customers, and the
exact price for each customer is sampled from this distri-
bution independently. This random price sampling process
can be implemented by marketing campaigns or promotions

such as random discounts or randomly-distributed coupons.
Again, we consider Example 1 and the following random
policy:

• For customers from G1, propose $0.625 with proba-
bility 20

29 and $1 with probability 9
29 .

• For customers from G2, propose $0.7 with probabil-
ity 25

29 and $1 with probability 4
29 .

Under this policy, the expected proposed price and the ex-
pected accepted price in both groups are $43

58 and $ 8
11 re-

spectively. Furthermore, the expected revenue is $ 74
145 >

$0 .5 , which means that this random policy performs better
than the best fixed-price policy. It is worth mentioning that
this is exactly the optimal doubly-fair random policy in this
specific setting, but the proof of its optimality is highly non-
trivial (and we put it in Appendix B.3 as part of the proof of
Theorem 9 ).

In this work, we consider a two-group setting and we denote
a policy as the tuple of two price distributions over the two
groups respectively. Therefore, we can formally define the
optimal policy as follows:

π∗ = argmax
π=(π1,π2)

q · E
v1
t∼π1,y1

t∼D1
[v1t · 1(v1t ≤ y1t )]

+ (1− q) · E
v2
t∼π2,y2

t∼D2
[v2t · 1(v2t ≤ y2t )]

s.t. Eπ1 [v1t ] = Eπ2 [v2t ]

Eπ1,D1 [v1t |1(v1t ≤ y1t ) = 1]

= Eπ2,D2 [v2t |1(v2t ≤ y2t ) = 1]
(1)

Here π1, v1t , y
1
t ,D1 and π2, v2t , y

2
t ,D2 are the proposed

price distributions, proposed prices, customer’s valuations
and valuation distributions of Group 1 and Group 2 respec-
tively, and q is the share (proportion) that Group 1 takes.
From (1), the optimal policy under the in-expectation fair-
ness constraints should be random in general2. However,
even we know the exact D1 and D2, it is still a very hard
problem to get π∗: Both sides of the second constraint in
(1) are conditional expectations (i.e., fractions of expected
revenue over expected acceptance rate) and is thus not con-
vex (and also not quasiconvex). To make it more realistic
(and also harder), the seller actually has no direct access to
customers’ demands D1 and D2 at the beginning. Therefore,
in this work we consider a T -round online learning and pric-
ing setting, where we could learn these demands from those
Boolean-censored feedback (i.e., customers’ decisions) and
improve our pricing policy to approach π∗ in (1).

In order to measure the performance of a specific policy, we
define a regret metric that equals the expected revenue dif-

2Notice that a fixed-price policy can also be considered as
“random”.
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ference between this policy and the optimal policy. We
also quantify the procedural and substantive unfairness
that are equal to the absolute difference of expected pro-
posed/accepted prices in two groups. We will establish a
more detailed problem setting in Section 3.

Summary of Results Our contributions are threefold:

• We design an algorithm, FPA, that achieves an
O(
√
Td

3
2 log d log T

ϵ ) cumulative regret with 0 proce-
dural unfairness and O(

√
Td

3
2 log d log T

ϵ ) substan-
tive unfairness, with probability at least (1−ϵ). Here
d is the total number of prices allowed to be chosen
from. These results indicate that our FPA is asymp-
totically no-regret and fair as T gets large.

• We show that the regret of FPA is optimal with re-
spect to T , as it matches Ω(

√
T ) regret lower bound

up to log log T factors.

• We show that the unfairness of FPA is also optimal
with respect to T up to log log T factors, as it has no
procedural unfairness and its substantive unfairness
matches the Ω(

√
T ) lower bound for any algorithm

achieving an optimal O(
√
T ) regret.

To the best of our knowledge, we are the first to study a
pricing problem with multiple fairness constraints, where
the optimal pricing policy is necessary to be random. We
also develop an algorithm that is able to approach the best
random pricing policy with high probability and at the least
cost of both revenue and fairness.

Technical Novelty. Our algorithm is a “conservative
policy-elimination”-based strategy that runs in epochs with
doubling batch sizes as in Auer et al. (2002a). We cannot
directly apply the action-elimination algorithm for multi-
armed bandits as in Cesa-Bianchi et al. (2013), because the
policy space is an infinite set and we cannot afford to try
each one out. The fairness constraints further complicate
things. Our solution is to work out just a few representative
policies that are “good-and-exploratory”, which can be used
to evaluate the revenue and fairness of all other policies, then
eliminate those that are unfair or have suboptimal revenue.
Since we do not have direct access to the demand function,
the estimated fairness constraints are changing over epochs
due to estimation error. Therefore, it is non-trivial to keep
the target optimal policy inside our “good policy set” during
iterations. We settle this issue by setting the criteria of a
“good policy” conservatively.

Our lower bound is new too and it involves techniques that
could be of independent interest to the machine learning
theory community. Notice that it is possible to have a per-
fectly fair algorithm by trivially proposing the same fixed
price for both groups. It is highly non-trivial to show the
unfairness lower bound within the family of regret-optimal

algorithms. We present our result in Section 5.3 by establish-
ing two similar problem settings that any algorithm cannot
distinguish them efficiently and showing that a mismatch
would cause a compatible amount of regret and substantive
unfairness.

2 Related Works

Here we discuss some literature closely related to this work.
Please refer to Appendix A for a broader discussion.

Dynamic Pricing Single product dynamic pricing prob-
lem has been well-studied through Kleinberg and Leighton
(2003); Besbes and Zeevi (2009); Wang et al. (2014);
Chen et al. (2019); Wang et al. (2021). The crux is to
learn and approach the optimal of a revenue curve from
Boolean-censored feedback. In specific, Kleinberg and
Leighton (2003) proves Θ(log log T ), Θ(

√
T ) and Θ(T

2
3 )

minimax regret bounds under noise-free, infinitely smooth
and stochastic/adversarial valuation assumptions, sequen-
tially. Wang et al. (2021) further shows a Θ(T

K+1
2K+1 ) min-

imax regret bound for K th-smooth revenue functions. In
all these works, the decision space is continuous. In our
problem setting, we require the prices to be chosen from
a fixed set of d prices, and show a bandit-style Ω(

√
dT )

regret lower bound similar to Auer et al. (2002b).

Fairness in Machine Learning Fairness is a long-existing
topic that has been extensively studied. In the machine learn-
ing community, fairness is defined from mainly two perspec-
tives: the group fairness and the individual fairness. In a
classification problem, for instance, (Dwork et al., 2012)
defines these two notions as follows: (1) A group fairness
requires different groups to have identical result distribu-
tions in statistics, which further includes the concepts of
“demographic parity” (predictions independent to group at-
tributes) and “equalized odds” (predictions independent to
group attributes conditioning on the true labels). In Agar-
wal et al. (2018), these group fairness are reduced to linear
constraints. The two fairness definitions we make in this
work, the procedural fairness and the substantive fairness,
belong to group fairness. (2) An individual fairness (Hardt
et al., 2016) requires the difference of predictions on two
individuals to be upper bounded by a distance metric of their
intrinsic features. The notion “time fairness” is often con-
sidered as individual fairness as well. We provide a more
detailed discussion on the line of work that address fair-
ness concerns or stochastic constraints with online learning
techniques in Appendix A.

Fairness in Pricing Recently there are many works
contributing to pricing fairness problems (Kaufmann
et al., 1991; Frey and Pommerehne, 1993; Chapuis, 2012;
Richards et al., 2016; Priester et al., 2020; Eyster et al.,
2021; Yang et al., 2022). As is stated in Cohen et al. (2022),
in a pricing problem with fairness concerns, the concept of
fairness in existing works is modeled either as a utility or
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budget that trades-off the revenue or as a hard constraint that
prevent us from taking the best action directly. Cohen et al.
(2022) chooses the second model and defines four different
types of fairness in pricing: price fairness, demand fairness,
surplus fairness and no-purchase valuation fairness, each of
which indicates the difference of prices, the acceptance rate,
the surplus (i.e., (valuation − price) if bought and 0 other-
wise) and the average valuation of not-purchasing customers
in two groups is bounded, sequentially. They show that it is
impossible to achieve any pair of different fairness notions
simultaneously (with deterministic prices). In fact, this can
be satisfied if they allow random pricing policies. Maestre
et al. (2018) indeed builds their fairness definition upon
random prices by introducing a “Jain’s Index”, which indi-
cates the homogeneity of price distributions among different
groups (i.e., our procedural fairness notion). They develop
a reinforcement-learning-based algorithm to provide homo-
geneous prices, with no theoretic guarantees.

Cohen et al. (2021) and Chen et al. (2021) study the online-
learning-fashion pricing problem as we do. Cohen et al.
(2021) considers both group (price) fairness and individ-
ual (time) fairness, and their algorithm FaPU solves this
problem with sublinear regret while guaranteeing fairness.
They further study the pricing problem with demand fairness
that are unknown and needs learning. In this setting, they
propose another FaPD algorithm that achieves the optimal
Õ(
√
T ) regret and guarantees the demand fairness “almost

surely”, i.e., upper bounded by δ · T as a budget. Chen et al.
(2021) considers two different sorts of fairness constraints:
(1) Price fairness constraints (as in Cohen et al. (2022)) are
enforced; (2)Price fairness constraints are generally defined
(and maybe not accessible), where they adopt “soft fairness
constraints” by adding the fairness violation to the regret
with certain weights. In both cases, they achieve Õ(T

4
5 ) re-

grets. These learning-based fairness requirements are quite
similar to our problem setting, but in our setting the fairness
constraints are non-convex (while theirs are linear) and are
also optimized to corresponding information-theoretic lower
bounds without undermining the optimal regret.

3 Problem Setup
In this section, we describe the problem setting of online
pricing, introduce new fairness definitions and set the goal
of our algorithm design.

Problem Description. We start with the online pricing
process. The whole selling session involves customers from
two groups (G1 and G2) and lasts for T rounds. Prices are
only allowed to be chosen from a known and fixed set of
d prices: V = {v1, v2, . . . , vd}, where 0 < v1 < v2 <
. . . < vd ≤ 1. Denote ∆d = {x ∈ Rd

+, ∥x∥1 = 1} as
the probabilistic simplex. At each time t = 1, 2, . . . , T , we
propose a pricing policy π = (π1, π2) consisting of two
probabilistic distributions π1, π2 ∈ ∆d over all d prices. A
customer then arrives with an observable group attribution

Ge (e ∈ {1, 2}), and we propose a price by sampling a
vet from V according to distribution πe. At the same time,
the customer generates a valuation yet in secret, where yet
is sampled independently and identically from some fixed
unknown distribution De. Afterward, we observe a feedback
1e
t = 1(vet ≤ yet ) and receive a reward(revenue) ret =

1e
t · vet .

Key Quantities. Here we define a few quantities and
functions that is necessary to formulate the problem. De-
note v := [v1, v2, . . . , vd]

⊤, [d] := {1, 2, . . . , d} and
1 := [1, 1, . . . , 1]⊤ ∈ Rd for simplicity. Denote Fe(i) :=
PrDe

[yet ≥ vi], e = 1, 2, i ∈ [d] as the probability of
price vi being accepted in Ge. Since vi < vj for i < j,
we know that Fe(1) ≥ Fe(2) ≥ . . . ≥ Fe(d). No-
tice that all Fe(i)’s are unknown to us. Define a matrix
Fe := diag(Fe(1), Fe(2), . . . , Fe(d)).

As a result, for a customer from Ge (e = 1, 2), we know
that

• The expected proposed price is v⊤πe.

• The expected reward(revenue) is v⊤Feπ
e.

• The expected acceptance rate is 1⊤Feπ
e.

• The expected accepted price is v⊤Feπ
e

1⊤Feπe .

Denote the proportion of G1 in all potential customers as q
(0 < q < 1) which is fixed and known to us, and we assume
that every customer is chosen from all potential customers
uniformly at random. As a consequence, we can define the
expected revenue of a policy π.

Definition 2 (Expected Revenue). For any pricing policy
π = (π1, π2) ∈ Π , define its expected revenue (given F1

and F2) as the weighted average of the expected rewards of
G1 and G2.

R(π;F1, F2) :=Pr[Customer is from G1] · E[r1t ]
+ Pr[Customer is from G2] · E[r2t ]

=q · v⊤F1π
1 + (1− q) · v⊤F2π

2

(2)

Also, we can define the two different unfairness notions
based on these results above.

Definition 3 (Procedural Unfairness). For any pricing pol-
icy π ∈ Π , define its procedural unfairness as the abso-
lute difference between the expected proposed prices of two
groups.

U(π) := |v⊤π1 − v⊤π2| = |v⊤(π1 − π2)|. (3)

Procedural unfairness is totally tractable as we have full
access to v⊤ and π. Therefore, we can define a policy
family Π := {π = (π1, π2), U(π) = 0} that contains all
policies with no procedural unfairness. Now we define a
substantive unfairness as another metric.
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Definition 4 (Substantive Unfairness). For any pricing pol-
icy π ∈ Π , define its substantive unfairness as the difference
between the expected accepted prices of two groups.

S(π;F1, F2) :=
∣∣E[v1|v1 ∼ π1, v1 being accepted ]

−E[v2|v2 ∼ π2, v2 being accepted ]
∣∣

=

∣∣∣∣v⊤F1π
1

1⊤F1π1
− v⊤F2π

2

1⊤F2π2

∣∣∣∣ .
(4)

Substantive unfairness is not as tractable as procedural un-
fairness, as we have no direct access to the true F1 and F2.
Ideally, the optimal policy that we want to achieve is:

π∗ = argmax
π=(π1,π2)∈Π

R(π;F1, F2)

s.t. U(π) = 0, S(π;F1, F2) = 0.
(5)

The feasibility of this problem is trivial: policies such as
π1 = π2 = [0, . . . , 0, 1, 0, . . . , 0]⊤ (i.e., proposing the
same fixed price despite the customer’s group attribution)
are always feasible. However, this problem is in general
highly non-convex and non-quasi-convex. Finally, we de-
fine a (cumulative) regret that measure the performance of
any policy π:

Definition 5 (Regret). For any algorithm A, define its cu-
mulative regret as follows:

RegT (A) :=
T∑

t=1

Reg(πt;F1, F2)

:=

T∑
t=1

R(π∗;F1, F2)−R(πt;F1, F2).

(6)

Here πt is the policy proposed by A at time t.

Notice that we define the per-round regret by comparing
the performance of πt with the optimal policy π∗ under
constraints. Therefore, Reg(πt;F1, F2) is possible to be
negative if πt ∈ Π but S(πt;F1, F2) > 0. Similarly, we
define a cumulative substantive unfairness as ST (A) :=∑T

t=1 S(πt;F1, F2).

Goal of Algorithm Design Our ultimate goal is to ap-
proach π∗ in the performance. In the online pricing
problem setting we adopt, however, we cannot guaran-
tee S(πt;F1, F2) = 0 for all πt we propose at time
t = 1, 2, . . . , T since we do not know F1 and F2 in advance.
Instead, we may suffer a gradually vanishing unfairness as
we learn F1 and F2 better. Therefore, our goal in this work
is to design an algorithm that guarantees an optimal regret
while suffering 0 cumulative procedural unfairness and the
least cumulative substantive unfairness.

Technical Assumptions. Here we make some mild as-
sumptions that help our analysis.

Assumption 1 (Least Probability of Acceptance). There ex-
ists a fixed constant Fmin > 0 such that Fe(d) ≥ Fmin, e =
1, 2.

Assumption 1 not only ensures the definition of expected
accepted price to be sound (by ruling out these unacceptable
prices), but also implies S(π, F1, F2) to be Lipschitz. Be-
sides, we can always achieve this by reducing vd. We will
provide a detailed discussion in Section 6.

Assumption 2 (Number of Possible Prices). We treat d, the
number of prices, as an amount independent from T . Also,
we assume d = O(T

1
3 ).

Assumption 2 is a necessary condition of applying Ω(
√
dT )

regret lower bound, and we will explain more in Ap-
pendix B.2. As we are more curious about how the fairness
constraints affect the interactive pricing process over time,
this assumption separates the dependence on d and helps to
show the optimality of our algorithm w.r.t. T .

4 Algorithm
In this section, we propose our Fairly Pricing Algorithm
(FPA) in Algorithm 1 and then discuss the techniques
we develop and apply to achieve the “no-regret” and “no-
unfairness” goal.

4.1 Algorithm Components
Algorithm 1 takes the following inputs: time horizon T ,
price set V, error probability ϵ, a universal constant L
as the coefficient of the performance-fairness tradeoff on
constraint relaxations (see Lemma 14), and q as the pro-
portion that G1 takes. We also adopt the following tech-
niques and components that contribute to its no-regret and
no-unfairness performance.

4.1.1 Before Epochs.
In this stage, we keep proposing the highest price
vd for τ0 = O(log T ) rounds to estimate(lower-
bound) the least accepting probability Fmin.
Before Epochs:

Initialize counter M0,e = 0 and N0,e = 0 for e = 1, 2.
for t = 1, 2, . . . , τ0 = 2 log T log 16

ϵ do
Denote the customer’s group index as et ∈ {1, 2}.
Set M0,et+ = 1.
Propose the highest price vd.
If accepted, set N0,et+ = 1.

end for
Output F̂min = min{ N0,1

2M0,1
,

N0,2

2M0,2
}.

4.1.2 Doubling Epochs.
Despite the “before epochs” stage, we divide the whole time
space into epochs k = 1, 2, . . ., where each epoch k has a
length τk = O(

√
T · 2k) that doubles the length of epoch

(k−1). Intuitively, a longer epoch can improve the estimates
and help the algorithm select better policies, which would in
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Algorithm 1 Fairly Pricing Algorithm (FPA)

1: Input: Time horizon T , prices set V, error probability ϵ, universal constant L, proportion q.
2: Before Epochs: Keep proposing the highest price vd and estimate the lowest accepting probability as F̂min. (See

Section 4.1.1.)
3: Initialization: Candidate policy set Π1 = Π := {π = (π1, π2), U(π) = 0} and price index set I10 = I20 = [d].
4: for Epoch k = 1, 2, . . . do
5: Set epoch length τk, reward uncertainty δk,r and unfairness uncertainty δk,s.
6: Select good-and-exploratory policies from Πk and form a set Ak. (See Section 4.1.3.)
7: Estimate acceptance probabilities Fe(i) as F̃k,e(i) for e = 1, 2 and i = 1, 2, . . . , d. (See Section 4.1.4.)
8: Let F̂k,e = diag(F̄k,e(1), F̄k,e(2), . . . , F̄k,e(d)), e = 1, 2.
9: Get empirical optimal policy π̂k,∗: Solve (7) with Algorithm 2

π̂k,∗ = argmax
π∈Πk

R(π, F̂k,1, F̂k,2), s.t. S(π, F̂k,1, F̂k,2) ≤ δk,s. (7)

10: Update the policy set Πk: Solve (8) with Algorithm 3

Πk+1 = {π : π ∈ Πk, S(π, F̂k,1, F̂k,2) ≤ δk,s, R(π, F̂k,1, F̂k,2) ≥ R(π̂k,∗, F̂k,1, F̂k,2)− δk,r − L · δk,s}. (8)

11: end for

return reduce the regret in the next epoch with even longer
time horizon.

4.1.3 Good-and-Exploratory Policies.

A profitable pricing policy might not be suitable of run-
ning in consideration of exploration, which is important
for estimating F1(i) and F2(i) that facilitates the policy
elimination. We resolve this issue by keeping a set of good-
and-exploratory policies: After eliminating sub-optimal
policies at the end of previous epoch, for each price vi in
group Ge we find out a policy in the remaining policies that
maximizes the probability of proposing vi in Ge at the be-
ginning of current epoch. The larger this probability is, the
more times vi can be chosen in Ge, which would lead to a
better estimate of Fe(i). Here we give up to estimate the ac-
ceptance probability of those vi with ≤ 1√

T
to be chosen by

the optimal policy π∗, as it would not affect the elimination
process and the performance substantially.

Select good-and-exploratory policies:

Initialize Ak = ∅, I1k = I1k−1 and I2k = I2k−1.
for Group e = 1, 2 and for price index i ∈ Iek−1, do

{Pick up policy maximizing each probability:}
Get π̃k,i,e = argmaxπ∈Πk

πe(i).
if π̃e

k,i,e(i) ≥ 1√
T

then
Let Ak = Ak ∪ {π̃k,i,e}

else
Remove i from Iek .

end if
end for
Output Ak.

4.1.4 Probability Estimates.

Within epoch k, we run a set of “good-and-exploratory poli-
cies” with equal shares of τk and then update the estimates
of F1 and F2. This will in return help the algorithm update
the set of “good-and-exploratory policies” as the next epoch
starts.

Estimate acceptance probabilities:

Initialize Mk,e(i) = Nk,e(i) = 0,∀i ∈ [d], e = 1, 2.
for each policy π ∈ Ak, do

Run π for a batch of τk
|Ak| rounds.

For each time a price vi is proposed in Ge, set
Mk,e(i)+ = 1.
For each time a price vi is accepted in Ge, set
Nk,e(i)+ = 1.

end for
For e = 1, 2, set F̄k,e(i) = max{Nk,e(i)

Mk,e(i)
, F̂min} for

i ∈ Iek , and F̄k,e(i) = F̂min otherwise.
Output vectors F̄k,e for e = 1, 2.

Policy Eliminations. At the end of each epoch k, we
update the candidate policy set by eliminating those sub-
stantially sub-optimal policies: Firstly, we select an em-
pirical optimal policy π̂k,∗ that maximizes R(π, F̂k,1, F̂k,2)

while guaranteeing S(π, F̂k,1, F̂k,2) ≤ δk,s. After that, we
eliminate those policies that meet one of the following two
criteria:

• Large unfairness:

S(π, F̂k,1, F̂k,2) > δk,s,
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• Large regret:

R(π, F̂k,1, F̂K,2) < R(π̂k,∗, F̂k,1, F̂k,2)−δk,r−L·δk,s.

Here we adopt two subtractors on the regret criteria: δk,r
for the estimation error in R(π) caused by F̂k,e, and L · δk,s
for the possible increase of optimal reward by allowing
S(π) ≤ δk,s instead of S(π) = 0. In this way, we can
always ensure the optimal policy π∗ (i.e., the solution of (5))
to remain and also guarantee the other remaining policies
perform similarly to π∗.

4.2 Computational Cost
Here we show that our FPA algorithm is efficient in compu-
tation.

On the one hand, FPA is oracle-efficient due to the doubling-
epoch design, as we only run each oracle and update each
parameter for O(log T ) times. On the other hand, these
arg-max oracles can also be implemented in a time-efficient
way, although both (7) and (8) are highly non-convex on
the constraints. In fact, a sufficient condition of solving
(7) is to solve the following constrained optimization prob-
lem:

(π̂k,∗, w
∗) = argmax

π∈Πk,w∈[0, 1
Fmin

]

R(π, F̂k,1, F̂k,2),

s.t. v⊤F1π
1 = w · 1⊤F1π

1,

v⊤F2π
2 ≥ (w − δk,s) · 1⊤F2π

2,

v⊤F2π
2 ≤ (w + δk,s)1

⊤F2π
2.

(9)

Since w ∈ [0, 1
Fmin

] is a scalar, the optimization problem in
(9) is a linear programming for any fixed w. Therefore, we
may solve this problem by conducting a linear search over a
series of {wℓ} ⊂ [0, 1

F̂min
] (since F̂min ≤ Fmin) and solve

the linear programming at each fixed w = wℓ, which can be
implemented as Algorithm 2.

Notice that we choose the linear searching step ϵ =
δk,s

2
due to the Lipschitzness of the objective function and all
constraints. In this way, the discretization error is upper
bounded by O(δk,s), which is in the same order of algorith-
mic regret w.r.t. T and d (as we will show in the proof of
Theorem 6). Since we only solve the linear programming
problem for O( 1

δk,s
) times (which is a polynomial of T and

d) and a linear programming problem can be solved in poly-
nomial time, we know that Algorithm 2 is time-efficient.
Similarly, we have the following Algorithm 3 that solves (8)
efficiently as well.

5 Regret and Unfairness Analysis
In this section, we analyze the regret and unfairness of
our FPA algorithm. We first present an Õ(

√
Td

3
2 ) regret

upper bound along with an Õ(
√
Td

3
2 ) unfairness upper

Algorithm 2 Oracle: Empirical Optimal

1: Input: Matrix F̂k,1, F̂k,2, policy set Πk, parameter
F̂min, allowed estimation error δk,s, step length ϵ =
δk,s

2 .
2: Initialization: Pick a π̂k,∗ ∈ Πk arbitrarily.
3: for ℓ = 0, 1, 2, . . . do
4: Let wℓ = ℓ · ϵ
5: if wℓ >

1
F̂min

then
6: Break.
7: end if
8: Solve the following linear program and get π̂k,∗.

π̂k,ℓ,∗ =argmax
π∈Πk

R(π, F̂k,1, F̂k,2),

s.t. v⊤F1π
1 = wℓ · 1⊤F1π

1,

v⊤F2π
2 ≥ (wℓ − δk,s) · 1⊤F2π

2,

v⊤F2π
2 ≤ (wℓ + δk,s)1

⊤F2π
2.

9: {Compare with best existing solution.}
10: if R(π̂k,ℓ,∗, F̂k,1, F̂k,2) > R(π̂k,∗, F̂k,1, F̂k,2) then
11: Substitute π̂k,∗ ← π̂k,ℓ,∗.
12: end if
13: end for
14: Return π̂k,∗.

Algorithm 3 Oracle: Policy Elimination

1: Input: Matrix F̂k,1, F̂k,2, policy set Πk, parameter
F̂min, δk,s, δk,r, constant L, policy π̂k,∗ step length
ϵ =

δk,s

2 .
2: Initialization: Feasible set Πk+1 = ∅.
3: for ℓ = 0, 1, 2, . . . do
4: Let wℓ = ℓ · ϵ
5: if wℓ >

1
F̂min

then
6: Break.
7: end if
8: Solve the following linear program and get a feasible

set Πk+1,w.
v⊤F1π

1 = wℓ · 1⊤F1π
1,

v⊤F2π
2 ≥ (wℓ − δk,s) · 1⊤F2π

2,

v⊤F2π
2 ≤ (wℓ + δk,s)1

⊤F2π
2

R(π, F̂k,1, F̂k,2) ≥ R(π̂k,∗, F̂k,1, F̂k,2)− δk,r − L · δk,s.

9: Update Πk+1 ← Πk+1 ∪Πk+1,w

10: end for
11: Return Πk+1.
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bound. Then we show both of them are optimal (w.r.t.
T ) up to log log T factors by presenting matching lower
bounds.

5.1 Regret Upper Bound
First of all, we propose the following theorem as the main
results for our Algorithm 1 (FPA).

Theorem 6 (Regret and Unfairness). FPA guarantees an
O(
√
Td

3
2 log d log T

ϵ ) regret with no procedural unfairness
and an O(

√
Td

3
2 log d log T

ϵ ) substantive unfairness with
probability 1− ϵ.

Proof sketch. We prove this theorem by induction w.r.t.
epoch index k. Firstly, we start with the induction assump-
tion that π∗ ∈ Πk, which naturally holds as k = 1. Mean-
while, we show a high-probability bound on the estimation
error of each Fe(i) for epoch k, according to concentration
inequalities. With this, we derive the estimation error bound
of R(π, F1, F2) and S(π, F1, F2) for each policy π ∈ Πk

in epoch k, given that we are always taking a policy that
maximizes the probability of proposing a specific price. Af-
ter that, we bound the regret and unfairness of each policy
remaining in Πk+1, and therefore bound the regret and un-
fairness of epoch (k + 1) with high probability. Finally, we
show that the optimal fair policy π∗ (defined in (5)) is also in
Πk+1, which matches the induction assumption for Epoch
(k + 1). By adding up these performance over epochs, we
get the cumulative regret and unfairness respectively. Please
refer to Appendix B.1 for a detailed proof.

Remark 7. Our algorithm guarantees O(
√
T log log T )

regret and unfairness simultaneously, whose average-over-
time match the generic estimation error of O( 1√

T
). It im-

plies that these fairness constraints do not bring informa-
tional obstacles to the learning process. In fact, these up-
per bounds are tight up to O(log log T ) factors, which are
shown in Theorem 8 and Theorem 9.

5.2 Regret Lower Bound
Here we show the regret lower bound of the pricing prob-
lem.

Theorem 8 (Regret lower bound). Assume d ≤ T
1
3 . Given

the online two-group fair pricing problem and the regret
definition as (6), any algorithm would at least suffer an
Ω(
√
dT ) regret.

We may prove Theorem 8 by a reduction to online pric-
ing problem with no fairness constraints: Given a problem
setting where the two groups are identical, i.e. F1(i) =
F2(i),∀i ∈ [d], and let q = 0.5. Notice that any policy sat-
isfying π1 = π2 is procedurally and substantively fair, and
the optimal policy is to keep proposing the best fixed price.
Therefore, this can be reduced to an online identical-product
(i.e., non-contextual) pricing problem, and we present a
bandit-style lower bound proof in Appendix B.2 inspired by
Auer et al. (2002b).

5.3 Unfairness Lower Bound with Optimal
Revenue

Here we show that any optimal algorithm has to suffer an
Ω(
√
T ) substantive unfairness.

Theorem 9 (Substantive Unfairness Lower Bound). For
any constant Cx, there exists constants Cu > 0 such that
any algorithm with an Cx · T

1
2 cumulative regret and zero

procedural unfairness has to suffer an Cu · T
1
2 substantive

unfairness.

It is worth mentioning that this result is different from ordi-
nary lower bounds on the regret, as it also requires the
algorithm to be optimal. In general, we propose 2 dif-
ferent problem settings, and we show the following four
facts:

• No algorithm can perform well (i.e. low regret and
low substantive unfairness) in both settings.

• Any algorithm cannot efficiently distinguish between
the two settings.

• Failing in distinguishing between them would lead
to a large substantive unfairness.

• Avoid distinguishing between them would suffer
even larger regret or substantive unfairness.

In order to prove these, we make use of Example 1 presented
in Section 1. One of the settings is exactly Example 1, and
the other one is identical to it except these 0.5 acceptance
rates (i.e., $0.7 for G1 and $1 for both groups) are now
(0.5 − ζ) in both groups. We get close-form solutions to
both problem settings. We further show that the two set-
tings are indistinguishable in information theory, and we
either fail or avoid distinguishing them at least for Ω(T )
rounds. Also, we show that the (reward or fairness) loss of
avoiding distinguishing is more than Ω( 1√

T
), and that the

fairness loss of failing to distinguish is Ω( 1√
T
). As we have

a tight budget on the cumulative regret, we have to suffer a
Ω(T · 1√

T
) = Ω(

√
T ) unfairness lower bound as a trade-off.

Please refer to Appendix B.3 for more details.

6 Discussion
Here we discuss some open issues and potential extensions
of this work. For more discussions on settings, techniques
and social impacts, please refer to Appendix C.

Improvement on Technical Assumptions. In this work,
we assume the existence of a lower bound Fmin > 0 of the
acceptance rate of all prices for both groups. This assump-
tion is stronger than our expectation, as the seller would not
know the highest price that customers would accept. We as-
sume this for two reasons: (1) Without assuming Fe(i) > 0,
the substantive unfairness function might be undefined. For
instance, if a pricing policy is completely unacceptable in
G1 (with no accepted prices) but is acceptable in G2, then
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is it a fair policy? (2) With a constantly large probability
of acceptance, we can estimate every Fe(i) and bound it
away from 0 and therefore leads to the Lipschitzness of
S(π, F̂1, F̂2). However, there might exist an algorithm that
works for Fe(i) > 0 generally and maintains these optimal-
ities as well, which is an open problem to the future.

Feelings of Fairness in FPA. In algorithm 1, notice that
we run each π̃ ∈ Ak for a continuous batch of τk

|Ak| =

Ω(
√
T · 2k), which is long enough for customers to experi-

ence the fairness: Customers would figure out their average
seeing and buying prices by comparing these amounts with
customers from the other group. On the contrary, if we run
an adaptive algorithm that changes the running policy at
every time, the customers would feel like they are treated by
different policies without knowing that all policies are quite
fair (since now each customer has no comparison).

Relaxation on Substantive Fairness. In this work, our
algorithm approaches the optimal policy (as the solution of
(5)) through an online learning framework. This ensures an
asymptotic fairness as T → +∞, but we still cannot guaran-
tee perfect any-time fairness precisely (i.e., S(πt) = 0,∀t).
Therefore, it is more practical to consider the following
inequality-constraint optimization problem:

πδ,∗ = argmax
π=(π1,π2)∈Π

R(π;F1, F2)

s.t. U(π) = 0, S(π;F1, F2) ≤ δ.
(10)

Comparing (5) with (10), we know that R(π∗) ≤ R(πδ,∗).
According to Lemma 14, we further know that R(π∗) ≥
R(πδ,∗)−L · δ. Naturally, the substantive unfairness defini-
tion is now max{0, S(π;F1, F2)− δ}. If we still consider
this problem under the framework of online learning, then
two questions arose naturally: What are the optimal regret
rate and (substantive) unfairness rate like? And how can we
achieve them simultaneously? From our results in this work,
we only know that (1) If δ = 0, then both rates are Θ(

√
T ),

and (2) if δ ≥ 1, then the optimal regret is Θ(
√
T ) and the

optimal unfairness is 0 (as it is reduced to the unconstrained
pricing problem). In fact, for δ = O(

√
1/T ), we may still

achieve O(
√
T ) regret and unfairness, but it is not clear if

they are always optimal. For δ >
√
1/T , we conjecture that

the optimal regret is still Θ(
√
T ) and the optimal unfairness

could be Θ(1/(
√
Tδ)).

Trade-offs between Procedural and Substantive Fairness.
We conjecture that it is not likely to trade-off substantive
fairness with procedural fairness, as the lower bound on
substantive fairness comes from the indistinguishability be-
tween two similar settings. To set unfair prices intentionally
would not substantially speed-up the learning process and
make the two environments more distinguishable.

Optimal Policy on the Continuous Space. In this work,
we restrict our price choices in a fixed price set V =

{v1, v2, . . . , vd} and aims at the optimal distributions on
these vi’s. However, if we are allowed to propose any price
within [0, 1], then the optimal policy could be a tuple of
two continuous distributions that outperforms any policy
restricted on V. Even if we know that customers’ valua-
tions are all from V, the optimal policy is not necessarily
located inside V due to the fairness constraints. This opti-
mization problem is even harder than (5), and the online-
learning scheme further increases its hardness. Existing
methods such as continuous distribution discretization (Xu
and Wang, 2022) might work, but would definitely lead to
an exponential time complexity.

From Two Groups to Multi Groups Our problem setting
assumes that there are two groups of customers in total. We
choose to study a two-group setting to simplify the presenta-
tion. In practice, however, it is very common that customers
are coming from many groups with different valuations even
on the same product. In fact, we believe it straightforward
to extend our techniques and results to G-group settings, as
long as we determine a metric of multi-group unfairness.
For instance, if we choose to define the multi-group unfair-
ness as the summation of pairwise unfairness of all O(G2)
pairs of groups, we may adjust our algorithm by lengthening
each epoch by G/2 times and keeping everything the same
as in this paper. In this way, the upper regret bound would
be Õ(G3

√
Td2/3), which is O(G3) times larger than the

existing regret bound. Therefore, it is still optimal w.r.t.
T up to iterative-log factors. However, this notion of pair-
wise unfairness is somewhat controversial in multi-group
settings, and we will provide more discussions regarding
this generalization on appendix C.1.

7 Conclusion
In this work, we study the online pricing problem with fair-
ness constraints. Specifically, we introduce two fairness
notions, a procedural fairness and a substantive fairness,
which respectively ensure the equality of proposed and ac-
cepted prices between two different groups. To satisfy these
two constraints simultaneously, we adopt random pricing
policies and establish the objective function and rewards
in expectation. To solve this problem with unknown de-
mands, we develop a policy-elimination-based algorithm
FPA that achieves an Õ(

√
T ) regret with zero procedural

unfairness and within an Õ(
√
T ) substantive unfairness. We

show that our algorithm is optimal in both regret and unfair-
ness up to log log T factors, by proving an Ω(

√
T ) regret

lower bound and an Ω(
√
T ) unfairness lower bound for any

optimal algorithm with O(
√
T ) regret.
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APPENDIX

A More Related Works
This part serves as a complement to Section 2.

Dynamic Pricing Single product dynamic pricing problem has been well-studied through Kleinberg and Leighton (2003);
Besbes and Zeevi (2009); Wang et al. (2014); Chen et al. (2019); Wang et al. (2021). The crux is to learn and approach the
optimal of a revenue curve (in continuous price space) from Boolean-censored feedback. Kleinberg and Leighton (2003)
studies this problem under three settings: noise-free, infinitely smooth and stochastic/adversarial valuation assumptions,
and proves Θ(log log T ), Θ(

√
T ) and Θ(T

2
3 ) minimax regret bounds, sequentially. Wang et al. (2021) further proves a

Θ(T
K+1
2K+1 ) minimax regret bound for K th-smooth revenue functions. The key to these problem is to parametrize the revenue

curve and estimate these parameters to bound the error. Therefore, a smoothness assumption would reduce the number of
local parameters necessary for trading-off the information loss caused by randomness.

There are recently a variety of works on feature-based dynamic pricing problems (Cohen et al., 2020; Leme and Schneider,
2018; Javanmard and Nazerzadeh, 2019; Xu and Wang, 2021; Liu et al., 2021; Fan et al., 2021; Xu and Wang, 2022) where
the sellers are asked to sell different products and set prices according to each of their features. All of these literatures
listed above adopt a linear feature, i.e., customer’s (expected) valuations are linearly dependent on the feature with fixed
parameters. In specific, there are a few different problem settings:

1. When customer’s valuations are deterministic, Cohen et al. (2020) proposes a binary-search-based algorithm and
achieves a O(log T ) regret, which is later improved by Leme and Schneider (2018) with a better O(d log log T )
regret that matches the information-theoretic lower bound even for the single product pricing problem.

2. When customers’ valuations are linear and noisy. For the setting where the noise distribution is known to the seller,
Javanmard and Nazerzadeh (2019) and Xu and Wang (2021) achieves the optimal O(d log T ) regret in stochastic and
adversarial settings respectively. Javanmard and Nazerzadeh (2019) further achieves O(

√
dT ) regret for unknown but

parametric noise distributions, which is also optimal according to Xu and Wang (2021). For totally unknown noise,
Xu and Wang (2022) shows a O(T

3
4 ) regret in the non-continuous case while Fan et al. (2021) proves a O(T

2K+1
4K−1 )

for K th-smooth noises, and both of them are not likely to be optimal (where the current lower bounds are Ω(T
2
3 )

and Ω(T
K+1
2K+1 ) respectively).
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Fairness in Machine Learning Ethic-related problems have attracted more and more concerns in contemporary studies of
decision-making, including privacy (Qiao and Wang, 2022b; Vietri et al., 2020; Garcelon et al., 2021; Chowdhury and Zhou,
2022; Qiao and Wang, 2022a; Zhao et al., 2022a; Tran et al., 2021; Zhao et al., 2022b), fairness (Dwork et al., 2012; Hardt
et al., 2016; Cohen et al., 2022) and robustness (Delage and Iancu, 2015). Fairness is a long-existing topic that has been
extensively studied. In machine learning society, fairness is defined from different perspectives. On the one hand, the concept
of group fairness requires different groups to receive identical treatment in statistics. In a classification problem, for instance,
there are mainly two different types of group fairness: (1) A “demographic parity” (Dwork et al., 2012) that requires the
outcome of a classifier to be statistically independent to the group information, and (2) an “equalized odds” (including “equal
opportunity” as a relaxation) (Hardt et al., 2016) that requires the prediction of a classifier to be conditionally independent to
the group information given the true label. In Agarwal et al. (2018), these probabilistic constraints are further modified as
linear constraints, and therefore the fair classification problem is reduced to a cost-sensitive classification problem. It is
worth mentioning that Agarwal et al. (2018) allows an ϵk-unfairness due to the learning error and assumes ϵk = O(n−α)
with some α ≤ 1

2 , while we quantify the learning-caused unfairness and upper and lower bound the cumulative unfairness
without pre-assuming its scale.

On the other hand, (Dwork et al., 2012) also proposes the concept of “individual fairness” (or “Lipschitz property”) where
the difference of treatments toward two individuals should be upper bounded by a distance metric of their intrinsic features,
i.e., D(µx, µy) ≤ d(x, y) where x, y are features and µx, µy are the distributions of actions onto x and y respectively. The
notion “time fairness” is often considered as individual fairness as well. For a more inclusive review on different definitions
of fairness in machine learning, please refer to Barocas et al. (2017).

Fairness in Online Learning Besides existing works on general machine learning fairness, there are some works that
study online-learning or bandit problems. This is similar to our setting as we adopt an online pricing process. Among these
works, Joseph et al. (2016) studies multi-armed and contextual bandits with fairness constraints. Their non-contextual setting
is related to our works as our pricing problem can also be treated as a bandit. Their definition of δ-fairness is defined as
comparisons among probabilities of taking actions, which is similar to our definition on procedural fairness. However, their
fairness definitions are defined from the perspective of arms (i.e. actions): better actions worth larger probability to take. In
comparison, our fairness definitions are more on the results: different groups share the same expected prices. Bechavod et al.
(2020) studies an online learning (in specific, an online classification) problem with unknown and non-parametric constraints
on individual fairness at each round. They develop an adaptive algorithm that guarantees an O(

√
T ) regret as well as an

O(
√
T ) cumulative fairness loss. However, their problem settings are quite different from ours. Primarily, they assume

individual fairness as a constraint, while our fairness definitions are indeed group fairness. Also, their online classification
problem is different from our online pricing problem as they have full access to the regret function while we even do not
have full-information reward (i.e., which is Boolean-censored). Similarly, their fairness loss is accessible although the unfair
pairs of (τ1, τ2) are not fully accessible, while in our settings we do not know the S(π;F1, F2) function at all. Besides,
we have to satisfy two constraints at one time and one of them (the substantive fairness) is highly non-convex. Gupta and
Kamble (2021) studies an online learning problem with two different sorts of individual fairness constraints over time: a
"fairness-across-time" (FT) and a "fairness-in-hindsight" (FH). They show that it is necessary to have a linear regret under
FT constraints, and they also propose a CAFE algorithm that achieves an optimal regret under FH constraints.

Despite the specific properties of fairness constraints, we may also consider the framework of constraint online learning. Yu
et al. (2017) studies an online convex optimization (OCO) problem with stochastic constraints, which might be applicable
to online fair learning. However, their problem settings and methodologies are largely different from ours: Firstly, their
constraints are assumed convex while our substantive fairness constraint (i.e., the S(π;F1, F2) function) is highly non-
convex. Also, they have a direct access to the realized objective function f t(xt) at each time while our pricing problem
only has a Boolean-censored feedback. More importantly, Yu et al. (2017) assumes the availability of unbiased samples
on constraint-related variables. In specific, their constraints are roughly gk(x) < 0, and by the end of each period t they
receive an unbiased sample of gk(xt) for the xt they have taken. On the contrary, we do not have any unbiased sample of
S(π, F1, F2) at each time, since there is only one customer from one of the two groups. Therefore, we cannot make use of
their results in our problem setting.

Fairness in Pricing There are some works also studying the fairness problem in dynamic pricing besides of the works we
discuss in Section 2. For example, Richards et al. (2016) discusses some fairness issues regarding personalized pricing from
the perspective of econometrics. Eyster et al. (2021) studies a phenomenon where customers would mistakenly attribute the
cost increases to a time unfairness, and they propose methods to release customer’s feeling of such unfairness by adjusting
prices correspondingly. Chapuis (2012) looked into two fairness concerns called price fairness and pricing fairness, which
indicates the distributional and procedural fairness of the pricing process respectively, from the seller’s perspective. In fact,
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their price fairness is more likely to be our procedural fairness definition although it is not in their paper. This is because
that we are considering the fairness from customers’ perspective, where their observations on prices serve as a procedure
of their decision process and their decision on whether or not to buy is actually indicating the fairness of results. There
are more interesting works as is listed in Section 2, and we refer the readers to Chen et al. (2021) where there is a more
comprehensive review on pricing and fairness.

B Proof Details
B.1 Proof of Theorem 6
Proof. First of all, we specify the parameters initialized in Algorithm 1: Let Cq = 3max{ 1q ,

1
1−q} and ct =

max{3,
√

3
F̂min
}. For k = 1, 2, . . ., let τk =

28Cq

3 · d
√
T log( 16d log T

ϵ ) · 2k, δk,r = 4ct log
16d log T

ϵ d
3
2

√
Cq

τk
, δk,s =

32ct
(F̂min)2

log 16d log T
ϵ d

3
2

√
Cq

τk
. Denote F̄0,1 :=

N0,1

M0,1
and F̄0,2 :=

N0,2

M0,2
, where M0,e and N0,e are counters defined in Sec-

tion 4.1.1. Also denote F0,1 := F1(d) and F0,2 := F2(d) for simplicity. Now we prove that F̂min ≤ Fmin with high
probability. Recall than Cq = 3max{ 1q ,

1
1−q}. Recall that τ0 = 2 log T log 16

ϵ . According to Hoeffding’s Inequality, we
have:

Pr[|F̄0,1 − F0,1| ≥
F0,1

2
] ≤2 exp{−2(F0,1

2
)2 · 1

Cq
τ0}

⇔ Pr[
F0,1

2
≤ 3F0,1

2
] ≥1− 2 exp{−(F0,1)

2 1

Cq
log T log

16

ϵ
}

≥1− ϵ

8
.

(11)

Here the last inequality comes from Assumption 1 that F0,1 ≥ Fmin > 0 and therefore we have (Fmin)
2 1
Cq

log T ≥ 1 with

large T . Therefore, we have F0,1

2 ≤ F̄0,1 ≤ 3F0,1

2 with probability at least 1 − ϵ
8 . Similarly, we have F0,2

2 F̄0,2 ≤ 3F0,2

2

with probability at least 1− ϵ
8 . Therefore, with Pr ≥ 1− ϵ

4 , we have F̂min = 1
2 min{F̄0,1, F̄0,2} ≤ min{ 3F0,2

4 ,
3F0,2

4 } =
3
4Fmin < Fmin.

We define some notations that are helpful to our proof. In epoch k, recall that we have:

π̃k,i,e = argmax
π∈Πk

πe(i). (12)

For simplicity, for every i ∈ Iek , denote ρk,e(i) := π̃e
k,i,e(i) that is the largest probability of choosing price vi in Ge among

all policies in Πk. For those i /∈ Iek , we find out the largest k′ such that i ∈ Iek′ and let ρk,e(i) := π̃e
k′,i,e(i). According to

the fact that Π = Π1 ⊃ Π2 ⊃ . . . ⊃ Πk ⊃ Πk+1 ⊃ . . ., we have

πe(i) ≤ ρk,e(i),∀π ∈ Πk; e = 1, 2; i ∈ [d]. (13)

Next, we prove the following lemmas together by induction over epoch index k = 1, 2, . . .. We firstly state that

Lemma 10. Recall the optimal policy π∗ defined in (5). Before Epoch k, we have π∗ ∈ Πk with high probability (the failure
probability will be totally bounded at the end of this proof).

which is natural at k = 1 as Π1 = Π . Now, suppose Lemma 10 holds for ≤ k, then we have:

Lemma 11 (Number of Choosing vi in Ge). For Mk,e(i) and Nk,e(i) defined in Algorithm 1, for any e = 1, 2; i ∈ Iek , with
Pr ≥ 1− ϵ

2 log T we have:

ρk,e(i) · τk
4d · Cq

≤Mk,e(i),

|Nk,e(i)−Mk,e(i) · Fe(i)| ≤ct ·
√
Fe(i) ·Mk,e(i) · log

16d log T

ϵ
.

(14)

Here ct = max{3,
√

3
F̂min
}.
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Proof of Lemma 11. For any i ∈ Iek , there exists a policy π̃k,i,e running in Epoch k for at least τk
|Ak| rounds, and. Therefore,

we have E[Mk,e(i)] ≥ ρk,e(i) · τk
|Ak| · min{q, 1 − q} ≥ ρk,e(i) · τk

|Ak|·Cq
. According to Bernstein’s Inequality, for any

e = 1, 2; i ∈ Iek we have:

Pr[|Mk,e(i)− E[Mk,e(i)]| ≤
E[Mk,e(i)]

2
]

≥1− 2 exp{−
1
2 (

E[Mk,e(i)]
2 )2∑ τk

|Ak|
t=1 ρk,e(i) · 1

Cq
(1− ρk,e(i) · 1

Cq
) + 1

3 · 1 ·
E[Mk,e(i)]

2

}

≥1− 2 exp{−
1
8 (E[Mk,e(i)])

2

ρk,e(i) · τk
|Ak|Cq

+ 1
6 · E[Mk,e(i)]

}

≥1− 2 exp{−
1
8 (E[Mk,e(i)])

2

E[Mk,e(i)] +
1
6 · E[Mk,e(i)]

}

=1− 2 exp{− 1

8 · 76
E[Mk,e(i)]}

≥1− 2 exp{− 3

28
ρk,e(i) ·

τk
|Ak| · Cq

}

=1− 2 exp{− 3

28
ρk,e(i) ·

28
3 · d
√
T log( 16d log T

ϵ ) · 2k

2d · Cq
}

=1− 2 exp{−ρk,e(i)
√
T · log(16d log T

ϵ
) · d · 2

k

2d
}

≥1− 2 exp{− log(
16d log T

ϵ
)}

=1− 2 · ϵ

16d log T

=1− ϵ

8d log T
.

(15)

Here the second line is because that

τk∑
t=1

E[(1(choosing vi at time t))2] ≤

τk
|Ak|∑
t=1

E[(1( running π̃k,i,e and choosing vi at time t))]

, the third line is for 1 − ρk,e(i) · 1
Cq
≤ 1, the fourth and sixth line are from E[Mk,e(i)] ≥ ρk,e(i)·τk

|Ak|·Cq
, the seventh line is

by plugging in τk =
28Cq

3 · d
√
T log( 16d log T

ϵ ) · 2k, the eighth line is equivalent transformation and the ninth line is for
ρk,e(i) ≥ 1√

T
according to Line 9 of Algorithm 1. As a result, with probability at least 1− ϵ

8d log T , we have

Mk,e(i) ≥
E[Mk,e(i)]

2
≥ ρk,e(i) · τk
|Ak| · Cq

≥ ρk,e(i) · τk
4dCq

. (16)

Now, we analyze Nk,e(i) for i ∈ Iek . Again, from Line 15 of Algorithm 1 we know that Nk,e(i) =∑Mk,e(i)
t=1 1(vt is accepted in Ge). Therefore, we apply Bernstein’s Inequality and get:

Pr[|Nk,e(i)−Mk,e(i) · Fe(i)| ≥ ct ·
√
Mk,e(i) · Fe(i) log

16d log T

ϵ
]

≤2 exp{−
1
2c

2
t ·Mk,e(i)Fe(i)(log

16d log T
ϵ )2

Mk,e(i)Fe(i) log
16d log T

ϵ (1− Fe(i)) +
1
3 · (ct ·

√
Mk,e(i) · Fe(i) log

16d log T
ϵ )

}

≤2 exp{−
1
2c

2
t log

16d log T
ϵ

1 + ct
3

}

≤ ϵ

8 log T
.



Doubly Fair Dynamic Pricing

Here the last line is by ct = max{3,
√

3
F̂min
} ≥ 3 and therefore

1
2 c

2
t

1+
ct
3

≥ 1. As a result, for e = 1, 2; i ∈ Iek , with

Pr ≥ 1− ϵ
8 log T we have

|Nk,e(i)−Mk,e(i) · Fe(i)| ≤ ct ·
√
Mk,e(i)Fe(i) log

16d log T

ϵ
.

That is to say,

|F̄k,e(i)− Fe(i)| = |max{Nk,e(i)

Mk,e(i)
, F̂min} − Fe(i)|

≤ |Nk,e(i)

Mk,e(i)
|

≤ ct ·

√
Fe(i)

Mk,e(i)
log

16d log T

ϵ

≤ ct log
16d log T

ϵ

√
Fe(i) ·

√
4dCq

ρk,e(i)τk
.

Here the first line is by definition of F̄k,e, the second line is because F̂min ≤ Fmin ≤ Fe(i), the third line is by the inequality
above and the last line is by (16). Therefore, with Pr ≥ 1− ϵ

2 log T , (14) holds for e = 1, 2 and for ∀i ∈ Iek .

Given Lemma 11, we have the following corollary directly:

Corollary 12 (Estimation Error of F̄k,e(i)). Assume that Lemma 11 holds. For F̄k,e(i) = max{Nk,e(i)
Mk,e(i)

, F̂min} defined in
Algorithm 1, for any e = 1, 2; i ∈ Iek , we have:

|F̄k,e(i)− Fe(i)| ≤ ct · log
16d log T

ϵ

√
4dFe(i)Cq

ρk,e(i)τk
. (17)

For simplicity, denoteR(π) := R(π, F1, F2), S(π) := S(π, F1, F2), R̂k(π) := R(π, F̄k,1, F̄k,2) and Ŝk(π) :=

S(π, F̄k,1, F̄k,2). Based on Corollary 12, we can bound the estimation error of R̂k(π) and Ŝk(π) by the following
lemma:

Lemma 13 (Estimation Error of R and S Functions). Given Lemma 11, we have:

|R(π)− R̂k(π)| ≤
δk,r
2

,

|S(π)− Ŝk(π)| ≤
δk,s
2

.

(18)

Here δk,r = 4ct log
16d log T

ϵ d
3
2

√
Cq

τk
and δk,s =

32ct
F̂ 2

min

log 16d log T
ϵ d

3
2

√
1
τk

as is defined in Theorem 6.

Proof of Lemma 13. First of all, we show that for any e = 1, 2; i = 1, 2, . . . , d and for any π ∈ Πk,

|F̄k,e(i)− Fe(i)| · πe(i) ≤ ct · log
16d log T

ϵ

√
4dCq

τk
. (19)

In fact, when i ∈ Iek , according to Lemma 11 we have

|F̄k,e(i)− Fe(i)| · πe(i) ≤|F̄k,e(i)− Fe(i)| · ρk,e(i)

≤ct · log
16d log T

ϵ

√
4dFe(i)Cq

ρk,e(i)τk
· ρk,e(i)

≤ct · log
16d log T

ϵ

√
4dCq · (ρk,e(i))

τk

≤ct · log
16d log T

ϵ

√
4dCq

τk
.

(20)
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When i /∈ Iek , we know that ρk,e(i) ≤ 1√
T

and thus πe(i) ≤ 1√
T
,∀π ∈ Πk according to (13). Also, since π∗ ∈ Πk by

induction, we know that πe
∗ ≤ ρk,e(i) ≤ 1√

T
. Therefore, we have

|F̄k,e(i)− Fe(i)| · πe(i) ≤|F̄k,e(i)− Fe(i)| · ρk,e(i)

≤|F̄k,e(i)π
e(i)− Fe(i)| ·

1√
T

≤1 · 1√
T

≤ct · log
16d log T

ϵ

√
4dCq

τk
.

(21)

Here we assume that log 16d log T
ϵ > 1 without losing of generality (i.e., T is sufficiently large and ϵ can be arbitrarily close

to zero), and the last inequality comes from ct ≥ 3 > 1 and 4d ≥ 1 and τk ≤ T . Combining (20) and (21), we know that
(19) holds for all e = 1, 2; i ∈ [d]. Remember that R(π) = q ·

∑d
i=1 F1(i)π

1(i) + (1 − q) ·
∑d

j=1 F2(j)π
2(j) and that

R̂k(π) = q ·
∑d

i=1 F̄k,1(i)π
1(i) + (1− q) ·

∑d
j=1 F̂k,2(j)π

2(j). Therefore, we may bound the error between R̂k(π) and
R(π). For ∀π ∈ Πk, we have

|R̂k(π)−R(π)| ≤ q ·
d∑

i=1

|F̄k,1(i)− F1(i)| · π1(i) + (1− q) ·
d∑

j=1

|F̄k,2(j)− F2(j)| · π2(i)

≤ q ·
d∑

i=1

ct · log
16d log T

ϵ

√
4dCq

τk
+ (1− q) ·

d∑
j=1

ct · log
16d log T

ϵ

√
4dCq

τk

= ct · log
16d log T

ϵ

√
4dCq

τk
· d

=
δk,r
2

.

(22)

Similarly, for the error between Ŝk(π) and S(π) as π ∈ Πk, we have:
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|Ŝk(π)− S(π)| =||v
⊤F̂k,1π

1

1⊤F̂k,1π1
− v⊤F̂k,2π

2

1⊤F̂k,2π2
| − |v

⊤F1π
1

1⊤F1π1
− v⊤F2π

2

1⊤F2π2
||

≤|v
⊤F̂k,1π

1

1⊤F̂k,1π1
− v⊤F̂k,2π

2

1⊤F̂k,2π2
− (

v⊤F1π
1

1⊤F1π1
− v⊤F2π

2

1⊤F2π2
)|

≤|v
⊤F̂k,1π

1

1⊤F̂k,1π1
− v⊤F1π

1

1⊤F1π1
|+ |v

⊤F̂k,2π
2

1⊤F̂k,2π2
− v⊤F2π

2

1⊤F2π2
|

=

2∑
e=1

|v
⊤F̂k,eπ

e

1⊤F̂k,eπe
− v⊤Feπ

e

1⊤Feπe
|

=

2∑
e=1

| (v
⊤F̂k,eπ

e)(1⊤Feπ
e)− (v⊤Feπ

e)(1⊤F̂k,eπ
e)

(1⊤F̂k,eπe)(1⊤Feπe)
|

=

2∑
e=1

|(πe)⊤(F̂k,e − Fe)v · (1⊤Feπ
e) + (v⊤Feπ

e)1⊤(Fe − F̂k,e)π
e|

|(1⊤F̂k,eπe)| · |(1⊤Feπe)|

≤
2∑

e=1

(1⊤Feπ
e) ·

∑d
i=1 π

e(i)(F̄k,e(i)− Fe(i))vi + (v⊤Feπ
e) ·

∑d
j=1 1 · (Fe(j)− F̂k,e(j)) · πe(j)

|F̂min| · |F̂min|

≤
2∑

e=1

1 ·
∑d

i=1 π
e(i)|F̄k,e(i)− Fe(i)| · 1 + 1 ·

∑d
j=1 1 · |Fe(j)− F̂k,e(j)|πe(j)

(F̂min)2

≤ 1

(F̂min)2

2∑
e=1

(

d∑
i=1

ct · log
16d log T

ϵ

√
4dCq

τk
+

d∑
j=1

ct · log
16d log T

ϵ

√
4dCq

τk
)

=
1

(F̂min)2
· 2d · ct · log

16d log T

ϵ

√
4dCq

τk

≤δk,s
2

.

(23)

Since we have Ŝk(π) ≤ δk,s,∀π ∈ Πk+1 by definition in Algorithm 1, we know that for any policy π ∈ Πk+1,

S(π) =Ŝk(π) + (S(π)− Ŝk(π))

≤Ŝk(π) + |S(π)− Ŝk(π)|

≤δk,s +
δk,s
2

≤2δk,s.

(24)

Therefore, any policy remaining in Πk+1 suffers at most 2δk,s unfairness. Now let us bound the regret of any policy in
Πk+1. Here we firstly propose a lemma.

Lemma 14 (Small Relaxation Gain). Recall that π∗ is the solution to (5). Define a πδ,∗ as follows.

πδ,∗ =argmax
π∈Π

R(π)

s.t. S(π) ≤ δ.
(25)

Then there exists a constant L ∈ R+ such that R(πδ,∗)−R(π∗) ≤ L
2 · δ.
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We leave the proof of Lemma 14 to the end of this section. Given Lemma 14 and the previous Lemma 13, we have:

R̂(π̂k,∗)− R̂(π∗) =R̂(π̂k,∗)−R(π̂k,∗) +R(π̂k,∗)−R(π2δk,s,∗) +R(π2δk,s
, ∗)−R(π∗) +R(π∗)− R̂(π∗)

≤|R̂(π̂k,∗)−R(π̂k,∗)|+ (R(π̂k,∗)−R(π2δk,s,∗)) + (R(π2δk,s
, ∗)−R(π∗)) + |R(π∗)− R̂(π∗)|

≤δk,r
2

+ 0 +
L

2
· 2δk,s +

δk,r
2

=δk,r + L · δk,s
(26)

By definition of Πk+1 at (8), we know that π∗ ∈ Πk+1, which holds Lemma 10 at k + 1 and therefore completes the
induction. As a result, all Lemma 10, Lemma 11, Lemma 13 and Lemma 14 holds for all k = 1, 2, . . .. As a result, we may
calculate the total regret and substantive unfairness as follows.

For the regret, we may divide the whole time horizon T into three stages:

1. Stage 0: Before epochs where we propose vd for τ0 = 2 log T log 16
ϵ rounds in either G1 or G2. The regret for this

stage is O(log T log 1
ϵ ).

2. Stage 1: Epoch 1 where we try every price for 2 · τ1
2d rounds in either G1 or G2. The regret for this stage is

O(τ1) = O(d
√
T log log T

ϵ ).

3. Stage 2: Epoch k = 2, 3, . . .. In each epoch k, every policy π we run satisfies π ∈ Πk. Therefore, for any π running
in Epoch k = 2, 3, . . ., we have

R(π∗)−R(π) =(R(π∗)− R̂k−1(π∗)) + (R̂k−1(π∗)− R̂k−1(π)) + (R̂k−1(π)−R(π))

≤δk−1,r

2
+ (δk−1,r + L · δk−1,s) +

δk−1,r

2
=2δk−1,r + L · δk−1,s.

(27)

The second line is by definition of Πk for k ≥ 2 and by Lemma 13. Suppose there are K epochs in total, and then
we know that:

T ≥
K∑

k=1

τk =
28Cq

3
· d
√
T · log 16d log T

ϵ
·

K∑
k=1

2k.

Solve the equaltion above and we get K = O(log
√
T

d log d log T
ϵ

) and K ≤ 1
2 log T . Therefore, the total regret of Stage

2 is

Reg = O(

K∑
k=2

τk · (2δk−1,r + L · δk−1,s)) = O(
√
T · d 3

2 log
d log T

ϵ
) (28)

Add the regret of all three stages above, we get that the total regret is O(
√
T · d 3

2 log d log T
ϵ ).

For the unfairness, we derive it similarly in three stages:

1. Stage 0: Before epochs where we propose vd for τ0 = 2 log T log 16
ϵ rounds in either G1 or G2. The unfairness for

this stage is 0 as we always propose the same price to both groups.

2. Stage 1: Epoch 1 where we try every price for 2 · τ12d rounds in either G1 or G2. The regret for this stage is 0 as well.

3. Stage 2: Epoch k = 2, 3, . . .. In each epoch k, every policy π we run satisfies π ∈ Πk. Therefore, for any π running
in Epoch k = 2, 3, . . ., we have

S(π) =Ŝk−1(π) + (S(π)− Ŝk−1(π))

≤δk−1,s +
δk−1,s

2

≤3δk−1,s

2
.

(29)

Here the last line is by definition of Πk for k ≥ 2 and by Lemma 13. Therefore, the total unfairness of Stage 2 is

Unf ≤
K∑

k=2

τk ·
3δk−1,s

2
= O(

√
T · d 3

2 log
d log T

ϵ
). (30)
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Therefore, the total substantive unfairness of all three stages is O(
√
T · d 3

2 log d log T
ϵ ) as well.

Finally, we count the probability of failure of all stages. For Stage 0, the failure probability is Pr0 ≤ ϵ
4 . For each epoch,

the failure probability is Prk ≤ ϵ
2 log T . Since there are K ≤ log T

2 epochs, the total failure probability is Prfailure ≤
Pr0 +K · Prk ≤ ϵ

4 +K · ϵ
2 log T ≤

ϵ
2 < ϵ. That is to say, Theorem 6 holds with probability at least Pr ≥ 1− ϵ.

At the end of this subsection, we prove Lemma 14 as we promised above.

Proof of Lemma 14. Denote any policy π ∈ Π as π = (π1, π2). For the simplicity of notation, we denote the following
functions:

(a) Define R1(π
1) = v⊤F1π

1;

(b) Define R2(π
2) = v⊤F2π

2;

(c) Define S1(π
1) = v⊤F1π

1

1⊤F1π1 ;

(d) Define S2(π
2)− v⊤F2π

2

1⊤F2π2 .

For πδ,∗ defined in (10), denote Vs := S1(π
1
δ,∗) and z = S2(π

2
δ,∗)− Vs. Therefore, we know that Vs ∈ [v1, 1] (recalling that

v1 > 0) and z ∈ [−δ, δ]. According to the optimality of πδ,∗, we have:

πδ,∗ = argmax
π∈Π,Vs∈[v1,1],z∈[−δ,δ]

qR1(π
1) + (1− q)R2(π

2)

s.t. S1(π
1) = Vs

S2(π
2) = Vs + z

(31)

. Consider the constraint S2(π
2)− Vs ∈ [−δ, δ], we can derive the following relaxation:

S2(π
2)− Vs ∈ [−δ, δ]

⇔ −δ ≤ v⊤F2π
2

1⊤F2π2
− Vs ≤ δ

⇒ −δ(1⊤F2π
2) ≤ v⊤F2π

2 − Vs · 1⊤F2π
2 ≤ δ(1⊤F2π

2)

⇒ −δ ≤ v⊤F2π
2 − Vs · 1⊤F2π

2 ≤ δ.

(32)

This is because 1⊤F2π
2 ∈ [Fmin, 1] ⊂ (0, 1]. Therefore, we may define θδ = (θ1δ , θ

2
δ) ∈ Π such that

θδ := argmax
θ∈Π,r,w∈[v1·Fmin,1]

qR1(θ
1) + (1− q)R2(θ

2)

s.t. v⊤F1θ
1 =w

·1⊤F1θ
1 =

w

Vs

v⊤F2θ
2 =r

−δ ≤ v1 · 1⊤F2θ
2 − r · v1

Vs
≤δ,

(33)

for any θ ≥ 0. Here we make use of the fact that Vs ∈ [v1, 1]. Notice that [v1 · Fmin, 1] contains all possible r’s due to the
fact that Fe(i) > Fmin and vi ≥ v1 for any i ∈ [d] and e ∈ {1, 2}, then we have R2(θ

2
δ) ≥ R2(π

2
δ,∗) as a relaxation of

conditions, which means that R(θδ) ≥ R(πδ,∗). Consider another policy πstart:

πstart := argmax
π∈Π

qR1(π
1) + (1− q)R2(π

2)

s.t. S1(π
1) =Vs

S2(π
2) =Vs.

(34)
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Therefore, we know that when δ = 0, we have θ0 = πstart exactly. Also, since π∗ can also be defined as follows:

π∗ = argmax
π∈Π,vs∈[v1,1]

qR1(π
1)+(1− q)R2(π

2)

s.t. S1(π
1) =vs

S2(π
2) =vs.

(35)

According to the optimality of π∗ over all vs ∈ [v1, 1] while πstart is restricted on a specific Vs, we have R(π∗) ≥
R(πstart) = R(θ0). Recall that we also have R(θδ) ≥ R(πδ,∗). Therefore, as long as we show that there exists a constant
L such that R(θδ)−R(θ0) ≤ L

2 · δ, then it is sufficient to show that R(πδ,∗)−R(π∗) ≤ L
2 · δ.

Denote
θ̃δ = [(θ1δ)

⊤, w,
w · V1

Vs
, (θ2δ)

⊤, r,
r · v1
Vs

]⊤ ∈ R2d+4. (36)

Of course ∥θ̃δ∥1 ≤ 1 + w + w
Vs

+ 1 + r + r
Vs
≤ 4 + 2 2

v1
. Denote the domain of θ̃δ as D(δ). Therefore, we know that for

any θ ∈ D(δ), we have
θ ⪰ 0

[1⊤
d , 0, 0, . . . , 0]θ = 1

[0, . . . , 0, 0, 0,1⊤
d , 0, 0]θ = 1

[0, . . . , 0, 1, 0, . . . , 0]θ ≤ 1 (for 1 in the (d+ 1)th place)

[0, . . . , 0, 1, 0, . . . , 0]θ ≤ 1 (for 1 in the (d+ 2)th place)
[0, . . . , 0, 1, 0]θ ≤ 1

[0, . . . , 0, 0, 1]θ ≤ 1

(37)

Denote D̃(δ) as the space of all θ satisfying (37), and we know that D̃(δ) ⊇ D(δ) and D̃(δ) is a bounded, close and convex
set with only linear boundaries. Also, denote the following fixed parameters:

a := [q · (v⊤F1), 0, 0, (1− q) · (v⊤F2), 0, 0] ∈ R2d+4

b1 := [v⊤F1,−1, 0, 0, . . . , 0] ∈ R2d+4

b2 := [v11
⊤F1, 0,−1, 0, 0, . . . , 0] ∈ R2d+4

g := [0, . . . , 0, 0, 0,v⊤F2,−1, 0] ∈ R2d+4

d := [0, . . . , 0, 0, 0, v1 · 1⊤F2, 0,−1] ∈ R2d+4.

(38)

Again, these parameters are all constants under the same problem setting. Given these parameters, for the definition of θδ in
(33), we may transform that definition into the following one equivalently:

θ̃δ := argmax
θ∈D̃(δ)

a⊤θ

s.t. b⊤
1 θ =0

b⊤
2 θ =0

g⊤θ =0

d⊤θ ∈[−δ, δ].

(39)

Since D̃(δ) ⊇ D(δ), we know that a⊤θ̃δ ≥ R(θδ). Denote

D̃abg(δ) := {θ|θ ∈ D̃(δ),b⊤
1 θ = 0,b⊤

2 θ = 0,g⊤θ = 0},

and we know that D̃abg(δ) is also a bounded close and convex set with only linear boundaries. Therefore, (39) is equivalent
to the following definition:

θ̃δ := argmax
θ∈D̃abg(δ)

a⊤θ

s.t. d⊤θ ∈ [−δ, δ].
(40)

Now we present the following lemma.
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Lemma 15 (Bounded Shifting). Given any space Q ⊂ Rn that is bounded, close and convex with only linear boundaries,
consider the following subset Q0 := {x ∈ Q, d⊤x = 0} ≠ ∅. Then there exists a constant CL such that for any z ∈ R,
Qz := {x ∈ Q, d⊤x = z} and any θz ∈ Qz , there always exists a θ0 ∈ Q0 such that ∥θz − θ0∥2 ≤ CL · |z|.

Proof of Lemma 15. Without loss of generality, we assume that z > 0. Denote Q+ = Q ∩ {x : d⊤x ≥ 0}. Because Q is
bounded, close and convex with only linear boundaries, the number of vertex of Q+ must be finite. The vertex set of Q+

can be decomposed as V = V0 + V1, where V0 denotes the vertex such that d⊤x = 0 while V1 denotes the vertex such that
d⊤x > 0. In addition, Q0 = Q+ ∩ {x : d⊤x = 0} is the cross section while we define B = {x : d⊤x = 0}.

For each point x ∈ Q0, we define βx to be min{The intersection angle between B and −→xv, v ∈ V1}. Due to the fact
that βx is continuous upon x, βx > 0 and the domain Q0 is bounded and close, there exists a βmin > 0 such that
βx ≥ βmin, ∀x ∈ Q0. Then we construct a corresponding cone Conex for each x ∈ Q0 such that Conex = {v : d⊤v ≥
0, and the intersection angle between B and −→xv ≥ βmin}.

Since Q+ is bounded, close and convex with only linear boundaries, for any point θz ∈ Qz , there exits v1, v2, · · · , vk and
a1, a2, · · · , ak such that vi ∈ V, ai ≥ 0,∀i ∈ [k] and

∑k
i=1 ai = 1 and it holds that θz =

∑k
i=1 aivi. Then according to

our construction of the cones, for each selected vertex vi, there exists a cone Coneti such that ti ∈ Q0 and vi ∈ Coneti .
We claim that Cone∑k

i=1 aiti
= {

∑k
i=1 aifi : fi ∈ Coneti}. Therefore, it holds that θz =

∑k
i=1 aivi ∈ Cone∑k

i=1 aiti
.

Consider this θ0 =
∑k

i=1 aiti, because Q0 is convex, we have θ0 ∈ Q0. In addition, ∥θ0 − θz∥2 ≤ |z|
∥d∥2·sin(βmin)

, which
means by choosing CL = 1

∥d∥2·sin(βmin)
, the proof is complete.

Denote zδ := θ̃δ and we know that |zδ| ≤ δ. In order to apply Lemma 15, we have to ensure that D̃abg(0) ̸= ∅. In fact,
notice that θ̃0 ∈ D̃abg ∩ {d⊤ = 0}. With Lemma 15, there exists a θ̂0 ∈ D̃abg(0) such that ∥θ̃δ − θ̂0∥2 ≤ L

2 |z| ≤
L
2 δ. As a

result, we have:
a⊤θ̃δ − a⊤θ̂0 ≤ ∥a∥2 · ∥θ̃δ − θ̂0∥2

≤ ∥a∥1 · CL · δ
≤ (q · v⊤F11+ (1− q) · v⊤F21) · CL · δ
:= Ca · CL · δ.

(41)

By definition of θ̃δ , we know that θ̃0 maximizes a⊤θ in D̃abg(0), which means that a⊤θ̃0 ≥ a⊤θ̂0. As a result, we have:

R(θδ)−R(θ0) =a⊤θ̃δ − a⊤θ̃0

≤a⊤θ̃δ − a⊤θ̂0

≤Ca · CL · δ.
(42)

Therefore, we have R(πδ,∗)−R(π∗) ≤ R(θδ)−R(πstart) = R(θδ)−R(θ0) ≤ Ca ·CL · δ. Let L := 2 ·Ca ·CL and this
holds the lemma.

B.2 Proof of Theorem 8
As is stated in Section 5.2, we may reduce this fair pricing problem to an ordinary online pricing problem with no fairness
constraints. Therefore, we only need to prove the following theorem.

Theorem 16 (Regret Lower Bound). Consider the online pricing problem with T rounds and d fixed prices in [0, c] for
3 ≤ d ≤ T 1/3 and some constant c > 0. Then any algorithm has to suffer at least Ω(

√
dT ) regret.

Here we mainly adopt the proof roadmap of Kleinberg and Leighton (2003).

Proof. We let c = 12 without losing generality. Let ϵ =
√

d
T , l = 1, a0 = 4l, ai = (1 + ϵ

l )
i · a0, i = 1, 2, . . . , d, then we

have: 4l = a0 < a1 < a2 < . . . < ad−1 < ad < 12l.

Define some distributions on the prices {ai}di=1:

• P0, with acceptance rates of each price: P0 = [ l
a1
, l
a2
, . . . , l

ad−1
, l
ad
]T , where P0(i) = Pr[y ≥ ai] = Pr[y >

ai−1] =
l
ai

< 1
4 .
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• Pj , with acceptance rates of each price: Pj = [ l
a1
, l
a2
, . . . , l

aj−1
, l+ϵ

aj
, l
aj+1

, . . . , l
ad−1

, l
ad
]T , where Pj(i) =

l
ai

+
ϵ
ai
· 1(i = j) ≤ 1

4 .

In the following part, we propose and prove the following lemma:

Lemma 17. For any algorithm S, ∃j ∈ {1, 2, . . . , d}, such that RegPj
(S) = Ω(

√
Td).

Proof. Suppose f is a function: {0, 1}T → [0,M ]. Denote r = [11,12, . . . ,1T ]
⊤ as a vector containing the customer’s

decisions in sequence. Then for any j = 1, 2, . . . , d we have:

EPj [f(r)]− EP0 [f(r)]

=
∑
r

f(r) · (Pj [r]− P0[r])

≤
∑

r:Pj [r]≥P0[r]

f(r)(Pj [r]− P0[r])

≤M ·
∑

r:Pj [r]≥P0[r]

f(r)(Pj [r]− P0[r])

=
M

2
∥Pj − P0∥1.

(43)

Here we cite a lemma from Cover and Thomas, Elements of Information theory, Lemma 11.6.1.

Lemma 18.
KL(P1||P2) ≥

1

2 ln 2
∥P1 − P2∥21.

Since

KL(P0(r)||Pj(r))

=

T∑
t=1

KL(P0[rt|rt−1]||Pj [rt|rt−1])

=

t∑
t=1

P0(it ̸= j) · 0 + P0(it = j) ·KL(
l

aj
|| l
aj

+
ϵ

aj
).

(44)

The first equality comes from the chain rule of decomposing a KL-divergence, and the second equality is because 1t satisfies
a Bernoulli distribution B(1, l

ait
+ ϵ

ait
· 1(it = j)). Now we propose another lemma:

Lemma 19. If 1
12 ≤ p ≤ 1

4 , then we have: KL(p, p+ ϵ) ≤ 12ϵ2 for sufficiently small ϵ.

According to this Lemma 19, we have:

KL(P0(r)||Pj(r)) ≤
T∑

t=1

P0(it = j) · 12ϵ2

≤
T∑

t=1

P0(it = j) · 12

16l2
ϵ2.

(45)

Therefore, we have:
EPj

[f(r)]− EP0
[f(r)]

≤M

2

2 ln 2

·

√
KL(P0(r)||Pj(r))

≤
√
6 ln 2M

4
· (

√√√√ T∑
t=1

P0(it = j)) · ϵ.

(46)
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Denote Nj :=
∑T

t=1 1(it = j), and hence:

EPj
[f(r)]− EPj

[f(r)] ≤
√
6 ln 2

4
M(

√
EP0

[Nj ]) · ϵ. (47)

Now let f(r) = Nj , i.e., let function f simulate the algorithm which make choices of it’s from historical results of
{11,12, . . . ,

∫
t−1
} (It is straightforward that {i1, i2, . . . , it−1} are also historical results crucial for deciding it. However,

for a deterministic algorithm, it can generate i1, i2, . . . , it−1 directly from ∅, {11}, {11,12}, . . . , {11,12, . . . ,1t−2}.) Now,
0 ≤ f(r) ≤ T , which indicates that M = T .. Then it turns out that

EPj
[Nj ]− EP0

[Nj ] ≤
√
6 ln 2

4
· T · ϵ ·

√
EP0

[Nj ]

⇒ 1

d

d∑
j=1

EPj [Nj ] ≤
1

d

d∑
j=1

(EP0 [Nj ] +

√
6 ln 2

4
· T · ϵ ·

√
EP0 [Nj ])

=
T

d
+

√
6 ln 2

4
· T
d
· ϵ ·

d∑
j=1

√
EP)

[Nj ]

≤ T

d
+

√
6 ln 2

4
· ϵ · T

d
·
√
Td

=
T

d
+

√
6 ln 2

4
·
√

d

T
· T
d
·
√
Td

≤ T

3
+ 0.525 · T

≤ 0.9T

(48)

Here the second line is an average over all j = 1, 2, . . . , d of the first line, the third line uses the fact that
∑d

j=1 E[Nj ] = T ,

the fourth line applies a Cauchy-Schwarz Inequality that Td = (
∑d

j=1 EP0 [Nj ])(d · 1) ≥ (
∑d

j=1

√
EP0 [Nj ])

2, the fifth

line plugs in the values that ϵ =
√

d
T , the sixth line uses the fact that ln 2 < 0.7, and the last line holds for sufficient large T .

From Equation 48, we know that ∃j ∈ {1, 2, . . . , d} such that EPj [Nj ] ≤ 0.9T . As a result, we have:

RegPj (S) ≥(1− 0.9)T (
l + ϵ

aj
· aj −

l

ait
· ait), ∀it ̸= j

=0.1T (l + ϵ− l)

=0.1Tϵ

=0.1
√
Td.

(49)

Therefore, the Ω(
√
Td) regret bound holds.

B.3 Proof of Theorem 9
Proof. Prior to our technical analysis, we briefly introduce the roadmap of proving the unfairness lower bound.

(i) We construct two different but very similar problem settings: one is exactly Example 1, the other is identical to
Example 1 except all probabilities of 0.5 are now changed into (0.5 − ζ), where ζ = C · T− 1

2+η for some super
small constant C ≥ 0 and some small η ≥ 0. In the following, we may call them the “Problem 0” (or P0) and the
“Problem ζ” (or Pζ) sequentially.

(ii) We derive the close-form solutions to both Problem 0 and Problem ζ , where we also parameterize the reward function
with the expected proposed price Vr and the proposed accepted price Vs. Of course Problem ζ is more general and
we may get the solutions to Problem 0 by simply let ζ = 0.

(iii) We show that there does not exist any policy π that satisfies both of the following conditions simultaneously:
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• π is within C0 · T− 1
2+η-suboptimal (w.r.t. regret) and within C0 · T− 1

2+η-unfair (w.r.t. fairness) in P0.

• π is within C0 · T− 1
2+η-suboptimal (w.r.t. regret) and within C0 · T− 1

2+η-unfair (w.r.t. fairness) in Pζ.

(iv) We show that any algorithm have to distinguish P0

According to the roadmap above, we firstly construct the following example as the problem setting for lower bound proof.

Example 20. Customers form 2 disjoint groups: Group 1 takes 30% proportion of customers, and Group 2 takes the rest
70%. In specific,

• In Group 1, 40% customers valuate the item as $0, (10% + ζ) valuate customers it as $0.625, and (50% − ζ)
customers valuate it as $1.

• In Group 2, 20% customers valuate it as $0, (30% + ζ) customers valuate it as $0.7, and (50% − ζ) customers
valuate it as $1.

Here ζ = C · T− 1
2+η is a small amount, where 0 ≤ C ≤ 10−10. In other words, we have v⊤ = [ 58 ,

7
10 , 1], F1 =

diag{0.6, 0.5− ζ, 0.5− ζ}, F2 = diag{0.8, 0.8, 0.5− ζ} and our policy π = (π1, π2) where π1, π2 ∈ ∆3. Our goal is to
approach the following optimal policy

πζ,∗ = argmax
π=(π1,π2)∈Π

R(π;F1, F2)

s.t. U(π) = 0

S(π;F1, F2) = 0.

(50)

For any policy π feasible to the constraints in (51), denote its expected accepted price as Vs (identical in both groups) and its
expected proposed price as Vr (identical in both groups as well). Notice that Vr ≥ Vs ≥ 5

8 , we define α = Vr − Vs as their
difference, and therefore we know that α ≥ 0. Again, we denote R(π, F1, F2) as R(π) without causing misunderstandings.
Here we propose the following lemma regarding Example 20.

Lemma 21 (Close-form solution to Example 20). For the problem setting defined in Example 20, we have:

π1
ζ,∗ =[

20− 40ζ

29− 10ζ
, 0,

9 + 30ζ

29− 10ζ
]⊤,

π2
ζ,∗ =[0,

25− 50ζ

29− 10ζ
,
4 + 40ζ

29− 10ζ
]⊤,∀ζ ∈ [0, 10−10].

(51)

Besides, for any feasible policy π and its corresponding Vs and α, we have:

R(π) =
71− 30ζ

100
· Vs +

(100− 60ζ)− (142− 60ζ)Vs

(8Vs − 5)(1− Vs)25
· Vs · α. (52)

Proof of Lemma 21. For any feasible policy π = (π1, π2), it has to satisfy the following equations for e = 1, 2:
1⊤πe = 1

v⊤πe = Vs + α

v⊤Feπ
e

1⊤Feπe
= Vs.

This is equivalent to the following linear equations system
1⊤πe = 1

v⊤πe = Vs + α

(v − Vs · 1)⊤Feπ
e = 0.

(53)



Doubly Fair Dynamic Pricing

This is further equivalent to A1π
1 = [1, Vs + α, 0]⊤ and A2π

2 = [1, Vs + α, 0]⊤ where

A1(Vs, ζ) =

 1 1 1
5
8

7
10 1

( 58 − Vs) · 35 ( 7
10 − Vs) · ( 12 − ζ) (1− Vs) · ( 12 − ζ)

 . (54)

and

A2(Vs, ζ) =

 1 1 1
5
8

7
10 1

( 58 − Vs) · 45 ( 7
10 − Vs) · 45 (1− Vs) · ( 12 − ζ)

 . (55)

Here we may omit the parameters (Vs, ζ) without misunderstanding. For Vs =
5
8 , the only possible policy is to propose the

lowest price 5
8 for both groups, and the expected reward is 0.3× 5

8 ×
3
5 + 0.7× 5

8 ×
4
5 = 0.4625 < 0.5− ζ . Therefore, it is

suboptimal as its expected reward is less than that of a deterministic policy keep proposing 1 as a price (whose reward is
0.5− ζ). In the following, we only consider the case when Vs >

5
8 . Solve these linear equation systems and get

π1 =A−1
1 [1, Vs + α, 0]⊤

=
1

3(8Vs − 5)(1 + 10ζ) 120α(1− 2ζ)
−((1 + 10ζ)8Vs + 10(1− 8ζ)) · α− (8(1 + 10ζ)V 2

s − 13(1 + 10ζ)Vs + (1 + 10ζ)5)
10(8(1 + 10ζ)Vs − 2(1 + 28ζ)) · α+ (1 + 10ζ)(8Vs − 5)(10Vs − 7)


(56)

and
π2 =A−1

2 [1, Vs + α, 0]⊤

=
1

3(1− Vs)(3 + 10ζ)4(((3 + 10ζ)10Vs − (6 + 100ζ))α− (3 + 10ζ)(10Vs − 7)(Vs − 1))
(−5) · (((3 + 10ζ)8Vs − 80ζ)α+ (3 + 10ζ)(8Vs − 5)(Vs − 1))

24α

 .

(57)

On the one hand, we can get the explicit form of R(π) w.r.t. Vs and α:

R(π) =q · v⊤F1π
1 + (1− q) · v⊤F2π

2

=
71− 30ζ

100
Vs +

(100− 60ζ)− (142− 60ζ)Vs

(8Vs − 5)(1− Vs)25
· Vsα.

(58)

On the other hand, we have a few constraints to be applied. Since π is a probabilistic distribution, we have πe(i) ≥ 0, e =
1, 2; i = 1, 2, 3, which lead to

120α(1− 2ζ) ≥ 0

− ((1 + 10ζ)8Vs + 10(1− 8ζ)) · α− (8(1 + 10ζ)V 2
s − 13(1 + 10ζ)Vs + (1 + 10ζ)5) ≥ 0

10(8(1 + 10ζ)Vs − 2(1 + 28ζ)) · α+ (1 + 10ζ)(8Vs − 5)(10Vs − 7) ≥ 0

4(((3 + 10ζ)10Vs − (6 + 100ζ))α− (3 + 10ζ)(10Vs − 7)(Vs − 1)) ≥ 0

(−5) · (((3 + 10ζ)8Vs − 80ζ)α+ (3 + 10ζ)(8Vs − 5)(Vs − 1)) ≥ 0

24α ≥ 0.

(59)

From (59), we may derive the following upper and lower bounds for α.

(a) The first line and the last line of (59) is naturally satisfied.

(b) From the second line, we have

α ≤ (1 + 10ζ)(8Vs − 5)(1− Vs)

(1 + 10ζ)8Vs + 10(1− 8ζ)
:= B1. (60)

(c) From the third line, we have

α ≥ (1 + 10ζ)(8 · Vs − 5)(7− 10Vs)

(1 + 10ζ)8 · Vs − 2(1 + 28ζ)
· 1
10

:= B2. (61)
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(d) From the fourth line, we have

α ≥ (3 + 10ζ)(10Vs − 7)(1− Vs)

(3 + 10ζ)10Vs − (6 + 100ζ)
:= B3. (62)

(e) From the fifth line, we have

α ≤ (3 + 10ζ)(8Vs − 5)(1− Vs)

(3 + 10ζ)8 · Vs − 80ζ
:= B4. (63)

We get four constraints on α as above, where (60) and (63) are upper bounds, and (61) and (62) are lower bounds. Compare
B1 with B4, we notice that

B1

B4
=

80ζ
3+10ζ

8Vs + 10 · 1−8ζ
1+10ζ

≤ 1. (64)

Therefore, (60) is tighter than (63). For the comparison between B2 and B3, we notice that B2 < 0 < B3 when Vs >
7
10

and B2 ≥ 0 ≥ B3 when Vs ≤ 7
10 .

In the following part, we derive the optimal policy by cases.

(a) When 5
8 < Vs ≤ 50−30ζ

71−30ζ , we have

R(π) =
71− 30ζ

100
Vs +

(100− 60ζ)− (142− 60ζ)Vs

(8Vs − 5)(1− Vs)25
· Vsα

≤71− 30ζ

100
Vs +

(100− 60ζ)− (142− 60ζ)Vs

(8Vs − 5)(1− Vs)25
· Vs ·B1

=
71− 30ζ

100
Vs +

(100− 60ζ)− (142− 60ζ)Vs

(8Vs − 5)(1− Vs)25
· Vs ·

(1 + 10ζ)(8Vs − 5)(1− Vs)

(1 + 10ζ)8Vs + 10(1− 8ζ)

=
71− 30ζ

100
VS +

100− 142Vs − 60ζ(1− Vs)

25(8Vs + 10 · 1−8ζ
1+10ζ )

· Vs

=
71− 30ζ

100
VS +

100− 142Vs − 60ζ(1− Vs)

25(8Vs + 10)− 450ζ
1+10ζ

· Vs

<
71− 30ζ

100
VS +

100− 142Vs − 60ζ(1− Vs) +
450ζ
1+10ζ

25(8Vs + 10)
· Vs

<
71

100
Vs +

100.1− 142Vs

25(8Vs + 10)
· Vs

=
71(8 · Vs + 10) + (100.1− 142 · Vs) · 4

100(8 · Vs + 10)
· Vs

=
11104 · Vs

1000(8 · Vs + 10)

≤11104

8000
−

5
4 × 11104

1000(8× 50
71 + 10)

≤0.50019

(65)

Here the first inequality (line 2) is by (100 − 60ζ) − (142 − 60ζ)Vs ≥ 0 as Vs ≤ 50−30ζ
71−30ζ and by α ≤ B1, the

second inequality (line 6) is by the fact that Vs’s coefficient is within (0, 1), the third inequality (line 7) is by
ζ ≤ 10−10 < 1

4500 , the fourth inequality (line 10) is by Vs ≤ 50
71 and the last inequality (line 11) is by numerical

computations. We will later show that 0.50019 is not optimal.

(b) When Vs >
50−30ζ
71−30ζ , we know that Vs >

7
10 as ζ < 1

30 . Therefore, we know B2 < 0 < B3 and we have

α ≥ B3 =
(3 + 10ζ)(10Vs − 7)(1− Vs)

(3 + 10ζ)10Vs − (6 + 100ζ)
.
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As a result, we have

R(π) =
71− 30ζ

100
Vs −

(142− 60ζ)Vs − (100− 60ζ)

(8Vs − 5)(1− Vs)25
· Vsα

≤ 71− 30ζ

100
Vs −

(142− 60ζ)Vs − (100− 60ζ)

(8Vs − 5)(1− Vs)25
· Vs ·B3

≤ 71− 30ζ

100
Vs −

(142− 60ζ)Vs − (100− 60ζ)

(8Vs − 5)(1− Vs)25
· Vs ·

(3 + 10ζ)(10Vs − 7)(1− Vs)

(3 + 10ζ)10Vs − (6 + 100ζ)

(66)

Also, we can derive an upper bound for Vs as B3 ≤ α ≤ B1.

(3 + 10ζ)(10Vs − 7)(1− Vs)

(3 + 10ζ)10Vs − (6 + 100)
≤ (1 + 10ζ)(8 · Vs − 5)(1− Vs)

(1 + 10ζ)8 · Vs + 10(1− 8ζ)

⇔ Vs ≤
8 + 10ζ

11 + 10ζ
.

(67)

Therefore, we may solve the maximal of R(π) on 50−30ζ
71−30ζ ≤ Vs ≤ 8+10ζ

11+10ζ by combining (66).

∂R(π)

∂Vs
=

3(−3135 + 9870Vs − 7491V 2
s ) + 3ζ(−46430 + 145660Vs − 114638V 2

s )

20(−5 + 8Vs)2(−3− 50ζ + 15Vs + 50ζVs)2

+
+3ζ2(97900− 315800Vs + 251740V 2

s ) + 3ζ3(15000− 30000Vs + 15000V 2
s )

20(−5 + 8Vs)2(−3− 50ζ + 15Vs + 50ζVs)2

=
−22473(Vs − 1645−6

√
2685

2497 )(Vs − 1645+6
√
2685

2497 ) + 3(−46430 + 145660Vs − 114638V 2
s )ζ + o(ζ2)

20(−5 + 8Vs)2(−3− 50ζ + 15Vs + 50ζVs)2

≳
−22473(Vs − 0.5343)(vs − 0.7833)

20(−5 + 8Vs)2(−3− 50ζ + 15Vs + 50ζVs)2

> 0.
(68)

Here the “≳” inequality is because the coefficient of ζ in any monomial above is within ±106, which indicates
that any monomial containing ζ is within ±0.0001 . The last line is because 7

10 ≤
50−30ζ
71−30ζ ≤ Vs ≤ 8+10ζ

11+10ζ ≤
3
4

and therefore (Vs − 0.5343)(vs − 0.7833) < 0. As a result, we know that R(π) is monotonically increasing as Vs

increases within the range above. Therefore, we have:

R(π) ≤ R(π)|α=B3 ≤ R(π)|α=B3 and Vs=
8+10ζ
11+10ζ

=
37(1− 2ζ)(4 + 5ζ)

10(29− 10ζ)
(69)

By plugging in Vs =
8+10ζ
11+10ζ into α = B3 and the close-form feasible solutions of π1 and π2 (i.e., (56) and (57) ),

we may get:

α = B3 =
3(1 + 10ζ)(3 + 10ζ)

2(29− 10ζ)(11 + 10ζ)

π1 = [
20− 40ζ

29− 10ζ
, 0,

9 + 30ζ

29− 10ζ
]⊤

π2 = [0,
25− 50ζ

29− 10ζ
,
4 + 40ζ

29− 10ζ
]⊤.

(70)

Pushing back (70) to (50), we verify that R(π)max = 37(1−2ζ)(4+5ζ)
10(29−10ζ) and therefore all inequalities in (69) hold as

equalities.

Notice that 37(1−2ζ)(4+5ζ)
10(29−10ζ) > 0.50019, and therefore the optimal policy πζ,∗ is what we derive in (70). This holds the

lemma.

With Lemma 21, we know that π1
ζ,∗ = [ 20−40ζ

29−10ζ , 0,
9+30ζ
29−10ζ ]

⊤ and π2
ζ,∗ = [0, 25−50ζ

29−10ζ ,
4+40ζ
29−10ζ ]

⊤. We denote V ∗
s,ζ := 8+10ζ

3+10ζ

and α∗
ζ = 3(1+10ζ)(3+10ζ)

2(29−10ζ)(11+10ζ) for future use. We also know that the optimal policy for Example 1 (i.e., ζ = 0) is exactly what
we proposed, i.e., π1

∗ = [ 2029 , 0,
9
29 ]

⊤ and π2
∗ = [0, 25

29 ,
4
29 ]

⊤.
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Let us go back to the two problems: P0 defined in Example 1 and Pζ defined in Example 20, where we consider the
following four conditions:

• π is within C0 · T− 1
2+η-suboptimal (w.r.t. regret) in P0 (denoted as Condition A).

• π is within C0 · T− 1
2+η-suboptimal (w.r.t. regret) in Pζ (denoted as Condition B).

• π is within C0 · T− 1
2+η-unfair (w.r.t. fairness) in P0 (denoted as Condition C).

• π is within C0 · T− 1
2+η-unfair (w.r.t. fairness) in Pζ (denoted as Condition D).

According to our proof roadmap, we then prove the following lemma:

Lemma 22 (No policy fitting in P0 and Pζ). There exist constants C0 > 0 such that there does not exist any policy π ∈ Π
that satisfies all of Condition ABCD (denoting A ∧B ∧ C ∧D) simultaneously.

Corollary 23. The space of Π can be divided as the following 3 subspaces:

1. Policies satisfying Condition AC (denoted as Space AC).

2. Policies satisfying Condition BD (denoted as Space BD).

3. Policies satisfying Condition (denoted as Outer Spaces) ĀB̄ ∨ C̄D̄ ∨ ĀD̄ ∨ B̄C̄. and these three subspaces are
pairwise disjoint.

Proof of Lemma 22. Let C1 = C
W and C2 = C

W ·L where L > 0 is a constant from Lemma 14 and W ≥ 10 to be specified
later. Let C0 = min{C1, C2}, and we prove the lemma by contradiction. Suppose there exists a policy π satisfies the four
conditions above, and then we denote the expected accepted prices in G1 and G2 in Problem ζ are Vs,ζ and Vs,ζ + βζ

sequentially, where βζ ∈ [0, C2T
− 1

2+η]. Here we assume β ≥ 0 without losing generality as we will not use the specific
property of G1 versus G2. Also, we denote αζ as the difference between the expected proposed price in both groups
(denoted as Vr,ζ) and Vs,ζ .

Now, consider a corresponding policy:

π̌ :=

{
G1 : E[accepted price] = Vs,ζ ,E[proposed price] = Vs,ζ + αζ

G2 : E[accepted price] = Vs,ζ ,E[proposed price] = Vs,ζ + αζ

(71)

According to (67), we know that 5
8 ≤ Vs,ζ ≤ V ∗

s,ζ = 8+10ζ
11+10ζ and R(π̌) ≤ R(πζ,∗). Therefore, we have:

R(π) ≤ R(π̌) + L · βζ

≤ R(πζ,∗)− min
Vs∈[ 58 ,

8+10ζ
11+10ζ ]

∂R(π)

∂Vs
· (V ∗

s,ζ − Vs,ζ) + L · βζ

≤ R(πζ,∗)−
1

4
· (V ∗

s,ζ − Vs,ζ) + L · βζ .

(72)

Here the first line comes from Lemma 14, the second line comes from the fact that f(x1)− f(x2) ≥ minx(f
′(x))(x1 − x2)

for x1 ≥ x2 and f ′(x) > 0, and the third line comes from the fact that ∂R(π)
∂Vs

≥ 1
4 for Vs ∈ [0.625, 0.728] as 0.728 > 8+10ζ

11+10ζ

for ζ ≤ 10−10. Also, since π satisfies a low-regret condition, we have

R(πζ,∗)−R(π) ≤ C1 · T− 1
2+η.

Combining with (72), we have
1

4
(V ∗

s,ζ − Vs,ζ)− L · βζ ≤ C1T
− 1

2+η

⇒ (V ∗
s,ζ − Vs,ζ) ≤ C1T

− 1
2+η + L · βζ

≤ (C1 + LC2)T
− 1

2+η.

(73)
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Notice that this is suitable for any ζ ∈ [0, 10−10], we may have the same result for both ζ = CT− 1
2+η and for ζ = 0. We

denote ζ0 = 0 and ζ1 = CT− 1
2+η where C = 10−10. Therefore, we have:

(V ∗
s,ζ0 − Vs,ζ0) ≤(C1 + LC2)T

− 1
2+η,

(V ∗
s,ζ1 − Vs,ζ1) ≤(C1 + LC2)T

− 1
2+η.

(74)

Now let us bound (α∗
ζ − αζ) for both ζ0 and ζ1. From (60) and (62), we have

B3|Vs=Vs,ζ
≤ αζ ≤ B1|Vs=Vs,ζ

B3|Vs=V ∗
s,ζ

= α∗
ζ = B1|Vs=V ∗

s,ζ

⇒ min
Vs∈[0.7,0.75]

{∂B3

∂Vs
,
∂B1

∂Vs
} · (V ∗

s,ζ − Vs,ζ) ≤ (α∗
ζ − αζ) ≤ max

VS∈[0.7,0.75]
{∂B3

∂Vs
,
∂B1

∂Vs
}(V ∗

s,ζ − Vs,ζ)

⇒ 0 ≤ 0.05(V ∗
s,ζ − Vs,ζ) ≤ (α∗

ζ − αζ) ≤ 0.6(V ∗
s,ζ − Vs,ζ).

(75)

Therefore, we have:

0 ≤ V ∗
r,ζ − Vr,ζ = V ∗

s,ζ + α∗
ζ − (Vs,ζ + αζ) ≤ (1 + 0.6)(V ∗

s,ζ − Vs,ζ) ≤
8

5
· (C1 + LC2)T

− 1
2+η.

Therefore, we know that

V ∗
r,ζ0 ≥Vr,ζ0 ≥ V ∗

r,ζ0 −
8

5
· (C1 + LC2)T

− 1
2+η,

V ∗
r,ζ1 ≥Vr,ζ1 ≥ V ∗

r,ζ1 −
8

5
· (C1 + LC2)T

− 1
2+η.

⇒ |Vr,ζ1 − Vr,ζ0 | ≥ |V ∗
r,ζ0 − V ∗

r,ζ1 | − (C1 + LC2)T
− 1

2+η.

(76)

HOWEVER, we have Vr,ζ1 = Vr,ζ0 since they are the expected proposed price of the same pricing policy π in P0

and Pζ where the prices sets are all the same! Therefore, we have |V ∗
r,ζ0
− V ∗

r,ζ1
| − (C1 + LC2)T

− 1
2+η ≤ 0. Since

V ∗
r,ζ0

= 43
58 and Vr,ζ1 = 43+10ζ1

58−20ζ1
, we have |V ∗

r,ζ0
− V ∗

r,ζ1
| = 360ζ

29(29−10ζ) ≥
C
3 · T

− 1
2+η. Since C1 = C

W ≤ 10−11 and

C2 = C
W ·L ≤

1
L × 10−11, we know that |V ∗

r,ζ0
− V ∗

r,ζ1
| > (C1 + LC2)T

− 1
2+η, which contradicts to the inequality we

derived. Therefore, the lemma is proved by contradiction.

In the following, we set ζ = ζ1 = CT− 1
2+η where C = 10−10 as is defined in the proof of Lemma 22. Now let us go back

to the main stream of proving Theorem 9. We also make it by contradiction. For any given Cx, without loss of generality,
we may assume that Cu ≤ Cx to be specified later. Define x = Cx

log T , and therefore CxT
1
2 = T

1
2−x. We will make use

of Example 1 and Example 20, and let η > x to be specified later. Therefore, we have Cu · T
1
2 ≤ Cx · T

1
2 = T

1
2−x,

which means that the contradiction is a sufficient condition to the following result: Suppose there exists an x > 0 and
an algorithm such that it can always achieve O(T

1
2+x) regret with zero procedural unfairness and O(T

1
2−x) substantive

unfairness. According to Corollary 23, we know that any policy π ∈ Π are in exact one of those three spaces. In our
problem setting, denote the policy we take at time t = 1, 2, . . . , T as πt. Now we show that: among all policies {πt}Tt=1 we
have taken, there are at most O(T 1−η+x) policies in all T policies having been played belonging to the Outer Space defined
in Corollary 23. In fact, for any policy π in the Outer Space, we have:

(i) When π ∈ ĀB̄, the policy π will definitely suffer a regret C0 · T− 1
2+η , no matter which the problem setting is (i.e.,

P0 or Pζ). In order to guarantee O(T
1
2+x) regret, there are at most N1 = O(T 1−η+x) = o(T ) rounds to play a

policy in ĀB̄.

(ii) When π ∈ C̄D̄, the policy π will definitely suffer a substantive unfairness C0 · T− 1
2+η , no matter which the problem

setting is (i.e., P0 or Pζ). In order to guarantee O(T
1
2−x) regret, there are at most N2 = O(T 1−η−x) = o(T ) rounds

to play a policy in C̄D̄.

(iii) When π ∈ ĀD̄ ∨ B̄C̄, in either P0 or Pζ it suffers something (that could be either C0 · T− 1
2+η regret or C0 · T− 1

2+η

unfairness). As we have to guarantee O(T
1
2+x) regret and O(T

1
2−x) substantive unfairness, there are still at most

N3 = O(max{T 1−η+x, T 1−η−x}) = O(T 1−η+x) = o(T ).
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Therefore, the number of rounds when we select and play a policy from Space AC or Space BD is at least T − o(T ) ≥ T
2 .

Notice that if a policy in AC, then it performs well in P0 but not necessarily in Pζ . Similarly, if a policy in BD, then it
performs well in Pζ but not necessarily in P0. Therefore, two questions emerges:

• How do policies in AC perform in Pζ? and How do policies in BD perform in P0? Specifically, we only care about
the substantive fairness.

• How can we distinguish between Pζ and P0?

For distinguishablity, denote F1(ζ) = diag{0.6, 0.5− ζ, 0.5− ζ} and F2(ζ) = diag{0.8, 0.8, 0.5− ζ}. Denote S0(π) :=
S(π, F1(0), F2(0))|ζ=0 and Sζ(π) := S(π, F1(ζ), F2(ζ)). In the following, we propose two lemmas that help us prove.
The first lemma, Lemma 24, shows that failing to distinguish would lead to large substantive unfairness, which answers the
first question above.

Lemma 24. There exists a constant Cac such that: for any policy π ∈ AC, we have Sζ(π) > Cac · T− 1
2+η. There also

exists a constant Cbd such that: for any policy π ∈ BD, we have S0(π) > Cbd · T− 1
2+η .

Proof of Lemma 24 . We firstly prove the first half of this lemma, and then demonstrate the second half (which can be
proved in exact the same way.)

First of all, we have the close-form solution to both P0 and Pζ in (51). Therefore, we have

Sζ(π0,∗) =
12ζ(1− 2ζ)

(11− 6ζ)(11− 10ζ)
. (77)

Now, consider any policy π ∈ AC. Similar to the Proof of Lemma 22, we define its accepted prices in G1 and G2 are Vs,0

and Vs,0 + β where β ∈ [0, C2T
−frac12+η]. We also denote the expected proposed price in both group as Vr,0 = Vs,0 +α0.

Also, define a corresponding policy π̌:

π̌ :=

{
G1 : E[accepted price] = Vs,0,E[proposed price] = Vs,0 + α0

G2 : E[accepted price] = Vs,0,E[proposed price] = Vs,0 + α0.
(78)

Notice that π1 = (A1(Vs,0, 0))
−1[1, Vr,0, 0]

⊤ and π2 = (A2(Vs,0, 0))
−1[1, Vr,0, β · 1⊤F2π

2]⊤. In comparison, we have
π̌1 = (A1(Vs,0, 0))

−1[1, Vr,0, 0]
⊤ and π̌2 = (A2(Vs,0, 0))

−1[1, Vr,0, 0]
⊤. Therefore, we have:

π1 = π̌1

∥π2 − π̌2∥1 = ∥(A2(Vs,0, 0))
−1([1, Vr,0, β · 1⊤F2π

2]⊤ − [1, Vr,0, 0]
⊤)∥1

≤ ∥(A2(Vs,0, 0))
−1[0, 0, β]∥1

= ∥(A2(Vs,0, 0))
−1
[:,3]∥1 · β

≤ 100β

9(7Vs − 5)
.

(79)

Also, since Fmin ≤ 1⊤F2π
2 ≤ 1 and ∥v⊤F2∥1 ≤ d always hold, we know that ∥∂Sζ(π)

∂π2 ∥ ≤ d
Fmin

· ∥π2∥1 = d
Fmin

. Since
V ∗
s,0 ≈ 8

11 and all Vs,0 we consider are around it (According to (74)), we may assume that (7Vs − 5) > 1
2 · (

8
11 −

5
7 ) >

1
200

Therefore, we have:

|Sζ(π̌)− Sζ(π)| ≤
d

Fmin
∥π̌2 − π2∥2

≤ 100dβ

9(7 · Vs − 5)Fmin

≤ 100dC2

9(7 · Vs − 5)Fmin
· T− 1

2+η

≤ 3000dC2

Fmin
· T− 1

2+η.

(80)
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Also, according to the proof of Lemma 22, we know that |Vs,0 − V ∗
s,0| ≤ (C1 + LC2)T

− 1
2+η and |α∗

0 − α0| ≤ 0.6(C1 +

LC2)T
− 1

2+η (as ζ = 0). Plugging in (56) and (57), we have:

∥π1
0,∗ − π̌1∥1 ≤50 · ((120 + 8 + 10 + 10× (8 + 2))|α∗

0 − α0|+ (13 + 106)|Vs,0 − V ∗
s,0|)

≤1309(C1 + LC2)T
− 1

2+η

∥π2
0,∗ − π̌2∥1 ≤

1

3× 0.2× 3
((4× 36 + 120 + 24)|α∗

0 − α0|+ (120 + 51 + 120 + 39)|Vs,0 − V ∗
s,0|)

≤350(C1 + LC2)T
− 1

2+η

(81)

Therefore, we have:

|Sζ(π0,∗)− Sζ(π̌) ≤
d

Fmin
∥π0,∗ − π̌∥2

=
d

Fmin
(∥π1

0,∗ − π̌1∥2 + ∥π2
0,∗ − π̌2∥2)

≤ d

Fmin
(∥π1

0,∗ − π̌1∥1 + ∥π2
0,∗ − π̌2∥1)

≤ d

Fmin
· (1309(C1 + LC2)T

− 1
2+η + 350(C1 + LC2)T

− 1
2+η)

≤ d

Fmin
2000(C1 + LC2)T

− 1
2+η.

(82)

Recall that C1 = C
W and C2 = C

W...L . Now, we let W = 106 d
Fmin

. Therefore, we have:

Sζ(π) =Sζ(π)− Sζ(π̌) + Sζ(π̌)− Sζ(π0,∗) + Sζ(π0,∗)

≥Sζ(π0,∗)− |Sζ(π)− Sζ(π̌)| − |Sζ(π̌)− Sζ(π0,∗)|

≥ 12ζ(1− 2ζ)

(11− 2ζ)(11− 6ζ)
− 3000dC2

Fmin
· T− 1

2+η − d

Fmin
2000(C1 + LC2)T

− 1
2+η

≥ 1

20
ζ − 5000d(C1 + LC2)

Fmin
· T− 1

2+η

=
1

20
C · T− 1

2+η − 5000dC

Fmin ·W
· T− 1

2+η

≥ 1

20
C · T− 1

2+η − 1

200
C · T− 1

2+η

≥ 1

30
C · T− 1

2+η.

(83)

Let Cac =
1
30 · C and this lemma holds.

Define PP0
and PPζ

as the probabilistic distribution of customer’s feedback at each round. In order to increase the
information for distinguishing between two problem settings, we assume that a customer would always tell us whether or
not she accept the price $1, at each time t = 1, 2, . . . , T . Therefore, both PP0 and PPζ

are binomial distributions B(T, 0.5)
and B(T, 0.5− ζ). Here we present another lemma, the Lemma 25, that indicates the hardness of distinguishing the two
settings.

Lemma 25. Consider the N ≥ T
2 rounds when we play a policy in AC ∨ BD. For any algorithm ϕ, denote ϕt = 1 if

πt ∈ AC and ϕt = 0 if πt ∈ BD. Then we have:

max{EP0
[

N∑
t=1

ϕt],EPζ
[

N∑
t=1

(1− ϕt)]} ≥
1

8
T · exp(−T 2η). (84)
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Proof of Lemma 25 . In fact, we have:

max{EP0
[

N∑
t=1

ϕt],EPζ
[

N∑
t=1

(1− ϕt)]} ≥
EP0 [

∑N
t=1 ϕt] + EPζ

[
∑N

t=1(1− ϕt)]

2

= N ·
PP0

[ϕt == 1] + PPζ
[ϕt == 0]

2

≥ T

4
· (PP0

[ϕt == 1] + PPζ
[ϕt == 0])

≥ T

8
· exp(−N ·KL(PP0

||PPζ
))

≥ T

8
· exp(−N ·KL(Ber(0.5)||Ber(0.5− ζ)))

≥ T

8
· exp(−N · 12ζ2)

=
T

8
· exp(−N · 12(C · T− 1

2+η)2)

≥ T

8
· exp(−12C2T 2η)

≥ T

8
· exp(−T 2η).

(85)

Here the first line is for max ≥ average, the second is by definition of ϕt, the third line is for N ≥ T
2 , the fourth line is

from Fano’s Inequality that P0[ϕ == 1] + P1[ϕ == 0] ≥ 1
2 · exp{−N ·KL(P0||P1)} for any distributions P0 and P1,

the fifth line is by definition of P0 and Pζ that they are only different in the customers’ feedback satisfying Ber(0.5) and
Pr = 0.5− ζ for some actions, respectively, the sixth line is from Lemma 19, the seventh line is for ζ = C · T− 1

2+η, the
eighth line is for N ≤ T , and the last line is for 12C2 ≤ 1.

With the two lemma above, we know that

• For any algorithm ϕ, we either run at least T
8 · exp(−T

2η) rounds with some πt ∈ AC when the problem setting
is Pζ , or run at least T

8 · exp(−T
2η) rounds with some πt ∈ BD when the problem setting is P0, according to

Lemma 25.

• For each round we mismatching the problem setting, we will suffer a min{Cac, Cbd} · T− 1
2+η unfairness, according

to Lemma 24.

Given these two facts, denote Cmin := 1
8 min{Cac, Cbd} and we at least have CminT · exp(−T 2η) · T− 1

2+η unfairness. For
x = Cx

log T with any constant Cx, we let η = 3x
2 = 3Cx

2 log T and therefore η > x. As a result, we have

CminT · exp(−T 2η) · T− 1
2+η = Cmin exp(−T 2η + η log T )T

1
2

= Cmin exp(−T 2· Cx
log T +

3Cx

2 log T
· log T )T 1

2

= Cmin exp(− exp(2 · Cx

log T
· log T ) + 3Cx

2
)T

1
2

= Cmin exp(− exp(2Cx) +
3Cx

2
)T

1
2

(86)

Let Cu =
Cmin exp(− exp(2Cx)+

3Cx
2 )

2 , and then the result of the equation above contradicts with the suppose that the unfairness
does not exceed Cu · T

1
2 . Therefore, we have proved the theorem.

C More Discussion
Here we discuss more on the problem settings we assumed, the techniques we used and the social impacts our algorithm
might have, as a complement to Section 6.
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C.1 Potential Generalizations of Current Problem Setting.
Currently we make a few technical assumptions that qualify the applications of our algorithm. In fact, these assumptions are
mild and can be released by some tricks: On the one hand, we can always meet the requirement of Assumption 1 by reducing
vd. By running a binary-search algorithm for the highest acceptable price (with constant acceptance probability), we can
find the feasible vd within O(log T log T ) rounds (where log T for binary search and another log T for the concentration of
a constant-expectation random variable, as we did in estimating Fmin). Since O(log T log T ) is much smaller than O(

√
T )

as the optimal regret and unfairness, this would not harm the regret and unfairness substantially. On the other hand, we
assume the prices to be chosen from a fixed and finite price set V, which not only restricted our action but might lead
to suboptimality from the perspective of a larger scope. In fact, if we allow the prices to be selected in the whole [0, 1]
range, a pricing policy can be a tuple of two continuous distributions over [0, 1]. To solve this problem, we may parametrize
the distribution and learn the best parameters. We may also discretize the price space into small grids, i.e. prices are
V = {γ, 2γ, . . . , (d− 1)γ, dγ = 1}, where γ = T−α with some constant α and d= Tα as a consequence. It is intrinsically
a specific way of parametrization. According to the “half-Lipschitz” nature of pricing problem as well as our Lemma 14
along with the Lipschiness of S(π;F1, F2), we know that the per-round discretization error would be upper bounded by
O(T−α). Let the cumulative discretization error O(T

1
−α ) balances the cumulative regret (or substantive unfairness), i.e.,

O(d
3
2

√
T ) = 0(T

1
2+

3α
2 ), we can achieve an upper bound on both the regret at O(T

4
5 ) by letting α = T

1
5 . However, this is

not necessarily optimal as our original results in theorem 6 only match the lower bounds w.r.t. T but not to d. Therefore, it
would also be an interesting problem to see the minimax regret/unfairness dependent w.r.t. d.

Besides of the assumptions we have made, there are other notions regarding our problem setup that can be generalized.
Firstly, we may generalize our problem setting from two groups to multiple G ≥ 3 groups. Again, the feasible set is not
empty as we can always propose the same fixed price to all groups. However, there is not a directly generalization of the
fairness definition, which we defined as the difference of the expectation of certain amount between two groups. We might
defined it as “pairwise unfairness” by comparing the same difference among each pair of groups and adding them up, as we
mentioned in section 6. However, this notion might not be a proper way to quantify the unfairness people suffer: Consider
the case where the expected proposed prices in (G− 1) groups are very high and the last one is very low, and compare this
case with another case where the expected proposed prices in 1 groups are very high and in the other (G− 1) groups are
very low. The unfairness in these two cases should be definitely different, as the first seems more acceptable (i.e., being nice
to only the minority versus being nice to only the majority). However, their “pairwise unfairness” are exactly the same in
these two cases. Therefore, a better notion of procedural/substantive unfairness should be established for multiple G ≥ 3
groups before we design and run fair pricing algorithms.

Secondly, we may generalize the modeling on customers from i.i.d. to strategic. For example, what if a customer tries
multiple times until getting the lowest price of the distribution for this group. This is an adaptive adversary and therefore
very hard to deal with even in the simplest decision-making process such as bandits.

Thirdly, we may also include more fairness concern. Currently we are considering the two types of fairness, but we
define the cumulative fairness based as the summation of expected per-round unfairness. This definition does not take into
consideration the changing of policies. For example, if we propose a fair policy at each round, but the policies over time
changes drastically, then it is hard for the customers to feel or experience such a fairness. In our algorithm design of FPA,
we always play the same policy for at least τk

2d = Ω(
√
T ) rounds as a batch until the policy changes. This is a long enough

time period for customers to experience fairness since at least a Omega(
√
T ) number of customers from both groups would

come and buy items under the same policy according to the Law of Large Numbers. However, this would still cause a
feeling of unfairness for the two customers who are arriving almost simultaneously but the policy is just changed after the
first customer buy or decide not to buy. Therefore, there exists necessity for us to consider the time/individual fairness under
this online pricing problem scheme.

C.2 Potential Generalization of Techniques
Here we discuss a little bit more on the probable extension of the techniques we developed in our algorithm design and
analysis.

A Good-and-exploratory Policy Set Our algorithm FPA maintains and updates a “good-and-exploratory” policy Ak

in each epoch. Each policy in this set performs close to the optimal policy in both regret and unfairness reductions. A
similar idea in reinforcement learning related research exists in Qiao et al. (2022) where they select policies that visit each
(horizon, state, action) tuple most sufficiently while ensuring that the policy is low in regret. In fact, if we imagine an
“exploratory” policy as the one that would elevate the most “information” (i.e., that would reduce the most uncertainty), then
the “good-and-exploratory” policy-selection process is equivalent to an “Upper Confidence Bound” method Lai and Robbins
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(1985) where we always pull the arm with the highest upper confidence bound in a multi-armed bandit. The only difference
is that: for traditional exploration-and-exploitation balancing algorithm, we only need to improve our estimation on the
parameters of these optimal or near-optimal policies. However, in our problem setting, we have to guarantee a uniform error
bound, i.e., we have to improve our estimation on all parameters instead of only those optimal-related ones. This is because
that we have to improve the estimation on constraints as well as on the revenue function. In our algorithm design, we
handle this problem by keeping eliminating a feasible policy set, which in turn releases the algorithm from estimating those
unnecessary parameters. In a nutshell, our methods can be applied broadly in online-decision-making problems.

Unfairness Lower Bound Proof on Optimal Algorithms The main idea of our proof of the Ω(
√
T ) unfairness lower

bound on any algorithm with O(
√
T ) optimal regret is to construct a trade-off on unfairness and regret between two adjacent

problem settings. We first bound the “bad policies” away from each problem setting, to avoid those policies that are super
fair in both setting but performs poor in both setting as well. Then we show that policies with small-enough regret and
unfairness on one setting should suffer a large regret on the other. Finally we end the proof by showing that we will definitely
make Θ̃(T ) times of mistakes in expectation, according to information theory. We believe that this scheme can be used in
proving a variety of trading-off lower bounds.

C.3 Social Impacts
In this work, we develop methods to prompt the procedural and substantive fairness of customers from all groups. We believe
that our techniques and results would enhance the unity of people with different gender, race, age, cultural backgrounds,
and so on. However, it is definitely correct that we have to treat differently to different group of people. In order to ensure
the fairness from customers’ perspective, the seller is required to behave unfairly. Of course we could partly get rid of this
issue by leaving the generating process of a random price to the nature, i.e., we let each customer draw a coupon from a
box randomly. However, this only means that the seller’s pricing process is fair but not leads to a fair result, as customers’
coupon varies a lot from person to person. This turn out to be the exact issue named as “pricing and price fairness” proposed
in Chapuis (2012) regarding the fairness of a seller’s behavior. Maybe in the future we could develop an algorithm that is
not only profitable but also ensures the fairness from both the seller and the customers’ perspective, which could be a truly
“doubly fair” dynamic pricing.
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